METHOD OF MEASURING EARTH GROUND RESISTANCE OF A PYLON

Inventor: Klaus Laeppe, Reute (DE)
Assignee: Fluke Corporation, Everett, WA (US)

Appl. No.: 12/952,872
Filed: Nov. 23, 2010

Foreign Application Priority Data
Nov. 24, 2009 (EP) 09176964.6

Publication Classification
Int. Cl. G01R 27/08 (2006.01)

U.S. Cl. 324/691

ABSTRACT

The present invention relates generally to a facilitated method for accurately measuring the earth ground resistance of a ground rod, in particular a footing of a pylon acting as a ground rod or a ground rod attached to the footings of a pylon, and obtaining an overall value for the resistance of the pylon and all footings in parallel, and all pylons connected in parallel thereto. A method of determining the earth ground resistance of two or more pylon footings is provided according to the present invention, comprising conducting selective measurements of each footing of a pylon consecutively and wherein true values for the resistance of each footing measured are calculated. According to the present invention the testing means is connected directly to two auxiliary electrodes which are placed at predetermined distances from the pylon, and a current measurement means which is placed around a pylon footing in order to measure the current flowing along the footing.

Diagram: A diagram showing the measurement setup with electrodes labeled X, Y, Z, T, E, S, H, and connections indicating the distances and percentages of the total distance from X to Z.
METHOD OF MEASURING EARTH GROUND RESISTANCE OF A PYLON

FIELD OF THE INVENTION

[0001] The present invention relates generally to a facilitated method for accurately measuring the earth ground resistance of a ground rod, such as a footing of a pylon acting as a ground rod or a ground rod attached to the footings of a pylon.

BACKGROUND

[0002] A lack of good grounding is undesirable and increases the risk of equipment failure. The absence of an effective grounding system can lead to various problems, such as instrumentation errors, harmonic distortion issues, power factor problems and a host of possible intermittent dilemmas. If fault currents have no path to the ground through a properly designed and maintained grounding system, they will find unintended paths. Furthermore, a good grounding system is also used to prevent damage to industrial plants and equipment and is therefore necessary in order to improve the reliability of equipment and reduce the likelihood of damage due to lightning or fault currents.

[0003] Over time, corrosive soils with high moisture content, high salt content, and high temperatures can degrade ground rods and their connections. So although the ground system may have had low ground resistance values when initially installed, the resistance of the grounding system can increase if the ground rods, or other elements of the grounding system, corrode over time. Grounding testers are useful troubleshooting tools in dealing with such issues as intermittent electrical problems, which could be related to poor grounding or poor power quality. It is therefore desirable that all grounds and ground connections are checked on a regular basis.

[0004] During these periodic checks, if an increase in resistance of more than 20% is measured (e.g., one foot of a pylon with four footings has become unintentionally disconnected), investigation of the source of the problem is necessary in order that the respective corrections may be made to lower the resistance (e.g., by replacing or adding ground rods to the ground system). Such periodic checks may involve conducting established techniques such as fall-of-potential tests and selective measurements.

[0005] Typical pylons have a plurality of footings (e.g., four), which are used as earth ground rods, and possibly comprise supplementary auxiliary ground rods. The resistance of such earth ground rods must be tested regularly. Often, only the overall earth ground resistance of each pylon, as opposed to each individual footing, is of interest. The earth ground resistance of each individual footing is generally only relevant in the case of substantial variation between respective resistance values measured at different footings of the pylon. Such differences may indicate a failure (i.e., excessive corrosion or damage) of one or more footings. If all footings are connected together by an earth grid, the low loop resistance of all the footings in series with the grid can also be measured with established techniques. This is possible since the assumption can be made that the earth resistance of the correctly connected grid itself is not likely to change dramatically.

[0006] Grounding test systems can specifically be implemented for testing the overall resistivity of a plurality of ground rods (i.e., in such applications as the aforementioned footings of high-voltage electricity pylons). The prior art requires an additional adaptor device, which must be connected between the ground rods to be measured and the grounding test device, in order to achieve the aforementioned resistance measurements. Such adaptor units generally require connection to four clamps, each required for attachment to each respective footing of the pylon. An overall resistance of the four footings is then determined. Such adaptors tend to not only be expensive, but also bulky, thus increasing the amount of equipment needed to be transported to a pylon measurement site. Furthermore, such prior art systems are limited to pylons with a maximum of four footings. Since many pylons have additional earth ground rods and footings requiring a minimum of five or more measurements, prior art techniques are unable to provide an effective system for accommodating the measurement of further footings or ground rods. By not taking measurements of the supplemental elements of a pylon grounding system into account, this can lead to inaccurate values for the overall resistance of the pylon. Furthermore, prior art systems also fail to provide a true value for the resistance of the pylon footings.

[0007] Also, prior art techniques tend to be extremely time consuming, labor-intensive and costly since it is necessary for current clamps to be connected to each of the plurality of earth ground rods (i.e., footings) to be connected to the testing means, which also need to be connected to an adaptor. Furthermore, in order to increase accuracy, it is also desirable to achieve true values of not only resistances, but also impedances of each individual pylon footing in order to also enable calculation of true resistance and/or impedance values for all footings of a pylon. Therefore, it is an object of the present invention to provide a more flexible system which enables the calculation of a value for the true resistance and/or impedance of each footing of multiple footings of a pylon, or pylons, based on the measurements taken.

SUMMARY OF THE INVENTION

[0008] The present invention recognizes and addresses the foregoing considerations, and others, of the prior art.

[0009] A method of determining the earth ground resistance of one or more pylon footings is provided according to the present invention. The method preferably comprises conducting selective measurements of each footing of a pylon consecutively and wherein true values for the resistance of each footing measured are calculated. According to the present invention the testing device is connected directly to two auxiliary electrodes which are placed at predetermined distances from the pylon, and a current measurement device is placed around a pylon footing in order to measure a current flowing along the footing. The two auxiliary electrodes normally comprise ground stakes, and the current measurement device may normally comprise a current clamp. Since such stakes and current clamps are standard readily available measurement accessories which are, in contrast to the prior art, directly connected to the testing device, only a single current measurement device may preferably be used. The present invention reduces the overall cost and extra labor involved setting up and dismantling the test equipment by eliminating the need for such an adaptor and thereby increases efficiency of conducting measurements.

[0010] Specifically, instead of measuring the current flowing along four pylon footings simultaneously, the present invention involves taking measurements on each individual pylon footing consecutively. Thus, the process of taking four
consecutive measurements according to the present invention does not require any more time than that required for setting up an adaptor according to known state of the art systems which require the simultaneous connection of four individual clamps, each clamp being connected to each respective footing. The present invention thereby effectively reduces the time required for setting up the test equipment by obviating the tasks of connecting each of the four clamps to an adaptor, and the task of connecting the adaptor in turn to a main testing device.

[0011] Additionally, rather than known state of the art, which may determine an overall value for the resistance and/or magnitude of the impedance, the present invention enables the possibility to perform a series of individual resistance and/or impedance measurements (i.e. for each of the four footings) and then calculate true values for the resistances and impedances for all of the footings.

[0012] Also, by virtue of implementing a single current measurement device rather than four connected in series, the present invention is also not limited to measuring only four footings, but offers further flexibility should a given pylon be constructed with more than four footings, and/or include further supplemental ground rods as part of its overall earthing system.

[0013] A measurement method of the present invention not only improves accuracy by allowing true values to be obtained for each of the individual footings of a pylon grounding system, but also enables quick isolation of an individual footing, which may not be functioning properly due to damage.

[0014] Thus, instead of replacing and/or improving all elements of a pylon grounding system as a whole based on an overall value, according to the present invention, attention can be focused on the replacement and/or improvement of a particular element, thereby reducing the cost and labor involved.

[0015] In a preferred embodiment of the present invention, such individual impedance measurements may also include determining the complex components of the voltage and current comprising measuring the phase difference between the measured voltage drop and the current measured through the footing by the current measurement means. For example, the Fast Fourier Transform may be applied to the determined complex component using known techniques, which directly derives the real and imaginary parts of the result. By determining the complex components of the voltage and current, this embodiment enables a calculation of both and true value for the impedance (i.e. with real and imaginary parts). Such true values can be advantageous in allowing a correct and accurate calculation of possible short circuit currents, the assessment of which is highly important in order to ensure that the pylon conforms with recommended usage guidelines and is able to discharge lightning effectively in the event of a storm.

[0016] In a further embodiment of the present invention, said complex grounding impedance can be characterised using polar form with magnitude and phase and/or Cartesian form with real and imaginary parts. The use of Cartesian form permits convenient addition or subtraction of impedances whereas the use of polar form simplifies the multiplication or division of impedance values. Thus, by providing the possibility to use both forms, this embodiment enables simplified calculations, depending on the desired purpose.

[0017] In accordance with another embodiment of the present invention, a calculation to determine the overall complex impedance of a pylon may be performed. Such a calculation includes at least two complex impedance values for at least two pylon footings connected in parallel. This embodiment enables the overall calculation to be performed more efficiently by permitting conversion between polar and Cartesian forms as necessary during the calculation.

[0018] In another embodiment, the method of the present invention and aforementioned embodiments is performed for a plurality of pylons. In doing so, a complete and true resistance and/or impedance profile of an entire electric line or grid system comprising a plurality of pylons, may be achieved. The accuracy of and efficiency of obtaining such information enables safety issues to be addressed, while reducing the costs and labor involved.

[0019] In a further embodiment of the present invention, the current measurement device comprises at least one of a standard clamp, a flex clamp, a current transformer clamp, a Fluxgate clamp, and a Hall effect clamp. Such clamps can be advantageous for different situations. For example, a flex clamp comprises a flexible and lightweight measuring head which may be connected to the testing means, which in turn supplies the necessary power therefor. This allows quick and easy installation of the clamp in hard to reach areas, without the need for extra batteries or an extra external power source. Such a flex clamp can also be used for high current measurements and has the advantage that it fits around large or conductors which are difficult to reach, such as bus bars. As an alternative to consecutive measurements, a long extended single flex clamp may be placed around all pylon footings in order to obtain a value for the overall current flowing through all footings. It will be understood by the skilled person that, as an alternative to such a clamp, any other galvanic isolated current measurement means could equally be implemented, wherein said measurement means may utilise, for example, fluxgate, Hall effect and/or giant magnetoresistance (GMR) technology.

[0020] In one embodiment of the present invention, a plurality of clamps may be used wherein each is connected to a respective footing of the pylon (i.e. connected in series) wherein an instant value for the sum of the total current measured in the footings by the clamps may be obtained, rather than performing individual measurements in turn and/or storing them before subsequently performing calculations therewith.

[0021] In yet another embodiment, the testing device is preferably adapted for the storage of measurement data. This enables multiple measurements to be taken for an individual footing, an individual pylon, or a plurality of pylons connected in a given line or grid. This enables an operator to decide when enough data for sufficient accuracy has been gathered, wherein after the last selective measurement has been made (either for an individual pylon or plurality of pylons), the overall resistance and/or impedance of the pylon, the resistance and/or impedance of each footing, and the overall resistance and/or impedance of all pylons which are connected in parallel via an earth cable, may be calculated in a simple manner.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] A full and enabling disclosure of the present invention, including the best mode thereof, to one of ordinary skill
in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying drawings, in which:

[0023] FIG. 1 shows a method for conducting a 3-pole fall-of-potential test according to the 62% rule according to one aspect of the present invention.

[0024] FIG. 2a shows a method for performing selective measurements according to one aspect of the present invention;

[0025] FIG. 2b shows a corresponding circuit diagram of selective measurement according to FIG. 2a;

[0026] FIG. 3 shows a prior art solution for measuring the resistance of four earth ground rods on each foot of a pylon using a 4-pole configuration test;

[0027] FIG. 4 shows a testing device for performing selective measurements using a 3-pole configuration on each foot of a pylon according to one aspect of the present invention;

[0028] FIG. 5a shows a testing means connected to a grounding electrode to be measured via two clamps, for performing stakeless measurements of a grounding electrode according to one aspect of the present invention;

[0029] FIG. 5b shows a method for performing stakeless measurements of a pylon ground electrode according to one aspect of the present invention;

[0030] FIG. 5c is an equivalent circuit diagram showing the parallel resistances of a grounding system upon which stakeless measurements are performed according to one aspect of the present invention;

[0031] FIG. 6 shows a method for performing two-pole measurements according to one aspect of the present invention;

[0032] FIG. 7 shows a testing means for performing measurements comprising a main unit MU and remote unit REM according to an embodiment of the present invention.

[0033] Repeat use of reference characters in the present specification and drawings is intended to represent same or analogous features or elements of the invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0034] It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary constructions.

Selective Measurement

[0035] Referring now to FIG. 2a, an example of a “selective measurement testing” technique in accordance with the present invention is implemented. This is akin to “fall-of-potential” testing which is used to measure the ability of an earth ground system or an individual electrode to dissipate energy from a pylon, since it provides all the same measurements as those resulting from the fall-of-potential technique. Selective measurements are also advantageously obtained in a more efficacious way than fall-of-potential testing, since it is not necessary to disconnect an individual earth electrode to be tested from its connection to the pylon grounding system. Such disconnection would undesirably alter the voltage potentials of the entire pylon grounding system, thus potentially giving cause to incorrect and therefore misleading measurement results.

[0036] In particular, in the case of pylons, the high-voltage lines generally comprise an earth cable connecting all pylons on a respective line. Such earth cables allow lightning to discharge to earth via the pylons. When all such pylons in a particular line are connected to such an earth cable, the cable acts as a conductor and thus the potential differences across the pylons are the same in magnitude. In other words, the earth resistances of all the connected pylons can be considered to be in parallel. Normally, it is impossible to measure an individual pylon resistance using traditional 3-pole methods, such as selective measurement, unless the earth cable is disconnected, such as in the case of fall-of-potential testing. However, the present invention provides a solution, which reduces error by obviating the need to perform a disconnection of the earth cable, while at the same time advantageously enabling the required measurements to be obtained in a much more cost effective and efficient manner. The present invention enables implementation of the selective measurement technique using only three poles, rather than four poles, while not requiring the disconnection of the earth cable and also achieving correct measurement results by not changing the entire earth system and thus voltage potentials.

[0037] In the example of the present invention shown in FIG. 4, an earth electrode X and two auxiliary electrodes Y and Z, are connected to a testing means (device) T and placed in the soil, for example in a direct line, at predetermined distances away from a pylon P i.e. earth electrode X, in a similar fashion to the known fall-of-potential technique. A further alternative common measurement topology (not shown) comprises placing the electrodes at a different angle to one another i.e. 90 degrees, rather than in a direct line. According to the example shown in FIG. 4, earth electrode X comprises one of a plurality of footings of the pylon P. The testing means also comprises at least one current measurement means such as a clamp CC connected thereto as shown in FIG. 4. The clamp CC measures the current flowing through the footing under test and allows the measurement of the exact resistance of an individual pylon footing, as illustrated in FIG. 4.

[0038] According to the present invention, a predetermined test current is generated by said testing means and flows through the X electrode to the Z electrode. The voltage drop from the footing X to Y electrode is measured. Due to the fact that the footing X is additionally connected to other footings comprising earth ground rods, the test current generated does not entirely flow through the footing under test, rather a part of this test current additionally flows through all other footings comprising earth ground rods, which are connected thereto in parallel. The testing means T is thus able to automatically calculate the resistance of the ground rod electrode X of a footing based on the known current generated and the measured drop in potential using Ohm’s law (V=IR).

[0039] Hence, a value for the total resistance of a particular ground system of the pylon P, which comprises a plurality of footings, each comprising earth electrodes may be obtained by consecutively placing the clamp CC around each individual pylon footing without having to re-configure the initial wiring connections between electrodes X, Y and Z and the testing means. The present invention enables not only the determination of a value for each individual footing resistance, but also for the total resistance of the particular pylon i.e. the resistance of all pylon footings can be determined by a subsequent calculation performed by the testing means T. In other words, each measurement at a footing produces two
results, the earth resistance of the particular footing and the overall earth resistance of all other footings connected in parallel. The measurement result may also include values for the earth resistances of all other pylons (not shown) connected to the pylon being measured via the overhead earth cable OEC.

Stakeless Measurement

[0040] A further alternative technique according to the present invention, illustrated in FIGS. 5a, 5b and 5c, enables the testing means T to measure earth ground loop resistances in a grounding system using for example, merely current clamps C1 and C2, as opposed to requiring auxiliary electrodes in the form of ground stakes. As illustrated in FIG. 5b, a loop according to this technique may also include further elements of the grounding system other than the footing under test only. Such further elements may include, for example, the ground electrode conductor, the main bonding jumper, the service neutral, utility neutral-to-ground bond, utility ground conductors (between poles) and utility pole grounds.

[0041] This technique, when carried out according to the present invention, also offers the advantage of eliminating the dangerous and time-consuming activity of disconnecting parallel-connected grounds and furthermore eliminates the need of having to go through the arduous process of finding suitable locations for placing auxiliary electrodes. This technique thereby enables earth ground tests to be conducted where access to soil is dangerous, difficult or simply not possible, due to obstacles, geology or absence of soil in the vicinity.

[0042] In an example of this stakeless technique according to the present invention, the testing means T is connected to at least one voltage generation (current inducing) means C1 and at least one current measurement (current sensing) means C2, preferably in the form of respective current inducing and current transforming clamps. The two clamps C1 and C2 are placed around the pylon footing to be measured, and the inducing clamp C1 then generates a predetermined i.e. known voltage around said footing X. The resulting induced current flowing in the pylon footing is measured using the sensing current transformer clamp C2, wherein the sensing clamp C2 is preferably placed around the pylon footing between the inducing clamp and the soil, in order to measure the current flowing downward from the footing into the earth.

[0043] A resistance and/or impedance value for the footing (i.e. including its ground loop) may then be calculated based on these known values of induced voltage and measured resulting current. As shown in the examples FIGS. 5b and 5c, when pylon footings and pylons are connected in parallel they are effectively regarded as parallel resistance loops X2 to X4/Xn. Thus, in accordance with this stakeless embodiment of the present invention, the value obtained at the footing is the resistance and/or impedance value X1 plus an overall resistance and/or impedance value of all parallel resistance loops X2 to X4/Xn.

Two-Pole Measurement

[0044] Yet a further technique, which may be implemented in accordance with the present invention, involves a single auxiliary electrode Y placed in the ground. For this technique to function correctly, it is necessary for the auxiliary electrode Y to be outside the influence of the ground electrode X or pylon footing under test. The main advantage of this technique is the convenience of fewer connections being required since only two poles are required instead of three (in the case of selective measurement). Furthermore, the auxiliary electrode Y may constitute any suitable means placed in the ground in the vicinity of the pylon footing X to be measured, such as a water pipe Y as shown in FIG. 6. According to the present invention, the testing means measures the combined earth resistance of the footing X under test, the earth resistance of the auxiliary electrode Y, and the resistance of the measurement leads A and B. The assumption is that the earth resistance of the auxiliary electrode Y is very low, e.g. a metal water pipe without plastic segments or insulated joints. Furthermore, in order to achieve a more accurate result, the effect of the measurement leads A and B may be eliminated by measuring the resistance with the leads shorted together and subtracting this reading from the final measurement.

Remote Unit REM

[0045] In a further embodiment of the present invention, the testing means T may consist of a main unit MU and remote unit REM in communication with one another. The remote unit REM may preferably include a display to indicate the measurement result in addition to a control means for performing different tests and measurements. Said control means may for example be used to set parameters, to start the test and to store the result etc. The remote unit REM of the testing means may then transmit the respective commands to the main unit MU, which performs the measurement. Upon completing the measurement, the main unit MU may transmit the measurement result to the remote unit REM of the testing means.

[0046] In one embodiment, the communication i.e. transmission of such commands, parameters and results may be performed by using a cable communication link between the main and remote unit REM. It may also be possible to utilize existing electrode test leads connected to the main unit MU in order to communicate to and from the remote unit REM. In another embodiment, such communication may transpire wirelessly by means of radio frequency (RF) e.g. Bluetooth, ZigBee, WLAN, mobile phone frequencies, or alternatively by means of infrared technology. The remote unit REM may be connected to at least one of the current measurement devices such as a clamp. By providing such a remote unit REM, this significantly reduces the time and effort required for rewiring the connections to each pylon footing and ensures efficiency of the measurement and testing procedure.

[0047] Alternatively, the main unit MU of the testing means T may comprise its own display in addition to control means so that it may operate without the remote unit REM. However, the main unit MU could also merely comprise a black box, which effectively requires the remote unit REM to operate it. The remote unit REM is preferably handheld and portable, and can be removable coupled with the main unit MU, both mechanically and electrically. FIG. 7 shows an example of such an integrated device wherein the main unit MU acts as a dock for the remote unit REM.

[0048] In yet a further embodiment of the present invention, the remote unit REM of the testing means T may be equipped with a GPS receiver, which enables position and distance information to be captured and used for further analysis. The GPS receiver may also be used to obtain absolute co-ordinates including geographical location and distance information in terms of sets of 3-D coordinates i.e. including altitude. Thus, the GPS receiver may enable the literal mapping and
What is claimed is:

1. A method of determining the earth ground resistance of at least one selected pylon footing comprising the steps of:
 connecting a testing device to a pylon footing, to first and second auxiliary electrodes, and to a current measurement device;
 placing said first and second auxiliary electrodes in soil at predetermined distances from the pylon footing;
 wherein, for each selected pylon footing:
 the current measurement device is placed around the footing;
 an alternating current of at least one predetermined frequency and voltage is applied between the pylon footing and the first auxiliary electrode;
 the voltage drop between the pylon footing and the second auxiliary electrode is measured;
 the current through the pylon footing using the current measurement device is measured; and
 an earth resistance value is calculated for the pylon footing, based on said predetermined voltage and frequency values and measured current values.

2. The method of claim 1 comprising calculating the overall grounding resistance of a pylon based on the resistances of all parallel connected pylon footings.

3. The method of claim 1 wherein determining the earth ground resistance comprises for each selected pylon footing:
 determining the complex components of the voltage and current; and
 calculating a complex grounding impedance value of the footing.

4. The method of claim 3 wherein the complex grounding impedance is characterized using at least one of polar form with magnitude and phase and Cartesian form with real and imaginary parts.

5. The method of claim 3 comprising calculating the overall complex grounding impedance of a pylon based on the complex grounding impedances of all parallel connected pylon footings.

6. The method of claim 1 comprising repeating the aforementioned steps for a plurality of pylons.

7. The method of claim 1 wherein said current measurement device comprises a clamp.

8. The method of claim 7 wherein said clamp comprises at least one of a standard clamp, a flex clamp, a current transformer clamp, a Flux gate clamp, and a Hall effect clamp.

9. The method of claim 1 wherein said testing device comprises data storage means operative to store measurement data.

10. The method of claim 1 wherein said testing device includes a main unit and a remote unit adapted to communicate with one another.

11. A method of determining the earth ground resistance of at least one selected pylon footing comprising the steps of:
 connecting a testing device to a voltage generation means and to an alternating current measurement device;
 wherein, for each selected pylon footing:
 the voltage generation means and current measurement device are placed around the footing;
 a voltage is generated in the pylon footing using the voltage generation means;
 the current induced by said voltage along the pylon footing using the current measurement device is measured; and
 an earth resistance value is calculated for the footing, based on said voltage and measured current values.
12. The method of claim 11 comprising calculating the overall grounding resistance of a pylon based on the resistances of all parallel connected pylon footings.

13. The method of claim 11 wherein determining the earth ground resistance comprises for each selected pylon footing: determining the complex components of the voltage and current; and calculating a complex grounding impedance value of the footing.

14. The method of claim 13 wherein the complex grounding impedance is characterized using at least one of polar form with magnitude and phase and Cartesian form with real and imaginary parts.

15. The method of claim 13 comprising calculating the overall complex grounding impedance of a pylon based on the complex grounding impedances of all parallel connected pylon footings.

16. The method of claim 11 comprising repeating the aforementioned steps for a plurality of pylons.

17. The method of claim 11 wherein said current measurement device comprises a clamp.

18. The method of claim 17 wherein said clamp comprises at least one of a standard clamp, a flex clamp, a current transformer clamp, a Flux gate clamp, and a Hall effect clamp.

19. The method of claim 11 wherein said testing device comprises data storage means operative to store measurement data.

20. The method of claim 11 wherein said testing device includes a main unit and a remote unit adapted to communicate with one another.