Compounds having formula (I) are leukotriene antagonists and inhibitors of leukotriene biosynthesis. These compounds are useful as anti-asthmatic, anti-allergic, anti-inflammatory, and cytoprotective agents. They are also useful in treating angina, cerebral spasm, glomerular nephritis, hepatitis, endotoxemia, uveitis, and allograft rejection.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GB</td>
<td>United Kingdom</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IT</td>
<td>Italy</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>JP</td>
<td>Japan</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SK</td>
<td>Slovak Republic</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SO</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>MC</td>
<td>Mongolia</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MG</td>
<td>Madagascar</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>ML</td>
<td>Mali</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>MN</td>
<td>Mongolia</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
TITLE OF THE INVENTION

QUINOLINE DERIVATIVES AS LEUKOTRIENE ANTAGONISTS

BACKGROUND OF THE INVENTION

The leukotrienes constitute a group of locally acting hormones, produced in living systems from arachidonic acid. The major leukotrienes are Leukotriene B₄ (LTB₄), LTC₄, LTD₄ and LTE₄. The biosynthesis of these leukotrienes begins with the action of the enzyme 5-lipoxygenase on arachidonic acid to produce the epoxide known as Leukotriene A₄ (LTA₄), which is converted to the other leukotrienes by subsequent enzymatic steps. Further details of the biosynthesis as well as the metabolism of the leukotrienes are to be found in Leukotrienes and Lipoxygenases, ed. J. Rokach, Elsevier, Amsterdam (1989). The actions of the leukotrienes in living systems and their contribution to various diseases states are also discussed in the book by Rokach.

5

10

15

20

25

30
The art describes certain quinoline-containing compounds as having activity as antagonists of the actions of the leukotrienes. Thus, EP 318,093 (Merck) describes compounds of structure A. Structure B is disclosed in WO 89/12629 (Rorer).

EP 318,093 (Merck)

WO 89/12629 (Rorer)
The compounds of this invention are within the scope of Formula I':

\[\text{I}' \]

which is described in EP 480,717, April 15, 1992.

SUMMARY OF THE INVENTION

The present invention relates to fluorinated hydroxyalkylquinoline acids having activity as leukotriene antagonists, to methods for their preparation, and to methods and pharmaceutical formulations for using these compounds in mammals (especially humans).

Because of their activity as leukotriene antagonists, the compounds of the present invention are useful as anti-asthmatic, anti-allergic, anti-inflammatory, and cytoprotective agents. They are also useful in treating angina, cerebral spasm, glomerular nephritis, hepatitis, endotoxemia, uveitis, and allograft rejection.
DETAILED DESCRIPTION OF THE INVENTION

The compounds of this invention are of the

Formula I:

![Chemical Structure]

wherein

R¹ is 6-F or 6,7-F₂
or a pharmaceutically acceptable salt thereof.

Definitions

The following abbreviations have the indicated meanings:

Ac = acetyl
DMF = dimethylformamide
Et = ethyl
FAB = fast atom bombardment
r.t. = room temperature
THF = tetrahydrofuran
tlc = thin layer chromatography
Salts

The pharmaceutical compositions of the present invention comprise a compound of Formula I as an active ingredient or a pharmaceutically acceptable salt, thereof, and may also contain a pharmaceutically acceptable carrier and optionally other therapeutic ingredients. The term "pharmaceutically acceptable salts" refers to salts prepared from pharmaceutically acceptable non-toxic bases including inorganic bases and organic bases. Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium and sodium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N,N'-dibenzylethylene diamine, diethylamine, 2-diethylamino ethanol, 2-dimethylamino ethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine and the like.
When the compound of the present invention is basic, salts may be prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids. Such acids include acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic acid and the like. Particularly preferred are citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric and tartaric acids.

It will be understood that in the discussion of methods of treatment which follows, references to the compounds of Formula I are meant to also include the pharmaceutically acceptable salts.

Utilities

The ability of the compounds of Formula I to antagonize the actions of the leukotrienes makes them useful for preventing or reversing the symptoms induced by the leukotrienes in a human subject. This antagonism of the actions of leukotrienes indicates that the compounds and pharmaceutical compositions thereof are useful to treat, prevent, or ameliorate in mammals and especially in humans: 1) pulmonary disorders including diseases such as asthma, chronic bronchitis, and related obstructive airway diseases, 2) allergies and allergic reactions such as allergic
rhinitis, contact dermatitis, allergic conjunctivitis, and the like, 3) inflammation such as arthritis or inflammatory bowel disease, 4) pain, 5) skin disorders such as psoriasis, atopic eczema, and the like, 6) cardiovascular disorders such as angina, myocardial ischemia, hypertension, platelet aggregation and the like, 7) renal insufficiency arising from ischaemia induced by immunological or chemical (cyclosporin) etiology, 8) migraine or cluster headache, 9) ocular conditions such as uveitis, 10) hepatitis resulting from chemical, immunological or infectious stimuli, 11) trauma or shock states such as burn injuries, endotoxemia and the like, 12) allograft rejection, 13) prevention of side effects associated with therapeutic administration of cytokines such as Interleukin II and tumor necrosis factor, 14) chronic lung diseases such as cystic fibrosis, bronchitis and other small and large-airway diseases, and 15) cholecystitis.

Thus, the compounds of the present invention may also be used to treat or prevent mammalian (especially, human) disease states such as erosive gastritis; erosive esophagitis; diarrhea; cerebral spasm; premature labor; spontaneous abortion; dysmenorrhea; ischemia; noxious agent-induced damage or necrosis of hepatic, pancreatic, renal, or myocardial tissue; liver parenchymal damage caused by hepatotoxic agents such as CCl₄ and D-galactosamine; ischemic renal failure; disease-induced hepatic damage; bile salt induced pancreatic or gastric damage; trauma- or
stress-induced cell damage; and glycerol-induced renal failure. The compounds also exhibit cytoprotective action.

The cytoprotective activity of a compound may be observed in both animals and man by noting the increased resistance of the gastrointestinal mucosa to the noxious effects of strong irritants, for example, the ulcerogenic effects of aspirin or indomethacin. In addition to lessening the effect of non-steroidal anti-inflammatory drugs on the gastrointestinal tract, animal studies show that cytoprotective compounds will prevent gastric lesions induced by oral administration of strong acids, strong bases, ethanol, hypertonic saline solutions and the like.

Two assays can be used to measure cytoprotective ability. These assays are: (A) an ethanol-induced lesion assay and (B) an indomethacin-induced ulcer assay and are described in EP 140,684.

Dose Ranges

The magnitude of prophylactic or therapeutic dose of a compound of Formula I will, of course, vary with the nature of the severity of the condition to be treated and with the particular compound of Formula I and its route of administration. It will also vary according to the age, weight and response of the individual patient. In general, the daily dose range for anti-asthmatic, anti-allergic or anti-inflammatory use and generally, uses other than cytoprotection, lie
within the range of from about 0.001 mg to about 100 mg per kg body weight of a mammal, preferably 0.01 mg to about 10 mg per kg, and most preferably 0.1 to 1 mg per kg, in single or divided doses. On the other hand, it may be necessary to use dosages outside these limits in some cases.

For use where a composition for intravenous administration is employed, a suitable dosage range for anti-asthmatic, anti-inflammatory or anti-allergic use is from about 0.001 mg to about 25 mg (preferably from 0.01 mg to about 1 mg) of a compound of Formula I per kg of body weight per day and for cytoprotective use from about 0.1 mg to about 100 mg (preferably from about 1 mg to about 100 mg and more preferably from about 1 mg to about 10 mg) of a compound of Formula I per kg of body weight per day.

In the case where an oral composition is employed, a suitable dosage range for anti-asthmatic, anti-inflammatory or anti-allergic use is, e.g. from about 0.01 mg to about 100 mg of a compound of Formula I per kg of body weight per day, preferably from about 0.1 mg to about 10 mg per kg and for cytoprotective use from 0.1 mg to about 100 mg (preferably from about 1 mg to about 100 mg and more preferably from about 10 mg to about 100 mg) of a compound of Formula I per kg of body weight per day.

For the treatment of diseases of the eye, ophthalmic preparations for ocular administration comprising 0.001-1% by weight solutions or suspensions
of the compounds of Formula I in an acceptable ophthalmic formulation may be used.

The exact amount of a compound of the Formula I to be used as a cytoprotective agent will depend on, inter alia, whether it is being administered to heal damaged cells or to avoid future damage, on the nature of the damaged cells (e.g., gastrointestinal ulcerations vs. nephrotic necrosis), and on the nature of the causative agent. An example of the use of a compound of the Formula I in avoiding future damage would be co-administration of a compound of the Formula I with a non-steroidal anti-inflammatory drug that might otherwise cause such damage (for example, indomethacin). For such use, the compound of Formula I is administered from 30 minutes prior up to 30 minutes after administration of the NSAID. Preferably it is administered prior to or simultaneously with the NSAID, (for example, in a combination dosage form).

Pharmaceutical Compositions

Any suitable route of administration may be employed for providing a mammal, especially a human with an effective dosage of a compound of the present invention. For example, oral, rectal, topical, parenteral, ocular, pulmonary, nasal, and the like may be employed. Dosage forms include tablets, troches, dispersions, suspensions, solutions, capsules, creams, ointments, aerosols, and the like.
The pharmaceutical compositions of the present invention comprise a compound of Formula I as an active ingredient or a pharmaceutically acceptable salt thereof, and may also contain a pharmaceutically acceptable carrier and optionally other therapeutic ingredients. The term "pharmaceutically acceptable salts" refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic bases or acids and organic bases or acids.

The compositions include compositions suitable for oral, rectal, topical, parenteral (including subcutaneous, intramuscular, and intravenous), ocular (ophthalmic), pulmonary (nasal or buccal inhalation), or nasal administration, although the most suitable route in any given case will depend on the nature and severity of the conditions being treated and on the nature of the active ingredient. They may be conveniently presented in unit dosage form and prepared by any of the methods well-known in the art of pharmacy.

For administration by inhalation, the compounds of the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or nebulisers. The compounds may also be delivered as powders which may be formulated and the powder composition may be inhaled with the aid of an insufflation powder inhaler device. The preferred delivery system for inhalation is a metered dose inhalation (MDI) aerosol, which may be
formulated as a suspension or solution of compound I in suitable propellants, such as fluorocarbons or hydrocarbons.

Suitable topical formulations of Compound I include transdermal devices, aerosols, creams, ointments, lotions, dusting powders, and the like.

In practical use, the compounds of Formula I can be combined as the active ingredient in intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques. The carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral (including intravenous). In preparing the compositions for oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like in the case of oral liquid preparations, such as, for example, suspensions, elixirs and solutions; or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations such as, for example, powders, capsules and tablets, with the solid oral preparations being preferred over the liquid preparations. Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit form in which case solid pharmaceutical carriers are obviously employed. If
desired, tablets may be coated by standard aqueous or nonaqueous techniques.

In addition to the common dosage forms set out above, the compounds of Formula I may also be administered by controlled release means and/or delivery devices such as those described in U.S. Patent Nos. 3,845,770; 3,916,899; 3,536,809; 3,598,123; 3,630,200 and 4,008,719, the disclosures of which are hereby incorporated herein by reference.

Pharmaceutical compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient, as a powder or granules or as a solution or a suspension in an aqueous liquid, a non-aqueous liquid, an oil-in-water emulsion or a water-in-oil liquid emulsion. Such compositions may be prepared by any of the methods of pharmacy but all methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more necessary ingredients. In general, the compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation. For example, a tablet may be prepared by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine, the
active ingredient in a free-flowing form such as powder or granules, optionally mixed with a binder, lubricant, inert diluent, surface active or dispersing agent. Molded tablets may be made by molding in a suitable machine, a mixture of the powdered compound moistened with an inert liquid diluent. Desirably, each tablet contains from about 2.5 mg to about 500 mg of the active ingredient and each cachet or capsule contains from about 2.5 to about 500 mg of the active ingredient.

The following are examples of representative pharmaceutical dosage forms for the compounds of Formula I:

Injectable Suspension (I.M.)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>mg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound of Formula I</td>
<td>10</td>
</tr>
<tr>
<td>Methylcellulose</td>
<td>5.0</td>
</tr>
<tr>
<td>Tween 80</td>
<td>0.5</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>9.0</td>
</tr>
<tr>
<td>Benzalkonium chloride</td>
<td>1.0</td>
</tr>
<tr>
<td>Water for injection to a total volume of 1 mL</td>
<td></td>
</tr>
</tbody>
</table>

Tablet

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>mg/tablet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound of Formula I</td>
<td>25</td>
</tr>
<tr>
<td>Microcrystalline Cellulose</td>
<td>415</td>
</tr>
<tr>
<td>Povidone</td>
<td>14.0</td>
</tr>
<tr>
<td>Pregelatinized Starch</td>
<td>43.5</td>
</tr>
<tr>
<td>Magnesium Stearate</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>500</td>
</tr>
</tbody>
</table>
- 15 -

Capsule

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>mg/capsule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound of Formula I</td>
<td>25</td>
</tr>
<tr>
<td>Lactose Powder</td>
<td>573.5</td>
</tr>
<tr>
<td>Magnesium Stearate</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>600</td>
</tr>
</tbody>
</table>

Aerosol

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Per canister</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound of Formula I</td>
<td>24</td>
</tr>
<tr>
<td>Lecithin, NF Liquid Concentrate</td>
<td>1.2</td>
</tr>
<tr>
<td>Trichlorofluoromethane, NF</td>
<td>4.025 g</td>
</tr>
<tr>
<td>Dichlorodifluoromethane, NF</td>
<td>12.15 g</td>
</tr>
</tbody>
</table>

Combinations with other drugs

In addition to the compounds of Formula I, the pharmaceutical compositions of the present invention can also contain other active ingredients, such as cyclooxygenase inhibitors, non-steroidal anti-inflammatory drugs (NSAIDs), peripheral analgesic agents such as zomepirac diflunisal and the like. The weight ratio of the compound of the Formula I to the second active ingredient may be varied and will depend upon the effective dose of each ingredient. Generally, an effective dose of each will be used. Thus, for example, when a compound of the Formula I is combined with an NSAID the weight ratio of the compound of the Formula I to the NSAID will generally range from about 1000:1 to about 1:1000, preferably about 200:1 to about 1:200. Combinations of a compound of the Formula I and other active ingredients will generally also be within
the aforementioned range, but in each case, an effective dose of each active ingredient should be used. NSAIDs can be characterized into five groups:

(1) the propionic acid derivatives;
(2) the acetic acid derivatives;
(3) the fenamic acid derivatives;
(4) the oxicams; and
(5) the biphenylcarboxylic acid derivatives;

or a pharmaceutically acceptable salt thereof.

The propionic acid derivatives which may be used comprise: alminoprofen, benoxaprofen, bucloxic acid, carprofen, fenbufen, fenoprofen, fluprofen, flurbiprofen, ibuprofen, indoprofen, ketoprofen, miproprofen, naproxen, oxaprozin, pirprofen, prano–profen, suprofen, tiaprofenic acid, and tioxaprofen. Structurally related propionic acid derivatives having similar analgesic and anti-inflammatory properties are also intended to be included in this group.

Thus, "propionic acid derivatives" as defined herein are non-narcotic analgesics/nonsteroidal anti-inflammatory drugs having a free –CH(CH₃)COOH or –CH₂CH₂COOH group (which optionally can be in the form of a pharmaceutically acceptable salt group, e.g., –CH(CH₃)COO⁻Na⁺ or –CH₂CH₂COO⁻Na⁺), typically attached directly or via a carbonyl function to a ring system, preferably to an aromatic ring system.
The acetic acid derivatives which may be used comprise: indomethacin, which is a preferred NSAID, acemetacin, aclofenac, clidanac, diclofenac, fenclufenac, fencloxic acid, fentiazac, furofenac, ibufenac, isoexepac, oxpinac, sulindac, tiopinac, tolmetin, zidometacin and zomepirac. Structurally related acetic acid derivatives having similar analgesic and anti-inflammatory properties are also intended to be encompassed by this group.

Thus, "acetic acid derivatives" as defined herein are non-narcotic analgesics/non-steroidal anti-inflammatory drugs having a free \(-\text{CH}_2\text{COOH}\) group (which optionally can be in the form of a pharmaceutically acceptable salt group, e.g. \(-\text{CH}_2\text{COO}^-\text{Na}^+\), typically attached directly to a ring system, preferably to an aromatic or heteroaromatic ring system.

The fenamic acid derivatives which may be used comprise: flufenamic acid, meclofenamic acid, mefenamic acid, niflumic acid and tolfenamic acid. Structurally related fenamic acid derivatives having similar analgesic and anti-inflammatory properties are also intended to be encompassed by this group.

Thus, "fenamic acid derivatives" as defined herein are non-narcotic analgesics/non-steroidal anti-inflammatory drugs which contain the basic structure:
which can bear a variety of substituents and in which
the free –COOH group can be in the form of a
pharmaceutically acceptable salt group, e.g.,
–COO⁻Na⁺. The biphenylcarboxylic acid derivatives
which can be used comprise: diflunisal and flufenisal.
Structurally related biphenylcarboxylic acid
derivatives having similar analgesic and
anti-inflammatory properties are also intended to be
encompassed by this group.

Thus, "biphenylcarboxylic acid derivatives"
as defined herein are non-narcotic
analgesics/non-steroidal anti-inflammatory drugs which
contain the basic structure:

which can bear a variety of substituents and in which
the free –COOH group can be in the form of a
pharmaceutically acceptable salt group, e.g., –COO⁻Na⁺.
The oxicams which can be used in the present invention comprise: isoxicam, piroxicam, sudoxicam and tenoxicam. Structurally related oxicams having similar analgesic and anti-inflammatory properties are also intended to be encompassed by this group.

Thus, "oxicams" as defined herein are non narcotic analgesics/non-steroidal anti-inflammatory drugs which have the general formula:

\[
\text{OH} \quad \text{O} \\
\text{C} \quad \text{NH-R} \\
\text{S} \quad \text{N} \quad \text{CH}_3 \\
\text{(O)}_2
\]

wherein R is an aryl or heteroaryl ring system.

The following NSAIDs may also be used: amfenac sodium, aminoprofen, anitrazafen, antrafenine, auranofin, bendazac lysinate, benzydamine, beprozin, broperamole, butezolac, cinmetacin, ciproquazone, cloximate, dazidamine, deboxamet, delmetacin, detomidine, dexindoprofen, diacerein, di-fisalamine, difenpyramide, emorfazone, enfenamic acid, enolicam, epirizole, eterosalte, etodolac, etofenamate, fanetizole mesylate, fenclorac, fendosal, fenflumizole, feprazone, floctafenine, flunixin, flunoxaprofen, fluoroquazone, fopirtoline, fosfosal, furcloprofen, glucametacin, guaimesal, ibuproxam,
isofezolac, isonixim, isoprofen, isoxicam, lefetamine HCl, leflunomide, lofemizole, lonazolac calcium, lotifazole, loxoprofen, lysin clonixinate, meclofenamate sodium, meseclazone, nabumetone, nictindole, nimesulide, orpanoxin, oxametacin, oxapadol, perisoxal citrate, pimeprofen, pimefacin, piproxen, pirazolac, pirfenidone, proglumetacin maleate, proquazone, pyridoxiprofen, sudoxicam, talmetacin, talniflumate, tenoxicam, thiazolinobutazone, thielavin B, tiaramide HCl, tiflamizole, timegadine, tolpadol, tryptamid and ufenamate.

The following NSAIDs, designated by company code number (see e.g., Pharmaprojects), may also be used:
480156S, AA861, AD1590, AFP802, AFP860, AI77B, AP504, AU8001, BPPC, BW540C, CHINOIN 127, CN100, EB382, EL508, F1044, GV3658, ITP182, KCNTEI6090, KME4, LA2851, MR714, MR897, MY309, ONO3144, PR823, PV102, PV108, R830, RS2131, SCR152, SH440, SIR133, SPAS510, SQ27239, ST281, SY6001, TA60, TAI-901 (4-benzoyl-1-indancarboxylic acid), TVX2706, U60257, UR2301, and WY41770.

Finally, NSAIDs which may also be used include the salicylates, specifically acetyl salicylic acid and the phenylbutazones, and pharmaceutically acceptable salts thereof.

In addition to indomethacin, other preferred NSAIDS are acetyl salicylic acid, diclofenac, fenbufen, fenoprofen, flurbiprofen, ibuprofen, ketoprofen,
naproxen, phenylbutazone, piroxicam, sulindac and tolmetin.

Pharmaceutical compositions comprising the Formula I compounds may also contain inhibitors of the biosynthesis of the leukotrienes such as are disclosed in EP 138,481 (April 24, 1985), EP 115,394 (August 8, 1984), EP 136,893 (April 10, 1985), and EP 140,709 (May 8, 1985), which are hereby incorporated herein by reference.

The compounds of the Formula I may also be used in combination with leukotriene antagonists such as those disclosed in EP 106,565 (April 25, 1984) and EP 104,885 (April 4, 1984) which are hereby incorporated herein by reference and others known in the art such as those disclosed in EP Application Nos. 56,172 (July 21, 1982) and 61,800 (June 10, 1982); and in U.K. Patent Specification No. 2,058,785 (April 15, 1981), which are hereby incorporated herein by reference.

Pharmaceutical compositions comprising the Formula I compounds may also contain as the second active ingredient, prostaglandin antagonists such as those disclosed in EP 11,067 (May 28, 1980) or thromboxane antagonists such as those disclosed in U.S. Pat. 4,237,160. They may also contain histidine decarboxylase inhibitors such as α-fluoromethylhistidine, described in U.S. Pat. 4,325,961. The compounds of the Formula I may also be advantageously combined with an H₁ or H₂-receptor antagonist, such as for instance acetamazole, aminothiadiazoles disclosed
in EP 40,696 (December 2, 1981), benadryl, cimetidine, famotidine, framamine, histadyl, phenergan, ranitidine, terfenadine and like compounds, such as those disclosed in U.S. Patent Nos. 4,283,408; 4,362,736; and 4,394,508. The pharmaceutical compositions may also contain a K⁺/H⁺ ATPase inhibitor such as omeprazole, disclosed in U.S. Pat. 4,255,431, and the like. Compounds of Formula I may also be usefully combined with most cell stabilizing agents, such as 1,3-bis(2-carboxychromon-5-yloxy)-2-hydroxypropane and related compounds described in British Patent Specifications 1,144,905 and 1,144,906. Another useful pharmaceutical composition comprises the Formula I compounds in combination with serotonin antagonists such as methysergide, the serotonin antagonists described in Nature, Vol. 316, pages 126-131, 1985, and the like. Each of the references referred to in this paragraph is hereby incorporated herein by reference. Other advantageous pharmaceutical compositions comprise the Formula I compounds in combination with anti-cholinergics such as ipratropium bromide, bronchodilators such as the beta agonist salbutamol, metaproterenol, terbutaline, fenoterol and the like, and the anti-asthmatic drugs theophylline, choline theophyllinate and enprofylline, the calcium antagonists nifedipine, diltiazem, nitrendipine, verapamil, nimodipine, felodipine, etc. and the corticosteroids, hydrocortisone, methylpred-
nisolone, betamethasone, dexamethasone, beclomethasone, and the like.

Table I illustrates the compounds of the present invention.

TABLE I

```
    R^1
   7  6  5  4  3  2  1
  □  □  □  □  □  □  □
  □  □  □  □  □  □  □
  □  □  □  □  □  □  □
  □  □  □  □  □  □  □
         □

I''
```

<table>
<thead>
<tr>
<th>EX.</th>
<th>R^1</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R 6,7-F_2</td>
<td>CH_2(CH_2)_2CH_2CO_2H</td>
<td>(CH_2)_2(1,2-phe)CMe_2OH</td>
</tr>
<tr>
<td>2</td>
<td>R 6-F</td>
<td>CH_2(CH_2)_2CH_2CO_2H</td>
<td>(CH_2)_2(1,2-phe)CMe_2OH</td>
</tr>
</tbody>
</table>

Methods of Synthesis

Compounds of the present invention can be prepared according to the methods described in EP 480,717.

Assays for Determining Biological Activity

Compounds of Formula I can be tested using the following assays to determine their mammalian
leukotriene antagonist activity and their ability to inhibit leukotriene biosynthesis.

LTD₄ Receptor Binding Studies in Guinea Pig Lung Membranes, Guinea Pig Trachea and In vivo Studies in Anesthetized Guinea Pigs

Compounds of Formula I can be tested using the following assays to determine their mammalian leukotriene biosynthesis inhibiting activity. The assays are described in EP 480,717, April 15, 1992.

Determination of Inhibition of 5-Lipoxygenase

Human Polymorphonuclear (PMN) Leukocyte LTD₄ Assay

Compounds of Formula I can be tested in the following assays to determine their in vivo activity as both leukotriene antagonist and leukotriene biosynthesis inhibitor. The assays are described in EP 480,717, April 15, 1992.

Asthmatic Rat Assay

Pulmonary Mechanics in Trained Conscious Squirrel Monkeys
Prevention of Induced Bronchoconstriction in Allergic Sheep

The invention is further defined by reference to the following examples, which are intended to be illustrative and not limiting. All temperatures are in degrees Celsius.

EXAMPLE 1

Sodium 1-(((R)-(3-(2-(6,7-difluoro-2-quinoliny1)-ethenyl)phenyl)-3-(2-(2-hydroxy-2-propyl)phenyl)-propyl)thio)methyl)cyclopropaneacetate

Step 1: 6,7-Difluoro-2-methylquinoline

Crotonaldehyde (226.34 g, 3.23 mol) in 100 mL of 2-butanol was added dropwise to a refluxing solution of 3,4-difluoroaniline (417.27 g, 3.23 mol), p-chloranil (794.65 g, 3.23 mol) and HCl conc. (808 mL) in 5.4 L of 2-butanol. After 2 hours of heating 2.7 L of solvent was removed under vacuum at ca. 60°C. Then 2 L of toluene was added to the reaction mixture followed by removal of 2.5-3 L of solvent until a very pasty solid formed. THF (2L) was added and the mixture heated 30 min. after which it was cooled to 0°C. The solid was collected and washed with THF until pure by tlc. The solid was then dissolved in aq. K₂CO₃/EtOAc and the organic phase separated. The aqueous phase was extracted with EtOAc (2X) and the organic phases combined, dried over MgSO₄ and the solvent removed.
The product was crystallized in the minimum amount of EtOAc to give 328.08 g (57%) of the title compound.

\[\text{H NMR (CD}_3\text{COCD}_3\text{: } \delta 8.19 \text{ (1H, d), 7.75 (2H, m), 7.4 (1H, d), 2.64 (3H, s).} \]

Step 2: \[3-(2-(6,7-Difluoro-2-quinolinyl)ethenyl)-benzaldehyde\]

Following the procedure of Example 24, Step 1 in U.S. Patent 4,851,409, but using the difluoro-methylquinoline from Step 1, the title compound was obtained.

\[\text{H NMR (CD}_3\text{COCD}_3\text{: } \delta 10.12 \text{ (1H, s), 8.4 (1H, d), 8.29 (1H, s), 8.1-7.85 (6H, m), 7.7-7.55 (2H, m).} \]

Step 3: \[1-(3-(2-(6,7-Difluoro-2-quinolinyl)ethenyl)-phenyl-2-propen-1-ol\]

Following the procedure of Example 80, Step 1 of EP 480,717, but using \[3-(2-(6,7-difluoro-2-quinolinyl)ethenyl)benzaldehyde\] from Step 2, the title compound was obtained.

\[\text{H NMR (CD}_3\text{COCD}_3\text{: } \delta 8.32 \text{ (1H, d), 7.92-7.8 (4H, m), 7.75 (1H, br s), 7.6 (1H, m), 7.5-7.35 (3H, m), 6.05 (1H, ddd), 5.37 (1H, ddd), 5.25 (1H, m), 5.1 (1H, ddd), 4.61 (1H, d).} \]

Step 4: \[\text{Ethyl 2-(3-(3-(2-(6,7-difluoro-2-quinolinyl)-ethenyl)phenyl)-3-oxopropyl)benzoate}\]

Following the procedure of Example 146, Step 1 of EP 480,717, but using the difluoroalcohol from Step 3, the title compound was obtained.
1H NMR (CD$_3$COCD$_3$): δ 8.35 (2H, m), 8.0-7.8 (7H, m), 7.6-7.3 (5H, m), 4.33 (2H, q), 3.5-3.3 (4H, m), 1.32 (3H, t).

Step 5: Ethyl 2-((3(S)-(3-(2-(6,7-difluoro-2-quinolinyl)ethenyl)phenyl)-3-hydroxypropyl)benzoate

Following the procedure of Example 146, Step 2 of EP 480,717, but using the difluoroketone from Step 4, the title compound was obtained.

1H NMR (CD$_3$COCD$_3$): δ 8.31 (1H, d), 7.92-7.75 (6H, m), 7.6-7.25 (7H, m), 4.78 (1H, m), 4.47 (1H, d), 4.3 (2H, q), 3.2-2.95 (2H, m), 2.05 (2H, m), 1.32 (3H, t).

Step 6: 2-((2-(3(S)-(3-(2-(6,7-Difluoro-2-quinolinyl)-ethenyl)phenyl)-3-hydroxypropyl)phenyl)-2-propanol

A mixture of anhydrous CeCl$_3$ (40.5 g, 164 mmol) in THF (500 mL) was refluxed overnight using a Dean Stark trap filled with activated 3Å molecular sieves. Methyl magnesium chloride (263 mL, 3.0 Molar in THF, 790 mmol) was added dropwise over 30 minutes to the CeCl$_3$ slurry at 0°C. After stirring 2 hours at 0°C, the mixture was cooled to -5°C and a toluene (600 mL) solution of the hydroxyester (71.8 g, 152 mmol) from Step 5 was added dropwise over 1 hour. The reaction mixture was stirred another hour before the addition of 2 M HOAc (600 mL) and toluene (600 mL).

The organic layer was washed with saturated aq. NaHCO$_3$
and with brine. Concentration in vacuo and purification of the residue by flash chromatography (30% EtOAc in toluene) gave 63.48 g (91%) of the title compound.

1H NMR (CD$_3$COCD$_3$): δ 8.4 (1H, d), 8.0–7.8 (5H, m), 7.65 (1H, m), 7.5 (3H, m), 7.35–7.1 (4H, m), 4.88 (1H, m), 4.58 (1H, d), 4.19 (1H, s), 3.22 (2H, m), 2.15 (2H, m), 1.70 (3H, s), 1.68 (3H, s).

Mass spectra MF–FAB: MH$^+$ at 460.2, MH$^+$–H$_2$O at 442.2. [α]$_D$ = −19.0° (c = 2, acetone).

Step 7: 1,1-Cyclopropanedimethanol cyclic sulfite

To a solution of BH$_3$:THF complex (1M in THF, 262 mL) was added diethyl 1,1-cyclopropanedicarboxylate (25 g, 134 mmol) at 25°C under N$_2$. The solution was heated at reflux for 6 hours, cooled to r.t., and MeOH (300 mL) was cautiously added. The solution was stirred for 1 hour and then concentrated to an oil.

The crude diol was dissolved in CH$_2$Cl$_2$ (234 mL) and SOCl$_2$ (15.9 g, 134 mmol) was added dropwise over a period of 15 min at 25°C. After stirring for another 15 min, the mixture was washed with aqueous NaHCO$_3$. The organic extract was dried over Na$_2$SO$_4$, filtered and concentrated to give quantitatively the title compound as a white solid.

Step 8: 1-(Hydroxymethyl)cyclopropaneacetonitrile

To a solution of the cyclic sulfite product of Step 7 (14.7 g, 99 mmol) in DMF (83 mL) was added
NaCN (9.74 g, 199 mmol). The mixture was heated to 90°C for 20 hours. Upon cooling, EtOAc (400 mL) was added and the solution was washed with saturated NaHCO₃ solution (55 mL), H₂O (4 x 55 mL), saturated NaCl solution and dried over Na₂SO₄. The solution was concentrated to give 7.1 g (65%) of the title compound.

Step 9: 1-(Acetyliomethyl)cyclopropaneacetonitrile

To a solution of the alcohol of Step 8 (42 g, 378 mmol) in dry CH₂Cl₂ (450 mL) at -30°C was added Et₃N (103.7 mL, 741 mmol) followed by CH₃SO₂Cl (43.3 mL, 562 mmol) dropwise. The mixture was warmed to 25°C, washed with NaHCO₃, dried over Na₂SO₄ and concentrated in vacuo to give the corresponding mesylate. The mesylate was then dissolved in DMF (450 mL) and cooled to 0°C. Potassium thioacetate (55.4 g, 485 mmol) was added, and the mixture was stirred at 25°C for 18 hours. EtOAc (1.5 L) was added, the solution was washed with NaHCO₃, dried over Na₂SO₄ and concentrated in vacuo to give 45 g (70%) of the title compound.

Step 10: Methyl 1-(thiomethyl)cyclopropaneacetate

To a solution of the nitrile of Step 9 (45 g, 266 mmol) in MeOH (1.36 L) was added H₂O (84 mL) and conc. H₂SO₄ (168 mL). The mixture was heated to reflux for 20 hours, cooled to 25°C, H₂O (1 L) was added and the product was extracted with CH₂Cl₂ (2 x 1.5 L). The organic extract was washed with H₂O and dried over
\(\text{Na}_2\text{SO}_4 \). Concentration of the organic solution gave 36 g (93%) of the title compound.

Step 11: Methyl 1-(((R)-(3-(2-(6,7-difluoro-2-
quinoliny1)ethenyl)phenyl)-3-(2-(2-hydroxy-
2-propyl)phenyl)propyl)thio)methyl)cyclo-
propionate acetate

The diol from Step 6 (1.0 g, 2.1 mmol) was
dissolved in THF (1 mL) and DMF (1 mL) and cooled to
-40°C. Diisopropylethylamine (383 µL, 2.2 mmol) was
added followed by methanesulfonyl chloride (170 µL, 2.2
mmol). The mixture was stirred 2 hours with slow
warming to -30°C. The thiol (370 mg, 2.3 mmol) from
Step 10 was added to the cloudy reaction mixture
followed by dropwise addition of potassium
tert-butoxide/THF solution (2.52 mL, 1.75 M, 4.4
mmol). The reaction mixture was stirred at -30°C for
3½ hours before quenching it with 25% aq NH₄OAc.

Extraction with EtOAc (3x), washing the organic layer
with brine and evaporation of the solvents left a
residue that was purified by flash chromatography
(5%-10% EtOAc in toluene) giving 658 mg (53%) of the
title compound.

\[^1\text{H NMR (CD}_3\text{COCD}_3): \delta 8.21 (1H, d), 7.9-7.7 (5H, m),
7.57 (1H, m), 7.4 (3H, m), 7.25-7.05 (4H, m), 4.07 (1H,
t), 3.95 (1H, s), 3.58 (3H, s), 3.2 (1H, ddd), 2.93
(1H, ddd), 2.58 (2H, s), 2.41 (2H, dd), 2.25 (2H, m),
1.58 (6H, s), 0.55-0.35 (4H, m). \]
Step 12: Sodium 1-((1R)-(3-(2-(6,7-difluoro-2-quino-
linyl)ethenyl)phenyl)-3-(2-(2-hydroxy-2-
propyl)phenyl)propyl)thio)methyl)cyclopro-
paneacetate

Following the hydrolysis procedure of Example
146, Step 11 of EP 480,717, but using the difluoro
er ester from Step 11, the acid of the title compound was
obtained.

1H NMR (CD$_3$COCD$_3$): δ 8.32 (1H, d), 7.95-7.77 (5H, m),
7.65-7.38 (5H, m), 7.2-7.0 (3H, m), 4.07 (1H, t), 3.18
(1H, ddd), 2.9 (1H, ddd), 2.8 (1H, br s), 2.6 (2H, s),
2.42 (2H, s), 2.2 (2H, m), 1.53 (6H, s), 0.55-0.35 (4H, m).

Applying the procedure of Example 146, Step
12 of EP 480,717 to the above acid, the title compound
was obtained.

1H NMR (CD$_3$COCD$_3$): δ 8.2 (1H, d), 7.85-7.7 (5H, m),
7.52-7.25 (5H, m), 7.1-7.0 (3H, m), 4.04 (1H, t), 3.2
(1H, m), 2.8-2.5 (4H, m), 2.3-2.05 (4H, m), 1.54 (3H, s),
1.50 (3H, s), 0.45 (2H, m), 0.25 (2H, m).

Microanalysis calculated for C$_{35}$H$_{34}$NO$_3$SF$_2$Na*3H$_2$O:

C, 63.99; H, 5.97; N, 2.07.

Found: C, 64.52; H, 5.95; N, 2.07.
EXAMPLE 2

Sodium 1-(((R)-(3-(2-(6-fluoro-2-quinolinyl)ethenyl)-phenyl)-3-(2-(2-hydroxy-2-propyl)phenyl)propyl)thio)methyl)cyclopropaneacetate

Following the procedure of Example 1 from Step 2 onward, but starting with 6-fluoro-2-methylquinoline (see C.M. Leir, J. Org. Chem., vol. 42, pp 911-913, 1977), the title compound was obtained.

acid 1H NMR (CD$_3$COCD$_3$): δ 8.15 (1H, d), 8.02 (1H, dd), 7.9 (1H, d), 7.87 (1H, d), 7.8 (1H, s), 7.55-7.35 (6H, m), 7.25-7.0 (4H, m), 4.05 (1H, t), 3.18 (1H, ddd), 2.9 (1H, ddd), 2.59 (2H, s), 2.43 (2H, d), 2.2 (2H, m), 1.52 (6H, s), 0.55-0.35 (4H, m).

Sodium salt

1H NMR (CD$_3$COCD$_3$): δ 8.35 (1H, d), 8.09 (1H, dd), 8.0-7.35 (10H, m), 7.1 (3H, m), 4.09 (1H, t), 3.2 (2H, m), 2.85-2.55 (3H, m), 2.35-2.0 (4H, m), 1.52 (3H, s), 1.49 (3H, s), 0.45 (2H, m), 0.25 (2H, m).

Microanalysis calculated for C$_{35}$H$_{35}$FN$_{2}$NaO$_3$S•H$_2$O:
C, 68.93; H, 6.13; N, 2.30.

Found: C, 68.42; H, 5.99; N, 2.29.

FAB mass spectra: MH$^+$ at 592 (36%), [M+23]$^+$ at 614 (30%).
WHAT IS CLAIMED IS:

1. A compound of the formula:

\[
\begin{align*}
R^1 & \text{ is } 6\text{-F or } 6,7\text{-F}2; \\
& \text{or a pharmaceutically acceptable salt thereof.}
\end{align*}
\]

2. The sodium salt of a compound of Claim 1.

3. A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1 and a pharmaceutically acceptable carrier.

4. The pharmaceutical composition of Claim 3 additionally comprising an effective amount of a second active ingredient selected from the group consisting of non-steroidal anti-inflammatory drugs; peripheral analgesic agents; cyclooxygenase inhibitors;
leukotriene antagonists; leukotriene biosynthesis inhibitors; H\textsubscript{1} or H\textsubscript{2}-receptor antagonists; antihistaminic agents; prostaglandin antagonists; thromboxane antagonists; thromboxane synthetase inhibitors; and ACE antagonists.

5. A pharmaceutical composition of Claim 4, wherein the second active ingredient is a non-steroidal anti-inflammatory drug.

10. A pharmaceutical composition of Claim 5, wherein the weight ratio of said compound of Claim 1 to said second active ingredient ranges from about 1000:1 to 1:1000.

7. A method of preventing the synthesis, the action, or the release of SRS-A or leukotrienes in a mammal which comprises administering to said mammal an effective amount of a compound of Claim 1.

8. The method of Claim 7 wherein the mammal is man.

9. A method of treating asthma in a mammal comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound of Claim 1.

10. A method of treating inflammatory deseases of the eye in a mammal which comprises administering to a mammal in need of such treatment a therapeutically effective amount of a compound of Claim 1.
11. A compound of formula (I), or a pharmaceutically acceptable salt thereof, as defined in claim 1 or 2, for use in preventing the synthesis, the action, or the release of SRS-A or leukotrienes in a mammal.

12. Use of a compound of formula (I), or a pharmaceutically acceptable salt thereof, as defined in claim 1 or 2, in the manufacture of a medicament for treating asthma or inflammatory diseases of the eye.

13. A leukotriene antagonist pharmaceutical composition comprising an acceptable leukotriene antagonistic amount of a compound of formula (I), or a pharmaceutically acceptable salt thereof, as defined in claim 1 or 2, in association with a pharmaceutically acceptable carrier.
INTERNATIONAL SEARCH REPORT

International Application No

PCT/CA 93/00156

I. CLASSIFICATION OF SUBJECT MATTER

(If several classification symbols apply, indicate all)†

According to International Patent Classification (IPC) or to both National Classification and IPC

| Int.Cl. 5 | C07D215/18; | A61K31/47 |

II. FIELDS SEARCHED

Minimum Documentation Searched†

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.Cl. 5</td>
<td>C07D</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched†

III. DOCUMENTS CONSIDERED TO BE RELEVANT¶

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.¶</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP,A,0 399 818 (MERCK FROSST CANADA INC.) 28 November 1990 see claims</td>
<td>1,3,11</td>
</tr>
<tr>
<td>A</td>
<td>EP,A,0 206 751 (MERCK FROSST CANADA INC.) 30 December 1986 * page 32: example 7 *</td>
<td>1,3,11</td>
</tr>
<tr>
<td>A</td>
<td>EP,A,0 233 763 (MERCK FROSST CANADA INC.) 26 August 1987 * page 17: example 36 *</td>
<td>1,3,11</td>
</tr>
<tr>
<td>P,X</td>
<td>EP,A,0 480 717 (MERCK FROSST CANADA INC.) 15 April 1992 cited in the application see claims</td>
<td>1,3,11</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:†
- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"A" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

06 JULY 1993

Date of Mailing of this International Search Report

26.07.93

International Searching Authority

EUROPEAN PATENT OFFICE

Signature of Authorized Officer

VAN BIJLEN H.

Form PCT/ISA/210 (second sheet) (January 1985)
INTERNATIONAL SEARCH REPORT

PCT/CA93/00156

Box I Observations where certain claims were found unsearable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(3)(a) for the following reasons:

1.☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:
 Although claims 7 - 10 are directed to a method of treatment of (diagnostic method practised on) the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

2.☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3.☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1.☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2.☐ As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3.☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4.☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest ☐ The additional search fees were accompanied by the applicant’s protest.
☐ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)
This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 06/07/93. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA-A- 2017376</td>
<td>24-11-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 3072459</td>
<td>27-03-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4962203</td>
<td>09-10-90</td>
</tr>
<tr>
<td>EP-A-0233763</td>
<td>26-08-87</td>
<td>AU-B- 595286</td>
<td>29-03-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 6871787</td>
<td>20-08-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 62258363</td>
<td>10-11-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 5105665</td>
<td>27-04-93</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.