发明名称 带有可变形零件的弹性构件及其成形方法

摘要

一种弹性构件及其成形方法，该弹性构件用来隔离振动和/或声音的传递。弹性构件(20)包括具有适宜轮廓(26)的第一零件(24)，一个由可变形材料(如热塑性材料)制成的第二零件(28)，以及弹性零件(32)(如橡胶)。在模制工序中第二零件(28)产生变形，使得其形状及尺寸与第一零件(24)的表面(25)一致。在另一个优选实施例中，第二零件(28)产生塑性变形并与第一零件(24)的轮廓(26)保持一致，从而造成一种机械联锁。本文介绍该构件的转动及平动联锁及形成这种联锁的方法。
1. 一种弹性支承构件（20），包括：

 a) 含有一个第一表面（25）的一个第一零件（24），该第一表面包括一个轮廓（26），所述轮廓包括一个弓形的沟槽；

 b) 一个第二零件（28），它包括可变形材料并且与第一零件相邻，并有一个容置在第一表面附近的第二表面（27）和位于第二零件上与第一表面相反的一侧上的一个第三表面（30）；以及

 c) 一个紧邻着第二零件的第三表面的弹性零件（32）；

 其特征在于，在模制工序期间，第二零件塑性变形而与轮廓保持一致，并且弹性零件硬化连接到第二零件从而由于模制工序单独形成一个包括第一零件、第二零件和弹性零件的结合接头，所述接头提供了第一和第二零件在至少一个运动方向上的永久固定，并且防止第一零件相对于第二零件在一个第一方向上的运动。

2. 如权利要求1所述的弹性支承构件（20），其特征在于，沟槽基本上沿着第一零件（24）长度方向的正中间。

3. 如权利要求1所述的弹性支承构件（20），其特征在于，轮廓在第一零件（24）的至少一部分上形成。

4. 如权利要求1所述的弹性支承构件（20），其特征在于，第一方向绕弹性零件的轴线延伸，并且第一零件（24）在第一方向上绕弹性零件的轴线（A-A）的扭转动可以约束，而第一零件相对于第二零件（28）在由弹性零件的轴线确定的第二方向上可自由滑动。

5. 如权利要求1所述的弹性支承构件（20），其特征在于，第一表面（25）构成第一零件（24）的外表面。
6. 如权利要求 1 所述的弹性支承构件（20），其特征在于，第一表面（25）构成第一零件（24）的内表面。

7. 如权利要求 1 所述的弹性支承构件（20），其特征在于，第一方向包括平动。

8. 如权利要求 7 所述的弹性支承构件（20），其特征在于，第二零件（28）可在第二方向上自由转动。

9. 如权利要求 1 所述的弹性支承构件（20），其特征在于，第一方向包括转动。

10. 如权利要求 9 所述的弹性支承构件（20），其特征在于，第二零件（28）可在第二方向上自由滑动。

11. 如权利要求 1 所述的弹性支承构件（20），其特征在于，第二零件（28）由热塑性材料制成。

12. 如权利要求 1 所述的弹性支承构件（20），其特征在于，进一步包括一个紧邻弹性零件（32）的第三零件（22）。

13. 如权利要求 12 所述的弹性支承构件（20），其特征在于，第三零件（22）包括一个含有一主体部分（35）和一个从其向外延伸的螺纹部分（37）的杆端结构。

14. 如权利要求 1 所述的弹性支承构件（20），其特征在于，变形导致第二零件（28）形状的永久改变。

15. 如权利要求 1 所述的弹性支承构件（20），其特征在于，变
形导致第二零件（28）尺寸的永久改变。

16. 如权利要求1所述的弹性支承构件（20），其特征在于，变形导致第二零件（28）直径的永久改变。

17. 如权利要求1所述的弹性支承构件（20），其特征在于，弹性零件（32）包括一个环形件。

18. 如权利要求1所述的弹性支承构件（20），其特征在于，变形导致第一与第二零件（24，28）之间的线一一线配合。
带有可变形零件的弹性构件及其成形方法

技术领域

本发明涉及含弹性材料的设备的领域，诸如弹性轴承、构架、减震器、杆端结构等。更加特别地，本发明涉及一种提供隔离振动传递或平稳运动的改进的弹性构件。

发明背景

弹性杆端结构，即包含弹性接头的杆端结构，广泛应用于各种连接，通常与链条和缆索一起使用。这典型的杆端结构如图 1 和图 2 所示，包括刚性外套 2，塑性套筒 3，弹性零件 4 和刚性金属内套 5。外套 2 包括主体部分 6，该部分含有一个横向窗口 7 和一个从主体部分沿径向伸出的带螺纹零件 8。弹性零件 4 硬化后粘结于内套 5 的外表面，它包括联接关节 9，该关节可滑动地置于窗口 7 中。套筒 3 呈圆柱形，可以相对内套 5 滑动，通过调整套筒 3 和内套 5 之间的相对滑动量，允许它们之间发生一定程度的转动。杆端结构 1 可能与某一支架或其它连接件相连，联接关节 9 的可转性允许外套 2 在需要的情况下和连接件之间有一定的偏差和运动。弹性零件 4 能够提供一定的振动阻滞，这样经由杆端传来的振动和噪声将减小。因此，这种弹性杆端 1 在减小齿轮变速机构和其它机构引起的振动方面是非常有用的，因而可以用于将设备或使用者与振源隔离开来。

在先技术的杆端结构的一个特殊问题是：希望内衬 5 在很小的压力下就可压入塑性套筒 3 中，从而在装配之前零件 3、5 就会联为一体。这种轻微压力对于防止零件 5 从零件 3 中脱离是有利的，而且并不影响它们之间的相对运动。应当承认，我们希望这种配合不会紧到能明显地约束零件之间相对转动。当然，这种压力配合与加工过程中的公差有关。因此，有些情况下，内衬 5 和套筒 3 之间的压力非常大，
以至于导致他们之间产生异常大的转动阻力矩。极端情况下，塑性套简 3 会发生破裂。相反，在某些误差积累的情况下，将会出现零件之间压力非常小或根本无压力配合的情况，从而造成内衬 5 从套简 3 中脱落。更有甚者，当这种配合非常之松，将会造成连接件之间异常偏斜，从而导致使用中出现猛烈撞击的现象。所以需要制定一种低成本的有效的方案以保证内衬不至于从塑性套筒中脱落，以及寻求一种方法使得零件之间达到最佳配合。

发明概述

本发明涉及一种弹性构件的结构及其制造方法。按照弹性构件的第一种实施例，在模制成形弹性零件时，第二零件发生塑性变形以保持其形状与第一零件的第一表面相一致。这样，在弹性构件的第一和第二零件之间会产生良好的配合（近似线一一线配）。这将提高构件的工作寿命并有助于保持第一零件相对第二零件的稳定。

按照第一种实施例，更具体来说，弹性构件包括含有第一表面的第一零件；与第一零件相邻的可变形的第二零件，第二零件上有与第一表面相接触的第二表面和位于第二零件上与第一表面相反的一侧的第三表面；以及一个紧挨第三表面的弹性零件，其中当模制成形弹性零件时，第二零件将发生塑性变形而与第一表面保持一致。这种变形可能是尺寸变形、形状变形或两者皆有。

根据本发明，弹性构件也可以包含机械联锁，因而在模压工序中可变形的第二零件将产生变形与第一零件的轮廓一致。这将形成保持第一零件相对第二零件的优选位置的联锁。特别是，在模压过程中，弹性零件受温度和/或压力的作用，将与可变形的第二零件接触并使其发生塑性变形。所以，第二零件可能变形为第一零件的形状和尺寸从而至少在一个方向上（例如：转动或平动）永久保持它们之间的相对运动（将两者锁定）。
此外，根据本发明，弹性构件包括含有形成一定轮廓的第一表面的第一零件；紧邻第一零件的第二零件，在第二零件上含有与第一表面轮廓相接的第二表面和与第一表面位置相反的第三表面，第二零件由可变形材料（如热塑性材料）制成；以及紧挨第二零件的第三表面的弹性零件（如合成橡胶或其它橡胶类弹性材料），其中当模制弹性构件时，第二零件发生塑性变形与第一表面轮廓形状保持一致，从而约束第一零件在第一方向上相对第二零件运动。

表面轮廓可能有多种形状，诸如优选地环绕第一零件的沟槽；成形在第一零件至少一部分例如至少一个平面上部分上的非圆形轮廓；从第一零件延伸出的凸起部分；成形在第一零件表面上的凹痕；第一表面上的表面切槽；或其它类似的凸起或凹槽。

在示意的一个实施例中，第一方向包括一个平动方向，而在另外一种实施例中，第一方向包含一个转动方向。在具体实施例中，第一方向包含转动，所以第一零件转动被限制，但可以在轴向相对第二零件自由运动。在其它的实施例中，第一方向包含平动，第一零件不能轴向移动，但可以相对第二零件转动。

其上成形有轮廓的第一表面可以是第一零件的内表面也可以是外表表面。在一个优选实施例中，第三零件与弹性零件相邻。例如，第三零件可能含有杆端结构，而杆端结构包括主体部分和向外延伸的带螺纹部分，或者通常是空心的圆柱形零件。弹性零件可以与第三零件固结或不固结。

另一方面，本发明提供制造这种弹性构件的方法，包括以下步骤：在模具中插入含有第一表面的第一零件；在模具中紧邻第一零件放入由可变形材料制成的第二零件，第二零件包括与第一表面相接的第二表面和与第一表面位置相反的第三表面；以及模压工艺成形，弹性零件紧挨第三表面，其中在模制弹性零件时，第二零件发生塑性变形，
形状变成为第一零件的第一表面形状。因此，第一零件需要设置表面轮廓，当模制过程中第二零件发生塑性变形后，可以与第一零件的轮廓保持一致，从而约束第一零件在第一方向上相对第二零件的运动。

应当承认，本发明可用于提高第一与第二零件之间的配合程度或保持两零件之间第一方向上的相对固定，或者同时用于以上两个用途。

本发明的一个优点是为机械联锁特性提供一种有效的低成本的方法。

本发明的另一优点是提供零件间的转动或轴向滑动从而提供一种良好的轴承性能。

本发明的再一个优点是提供一种良好的近似线－线配合的轴承，即：零件之间具有极小的配合公差。

本发明的其它特性、优点和特征在详细阅读以下关于优选实施例的详述后将会很清楚。

附图简述

参照以下附图描述本发明，图中相同的参考数字表示相同的部件：

图 1 是在先技术的弹性杆端轴承的主视图；
图 2 是图 1 中沿 2－2 线对在先技术的杆端结构的剖面图；
图 3 是含有本发明的弹性零件的弹性杆端轴承的主视图；
图 4 是含有本发明的杆端轴承的第一实施例沿图 3 中 4-4 线的剖视图；
图 5 是图 3 中轴承的连接关节的主视图；
图 6 是连接关节沿图 5 中 6-6 线的侧视剖面图；
图 7 是带有定位槽轮廓的内套实施例的透视图；
图 8 是压入弹性零件前的压模的剖视图；
图 9 是图 8 中的弹性零件压入后压模的剖面视图，显示第二零件的变形；

图 10 是本发明所述的弹性构件的实施例的剖面侧视图；
图 11 是本发明所述的另一实施例的剖面端视图；
图 12-13 是本发明所述的另一实施例的剖面侧视图；以及
图 14-15 是本发明所述的其它实施例的局部剖视图。

优选实施例详述

本发明的第一实施例如图 3-4 所示。本发明用一个弹性杆端实施例进行说明，但从后面的描述可以看出，本发明可广泛用于轴承、减震器、支架和隔震器。本发明可用于需要时，将一零件相对于另一零件进行永久固定。而且，当需要良好的轴承功能时，本发明提供一种有效的低成本的零件之间近似线一一线配合的方法。

根据本发明，杆端结构中的弹性构件 20 包括一个刚性的第一零件 24，如内套，一个可变形的第二零件 28，如所示的热塑性圆柱套筒，以及一个紧挨第二零件的弹性零件 32，如合成橡胶或其它橡胶类弹性材料零件。第三零件 22，如所示的刚性杆端外套，可以使其与弹性零件 32 接触，也可使其固定在上面。在图示的杆端实施例中，外套 22 包括一个主体部件 35 和一个横向凹槽 33，其中在部件 35 上，延伸有螺纹零件 37。

根据图 3-4 所示的实施例，弹性构件 20 包括连接关节 34（如图 5-6），它容放在第三零件 22 的主体 35 的凹槽 33 中。本发明所形成的机械联锁，如图 3-5 所示，约束在第一方向（沿 A-A 轴）上的轴向运动，而优选地允许在第二方向（绕 A-A 轴）上不受限制地转动。因此，本发明可用于一切隔离的铰结构，在这种结构中，例如，零件之间的轴向运动受到限制，但却可以自由转动。另外，应当承认，这
种转动是在零件之间具有理想的线一一线配合的情况下进行的，因此在使用中将减小铰结构中各零件之间的因疲劳而导致的断裂。

根据本发明，在模压过程中当第二零件 28 发生变形与第一零件 24 紧密接触后将形成良好的线一一线配合。简言之，第二零件 28 经过塑性变形，将与第一零件 24 的第一表面 25 保持一致。当模压结束后，撤去压力和温度，将在零件 24 和 28 之间形成紧密的公差配合。要得到本发明的这种线一一线配合特性，可以采取单独的工艺，也可在需要在第一方向上进行更紧密的固定时，使其先变形至第一零件 24 的外轮廓 26，然后得到这种线一一线配合。

如图 5 和 6 所示的连接关节 34，包括通常是圆柱形的第一零件 24（图 7），通常是圆柱形的第二零件 28 和通常是环形的弹性零件 32。在优选实施例中，第一零件 24 包括一个通孔 44，容放螺栓（图中未显示），用以将第一（内部）零件 24 连在支承或被支承结构上（图中未画出）。例如，螺栓可能连在变位机构上，而外套 22 上的带螺纹零件 37（图 4）可连在链条或索上。弹性零件 32 可以是任何理想的形状，使用中需要知道它的弹性模量和弹性系数，优选地用合成橡胶或橡胶类弹性材料制成，优选强不可压缩材料，诸如天然橡胶、腈橡胶、聚氨二烯、聚硅酮、氨基甲酸乙酯、碳氟化合物、合成橡胶、EPDM、SBR、PBR，或其它人造橡胶或其合成物。

这里所用的“可变形”这个词应当理解为第二零件 28 是由可在模压过程中产生形状及尺寸上的塑性变形的材料（优选为热塑性材料）制成。优选地，材料具有良好的支承能力，并具有低磨损、低摩擦的特性。一种优选的材料是尼龙。更优选的材料有石墨填充聚氨纤（Nylatron）或其他有二硫化钼，例如，可以用 NY GS51。也可用薄壁软黄铜或青铜金属，或者，如果有足够大的压入力，可用铝或退火钢材。根据本发明，当使用热塑性材料时，第二零件内套 28 优选为约 1～2 毫米厚，其尺寸应尽量接近第一零件 24 的尺寸，这样
实际中为了获得线一一线配合的机械联锁而需要的变形量将减小。通常
使用的标准模压温度和压力足以使内套 28 变形。

在图 4-6 和图 10-15 所示的实施例中，第一零件 24 或第二零件 28
之一包含轮廓 26，该轮廓含有凸起、沟槽、凹痕、一个或多个浅窝或
其他类似干涉结构。在压制、插人或压入连接处理过程中，根据所采
用处理工艺（这里均指“模压”或“模压处理”），未加工的弹性材
料与第二零件内套 28 的轮廓面 30 相连。在热和/或压力作用下，内套
28 的材料产生塑性变形，和与其相邻的第一零件 24 的第一表面 25 的
外形保持一致或近似一致。这种塑性变形可以是形状上的或尺寸上
的，或二者都有。实际上，可变形材料变成其相邻的第一零件 24 的
第一表面 25 的形状和/或尺寸。应当承认，可能并不需要为达到固定
而发生完全的形状变形，尽管希望如此。

当模压工序完成后，弹性零件 32 硬化固定于内套 28 之上，也可
能固定于其他零件之上（如图 10-15 中的外部零件 22）。通过模压
过程中第二零件 28 的弹性变形，就会在零件 24 和 28 之间形成本发
明所述的线一一线配合和/或机械联锁。

在图 3 和图 4 的实施例中，机械联锁形成于连接关节 34 的模压
过程（图 5-7）。如图 8 所示，通过传统的模压工序成形包含本发明
的连接关节 34。包含多个模具体 36e-36e 的压模 36 包括一个阴模 38，
其中阴模 38 用于第一零件 24 和第二零件 28 的插入。第一零件 24 套
在压模中心销 36d 上，而圆柱形第二零件 28 则套在第一零件 24 上。

塑性的第二零件 28 优选地带有适当的胶粘剂，如 Lord 公司或 Erie, PA
的 Chemlok 254，附在其外表面 30 上。如本领域普通技术人员所知，
安装模具的 36a-b 部分，并且一个未加工的合成橡胶制成的铸块 40
放置在压模的滑动腔 42 上。滑动 36e 在滑动腔 42 中滑动，弹性块 40
（在热和压力的作用下）被压入直道口 44 并进入阴模 38。
由于阴模 38 充满合成橡胶，并且温度和压力作用于铸块 40 和压模 36 上，因此压力作用在第二零件 28 的第三表面 30 上，使得它塑性变形至第一零件 24 的表面 25 或轮廓 26 的形状。“塑性变形”这个词意味着第二零件 28 从它的初始形状和尺寸开始变形，在撤去温度和压力载荷后，仍然保持一定程度的变形而不能回复到它的初始形状和尺寸。当然，施加的温度也有助于第二零件 28 的材料发生变形。

如图 7 所示，在第一零件 24 的表面 25 上形成一个中间槽形式的轮廓 26。按照优选的实施例，发生变形后，第二零件 28 近似变形为轮廓 26 和第一零件 24 上的表面 25 的形状，这样就形成了紧密的公差配合或者线一一线配合，如图 9 所示。然后打破直道口，将弹性构件 20 移走。弹性构件 20，作为连接关节 34（图 5—6）安装在图 3、4 中的外套内构成一个完整的杆端结构，可保持零件 24 不脱落，又可获得零件 24、28 之间的线—线配合。

此处使用的“模制”这个词指本领域普通技术人员所知的压入、插入、挤压和其它类似的现有模制工艺。应当理解本发明的使用不受模制工艺的限制。本发明对形成零件间的机械约束和联锁或线—线配合均十分有用，在形成这种配合的模压过程中，使用了弹性材料，模制时的温度和/或压力载荷引起弹性材料的压力，此压力将一个可变形零件变形为另一个零件，从而导致第二个零件永久变形至新的形状及尺寸。应当理解第二零件 28 可以具有各种适于应用的初始形状，如锥形。

图 10 显示了一个包含弹性构件 20 的管状配件。这种实施例与图 3 和 4 的实施例相似，只是第三零件 22 含有一个圆柱管而不是杆端外套，而且在模制工序中弹性零件 32 硬化后与第二零件 22 的内表面 33 粘结。使用中，配件的第三零件 22 将联接支承或被支撑部件（图中均未示出）中的第一个。例如，它可能安装在某预留孔洞中。第一零件 24 将联接其它支承或被支撑部件，例如通过螺栓。第二零件 28 变
形与第一零件 24 上形成的轮廓 26（槽）保持一致而优选地形成近似线-线配合关系。

图 11 显示了一个与图 10 类似的包含弹性构件 20 的管状配件，其不同之处在于零件 24 和 28 之间的机械联锁，在该例中，约束第一零件 24 相对第二零件 28 绕 A-A 轴（如图所示）的转动。在模压过程中，第二零件 28 具有如图 8 所示的初始圆柱形。正如本文所有的图示实施例，模压时，模具升高第二零件 28 的热塑性材料的温度至其塑性流动温度以上，并且/或者加在第二零件 28 的外表面 30 上的力足以使它变形为第一零件 24 的大致形状，其中第一零件 24 上成形有轮廓 26。

在这种实施例中，轮廓 26 包含一个非圆形剖面，例如沿第一零件 24 的一部分或整个轴向长度上成形的平面。在温度和压力载荷的作用下，第二零件 28 发生变形与第一零件形状相同，因而在零件 24 和 28 之间形成了一种转动约束。如果平面轮廓 26 沿第一零件的整个长度延伸，那么应当认为第一零件 24 可以相对第二零件 28 轴向侧移（沿 A-A 轴），这可能是某些应用所需要的。还应当理解第一零件 24 的外表面 30 也可以有不同的形状，如方形、八角形、六角形等等，为模压过程提供一个防转动的锁定特性并且让第二零件 28 变形为这种形状。

图 12—15 显示了弹性构件 20 的几种其它实施例，其中通过使第二零件 28 变形为第一零件 24 的形状而形成了一种轴向运动的联锁。在这些实施例中，正如前述实施例一样，模压前第二零件 28 最初有一个圆柱形内套（如图 8 中所示），随后变形成第一零件 24 的尺寸及形状。在图 12—15 的每种实施例中，第一零件 24 含有一个外套，例如一般是其上含有轮廓 26 的圆柱形零件。在每种实施例中，配件还可以包括一个管状的内套，象第三零件 22 一样，含有一个孔 44 以便与其它支撑和被支撑部件连接（图中未示出）。
轮廓 26 可能有多种不同的形状和形式。例如，如图 12 所示，轮廓 26 可以是形成在第一零件 24 上的第一表面 25（内表面）的中心槽。在图 13 中，轮廓 26 包含一个从第一零件 24 上的第一表面（内表面）25 向向外延伸的中心凸起。在图 14 中，例如，轮廓 26 包含多个形成在第一零件 24 的第一表面（内表面）25 上的沟槽。在图 15 所示的实施例中，轮廓 26 包含一个宽而浅的凹槽。在该最后一个实施例中，当模压时施加温度和/或压力载荷时，柱形内套 28 发生尺寸变形（内套 28 的直径）达到内表面 25 最大的直径，即说，凹槽 26 的底部直径。模压后第一零件 24 上两端 26a 和 26b 处有少量重叠，将限制第二零件 28 沿 A-A 轴运动，同时又能保证内套 28 相对第一零件 24（外套）的转动。还可能有其它类型的轮廓，如凹痕、V 形槽、发散坡度等等。

阅读完前面的详细叙述后，本领域普通技术人员能够作一些改变、替换和修正。所有这些改变、替换和修正如果落入所附权利要求书的范围中，将被认为是本发明的一部分。例如，可以采用不同于本文描述的轮廓形状。