
G. L. MARTIN.
IRONING MACHINE.
APPLICATION FILED JUNE 3, 1908.

914,965.

Patented Mar. 9, 1909.

UNITED STATES PATENT OFFICE.

GEORGE L. MARTIN, OF CANTON, MISSOURI.

IRONING-MACHINE.

No. 914,965.

Specification of Letters Patent.

Patented March 9, 1909.

Application filed June 3, 1908. Serial No. 436,345.

To all whom it may concern:

Be it known that I, GEORGE L. MARTIN, a citizen of the United States, residing at Canton, in the county of Lewis and State of Missouri, have invented certain new and useful Improvements in Ironing-Machines; and I do hereby declare the following to be a full, clear, and exact description of the invention, such as will enable others skilled in the art to 10 which it appertains to make and use the

This invention relates to machines for ironing textile goods and articles of clothing; and it consists in the novel construction and com-15 bination of the parts hereinafter fully de-

scribed and claimed.

In the drawings, Figure 1 is a plan view of the machine. Fig. 2 is a section through the machine, taken on the line x-x in Fig. 1. 20 Fig. 3 is a broken section through the ma-

chine, taken on the line y-y in Fig. 1.

A is a base plate on which the machine is

secured.

B are two end plates arranged one at each 25 end of the machine, and b are two crosspieces extending between the end portions of the end plates B and resting on and secured to the base plate A. The crosspieces b support the end plates B above the base plate so that 30 spaces C are formed between them for the circulation of air.

D is a tubular metallic roller provided with heads d and d' at its ends. The head d has holes e for the admission of air and for the 35 outlet of the products of combustion, and it has a hollow trunnion E secured to it which is journaled in a bearing e' on one of the end plates. The head d' has a solid trunnion or shaft F secured to it, which is journaled in a

40 bearing f' on the other end plate.

Suitable means are provided for heating the inside of the ironing roller D, and G is a perforated pipe which projects through the trunnion E into the roller. Gasolene, gas or other suitable fuel is supplied to the pipe G, and it burns as it issues from the perforations g of the pipe G. The roller is kept at any desired temperature by regulating the supply of

gas in any approved way.

H is a fly-wheel secured on the shaft F, and h is a driving-pulley on the said shaft, but a crank-handle or any other approved means may be provided for revolving the

said shaft in place of the pulley.

I is a driving roll journaled at the back of the machine and provided with a shaft i.

J is a roll journaled at the front of the ma-

chine, and provided with a shaft j.

K is an endless carrier apron which passes over the rollers I and J. The apron K is 60 formed of canvas or other flexible material, and as many plies of canvas as desired may be used, said plies being stitched together.

The shaft I is journaled in the end plates B, and has a toothed wheel k secured on it 65 which gears into a toothed wheel k' secured

on the shaft F.

The shaft j is journaled in bearings L which are connected to the end plates B by adjustable screws m. Springs M are interposed be- 70 tween the bearings L and the end plates, to keep the apron K stretched to a prearranged tension.

The upper parts of the rolls I and J are arranged above the level of the lower part of 75 the ironing-roller D so that the upper stretch of the apron is bent partly around the periphery of the ironing-roller, and holds the clothes in contact with a considerable area of the surface of the heated roller so that the 80 clothes are heated and burnished to give them a glossy surface.

N is the ironing plate arranged between the stretches of the apron K, and provided with lugs or end portions n which are slidable 85 in vertical guide slots n' in the end plates B.

P are springs arranged under the lugs n, and bearing against abutment plates p. The abutment plates are connected to the end plates by stud bolts p' provided with suitable nuts so that the upward pressure of the springs can be adjusted.

R is a cover flap of thin sheet metal pivoted by pins r to the end plates B at the rear of the tubular ironing roller. This cover is pro- 95 vided with a lining S of asbestos which keeps the heat in the roller D, and prevents dirt

from adhering to it.

The ironing plate presses the upper stretch of the apron against the ironing roller, and 100 the articles to be ironed are placed on the apron at the front part of the machine, and are carried by the said apron under the heated tubular roller, and are delivered at the rear of the machine. The cool air is drawn 105 upward at the sides of the machine through the passages C into the space between the stretches of the apron, so that the said apron is not destroyed rapidly by contact with the heated roller D.

What I claim is:

1. In an ironing machine, the combina-

110

tion, with a frame having end plates provided with vertical guide-slots, of a revoluble ironing-roller journaled in the said end plates over the said guide-slots, an endless carrierapron arranged under the said ironing-roller, rolls for supporting and driving the said apron, an ironing-plate arranged under the upper stretch of the said apron with its end portions slidable in the said guide-slots, abutment plates supported from the said frame below the said end plates, and springs interposed between the said abutment plates and the end portions of the said ironing-plate.

2. In an ironing machine, the combina-15 tion, with a revoluble ironing roller, and

means for heating it; of an endless carrier arranged under the said roller, a pivoted cover-flap arranged over the said roller and provided with a lining of asbestos, an ironing plate arranged under the said roller between 20 the stretches of the carrier apron, and springs for pressing the said ironing plate upward.

In testimony whereof I have affixed my signature in the presence of two witnesses. 25

GEORGE L. MARTIN.

Witnesses:

T. H. JACOBSON, C. F. MARTIN.