wo 2007/027362 A1 |10 0O 00O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
8 March 2007 (08.03.2007)

fﬂﬁ A0 T

(10) International Publication Number

WO 2007/027362 Al

(51) International Patent Classification:
GOG6F 17/00 (2006.01) HO4N 7/24 (2006.01)
GOG6F 15/16 (2006.01)

(21) International Application Number:
PCT/US2006/030483

(22) International Filing Date: 4 August 2006 (04.08.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/712,993
11/419,594

31 August 2005 (31.08.2005)
22 May 2006 (22.05.2006)

Us
Us

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, WA 98052-6399 (US).

(72) Inventors: COLEMAN, Paul, L.; One Microsoft Way,
Redmond, WA 98052-6399 (US). SCHMIEDER, Wil-
helm; One Microsoft Way, Redmond, WA 98052-6399
(US). PARSONS, John; One Microsoft Way, Redmond,

(81)

(34)

WA 98052-6399 (US). ABDO, Nadim; One Microsoft
Way, Redmond, WA 98052-6399 (US). CHIK, Joy; One
Microsoft Way, Redmond, WA 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,
SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, 7ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: REMOTE PROTOCOL SUPPORT FOR COMMUNICATION OF LARGE OBJECTS IN ARBITRARY FORMAT

(57) Abstract: A server computer (102) provides objects (122) such as

1OH

bitmaps representing graphics image for processing by a client computer or

- device. The object may be of any arbitrary size or format, and is converted

SERVER COMPUTER
102

PROCESSOR
108

SR

APPLICATION(S)
14

DYNAMIC LINK
LIBRARY
118
N
ENCODER
124

PROTOCOL DATA UNITS M

N

APPLICATION
MEMORY PROGRAM
110 |NTEI3|E‘ABCE(S)

OPERATING
SYSTEM
112

122
120

NETWORK
106

CLIENT COMPUTER
104

~
PROCESSOR DE?ggER REQS!!EEEHSLY
126 138 940
A N\
MEMORY DYNAMIC LINK PPLICATION
128 LiBRaRy INfr’EgF(i\Rer“fs)
138
— 134
J
ERATIN
°§Y§$EMG PROTOGOL DATA UNITS
130 144
SuPER BIT BLOGK
142
APPLICATION(S)

L 132
e

=]

to a data structure (122) that can be received by the client computer.
Synchronized metadata may be included in the data structure, where such
metadata data is used by an application in the client computer or device (104).

WO 2007/027362 A1 |00 000 0T 0000 00 O 0 00

Declarations under Rule 4.17: — before the expiration of the time limit for amending the
— as to applicant’s entitlement to apply for and be granted a claims and to be republished in the event of receipt of
patent (Rule 4.17(ii)) amendments

— asto the applicant’s entitlement to claim the priority of the

li lication (Rule 4.17(iii
carlier application (Rule (iit)) Fortwo-letter codes and other abbreviations, refer to the "Guid-

Published: ance Notes on Codes and Abbreviations" appearing at the begin-
— with international search report ning of each regular issue of the PCT Gagzette.

WO 2007/027362 PCT/US2006/030483

10

15

20

25

30

35

REMOTE PROTOCOL SUPPORT FOR COMMUNICATION OF LARGE OBJECTS IN
ARBITRARY FORMAT
RELATED APPLICATIONS
[001] The present application claims priority under 35 U.S.C. §119(e) to U.S.
Provisional Application No. 60/712,993, filed August 31, 2005, the disclosure of
which is incorporated herein.
BACKGROUND

[002] An application program or application may create and provide a graphics
image. The graphics image may be represented by a bitmap which can be passed on to
other applications. Since graphics images can vary in complexity or size, the bitmaps
representing graphics images can also vary in complexity or size.

[003] In a server and remote client system, where a server computer supports one or
more client computers, a bitmap from the server computer may be broken down into
smaller pieces and communicated to the client computer. The client computer may
individually display or process each of the smaller bitmap pieces. In other words, to
display the larger graphics image, each Qf the smaller bitmap pieces is processed. A
problem for relatively large size bitmaps that are changing or updating at a high rate is
a tearing effect seen at the client computer. The tearing effect takes place as the client

computer displays each bitmap piece.

[004] If the bitmap is sent at one time (i.e., not broken into the smaller pieces) to the

client computer, the client computer may decide how the bitmap may be displayed
giving specific constraints (e.g., high update rate) seen at the client computer;
however, if the bitmap is sent in its entirety, it may have to be compressed.
Compression typically is used to support relatively large size bitmaps. An application
running at the server computer may compress the bitmap based on a particular
compression format. The compression formats may be lossy, meaning that some
information or data is degraded or lost when a bitmap (i.e., graphics image) is
compressed.

[005] The bitmap may be communicated or transmitted to the client computer using
a particular communication protocol such as Remote Desktop Protocol or RDP.
Typically when a communication protocol is used, the compressed bitmap is further

decompressed into a standardized uncompressed format to allow a communication

10

15

20

25

30

35

WO 2007/027362 PCT/US2006/030483

protocol encoder to compress the bitmap for transmission to the client computer. This
may involve significant and redundant work for the server computer and result in
lower compression ratios than were already present in the pre-compressed bitmap (i.e.,
further degradation of the original bitmap).
[006] Furthermore, when a communication protocol, such as RDP, is implemented, a
separate chamnel or virtual chamnel may be implemented to provide metadata
information related to the bitmap or bitmaps. This separate or virtual channel
typically is not synchronous with the bitmaps or graphics stream that includes the
bitmaps. It is typical that the bitmaps or the graphics stream, are transmitted over a
channel separate from the virtual channel in which metadata is transmitted. This can
be a limitation in scenarios where synchronizing the graphics stream with some
metadata is desired or required. A specific example of such a limitation with RDP is
the lack of information at the client side about window positions and dimensions. If
the display of the graphics stream was to be directly affected by window placement, it
might be important for changes in window placement to be carefully synchronized
with the graphics stream.)‘
[007] In addition, the reassembly of arbitrarily large objects at the client side creates
a memory management issue at the client computer. For example, as bitmaps and/or
bitmap pieces are received by a client computer, they may be placed in a buffer, then
reassembled and processed. However, the buffer at the client computer may not be
sufficiently large enough to accommodate the bitmaps and/or bitmap pieces.
SUMMARY
[008] A method and apparatus is provided that enables a client computer or device of
server-client system to provide information to server computer as to the ability to
receive a bitmap or other object, structuring the object so it may be received by the
client computer, and adding client computer application metadata to the data
representing the bitmap or object.
[009] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is
not intended to identify key features or essential features of the claimed subject matter,
nor is it intended to be used as an aid in determining the scope of the claimed subject

matter.

WO 2007/027362 PCT/US2006/030483

10

15

20

25

30

35

BRIEF DESCRIPTION OF THE CONTENTS
[0010] The detailed description is described with reference to the accompanying
figures. In the figures, the left-most digit(s) of a reference number identifies the figure
in which the reference number first appears. The use of the same reference number in
different figures indicates similar or identical items.
[0011] Fig. 1 is an illustration of a server-client system that incorporates protocols and
application programming interfaces (API) that allow a client computer to reassemble
fragments of large objects.
[0012] Fig. 2 is an illustration of an exemplary data block structure of a multi-
fragment protocol data unit.
[0013] Fig. 3 is a flowchart illustrating a process for sending application level
metadata synchronized with a data stream.
[0014] Fig. 4 is a flowchart illustrating a process for treating an incoming large object
as part of a data stream.

DETAILED DESCRIPTION

[0015] Fig. 1 shows an exemplary server and remote client or server-client system
100. The system 100 includes a server computer 102 and one or more client devices
or client computers as represented by client computer 104. Server computer 102 and
client computer 104 are connected by a network 106 which may include one or more
networks, including the Internet. In particular, graphics images, objects, and/or
bitmaps representing graphics images, are sent from server computer 102 to client
computer 104 for processing or display by client computer 104. The graphics images,
objects, and/or bitmaps may be of any arbitrary size. The graphics images, objects,
and/or bitmaps may be communicated by server computer 102 using a communication
protocol such as Remote Desktop Protocol or RDP. A transport protocol such as
transmission control protocol over Internet protocol (TCP/IP) may be implemented
when transporting over network 106. In certain cases, when RDP is implemented,
server computer 102 may be referred to as an “RDP server” and client computer 104
may be referred to as an “RDP client”.
[0016] Any metadata describing or associated with the graphics images, objects,
and/or bitmaps may be included with the graphics images, objects, and/or bitmaps as

they are communicated from server computer 102. This allows the metadata to be

WO 2007/027362 PCT/US2006/030483

10

15

20

25

30

35

synchronized with the graphics images, objects, and/or bitmaps. Although a server-
client system 100 is described in this example, it is contemplated that other
implementations such as intra device systems (e.g., stand alone computing devices)
may make use of the techniques and methods described herein.

[0017] Server computer 102 includes a central processing unit, or one or more
processors as represented by processor 108. Processor 108 may control or access a
storage device or a memory 110. In this exemplary implementation, server computer
102 further includes an operating system 112 which may reside in memory 110. The
server computer 102 includes one or more application programs or application(s) 114
that are controlled by the processor 108. In particular, applications 114 include
applications that generate or provide the graphics images, objects, and/or bitmaps that
are communicated to client computer 104.

[0018] A dynamic link library or DLL 116 is included with server computer 102. In
particular, the DLL 116 includes routines accessed through application program
interface(s) 118 that allow application(s) 114 to pass the graphics images, objects,
and/or bitmaps. Examples of such routines include a “DrvEscape” call from a user
mode (e.g., application level) into a display driver “rdpdd.dll” (the display driver
typically is in kernel/operating system mode or level) to pass an arbitrary encoded
bitmap to be re-encoded as a particular protocol data unit or PDU, referred to in this
example as a “SuperBlt” or super bit block 120, which is eventually passed on or
communicated to the client computer 104. It is expected that graphics images,
objects, and/or bitmaps that are passed through the application program interface(s)
118 may be in any arbitrary format including formats that support per pixel alpha-
transparency information. This is an exemplary implementation, in which metadata
may be sent to client computer 104 such that the metadata is synchronized with a
graphics stream, where the bitmaps may come through standard calls such as through
a “Win32” graphics stream, by using known and existing “BitBlt” routines.

[0019] The super bit block 120 is a single PDU that is split into multiple data blocks
by lower layers in a communication protocol, such as remote desktop protocol or
RDP. In certain implementations, super bit block 120 is part of other protocol data
units 122. An encoder 124 may be implemented to compress and package the super
bit block 120 into a packet or graphics stream, where the packet and/or graphics

stréam is sent over a single channel. In particular, the encoder 124 is configured to

10

15

20

25

30

35

WO 2007/027362 PCT/US2006/030483

implement a specific communication protocol such as RDP, and/or transmission
protocols such as TCP/IP. In other implementations, separate components may be
used to provide the functions of the encoder 124. In certain cases, the encoder 124 or
other component at the server computer 102 may break down any graphics images,
objects, and/or bitmaps that are too large into smaller and more manageable graphics
images, objects, and/or bitmaps. The smaller graphics images, objects, and/or bitmaps
are then reassembled at the client computer 104.

[0020] Client computer 104 includes a central processing unit, or one or more
processors as represented by processor 126. Processor 126 may control or access a
storage device or a memory 128. In this exemplary implementation, client computer
104 further includes an operating system 130 which may reside in memory 128. The
client computer 104 includes one or more application programs or application(s) 132
controlled by processor 126. In particular, application(s) 132 include applications that
process graphics images, objects, and/or bitmaps received from server computer 102.
In specific, the graphics images, objects and/or bitmaps are received by applications
132 through applications program interfaces(s) 134 which access routines or drivers in
a dynamic link library (DLL) 136. A specific application program interface may be a
“bit block” type interface based on preexisting “bit block™ conventions and protocols,
where such an interface is used to pass reassembled bitmap data (i.e., graphics images,
objects, bitmaps) along with corresponding metadata, to application(s) 132. The
routines or drivers of dynamic link library 136 are particularly used to pass the
graphics data or information from applications 132 to the operating system 130.

[0021] The client computer 104 includes a decoder 138. Decoder 138 may
decompress received PDUs, such as super bit blocks (i.e., graphics images, objects,
and/or bitmaps) which may or may not be in a data or graphics stream. Other
functions of decoder 138 may include decoding the received graphics images, objects,
and/or bitmaps based on a particular communication protocol (e.g., RDP) and/or
transmission protocol (e.g., TCP/IP).

[0022] In specific cases a received object such as a super bit block may be treated as a
stream instead of a discrete object that is reassembled at the client computer 104. In
an exemplary implementation, the decoder 138 may be used to keep track of decode
state of a data stream or graphics stream that includes the super bit block 120 that
describes the graphics images, objects, and/or bitmaps. By tracking the decode state

WO 2007/027362 PCT/US2006/030483

10

15

20

25

30

35

of the graphics stream, the graphics stream may be interrupted, and client computer
104 is made aware where to continue when interruption occurred. A specific
implementation is to provide the decoder 138 as a state machine which explicitly
stores context of received data (e.g., super bit blocks in the graphics stream). In
another implementation, the decoder 138 runs on a separate thread to server computer
102, such that decoder 138 reads from the graphics stream. When the decoder 138
needs to wait for more data (e.g. super bit blocks), the decoder 138 is “suspended”.
When suspended, the state of the decoder 138 is implicitly saved on a thread stack of
the separate thread from which the decoder 138 runs. In other words, the state of the
decoder 138 is implicitly held on a stack of a decoder thread while the decoder 138 is
suspended such that the decoder 138 knows where to continue when it becomes
unblocked (i.e., not suspended).

[0023] A reassembly buffer 140 may be included in client computer 104. The
reassembly buffer 140 particularly stores smaller pieces of a super bit block (i.e.,
graphics images, objects, and/or bitmaps) prior to passing an application program
interface in application interface(s) 134. In particular implementations wherein the
super bit block is not broken up into smallef pieces, the reassembly buffer 140 is not
included in client computer 104. In certain implementations, a separate buffer (not
shown) may be used to temporary store super bit blocks (i.e., graphics images, objects,
and/or bitmaps) before further processing by the client computer 104.

[0024] As discussed above, client computer 104 may implement a communication
protocol, such as RDP, and may be referred to as an RDP client, As an RDP client,
client computer 104 receives through an application program interface, a super bit
block 142 that includes a set of protocol data units 144. Furthermore, the super bit
block 142 that is split into multiple data blocks. The super bit block 142 may be
included with other protocol data units 144. The data in super bit block 142, which
includes data describing a particular graphics image, object, or bitmap, may be used
by the application(s) 132 to generate or render a graphics image on a display 146.
[0025] Fig. 2 shows an exemplary data block structure of a multi-fragment PDU 200.
The super bit block 120 described above is particularly implemented by the multi-
fragment PDU 200.

[0026] The multi-fragment PDU 200 may be of any specific size; however,
compression may be needed to support the multi-fragment PDU 200, if resources

WO 2007/027362 PCT/US2006/030483

10

15

20

25

30

35

(e.g., receiving buffers) at the client computer 104 are limited. In such cases, the
client computer 104 may inform the server computer 102 as to specific size
limitations. As an example, the multi-fragment PDU 200 may originally be 1 or 2 MB
in size, and the client computer 104 may only support 64 KB. An implementation
may involve breaking down the super bit block 120 or multi-fragment PDU 200 into
smaller pieces. In another implementation, the entire super bit block 120 or multi-
fragment PDU 200 is sent, where selective data of the super bit block 120 or multi-
fragment PDU 200 is compressed and effectively decreasing the size of the entire
super bit block 120 or multi-fragment PDU 200.

[0027] The multi-fragment PDU 200 may include a header 202, metadata 204, and
payload or bits 206. The header 202 may include information as to the bitmap (or
graphics image or object), such as color depth and compression type. Furthermore,
the header 202 may describe the size of the succeeding metadata 204 and the bits 206.
In certain cases, the super bit block 120 or multi-fragment PDU 200 may be conveyed
or communicated from the server computer 102 with just metadata 204 information
(i.e., payload 206 is not sent or is empty). The metadata 204 may include any
additional information directed to the information in the payload 206. The
information in metadata 204 is particularly directed to be application level data used
by applications(s) 132 of client computer 104. By providing the metadata 204 with
the payload 206, the metadata is synchronized with the payload 206. As an example,
synchronization of metadata is particularly beneficial in synchronizing audio with
display actions and associating timing information to improve quality of steady frame-
rate video.

[0028] The multi-fragment PDU 200 may be split up into multiple fragments, as
represented by a first fragment 208, next fragments 210, and a last fragment 212.
RDP protocol provides an update PDU mechanism. In this example, the update PDU
mechanism is extended to support multi-fragment PDUs, such as multi-fragment PDU
200, which include first fragment 208, next fragments 210, and last fragment 212. In
particular, a communication protocol, such as RDP, through lower layers of the
protocol, is able to split up the multi-fragment PDU into multiple data blocks or
fragments such as first fragment 208, next fragments 210, and last fragment 212.
[0029] The multi-fragment PDU 200 may be used to send any resource, such as a
bitmap. In other words, multi-fragment PDU 200 is not limited to any specific object

WO 2007/027362 PCT/US2006/030483

5 type. By providing multiple fragments 208, 210, and 212 that are identified with
“first, next, and last”, a layer of a decoder (e.g., decoder 138) knows whether
additional fragments are to be received before passing data to an upper layer of the
decoder, where the upper layer of the decoder has knowledge as to the actual resource
or-object type in the PDU or muiti-fragment PDU 200.

10 [0030] Fig. 3 shows a process 300 that sends application level metadata that is
synchronized with a data stream. The process 300 may be implemented as a protocol
between a server computer (e.g., server computer 102) and a client computer (e.g.
client computer 104). The process 300 is illustrated as a collection of blocks in a
logical flow graph, which represent a sequence of operations that can be implemented

15 in hardware, software, firmware, or a combination thereof. In the context of software,
the blocks represent computer instructions that, when executed by one or more
processors, perform the recited operations. Although described as a flowchart, it is
contemplated that certain blocks may take place concurrently or in a different order.
[0031] At block 302, a server computer receives information as to the availability of

20 one or more client computers (devices) to receive object or bitmap data that may
describe or be associated with a graphics image. For example, the object may be
represented as a multi-fragment PDU (e.g., multi-fragment PDU 200). The graphics
image may be provided by an application or application program running at the server
computer. In addition to the availability of the client computer or computers, the

25 server computer may receive information as to the resource capabilities of specific
client computers. The resource capabilities may include buffer capacities at the client
computer, including receiving buffers and reassembly buffers. The information may
be conveyed through a channel in which data is sent from the server computer to the
client computers, or a separate channel.

30 [0032] At block 304, a determination is made at the server computer whether to send
the object or bitmap, or data (e.g. multi-fragment PDU) that represents the object or
bitmap, as a whole. A factor in the determination is the resource capabilities of the
client computer. Alternatively, the object or bitmap (data) may be broken up into
smaller pieces. The smaller pieces are eventually received and reassembled by the

35 client computer. The determining or determination may be based on the resource

capabilities of the client computer.

WO 2007/027362 PCT/US2006/030483

10

15

20

25

30

35

[0033] At block 306, header and metadata information may be added with object or
bitmap data. The metadata is particularly directed to be used by an application or
applications resident at the client computer, where such application or applications
consume or process the object or bitmap data. The metadata may further describe or
provide additional information as to the object or bitmap data. The object may be
represented by the multi-fragment PDU which may include multiple fragments as
described in Fig. 2 above. In particular, the multiple fragments may be sequenced and
include an identifier with each fragment as to where in the sequence a particular
fragment is located (e.g., first, next, and last).

[0034] At block 308, the header, metadata, and object or bitmap data may be
structured into a particular data format such as the multi-fragment PDU described in
Fig. 2, and sent to client computers. The header, metadata, and object or bitmap data
(i.e., multi-fragment PDU or super bit block) may be further compressed and encoded
based on a particular communication protocol such as RDP, and/or a particular
transmission protocol such as TCP/IP. Discrete multi-fragment PDUs or super bit
blocks may be included in or be part of a data stream that is communicated intra-
device (i.e., within the same machine), such that there is a producer (i.e., application)
of the data stream and a consumer (i.e. application) of the data stream.

[0035] Fig. 4 shows a process 400 that treats an incoming large object as a data
stream. Process 400 is particularly directed to managing large objects such as bitmaps
at a client computer (e.g., client computer 104). The process 400 may be implemented
at the client computer as it receives objects such as a super bit block. The process 400
is illustrated as a collection of blocks in a logical flow graph, which represent a
sequence of operations that can be implemented in hardware, software, firmware, or a
combination thereof. In the context of software, the blocks represent computer
instructions that, when executed by one or more processors, perform the recited
operations. Although described as a flowchart, it is contemplated that certain blocks
may take place concurrently or in a different order.

[0036] At block 402, a client computer receives objects, such as super bit blocks, in a
graphics or data stream. The data stream may originate from a server computer and be
transmitted over one' or more networks, as described by the exemplary system 100 as

shown Fig. 1. The data stream may be sent through a particular thread or channel.

10

15

20

WO 2007/027362 PCT/US2006/030483

10

[0037] A decoder or similar component at the client computer may receive and
process the objects in the data stream. If the decoder does not receive the data stream
in a separate thread from the thread in which the data stream is communicated or sent
(i.e., following the “NO” branch of block 404), for a particular implementation, at
block 406, the decoder may track the decode state of the data stream, and particularly
the decode state of objects in the data stream.

[0038] At block 408, the decoder acting as a state machine may store context or
decode state of received objects in the data stream. At block 410, if the data stream is
interrupted (i.e., decoder stops receiving the data stream), then decoding may continue
based on the decode state of the received objects.

[0039] If the decoder runs on a separate thread from which the data stream is received
(i.e., following the “YES” branch of block 404), in another implementation, at block
412, the decoder reads from the data steam on the separate thread.

[0040] At block 414, if more or additional data/objects in the data stream are needed
by the decoder, the decoder is suspended. At block 416, the state of the decoder is
saved. In particular, if the decoder runs on a separate thread, the thread stack of the
separate thread implicitly saves the state of the decoder when the decoder is
suspended. At block 418, decoding may continue based on the state of the decoder
(e.g., state on thread stack), when interruption occurred.

WO 2007/027362 PCT/US2006/030483

10

11

CONCLUSION
[0041] The above-described methods and devices describe communicating arbitrary
sized objects such as bitmaps of a graphics image to a client device for processing.
Although the invention has been described in language specific to structural features
and/or methodological acts, it is to be understood that the invention defined in the
appended claims is not necessarily limited to the specific features or acts described.

Rather, the specific features and acts are disclosed as exemplary forms of

implementing the claimed invention.

10

15

20

25

30

35

WO 2007/027362 PCT/US2006/030483

12

CLAIMS
What is claimed is:

1. A method (300) comprising:

receiving (302) information as to capability of a client device to receive an
ngj ect from a server computer;

determining (304) whether to break up the object or send the object as a whole
to the client device based at least on the capability of the client device;

adding metadata (306) to the object, wherein the metadata is used by an
application resident at the client device to process the object;

structuring (308) the object and metadata into a particular data format; and

sending (308) the object and metadata as structured in the particular data
format, to the client device.

2. The method of claim 1, wherein the object describes a bitmap
representative of a graphics image.

3. The method of claim 1, wherein the receiving information comprises
resource capabilities including buffer capacity of the client device.

4, The method of claim 1, wherein the receiving information is through a
channel that is separate from a channel in which the sending is performed.

5. The method of claim 1, wherein the receiving information is through a
channel that is separate from a channel in which the sending is performed.

6. The method of claim 1, wherein the adding further comprises adding a
header that describes the object.

7. The method of claim 1, wherein the sending further comprises
packaging and compressing the object.

8. The method of claim 1, wherein the sending is through a data stream
that includes the object.

9. The method of claim 1 further comprising breaking up the object into
discrete units that are sequenced and identified by a sequence order, as performed by a
communication protocol.

10. A method (400) comprising:

receiving (402) objects in a data stream in a particular thread;

processing (404) the objects in the data stream; and if the same thread is used

in the processing:

10

15

20

25

30

35

WO 2007/027362 PCT/US2006/030483

13

tracking (406) the decode state of the data stream;

storing (408) context of received objects in the data stream; and

decoding (410) based on the context of the received objects after
interruption of receiving the data stream.

11. The method of claim 10, wherein the objects are bitmaps representing
graphics image, and the data stream is a graphics stream.

12. The method of claim 10, wherein the objects are bitmaps representing
graphics image, and the data stream is a graphics stream.

13. The method of claim 10, wherein if a separate thread is provided for
the processing:

reading the data stream on the separate thread,

suspending the processing as performed by a decoder if additional data
is needed; and

saving the state of the decoder when the suspending takes place.

14. The method of claim 13, wherein the saving the state of the decoder is
performed by saving the state of a thread stack of the separate thread.

15. The method of claim 13 further comprising decoding after an
interruption based on the state of the decoder.

16. A computer (102) comprising:

a processor (108);

an application (114) controlled by the processor, wherein the application
provides graphics images;

an application program interface (118) to the application;

a first driver (116) accessed by the application program interface that allows
the graphics image to passed to second driver that encodes the graphics image into
super bit block.

17. The computer of claim 16 wherein the graphics image is represented by
a bitmap of any arbitrary size.

18. The computer of claim 16 wherein the super bit block comprises a
series of protocol data units identified by sequence order in the series.

19. The computer of claim 16 further comprising encoding and packaging

the super bit block for communication to a client device.

WO 2007/027362 PCT/US2006/030483
14

20. The computer of claim 16 further comprising sending the super bit

block in a graphics stream to a client device.

1/4

WO 2007/027362 PCT/US2006/030483
100_\
(SERVER COMPUTER)
102
[N [(-
PROCESSOR APPLICATION(S) DYE@,’{'XR{‘)NK
108 114
o U \ 118
(Y ([APPLICATION a
MEMORY PROGRAM ENCODER
110 INTERFACE(S) 124
118 L
e N\
OPERATING PrRoTocoL DATA UNITS
SYSTEM 122
112 SUPER BIT BLOCK -
N 120
_
_
NETWORK
106
|
(CLIENT COMPUTER)
104
~
(PROCESSOR DECODER REQS?EQ’ELY
126 138
L L2 140
f A APPLICATION
MEMORY DYNAMIC LINK
128 Ugwary | | FEOCRA,
136
\ L — 134
(OPERATING)
SYSTEM PRoOTOCOL DATA UNITS
| 130 144
SUPER BIT BLock
() 142
APPLICATION(S) —
132

<

146

FIG. 1

WO 2007/027362 2/4 PCT/US2006/030483

120N

MULTI-FRAGMENT S’ORSTOCOL DATA UNIT

N
~ ~N
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
HEADER METADATA BITs (PAYLOAD)
202 204 206
N
~ ~
~ ~
~ ~
~ ~
- ~N
e ~N
e ~
, ~.
FIRST NEXT NEXT LAST
FRAGMENT FRAGMENT N FRAGMENT FRAGMENT
208 210(1) 210(N) 212

FIG. 2

WO 2007/027362

3/4

300
\

(RECEIVE INFORMATION AS TO
AVAILABILITY AND CAPABILITY OF
CLIENT TO RECEIVE OBJECTS/
BiTmAP DATA

302

v

DETERMINE WHETHER TO SEND
OBJECT/BITMAP AS A WHOLE
304

ATTACH HEADER AND METADATA

WITH OBJECT/BITMAP DATA
306

(Y

ENCODE AND TRANSMIT HEADER,

METADATA, AND OBJECT/BITMAP
DATA

308

FIG. 3

PCT/US2006/030483

WO 2007/027362 4/4 PCT/US2006/030483

400 ‘
_\

Y

RECEIVE OBJECTS IN A
DATA STREAM
402

DECODE
DATA STREAM
FROM SEPARATE
THREAD?
404

YES

(N r)
TRACK DECODE STATE OF
DATA STREAM
406

! v

[SuSsPEND DECODER IF
MoRE DATA (OBJECT) IS

READ FRoOM DATA STREAM
412 '

-

STORE CONTEXT OF
REeCEIVED OBJECTS

NEEDED
408 414
L ¢ \
(W (" W

SAVE STATE OF DECODER
AT THE TIME DECODER IS
SUSPENDED
416

'

IF INTERRUPTED, CONTINUE
BASE ON STATE OF
DECODER
418

IF INTERRUPTED, CONTINUE
BASED ON DECODE STATE
410

FIG. 4

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2006/030483

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 17/00(2006.01)i, GOGF 15/16(2006.01)i, HO4N 7/24(20006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC8 GO6F 17/00, GO6F 19/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Patents and applications for inventions since 1975

Korean Utility models and applications for Utility models since 1975

Japanese Utility models and application for Utility models since 1975

Electronic data base consulted during the intertnational search (name of data base and, where practicable, search terms used)
¢eKIPASS "BITMAP, BUFFER, METADATA, TRANSMISSION"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO 2003/027884 A1 (EG TECHNOLOGY INC) 3 APRIL 2003 1-3,6-8
A SEE THE PAGES 3-7 ; CLAIMS 1-18 4,5, 9-20
X WO 2003/040893 A2 (LIGHTSURF TECHNOLOGIES INC) 15 MAY 2003 1
SEE THE ABSTRACT AND PAGES 1-3 2-20
A WO 2003/003731 A2 (IBM) 9 OCTOBER 2003 1-20

SEE THE WHOLE DOCUMENT

A KR 1992-22901 A (PHILIPS CORP) 19 DECEMBER 1999 1-20
SEE THE CLAIMS 1-10

|:| Further documents are listed in the continuation of Box C. |E See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
10 JANUARY 2007 (10.01.2007) 10 JANUARY 2007 (10.01.2007)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701, LEE, Jung Suk
. Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-5789

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2006/030483
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2003/027884 A1 03/04/2003 KR 2004-66791 A 27/07/2004
US 2001/0325116 At 27/09/2001
WO 2003/040893 A2 15/05/2003 US 2003/110234 At 12/06/2003
KR 2005-44379 A 12/05/2005
WO 2003/003731 A2 09/10/2003 US 2003/002854 At 02/01/2003
EP 1400114 A2 09/01/2003
KR 1992-22901 A 19/12/1999 US 5245428 A1 14/09/1993
JP 6-054317 A 25/02/1994
JP 2002-051333 A 15/02/2002
EP 0512623 B1 29/09/1999

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - wo-search-report
	Page 22 - wo-search-report

