METHOD MAKING IT POSSIBLE TO ACHIEVE THE IDEAL CURVATURE OF A ROD FOR VERTEBRAL OSTEOSYNTHESIS EQUIPMENT DESIGNED TO SUPPORT A PATIENT'S VERTEBRAL COLUMN

According to the invention, it precede qu'elle concerne comprend les etapes suivantes: a) taking a sagittal preoperative x-ray of the vertebral column of the patient to be treated, extending from the cervical vertebral to the femoral heads; b) on that x-ray, identifying points on S1, 2, T12 et C7; c) depicting, on the said x-ray, curved segments beginning at the center of the plate of S1 et going to the center of the plate of C7; e) identifying, on that x-ray, the correction(s) to be made to the vertebral column, including the identification of posterior osteotomies to make; f) pivoting portions of said x-ray relative to other portions of that x-ray, according to osteotomies to be made; g) performing, on said x-ray, a displacement of the sagittal curvature segment extending over the vertebral segment to be corrected; h) from a straight vertebral rod (TV), producing the curvature of that rod according to the shape of said sagittal curvature segment in said displacement position.

FIG. 8
Published:

— with international search report (Art. 21(3))
METHOD MAKING IT POSSIBLE TO ACHIEVE THE IDEAL CURVATURE OF A ROD FOR VERTEBRAL OSTEOSYNTHESIS EQUIPMENT DESIGNED TO SUPPORT A PATIENT'S VERTEBRAL COLUMN

The present invention relates to a method making it possible to produce the ideal curvature of a rod for vertebral osteosynthesis equipment designed to correct a patient's vertebral column.

It is known to analyze a patient's vertebral column in reference to so-called "pelvic" parameters that are documented in the scientific literature. The appended figure 1 very diagrammatically shows the base of a vertebral column, i.e., a part of the lumbar vertebrae L and the sacrum S, as well as the femoral heads TF; said pelvic criteria are:

- the SS (sacral slope) criterion, which is the incline angle of the plate of S1 (first vertebra of the sacrum), relative to the horizontal;

- the PV (pelvic version) criterion, which is the angle formed by the straight segment connecting the center of the femoral heads TF and the center of the plate of S1 with the vertical;

- the PI (pelvic incidence) criterion, which is the angle formed by the straight segment connecting the center of the femoral heads TF and the center of the plate of S1 with the perpendicular to the plate of S1.

It is accepted that an individual will adopt a natural vertebral column posture, called "economic", avoiding pain and other pathologies, if his pelvic parameters in particular are in agreement with his back morphtype. If this is not the case, surgical treatment may be considered in order to reestablish proper posture of the vertebral column, in which that agreement exists.

It is well known to perform this type of recovery using rigid vertebral rods, in particular metal, fastened to the vertebrae using pedicle screws, which must be curved suitably based on the correction to be done. The publication of patent application No. WO 98/55038 illustrates an equipment of this type.

It has been shown that imparting the appropriate curvature to a straight rod may be very difficult for a surgeon, the curvature being more or less pronounced in any given location of the rod. Currently, such a curvature is done at the surgeon's discretion and calls greatly on the latter's experience and dexterity. The trial and error necessary to obtain an appropriate curvature have the significant drawback of extending the operation
time, which is not desirable for the patient, and the risk of implanting a rod with a non-
ideal curvature cannot be ruled out.

The present invention aims to resolve this essential drawback.

and WO 2008/079546 A2 describe methods not making it possible to achieve the same
in a satisfactory manner.

To achieve that aim, the method according to the invention comprises the following steps:

a) taking a sagittal preoperative x-ray of the vertebral column of the patient
to be treated, extending from the cervical vertebrae to the femoral heads;

b) on that x-ray, identifying:
the points and straight segments making it possible to calculate the
so-called "pelvic" parameters, i.e., the sacral slope, the pelvic version and the pelvic
incidence,

the center of the plate of the first vertebra of the sacrum, called S1;
the center of the second vertebra of the sacrum, called S2;
the center of the lower plate of a reference dorsal vertebra, in particular
the twelfth dorsal vertebra, called T12;
the center of the lower plate of a reference cervical vertebra, in particular
the seventh cervical vertebra, called C7;

c) depicting, on the x-ray, a first curved segment beginning at the center of
the plate of S1, tangent to the segment going from the center of S2 to the center of the
plate of S1, passing through the centers of the bodies of the vertebrae of segment L5-L1
and ending at the center of the lower plate of said reference dorsal vertebra;

d) depicting, on the x-ray, a second curved segment tangent to the first
curved segment at the center of the lower plate of said reference dorsal vertebra,
passing through the centers of the bodies of the vertebrae of the segment extending
between said reference dorsal vertebra and said reference cervical vertebra and going
to the center of the lower plate of said reference cervical vertebra;

e) identifying, on that x-ray, the correction(s) to be made to the vertebral
column;
f) pivoting portions of said x-ray relative to other portions of that x-ray, based on the corrections to be made, so as to show the correction(s) to be made to the vertebral column;

g) recalculating said first and second curved segments based on the correction(s) made in step f) and depicting those curved segments on said x-ray;

h) determining the length of the vertebral segment to be corrected, therefore the length of each vertebral rod to be implanted;

i) for each vertebra of that segment,

either reading, on said x-ray, the distance from the center of the body of the vertebra to the posterior face of the pedicle of that vertebra, i.e., the entry face of a pedicle screw in that pedicle; or reading that same distance in a previously established databank, containing, for each vertebra, the mean value, established statistically, of that distance for the type of patient in question, in particular based on the age, gender and size of that patient;

j) performing, on said x-ray, a displacement of the sagittal curvature segment determined in step g), extending over the vertebral segment to be corrected determined in step h), over the distances read in step i) for the vertebrae in question, and recalculating the curvature of that segment in the displacement position;

k) from a straight vertebral rod, producing the curvature of that rod according to the shape of said sagittal curvature segment in said displacement position, recalculated in step j).

The method according to the invention thereby makes it possible to impart the appropriate curvature to a straight rod easily, that rod being fully suitable for the correction to be done.

Preferably, the method also comprises the following steps:

- taking a frontal x-ray of the vertebral column of the patient to be treated;

- on that x-ray, identifying one or more potential portions of the vertebral column that are curved in the frontal plane, and, for each of those curved portions to be straightened, defining a reference point at the vertebra on which the curved portion begins and a reference point at the vertebra on which the curved portion ends;

- for each of these curved portions, measuring the length of the segment extending between the reference points identified on that curved portion;
- identifying, on the aforementioned sagittal x-ray, these same reference points on these same vertebrae, and identifying the corresponding points on said sagittal curvature segment; and
- performing homothetic stretching of the portion of said sagittal curvature segment extending between these corresponding points, so as to give that portion a length identical to that existing between said reference points and to thereby obtain a recalculated sagittal curvature segment, taking into account the elongation of the vertebral column resulting from the correction of that column in the frontal plane.

Preferably, the identification in step e) of the correction(s) to be done includes either the identification of posterior osteotomies to be done on the plates of one or more lumbar vertebrae in order to obtain a corrected lumbar curvature, or the determination of the shape of one or more vertebral implants to be inserted into the intervertebral spaces of those vertebrae to obtain that same corrected lumbar curvature, in particular the determination of the angulation of the wedge shape those implants must have.

Preferably, the method comprises, after step j), the transfer of data relative to the rod to be produced to a service provider responsible for producing the curvature of the rod.

Thus, a practitioner, having determined the shape of the rod to be implanted using the method according to the invention, transfers the data relative to the rod to be produced to a service provider responsible for producing the curvature of the rod. Once that curvature is produced, the service provider will deliver the curved rod to the practitioner, who will be able to operate on the patient with his vertebral rod that is ready to be implanted.

The invention will be well understood, and other features and advantages thereof will appear, in reference to the appended diagrammatic drawing, showing, as a non-limiting example, different steps of the method in question.

Figure 2 is a very diagrammatic view of a vertebral column CV as shown on an x-ray, referencing the lumbar lordosis LL, the names of the vertebrae S2-L5 in question, the femoral heads TF, a point situated at the center of the plate of S1, and the pelvic criteria SS, PV, Pl explained above in reference to figure 1;

figure 3 is a view similar to figure 2, in which the center point of the second vertebra of the sacrum, called S2, is shown;

figure 4 is a view similar to figure 3, in which the center point of the lower plate of the twelfth dorsal vertebra, called T12, is shown;
figure 5 is a view similar to figure 4, in which the center point of the lower plate of the seventh cervical vertebra, called C7, is shown;

figure 6 is a view similar to figure 5, in which a first curved segment SC1 and a second curved segment SC2 are further shown;

figure 7 is a view similar to figure 6, in which osteotomies O1, O2 to be done on the upper plates, posterior sides, of vertebrae L4 and L5 (fourth and fifth lumbar vertebra) are also shown;

figure 8 is a view similar to figure 7, showing two portions P1, P2 of the x-ray, delimited by frames, that have been pivoted relative to the respective positions that those same portions occupy in figure 7, in the counterclockwise direction regarding P1 and the clockwise direction regarding P2; these new positions are corrected positions of the vertebral column CV, made possible by the corrected lumbar curvature made possible by the osteotomies O1, O2 to be done; in order to view the correction made, the uncorrected vertebral column, as shown in figure 7, is superimposed on the corrected vertebral column shown by figure 8, that uncorrected vertebral column being shown in thin and broken lines;

figure 9 is a view similar to figure 8, showing, in broken lines, the respective distances DL5 to DT12 which, for each of vertebrae L5 to T12, go from the center of the body of the vertebra to the posterior face of a pedicle of that vertebra;

figure 10 is a view similar to figure 9, showing a sagittal curvature segment SC that corresponds to the curvature to be given to a vertebral rod to produce the desired correction of the vertebral column;

figure 11 is, on the left side of that figure, a view of a plane of the curved vertebral rod to be obtained, established from said sagittal curvature segment SC, and, on the right side of that figure, a view of the curved vertebral rod TV, obtained from that plane P;

figure 12 is, on the left, a partial view of a frontal x-ray RF of the vertebral column of the patient to be treated, and, on the right, a side view of said sagittal curvature segment SC, on which reference points PC are identified; and

figure 13 is a view of a recalculated sagittal curvature segment SCR, obtained following stretching of a portion of the sagittal curvature segment SC.

Figures 2 to 11 illustrate a method making it possible to produce the ideal curvature of a vertebral rod TV that is a part of a vertebral osteosynthesis equipment, designed to correct a patient's vertebral column by performing a correction of that vertebral column. This method comprises the following successive steps:
Figure 2: taking a sagittal preoperative x-ray RS of the vertebral column of the patient to be treated, extending from the cervical vertebrae to the femoral heads, and identifying, on that x-ray RS:

LL: the vertebral segment to be treated;
L1, L2, L3, L4, L5, S1, S2, T12, C7: the first, second, third, fourth and fifth lumbar vertebrae, the first and second vertebrae of the sacrum, the twelfth dorsal vertebra and the seventh cervical vertebra, respectively;
SS, PV, PI: the aforementioned pelvic criteria;
TF: the femoral heads, shown by a circle in the figure;
also identifying, by a dot, the center of the plate of S1.

Figure 3: identifying, on the x-ray RS, the center of the plate of S2 using a dot.

Figure 4: identifying, on the x-ray RS, the center of the lower plate of T12 using a dot.

Figure 5: identifying, on the x-ray RS, the center of the lower plate of C7 using a dot.

Figure 6: depicting, on said x-ray RS, said first and second curved segments SC1, SC2; the first curved segment SC1 begins at the center of the plate of S1, tangent to the segment going from the center of S2 to the center of the plate of S1, passes through the centers of the bodies of the vertebrae of segment L5-L1 and ends at the center of the lower plate of T12; the second curved segment SC2 is tangent to the first curved segment SC1 at the center of the lower plate of T12, passes through the centers of the bodies of the vertebrae of segment T11-C6 and goes to the center of the lower plate of C7.

Figure 7: identifying, on the x-ray RS, the correction(s) of the vertebral column that must be performed, and in particular identifying the osteotomies O1, O2 to be done in order to obtain a corrected lumbar curvature; in the illustrated example, the determination is made to perform an osteotomy O1 of 10° on the upper plate of L4 and an osteotomy O2 of 10° on the upper plate of L5.

Figure 8: pivoting the portions P1 and P2 of the x-ray RS relative to the rest of that x-ray RS, based on the osteotomies O1, O2 to be done; in the illustrated example, the portion P1 pivots by 10° in the counterclockwise direction relative to the portion of the x-ray on which L4 is located (angulation made possible by the osteotomy O2) and
the portion P2 pivots by 10° in the clockwise direction relative to the portion of the x-ray on which L4 is located (angulation made possible by the osteotomy O1). Said first and second curved segments SC1 and SC2 are then recalculated based on the correction(s) made and are shown on the x-ray RS.

Figure 9: the length of the vertebral segment to be corrected is determined (in the case at hand, L5-T12), which makes it possible to determine the length of each vertebral rod TV to be implanted; for each vertebra of that segment, the respective distances DL5 to DT12 are determined from the center of the body of the vertebrae to the posterior face of a pedicle of that vertebra, i.e., the entry face of a pedicle screw in the pedicle; these distances are either read on the x-ray RS, or are read in a previously established databank, containing, for each vertebra, the mean value, established statistically, of that distance for the type of patient in question, in particular based on the age, gender and size of that patient;

Figure 10: a displacement of the curved segment is then done, on the x-ray RS, over the respective distances DL5 to DT12, and the curvature of that segment is recalculated in the displacement position.

Figure 11: after the diameter of the vertebral rod TV to be used has been determined based on the patient in question, a plane P of the curvature of that rod is established, from which the rod TV is made, by curvature from a straight vertebral rod, in particular by cold bending.

Figures 12 and 13 show the following steps that the method may comprise:

Figure 12:
- also taking a frontal x-ray RF of the vertebral column CV of the patient to be treated;
- on that x-ray RF, identifying one or more potential portions of that vertebral column CV that are curved in the frontal plane, and which must therefore be corrected, and a reference point PRD at the center of the body of the vertebra on which the curved portion begins and a reference point PRF at the center of the body of the vertebra on which the curved portion ends;
- measuring the length of the curved segment extending between those reference points PRD, PRF;
- identifying, on the aforementioned sagittal x-ray RS, these same reference points PRD, PRF on these same vertebrae, and identifying the corresponding points PC on said sagittal curvature segment SC; and

- performing homothetic stretching of the portion of said sagittal curvature segment SC extending between these corresponding points PC, so as to give that portion a length identical to that separating the aforementioned reference points PRD, PRF.

Figure 13: a recalculated sagittal curvature segment SCR is thus obtained, taking the elongation of the vertebral column resulting from the correction of that column in the frontal plane into account.

The method according to the invention thus has the decisive advantage of making it possible to produce the ideal curvature of a rod for vertebral osteosynthesis equipment designed to correct a patient's vertebral column.
CLAIMS

1. Method making it possible to produce the ideal curvature of a rod (TV) for vertebral osteosynthesis equipment designed to correct a patient’s vertebral column (CV), characterized in that it comprises the following steps:
 a) taking a sagittal preoperative x-ray (RS) of the vertebral column (CV) of the patient to be treated, extending from the cervical vertebrae to the femoral heads;
 b) on that x-ray (RS), identifying:
 the points and straight segments making it possible to calculate the so-called “pelvic” parameters, i.e., the sacral slope (SS), the pelvic version (PV) and the pelvic incidence (PI),
 the center of the plate of the first vertebra of the sacrum, called S1;
 the center of the second vertebra of the sacrum, called S2;
 the center of the lower plate of a reference dorsal vertebra, in particular the twelfth dorsal vertebra, called T12;
 the center of the lower plate of a reference cervical vertebra, in particular the seventh cervical vertebra, called C7;
 c) depicting, on the x-ray (RS), a first curved segment (SC1) beginning at the center of the plate of S1, tangent to the segment going from the center of S2 to the center of the plate of S1, passing through the centers of the bodies of the vertebrae of segment L5-L1 and ending at the center of the lower plate of said reference dorsal vertebra;
 d) depicting, on the x-ray (RS), a second curved segment (SC2) tangent to the first curved segment (SC1) at the center of the lower plate of said reference dorsal vertebra (T12), passing through the centers of the bodies of the vertebrae of the segment extending between said reference dorsal vertebra and said reference cervical vertebra and going to the center of the lower plate of said reference cervical vertebra (C7);
 e) identifying, on that x-ray (RS), the correction(s) (O1, O2) to be made to the vertebral column (CV);
 f) pivoting portions (P1, P2) of said x-ray (RS) relative to other portions of that x-ray (RS), based on the corrections (O1, O2) to be made, so as to show the correction(s) to be made to the vertebral column (CV);
g) recalculating said first and second curved segments (SC1, SC2) based on the correction(s) made in step f) and depicting those curved segments on said x-ray (RS);

h) determining the length of the vertebral segment to be corrected, therefore the length of each vertebral rod (TV) to be implanted;

i) for each vertebra of that segment,

 either reading, on said x-ray (RS), the distance (DL5-DT12) from the center of the body of the vertebra to the posterior face of the pedicle of that vertebra, i.e., the entry face of a pedicle screw in that pedicle;

 or reading that same distance (DL5-DT12) in a previously established databank, containing, for each vertebra, the mean value, established statistically, of that distance for the type of patient in question, in particular based on the age, gender and size of that patient;

j) performing, on said x-ray (RS), a displacement of the sagittal curvature segment determined in step g), extending over the vertebral segment to be corrected determined in step h), over the distances (DL5-DT12) read in step i) for the vertebrae in question, and recalculating the curvature of that segment in the displacement position;

k) from a straight vertebral rod (TV), producing the curvature of that rod according to the shape of said sagittal curvature segment in said displacement position, recalculated in step j).

2. Method according to claim 1, characterized in that the method also comprises the following steps:

 - taking a frontal x-ray (RF) of the vertebral column (CV) of the patient to be treated;

 - on that x-ray (RF) identifying one or more potential portions of the vertebral column that are curved in the frontal plane, and, for each of those curved portions to be straightened, defining a reference point (PRD) at the vertebra on which the curved portion begins and a reference point (PRF) at the vertebra on which the curved portion ends;

 - for each of these curved portions, measuring the length of the segment extending between the reference points (PRD, PRF) identified on that curved portion;
- identifying, on the aforementioned sagittal x-ray (RS), these same reference points (PRD, PRF) on these same vertebrae, and identifying the corresponding points (PC) on said sagittal curvature segment; (SC); and

- performing homothetic stretching of the portion of said sagittal curvature segment (SC) extending between these corresponding points (PC), so as to give that portion a length identical to that existing between said reference points (PRD, PRF) and to thereby obtain a recalculated sagittal curvature segment (SCR), taking into account the elongation of the vertebral column (CV) resulting from the correction of that column in the frontal plane.

3. Method according to claim 1 or claim 2, characterized in that the identification in step e) of the correction(s) to be done includes either the identification of posterior osteotomies (O1, O2) to be done on the plates of one or more lumbar vertebrae in order to obtain a corrected lumbar curvature, or the determination of the shape of one or more vertebral implants to be inserted into the intervertebral spaces of those vertebrae to obtain that same corrected lumbar curvature, in particular the determination of the angulation of the wedge shape those implants must have.

4. Method according to claim 1-3, characterized in that said method comprises, after step j), the transfer of data relative to the rod to be produced to a service provider responsible for producing the curvature of the rod.
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2004/017836 A2 (ORTHOLOGIC INC [CA]; POULIN FRANCOIS [CA]; AMIOT LOUIS-PHILIPPE [CA]) 4 March 2004 (2004-03-04) page 12, line 16 - page 13, line 6 figure 5</td>
<td>1-4</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance.
 - "E" earlier application or patent but published on or after the international filing date.
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).
 - "O" document referring to an oral disclosure, use, exhibition or other means.
 - "P" document published prior to the international filing date but later than the priority date claimed.

*"X" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.

*"X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.

*"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

*"A" document member of the same patent family.

Date of the actual completion of the international search: 21 January 2015

Date of mailing of the international search report: 30/01/2015

Name and mailing address of the ISA/
European Patent Office, P.B. 5618 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer:
Ebbinghaus, M
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2004017836 A2</td>
<td>04-03-2004</td>
<td>AU 2003257339 A1 11-03-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 16393169 T5 02-02-2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006815630 A1 19-01-2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004017836 A2 04-03-2004</td>
<td></td>
</tr>
<tr>
<td>US 2009254326 A1</td>
<td>08-10-2009</td>
<td>CA 2720639 A1 08-10-2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102036615 A 27-04-2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104116554 A 29-10-2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2273944 A1 19-01-2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5572898 B2 20-08-2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011517594 A 16-06-2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 2011602174 A 04-03-2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009254326 A1 08-10-2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009124245 A1 08-10-2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008079546 A2 03-07-2008</td>
<td></td>
</tr>
</tbody>
</table>