

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2014/058561 A1

(43) International Publication Date

17 April 2014 (17.04.2014)

WIPO | PCT

(51) International Patent Classification:

B29C 35/02 (2006.01) B29C 70/46 (2006.01)
B29C 33/38 (2006.01) B29C 35/00 (2006.01)
B29C 37/00 (2006.01) B29D 99/00 (2010.01)

(21) International Application Number:

PCT/US2013/059512

(22) International Filing Date:

12 September 2013 (12.09.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

13/649,013 10 October 2012 (10.10.2012) US

(71) Applicant: THE BOEING COMPANY [US/US]; 100 North Riverside Plaza, Chicago, Illinois 60606-2016 (US).

(72) Inventors: LOFTUS, Robert T.; P.O. Box 3707, Seattle, Washington 98124 (US). ROBINSON, Jason M.; P.O. Box 3707, Seattle, Washington 98124 (US). LEE, Mitchell J.; P.o. 3707, Seattle, Washington 98124 (US).

(74) Agents: HALPERIN, Brett L et al.; The Boeing Company, P.O. Box 2515, MC 110-SD54, Seal Beach, California 90740-1515 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available):

AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available):

ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: SHAPE-DISTORTING TOOLING SYSTEM AND METHOD FOR CURING COMPOSITE PARTS

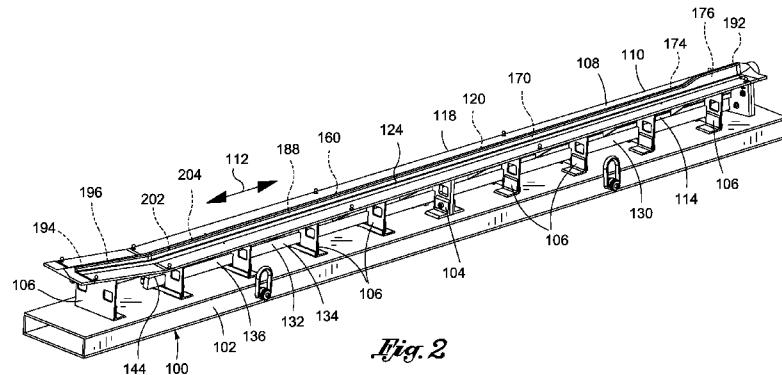


Fig. 2

(57) Abstract: A tooling system may include a cure tool and a biasing element. The cure tool may have a cure tool coefficient of thermal expansion (CTE) and may be configured for curing a composite article formed of two or more components having dissimilar component CTEs. The biasing element may be fixedly attached to the cure tool and has a biasing element CTE that may be different than the cure tool CTE. The biasing element may be configured such that a combination of the cure tool CTE and the biasing element CTE causes a heat-up displacement in the cure tool when heated and the composite article is cured in a distorted shape. When the cured composite article is cooled, the cured composite article may substantially assume an as-designed shape.

WO 2014/058561 A1

5 SHAPE-DISTORTING TOOLING SYSTEM AND METHOD FOR CURING COMPOSITE PARTS

BACKGROUND

10 The present disclosure relates generally to composites manufacturing and, more particularly, to controlling thermally-induced shape distortion during the curing of composite articles.

15 The main rotor blades of many helicopters and other rotorcraft are fabricated from composite materials due to the superior stiffness and strength properties and corrosion resistance of composites. Such high stiffness and strength properties provide an increased fatigue life for the rotor blades in the high-vibration environment of a helicopter. In addition, composite materials provide a means for tailoring the mass and stiffness characteristics at different locations along the span of a rotor blade to optimize the aeroelastic performance of the rotor blade.

20 In this regard, a main rotor blade may be constructed with different types of materials positioned at different locations within the airfoil shape of the rotor blade to achieve specific structural stiffness and balance characteristics. Different materials may also be positioned at specific locations along the airfoil shape or material thicknesses may be varied along the length to provide operational durability for the rotor blade. For example, a metallic skin may be included on the leading edge of a composite spar of a rotor blade to provide erosion durability for the rotor blade.

25 The use of different types of materials for different components within the rotor blade may result in imbalances in the thermal expansion characteristics of the dissimilar materials. For example, the metallic skin may have a coefficient of thermal expansion that is higher than the coefficient of thermal expansion of the composite spar. The metallic skin may be adhesively bonded to the composite spar at an elevated cure 30 temperature inside a cure tool. The differing coefficients of thermal expansion of the metallic skin and composite spar may result in the metallic skin shrinking along a lengthwise direction to a greater extent than the shrinkage of the composite spar. Because of cross-linking that occurs during adhesive cure, a rigid bondline is formed between the metallic skin and composite spar. The rigid bondline results in stress 35 buildup between the metallic skin and the composite spar upon cool down from the cure

5 temperature which may result in shape distortion such as bowing in the cured spar assembly.

Conventional approaches for minimizing shape distortion during the manufacturing of rotor blades include the use of cure tools that are designed to be highly rigid and/or which have a low coefficient of thermal expansion to minimize distortion during the cure 10 cycle in an attempt to maintain the rotor blade in a desired (e.g., straight) shape.

Complex holding features may also be incorporated into sub-assembly parts and subsequent cure tools in an attempt to lock the rotor blade components into a desired straight condition. Unfortunately, conventional approaches fail to adequately address the shape distortion (e.g., bowing) that occurs in a composite rotor blade as a result of 15 the imbalance in the dissimilar materials with regard to thermal contraction after cure. Such shape distortion in cured composite subassemblies may present challenges in fitting the cured subassemblies into subsequent cure tools and compromise the integrity of the final part.

As can be seen, there exists a need in the art for a system and method for minimizing or 20 eliminating shape distortion in cured composite articles comprised of dissimilar materials.

SUMMARY

The above-noted needs associated with thermally-induced shape distortion in composite structure are specifically addressed and alleviated by the present disclosure 25 which provides a tooling system having a cure tool and a biasing element. The cure tool has a cure tool coefficient of thermal expansion (CTE) and may be configured for curing a composite article formed of two or more components having dissimilar component CTEs. The biasing element may be fixedly attached to the cure tool and has a biasing element CTE that may be different than the cure tool CTE. The biasing 30 element may be configured such that a combination of the cure tool CTE and the biasing element CTE causes a heat-up displacement into a distorted shape of the cure tool when heated. The composite article may be cured in the distorted shape such that when cooled, the cured composite article may substantially assume an as-designed shape.

5 In a further embodiment, disclosed is a tooling system, comprising a cure tool having a cure tool coefficient of thermal expansion (CTE) and which may be configured for curing a composite article formed of two or more components having dissimilar component CTEs. The tooling system may further include a biasing element that may be fixedly attached to the cure tool. The biasing element may have a biasing element CTE that is
10 different than the cure tool CTE. The biasing element may be configured such that a combination of the cure tool CTE and the biasing element CTE causes a heat-up displacement in the cure tool when heated to a cure temperature and the composite article is cured in a distorted shape such that when cooled to ambient temperature, the cured composite article substantially assumes an as-designed shape when
15 unrestrained. The biasing element may be fixedly attached to the cure tool at a location on the cure tool such that the heat-up displacement is substantially opposite in direction to a cool-down displacement of a cured composite article cured on a non-biasing cure tool.

Also disclosed is a method of manufacturing a composite article. The method may
20 include providing a cure tool having a biasing element fixedly attached thereto. The cure tool has a cure tool coefficient of thermal expansion (CTE). The biasing element may have a biasing element CTE that is different than the cure tool CTE. The method may include loading a composite article on the cure tool. The composite article may be comprised of components having dissimilar component CTEs. The method may include
25 heating the composite article and the cure tool to a curing temperature. The method may additionally include distorting the cure tool into a distorted shape in response to elevating the temperature of the cure tool to the curing temperature due to the difference in the cure tool CTE and the biasing element CTE. The method may also include curing the composite article in the distorted shape, and then cooling the cured
30 composite article such that the cured composite article changes shape from the distorted shape to an as-designed shape.

The features, functions and advantages that have been discussed can be achieved independently in various embodiments of the present disclosure or may be combined in yet other embodiments, further details of which can be seen with reference
35 to the following description and drawings below.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the present disclosure will become more apparent upon reference to the drawings wherein like numbers refer to like parts throughout and wherein:

Figure 1 is a perspective view of a spar assembly of a rotor blade comprising a pre-cured composite D-spar and a metallic erosion strip bonded to the D-spar and wherein the D-spar and the metallic erosion strip may have dissimilar coefficients of thermal expansion (CTEs);

Figure 2 is a perspective view of an embodiment of a tooling system as may be implemented for bonding the metallic strip to the D-spar leading edge to form the spar assembly illustrated in Figure 1;

Figure 3 is a side view of the tooling system illustrating the cure tool supported on a support frame and further illustrating a biasing element fixedly attached to a lower side of a tool base of the cure tool and wherein the biasing element coefficient of thermal expansion (CTE) is different than the cure tool CTE;

Figure 4 is a cross-sectional view of the tooling system taken along line 4 of Figure 3 and illustrating the biasing element attached to the lower side of the tool base and further illustrating the metallic erosion strip and the composite D-spar loaded within a cure tool cavity defined by the tool base and a tool cap

Figure 5 is a perspective view of the cure tool having a tool cap mounted to an upper side of the tool base and the biasing element fixedly attached to the lower side of the tool base;

Figure 6 is an exploded perspective view of the cure tool, the biasing element, and the spar assembly and illustrating the metallic erosion strip and the D-spar that may be loaded into the cure tool;

Figure 7 is an exploded cross-sectional view of the tooling system including the tool cap, the cure tool, the biasing element, and further illustrating the spar assembly that may be bonded to the D-spar using the cure tool;

Figure 8 is an exploded side view of a non-biasing tooling system that lacks a biasing element;

Figure 8A is an exploded cross-sectional view of the non-biasing tooling system including a tool cap and a tool base without a biasing element;

5 Figure 9 is a side view of the non-biasing tooling system of Figure 8 in an assembled state;

Figure 9A is a cross-sectional view of the non-biasing tooling system of Figure 9;

10 Figure 10 is a side view of a spar assembly cured in the non-biasing tooling system and illustrating a cool-down displacement occurring in the spar assembly in the form of bowing along a spanwise direction as a result of the dissimilar coefficients of thermal expansion of the composite D-spar and the metallic erosion strip;

15 Figure 11 is an exploded side view of an embodiment of a tooling system as disclosed herein having a biasing element fixedly attached to a lower side of the tool base;

Figure 11A is an exploded side view of the tooling system of Figure 11;

20 Figure 12 is a side view of a spar assembly being cured in the tooling system of Figure 11-11A and illustrating a heat-up displacement in the cure tool when heated to a curing temperature due to the difference between the biasing element CTE and the cure tool CTE and causing the spar assembly to be cured in a distorted (e.g., bowed) shape;

Figure 13 is a side view of the spar assembly removed from the tooling system after cool-down from the curing temperature and resulting in the spar assembly assuming a substantially straight or non-bowed shape along a spanwise direction; and

25 Figure 14 is a flow diagram illustrating one or more operations that may be included in a method of manufacturing a composite article.

DETAILED DESCRIPTION

Referring now to the drawings wherein the showings are for purposes of illustrating preferred and various embodiments of the disclosure, shown in Figure 1 is a perspective view of a spar assembly **202** for a rotor blade **190** such as for a helicopter. The spar assembly **202** comprises a composite article **170** containing at least two components **174** having different component coefficients of thermal expansion (CTEs) **176**. In this regard, the spar assembly **202** may include a composite component **174** comprising a composite D-spar **204** extending from a root **192** to a tip **194** of the rotor blade **190** and which may have a swept tip portion **196**. The composite D-spar **204** may

5 be formed as a composite layup **178** of fiber-reinforced material having a composite layup coefficient of thermal expansion (CTE) **180**. The spar assembly **202** may further include a metallic component **182** comprising a metallic strip **186** having a metallic component CTE **184**. The metallic strip **186** may be adhesively bonded to a leading edge **200** of the composite D-spar **204** at an elevated cure temperature. Although the
10 metallic strip **186** is shown extending from the root **192** to the swept tip portion **196**, the main rotor blade **190** may be constructed such that the metallic strip **186** may terminate at any location such as at the tip **194**.

Figure 2 illustrates an embodiment of a tooling system **100** that may advantageously be used in a manufacturing process for manufacturing a composite article **170** such as the spar assembly **202** illustrated in Figure 1 without significant shape distortion in the cured composite article **172** (Figure 1). For example, the tooling system **100** in Figure 2 may be used for curing an adhesive **188** (Figure 1) for bonding the metallic strip **186** (Figure 1) to the composite D-spar **204** at an elevated cure temperature. However, the tooling system **100** as disclosed herein may be configured
15 for manufacturing composite articles **170** having any one of a variety of different sizes, shapes and configurations, without limitation, and is not limited to manufacturing a spar assembly **202** of a rotor blade **190** (Figure 1).

Furthermore, the tooling system **100** and method disclosed herein is not limited to the curing of adhesive **188** (Figure 1) for bonding dissimilar components **174**.
20 In this regard, the tooling system **100** as disclosed herein may be implemented for any type of elevated-temperature processing of any type of composite article **170** comprised of two or more components **174** (e.g., materials) having dissimilar component CTEs **176**. For example, the tooling system **100** and method may be implemented for curing a composite article **170** containing at least one uncured composite layup **178** (Figure 1) and/or for curing an adhesive **188** in a bonding operation for bonding two components
25 **174** having dissimilar component CTEs **176**. The tooling system **100** may also be implemented for co-curing operations and/or for co-bonding operations at elevated processing temperatures, or for any other type of processing elevated temperatures in a composite article **170** comprising least two components **174** having different component
30 CTEs **176**.

5 For example, the tooling system **100** may be implemented for processing a composite article **170** formed of composite components. Such composite components may include composite layups **178** (Figure 1) formed of fiber-reinforced polymeric material such as a fiber-reinforced thermoplastic matrix or a fiber-reinforced thermosetting matrix or resin such as an epoxy resin or any other type of resin. The
10 thermoplastic resin or thermosetting resin may be reinforced with any one of a variety of different types of fibers including, but not limited to, carbon fibers, glass fibers, aramid fibers, and other types of fibers. The tooling system **100** may also be implemented for processing a composite article **170** containing metallic components, composite components, and/or non-metallic components, or any combination thereof wherein at
15 least two of the components have dissimilar component CTEs **176**.

In Figure 2, the tooling system **100** may include a substantially rigid support frame **102** for supporting the cure tool **108** containing the composite article **170** to be cured. The cure tool **108** may include a cure tool cavity **120** for containing the composite article **170** such as in an as-designed shape **160**. The cure tool **108** may
20 advantageously include a biasing element **130** that may be fixedly attached to the cure tool **108**. Advantageously, the biasing element **130** may have a biasing element CTE **134** that is different than the cure tool CTE **110**. As described in greater detail below, the biasing element **130** may be sized, configured, and positioned on the cure tool **108** such that the combination of the cure tool CTE **110** and the biasing element CTE **134**
25 cause the cure tool **108** to distort when the cure tool **108** and the composite article **170** are heated to a curing temperature. For example, the combination of the cure tool CTE **110** and the biasing element CTE **134** may cause the cure tool **108** to undergo a heat-up displacement **150** (Figure 12) or shape change when the cure tool **108** and the composite article **170** are elevated to a cure temperature or other processing temperature.
30 The composite article **170** in the cure tool **108** may be cured in the distorted shape **162** (Figure 12) such that when the composite article **170** is cooled from the cure temperature down to a reduced temperature such as ambient temperature or room temperature, the cured composite article **172** (Figure 1) may assume an as-designed shape **160** when unrestrained by the cure tool **108**, as described in greater
35 detail below.

5 In Figures 2-3, the support frame **102** may include a plurality of braces **104, 106** extending between the support frame **102** and the cure tool **108**. The braces **104, 106** may be attached to the cure tool **108** and may be generally vertically oriented and may be spaced apart from one another. One or more of the braces may comprise a fixed brace **104** and the remaining braces may be floating braces **106**. For example, in

10 Figures 2-3, one of the centrally located braces may be the fixed brace **104** and the remaining braces may be floating braces **106**. The fixed brace **104** (e.g., a non-floating brace) may be configured to non-movably secure a point of the cure tool **108** to the support frame **102** to prevent movement of the cure tool **108** relative to the support frame **102** at that location on the cure tool **108**. One or more floating braces **106** may

15 be configured to allow the cure tool **108** and biasing element **130** to move in the heat-up displacement **150** (Figure 12) direction **154** (Figure 12) while restraining movement of the cure tool **108** in other directions such as twisting movement, lateral movement, or any other movement of the cure tool **108** that is not in the direction **154** of the heat-up displacement **150**.

20 Referring to Figure 4, shown is a cross section of the tooling system **100** illustrating the cure tool **108** supported by braces **104, 106** extending upwardly from the support frame **102**. At the location of the cross-section in Figure 4, the cure tool **108** is shown oriented non-vertically which may illustrate a spanwise blade twist that may be designed into the spar assembly **202** (Figure 5) of the rotor blade **190** (Figure 5). The support frame **102**

25 may be configured as a relatively rigid structure configured to provide relatively high torsional stiffness and high bending stiffness to the support frame **102**. The high torsional stiffness and bending stiffness of the support frame **102** may restrict or limit movement of the cure tool **108** and biasing element **130** to movement corresponding to the heat-up displacement **150** (Figure 12). In this regard, the support frame **102** may be

30 configured to substantially prevent or minimize movement of the cure tool **108** such as unwanted twisting movement or lateral movement of the cure tool **108** which the composite article **170** may otherwise undesirably assume during curing at an elevated cure temperature.

In the context of curing a spar assembly **202** (Figure 5) for a rotor blade **190**

35 (Figure 5) as described herein, the heat-up displacement **150** (Figure 12) of the cure tool **108** and the biasing element **130** may include thermally-induced bowing **164**

5 (Figure 12) of the cure tool **108** and biasing element **130** into the distorted shape **162** when heated as mentioned above. The support frame **102** and the braces **104, 106** may be configured to prevent twisting or lateral movement of the cure tool **108**. The support frame **102** and the braces **104, 106** may be configured to allow the cure tool **108** and the biasing element **130** to thermally expand under heating to facilitate bowing
10 164 of the cure tool **108** into the distorted shape **162** (Figure 2), such that upon cool down, the cured composite article **172** (Figure 1) assumes the as-designed shape **160** wherein the cured composite article **172** is substantially straight. The change from the distorted shape **162** at the cure temperature to the as-designed shape **160** at ambient temperature (e.g., room temperature) is a result of thermally-induced mechanical stress
15 occurring in the cured composite article **172** during cool down due to the dissimilar components CTEs **176** of the cured composite article **172**.

As may be appreciated, the cure tool **108** and biasing element **130** may be configured in any one of a variety of different shapes, sizes, and configurations to facilitate any type or direction **154** of heat-up displacement **150** in the cure tool **108**, and
20 is not limited to heat-up displacement **150** of the cure tool **108** into a bowed shape (Figure 12). In this regard, the cure tool **108** and the biasing element **130** may be configured such that the heat-up displacement **150** results in multi-dimensional heat-up displacement **150** wherein the cure tool **108** distorts into a complex curvature shape, and is not limited to essentially one-dimensional heat-up displacement **150** such as the
25 one-dimensional bowing of the spar assembly **202** (Figure 5) as disclosed herein. Furthermore, the cure tool **108** and the biasing element **130** may be configured to cause non-linear heat-up displacement **150** in the cure tool **108** at the elevated cure temperature or processing temperature, as described in greater detail below.

In Figure 4, in an embodiment, the biasing element **130** may be formed of
30 metallic material such as titanium or other metallic or non-metallic material. The cure tool **108** may be formed of Invar, steel or other alloys. The cure tool **108** may also be formed of composite material or other non-metallic material. The biasing element **130** may be formed of any material having a biasing element CTE **134** that is different than the cure tool CTE **110**. In the embodiment shown, the biasing element **130** may be fixedly attached to a lower side of the cure tool **108**. For example, the biasing element **130** may be fixedly attached to the cure tool **108** at an interface **144** there between.
35

5 The tooling system **100** may include cutouts in the braces **104, 106** (Figure 3) such that the braces **104, 106** are disposed in non-contacting relation to the biasing element **130** to allow unrestricted thermal expansion and contraction of the biasing element **130** during heating and cooling. Alternatively, each brace location on the cure tool **108** may include separate braces **104, 106** on opposite sides of the biasing element **130** and
10 wherein the braces **104, 106** are disposed in non-contacting relation to the biasing element **130** to allow for unrestricted thermal expansion and contraction thereof during heating and cooling.

In Figure 4, the biasing element **130** may comprise a substantially rigid member formed of any suitable metallic material and/or non-metallic material and
15 wherein the biasing element **130** has a biasing element CTE **134** that is different than the cure tool CTE **110**. For example, the biasing element CTE **134** may be lower or higher than the cure tool CTE **110** in order to effectuate a desired direction **154** (Figure 12) of the heat-up displacement **150** (Figure 12) of the cure tool **108** into the distorted shape **162** (Figure 2). In the embodiment shown, the biasing element **130** may be fixedly attached to the cure tool **108**. For example, the biasing element **130** may be mechanically fastened, wedged, or otherwise attached to the cure tool **108** in a manner preventing relative movement between the biasing element **130** and the cure tool **108**,
20 at least in a lengthwise direction **112** (Figure 3) of the cure tool **108**. In this manner, the thermal expansion and contraction of the biasing may be directly imparted to the cure
25 tool **108**. However, it is contemplated that the biasing element **130** may be attached to the cure tool **108** in a manner preventing relative movement therebetween, at least along a direction **154** corresponding to the heat-up displacement **150**, and may be floating in a manner allowing relative movement in directions not associated with the heat-up displacement **150**.

30 Referring to Figure 5, shown is a perspective view of the cure tool **108** and the biasing element **130** with the support frame and braces omitted for clarity. The biasing element **130** may extend from a root **192** end of the cure tool **108** to a location of the swapped tip **194** portion of the composite article **170**. However, the biasing element **130** may be configured to extend along any length or portion of the cure tool
35 **108** and is not limited to extending along an entire length of the cure tool **108**. Furthermore, the biasing element **130** may be configured as a non-continuous member

5 in order to achieve a desired distorted shape **162** (Figure 2) in the cure tool **108** when elevated to the cure temperature or other processing temperature. In the embodiment shown, the biasing element **130** may be provided in a biasing element length **142** (Figure 6) and having a biasing element cross section **136** of any size, shape and configuration, without limitation, to achieve a desired distorted shape in the cured 10 composite article **172** (Figure 1) prior to cool down.

Referring to Figure 6, shown is an exploded view of the cure tool **108**, the biasing element **130**, and the spar assembly **202**. In the embodiment shown, the biasing element **130** may be provided in a biasing element length **142** that extends along a lengthwise direction **112** of the cure tool **108**. The biasing element **130** may 15 have a biasing element cross section **136** of any size, shape and configuration, without limitation. In this regard, the biasing element **130** is not limited to the generally rectangular shape of the biasing element cross section **136** shown in Figure 6.

In Figure 6, the metallic strip **186** (e.g., erosion strip) is shown prior to installation onto the leading edge **200** of the composite D-spar **204** and prior to loading 20 the assembled the metallic strip **186** and composite D-spar **204** into the cure tool cavity **120**. The cure tool **108** cap may extend along a length of the cure tool **108** and may be configured to enclose the cure tool cavity **120** for containing the composite article **170** (e.g., the spar assembly **202**) to be cured. It should be noted that although the cure tool 25 **108** as disclosed herein includes a female cure tool cavity **120** enclosed by the tool cap **124**, the cure tool **108** may be provided in any configuration including a male cure tool configuration (not shown) wherein a composite article such as a composite layup may be applied over the male cure tool. The cure tool **108** may be provided in any size, shape and configuration and may include a biasing element **130** fixedly attached thereto and having a biasing element CTE **134** (Figure 5) that is different than the cure tool CTE 30 **110** in order to cause a heat-up displacement **150** (Figure 12) in the composite article **170** that results in the cured composite article **172** (Figure 1) assuming an as-designed shape **160** upon cool down from the curing temperature.

Referring to Figure 7, shown is an exploded view of the tooling system **100** including the tool cap **124**, the cure tool **108**, and the biasing element **130**. Also shown 35 is the spar assembly **202** including the metallic strip **186** which may be applied to the composite D-spar **204** and loaded into a cure tool cavity **120** for curing the adhesive **188**

5 for bonding the metallic strip **186** to the composite D-spar **204**. The cure tool cavity **120** may be defined by the mold portion **116** and the tool cap **124**. The tool base **114** may include a pair of base flanges **118** extending laterally outwardly from the mold portion **116**. The tool cap **124** may include a cap portion **126** and a pair of cap flanges **128** extending laterally outwardly from the cap portion **126**. The cap flanges **128** may be receivable within a corresponding pair of recesses **122** that may be formed in the base flanges **118** for maintaining the cap portion **126** in registration with the mold portion **116**. The tool cap **124** may be configured to be removably mateable to the tool base **114**. The cap portion **126** and the mold portion **116** may collectively define or enclose the cure tool cavity **120**.

10 15 In Figure 7, the biasing element **130** is shown having a biasing element cross section **136** with a rectangular shape having a biasing element width **140** and a biasing element height **138**. However, the biasing element cross section **136** may be provided in any shape and size and is not limited to a rectangular shape. Further in this regard, the biasing element cross section **136** may vary along a length of the cure tool **108**. For example, in order to achieve a non-linear distortion of the cure tool **108** during heating to the elevated cure temperature, the biasing element cross section **136** area may be varied by varying the biasing element width **140**, biasing element height **138**, and/or biasing element shape.

20 25 The biasing element **130** is shown mounted on an underside of the tool base **114**. Due to the biasing element CTE **134** being different than the cure tool CTE **110**, the thermal expansion of the biasing element **130** in a lengthwise direction **112** causes the cure tool **108** and biasing element **130** to undergo a heat-up displacement **150** (Figure 12) during which the cure tool **108** and biasing element **130** assume a bowed, distorted shape **162** (Figure 2). As may be appreciated, the biasing element **130** may 30 be fixedly attached to the cure tool **108** at a location on the cure tool **108** such that the heat-up displacement **150** is substantially opposite in direction **154** (Figure 12) and substantially equivalent in magnitude **152** (Figure 12) to a cool-down displacement **350** (Figure 10) of a cured composite article **370** (Figure 10) cured on a non-biasing cure tool **302** (Figures 9-9A) as described in greater detail below.

35 Referring to Figures 8-8A, shown are exploded perspective and sectional views of a non-biasing tooling system **300** that is configured similar to the tooling

5 system **100** shown in Figures 2-7 with the exception that the non-biasing tooling system **300** lacks a biasing element **130**. The non-biasing tooling system **300** is disclosed herein to illustrate the cool-down displacement **350** (Figure 10) that occurs when a composite article **170** is cured in a generally non-distorted shape **162** (Figure 2) at an elevated cure temperature and which then distorts upon cool down to ambient 10 temperature. In Figures 8-8A, the non-biasing tooling system **300** includes a non-biasing cure tool **302** having a lengthwise direction **304**. The non-biasing cure tool **302** may include a tool base **306** having a mold portion **308** and a pair of base flanges **310**. They may include a tool cap **124** (Figure 7) having a cap portion **126** (Figure 7) and a pair of cap flanges **128** (Figure 7) to engage the base flanges **310**. The composite 15 article **170** cured in the non-biasing tooling system **300** may have substantially the same configuration as the tooling system **100** shown in Figures 2-7.

Referring to Figures 9-9A, shown are views of the non-biasing tooling system **300** of Figure 8-8A in an assembled state. The composite article **170** (Figure 8) may be loaded into the cure tool cavity **312** of the tool base **314**. The temperature of the non-biasing tooling system **300** may be elevated to a cure temperature. Upon heating of the 20 non-biasing tooling system **300** to the elevated cure temperature, the tool base **314** and tool cap **316** may thermally expand in a generally non-bowed shape or a straight shape.

Referring to Figure 10, shown is a side view of a cured spar assembly **202** that may be cured in the non-biasing tooling system **300** illustrated in Figures 8-9A. 25 Figure 10 illustrates a cool-down displacement **350** that may occur during cooling of the cured spar assembly **202** in the form of bowing **164** along a spanwise direction **198** of the cured spar assembly **202**. The cured spar assembly **202** has a cool-down displacement **350** magnitude **352** and direction **354**. The bowing **356** in the cured spar assembly **202** may occur as a result of the dissimilar CTEs of the metallic strip **186** and 30 the composite D-spar **204**. In this regard, the cooling of the cured spar assembly **202** represents the response of a cured composite article **172** (Figure 1) to thermally-induced mechanical stress imbalance in the cured composite article **172** due to the dissimilar component CTEs **176**.

Referring to Figures 11-11A, shown are exploded perspective and sectional 35 views of the tooling system **100** illustrated in Figures 2-7. The tooling system **100** advantageously includes the biasing element **130** fixedly attached to the tool base **114**.

5 As described above, the biasing element **130** may be attached to a side of the cure tool **108** (e.g., a lower side) that is located opposite the cool-down displacement **350** direction (Figure 10) of the cured composite article **370** (Figure 10) that is cured on the non-biasing tooling system **300** shown in Figures 8-9A.

10 Referring to Figure 12, shown is a side view of the tooling system **100** at the elevated cure temperature and illustrating a heat-up displacement **150** in the cure tool **108** when heated to a curing temperature. As indicated above, the tooling system **100** may assume a distorted shape **162** (e.g., a bowed shape) corresponding to the heat-up displacement **150** as a result of the biasing element CTE **134** being different than the cure tool CTE **110**. In an embodiment, the biasing element **130** may have a biasing element CTE **134** and a biasing element cross section **136** that results in the magnitude **152** of the heat-up displacement **150** of the cure tool **108** being substantially equivalent to the magnitude **352** (Figure 10) of the cool-down displacement **350** (Figure 10) of the cured spar assembly **202** using the non-biasing tooling system **300** shown in Figure 8-9A.

20 Referring to Figure 13, shown is the cured spar assembly **202** removed from the tooling system **100** (Figure 12) after cool-down from the elevated curing temperature. Due to thermally-induced stress imbalance in the cured spar assembly **202** caused by the difference in the CTE of the metallic strip **186** relative to the CTE of the composite D-spar **204**, the cured spar assembly **202** may assume the as-designed shape **160** which may advantageously comprise a generally straight or non-bowed shape of the spar assembly **202** along a spanwise direction **198**.

25 Referring to Figure 14, shown is a flow diagram illustrating one or more operations that may be included in a method **400** of manufacturing a cured composite article **172** (Figure 1). Advantageously, the method provides a means for exploiting the thermally-induced mechanical stress imbalance occurring in a composite article **170** (Figure 1) formed of components **174** (Figure 1) having differing component CTEs **176** (Figure 1).

30 Step 402 of the method **400** of Figure 14 may include providing a cure tool **108** (Figure 3) having a biasing element **130** (Figure 3) fixedly attached thereto. As was indicated above, the biasing element **130** may have a biasing element CTE **134** (Figure 3) that is different than the cure tool CTE **110** (Figure 3). For example, the biasing element CTE **134** may be higher or lower than the cure tool CTE **110**. In Figures 2-8,

5 the biasing element 130 has a constant cross section **136** shape and size along the length of the biasing element **130**. For a cure tool **108** having a generally constant cross section **136** shape and size, the biasing element **130** configuration shown in Figures 2-8 may result in linear displacement of the cure tool **108** along a lengthwise direction **112** of the cure tool **108**.

10 However, the cure tool **108** (Figure 7) may be provided in an embodiment wherein the biasing element **130** (Figure 7) has at least one biasing element parameter **132** (Figure 7) that varies linearly or non-linearly along a length of the cure tool **108**. Examples of biasing element parameters **132** that may be varied along a length of the cure tool **108** include, but are not limited to, the biasing element CTE **134**, the biasing element cross section **136** (Figure 7), and/or the biasing element **130** stiffness or Young's modulus. The biasing element cross section **136** may include the cross-section size and/or the cross-section shape. For example, in Figure 7, the biasing element **130** includes a generally rectangular cross section having a biasing element width **140** and a biasing element height **138**. The biasing element width **140** and/or the biasing element height **138** may be varied along a length of the biasing element **130** to vary the cross section area of the biasing element **130** and achieve a non-linear heat-up displacement **150** (Figure 12) in the cure tool **108**. The biasing element cross-section **136** shape may also be varied along a length of the biasing element **130**. For example, the biasing element **130** may be provided in a cross section that changes from a rectangular shape to a different cross section shape such as an I-beam shape or any other shape in order to cause the cure tool **108** to distort into a specific distorted shape **162** (Figure 12).

15

20

25

The biasing element parameters **132** (Figure 6) may be varied non-linearly along the length of the cure tool **108** (Figure 6) to cause a heat-up displacement **150** (Figure 12) in the cure tool **108** that is non-linear at the processing temperature. In this manner, the composite article **170** (Figure 6) may cure in a specific distorted shape **162** (Figure 12) that results in the cured composite article **172** (Figure 11) assuming a specific as-designed shape **160** (Figure 13) upon cool down to ambient temperature. For example, one or more of the biasing element parameters **132** may be varied non-linearly along a length of the cure tool **108** to correspond to non-linear thermally induced stress in the cured composite article **172** (Figure 11) as may result from a tapered

30

35

5 thickness in the metallic strip **186** (Figure 6) along a length of the spar assembly **202** (Figure 6).

Further in this regard, the tooling system **100** may include two or more individual biasing elements **130** (Figure 6) that may be fixedly attached to the tool base **114** (Figure 6). The biasing elements **130** may have dissimilar biasing element 10 parameters **132**. For example, two or more individual biasing elements **130** formed of different materials having dissimilar CTEs may be joined end-to-end and fixedly attached to the tool base **114**. Upon heating the cure tool **108** (Figure 6) and the biasing elements **130** to the designated curing temperature or processing temperature, a non-linear heat-up displacement **150** (Figure 12) may be generated in the cure tool 15 **108** to correspond to non-linear cool-down displacement **350** (Figure 10) that may occur in a cured composite article **172** (Figure 13) as a result of non-linear geometric or mechanical properties of one or more of the components of the composite article **172**. For example, the metallic strip **186** (Figure 6) of the spar assembly **202** (Figure 6) may have a tapered thickness along a length of the D-spar **204** (Figure 6).

20 Step **404** of the method **400** of Figure 14 may include loading a composite article **170** (Figure 6) on or in the cure tool **108** (Figure 6). The composite article **170** may be comprised of two or more components **174** (Figure 6) having dissimilar component CTEs **176** (Figure 6). For example, in Figure 6, the metallic strip **186** of the spar assembly **202** may have a metallic component CTE **184** that is different than the 25 composite component CTE **176** of the composite D-spar **204**. However, the composite article **170** may include components **174** formed of any material, without limitation. For example, one or more of the composite articles **170** may comprise an uncured composite layup, a pre-cured composite layup, a metallic component, an adhesive, or any of the type of metallic component or non-metallic component, without limitation.

30 Step **406** of the method **400** of Figure 14 may include heating the composite article **170** (Figure 7) and the cure tool **108** (Figure 7) to an elevated curing temperature. In this regard, the composite article **170** may be loaded onto or in the cure tool **108** at ambient temperature or room temperature or other temperature. The cure tool **108** may then be positioned inside an autoclave (not shown) and the temperature 35 may be elevated to the designated cure temperature required for curing adhesive **188** (Figure 7) for bonding the metallic strip **186** (Figure 7) to the composite D-spar **204**.

5 (Figure 7). However, the cure tool **108** and composite article **170** may be heated by any means and are not limited to heating using an autoclave.

Furthermore, the cure tool **108** (Figure 7) in composite article **170** (Figure 7) may be heated to any temperature and are not limited to heating to the cure temperature of an adhesive **188** (Figure 7) or the cure temperature of a composite layup **178** (Figure 7). For example, the cure tool **108** and the biasing element **130** (Figure 7) may be elevated to a temperature that is higher than the curing temperature of an adhesive **188** or a composite layup **178**, and which may effectuate an increased amount of heat-up displacement **150** (Figure 12) in the cure tool **108**. By causing an increased amount of heat-up displacement **150** in the cure tool **108**, the cured composite article **172** (Figure 7) may undergo an increased amount of shape change upon cool down to ambient temperature.

Step 408 of the method **400** of Figure 14 may include distorting the cure tool **108** (Figure 12) and the composite article **170** (Figure 12) into a distorted shape **162** (Figure 12) associated with a heat-up displacement **150** (Figure 12) in response to 20 elevating the temperature of the cure tool **108** to the curing temperature. The distortion may occur in the cure tool **108** as a result of the difference in the cure tool CTE **110** (Figure 12) relative to the biasing element CTE **134**. For example, Figure 12 illustrates the cure tool **108** distorting into a bowed shape along a lengthwise direction **112** when heated to the curing temperature.

Step **410** of the method **400** of Figure 14 may include curing the composite article **170** (Figure 12) in the distorted shape **162** (Figure 12). In Figure 12, when the composite article **170** is at the curing temperature, the adhesive **188** between the metallic strip **186** and the composite D-spar **204** may cure. In an embodiment, the composite article **170** may include an uncured composite layup **178** (e.g., prepreg 30 composite plies) having a resin matrix that may cure (e.g., for thermosetting resin) when held at a designated curing temperature for a designated period of time, and/or solidify (e.g., for thermoplastic resin) when cooled to a temperature below a glass transition temperature of the thermoplastic resin.

Step **412** of the method **400** of Figure 14 may include cooling the cured composite article **172** (e.g., to ambient temperature) (Figure 13) such that the cured composite article **172** changes shape from the distorted shape **162** (e.g., at the cured

5 temperature) (Figure 12) to an as-designed shape **160** (e.g., at ambient temperature) when the cured composite article **172** (Figure 13) is removed from the cure tool **108** (Figure 12) or the cured composite article **172** is otherwise unrestrained. For example, Figure 13 illustrates the cured spar assembly **202** substantially straightening out when cooled to a reduced temperature (e.g., ambient temperature) due to the thermally-
10 induced stress caused by the dissimilar CTEs of the metallic strip **186** and the composite D-spar **204**.

In an embodiment, the method disclosed herein may include forming, using the tooling system **100** (Figure 7), a helicopter rotor blade **190** (Figure 7) from any type of component such as from one or more uncured or pre-cured composite layup **178** (e.g., a composite D-spar **204**) and any metallic components such as a metallic strip **186** (Figure 7) that may be laminated with the composite layup **178**. However, the tooling system **100** may be implemented for forming any one of a variety of different composite articles **170** (Figure 7) having two or more components **174** (Figure 7) with dissimilar component CTEs **176** (Figure 7), and is not limited to forming a rotor blade **190**.
15
20

In an embodiment not shown, the cure tool **108** and biasing element **130** may be configured such that after heating the cure tool **108** and the biasing element **130** to an elevated temperature to cause a heat-up displacement **150** and allowing the composite article **170** to cure, the cured composite article **172** undergoes a shape change into a final as-designed shape that may be a curved shape. For example, although not shown in the figures, a cure tool **108** and biasing element **130** may be initially configured to hold the uncured composite article **170** in a curved shape prior to heating. The cure tool **108** and the biasing element **130** may be heated to an elevated cure temperature causing the cure tool **108** and the biasing element **130** to undergo a heat-up displacement into a distorted shape such as a straight shape. Upon cool down such as to ambient temperature, the cured composite article **172** may assume a curved shape.
25
30
35

Additional modifications and improvements of the present disclosure may be apparent to those of ordinary skill in the art. Thus, the particular combination of parts described and illustrated herein is intended to represent only certain embodiments of

5 the present disclosure and is not intended to serve as limitations of alternative embodiments or devices within the spirit and scope of the disclosure.

Alternative embodiments may be claimed as follows:

A1. A tooling system, comprising:

10 a cure tool (108) having a cure tool coefficient of thermal expansion (CTE) (110) and configured for curing a composite article (170) formed of two or more components (174) having dissimilar component CTEs (176);

a biasing element (130) fixedly attached to the cure tool (108) and having a biasing element CTE (134) that is different than the cure tool CTE (110); and

15 the biasing element (130) being configured such that a combination of the cure tool CTE (110) and the biasing element CTE (134) causes a heat-up displacement (150) in the cure tool (108) when heated and the composite article (170) is cured in a distorted shape (162) such that when cooled, the cured composite article (172) substantially assumes an as-designed shape (160).

20

A2. The tooling system (100) of Claim A1, wherein:

the biasing element (130) is fixedly attached to the cure tool (108) at a location such that the heat-up displacement (150) is substantially opposite in direction (154) to a cool-down displacement (350) of a cured composite article (370) cured on a non-biasing cure tool (302).

25

A3. The tooling system (100) of Claim A0, wherein:

30 the biasing element (130) is configured such that the heat-up displacement (150) is substantially equivalent in magnitude (152) to the cool-down displacement (350) of a cured composite article (370) cured on the non-biasing cure tool (302).

35

A4. The tooling system (100) of Claim A0 wherein:

5 the heat-up displacement (150) comprises bowing (164) along a lengthwise direction (112) of the cure tool (108).

A5. The tooling system (100) of Claim A0 wherein:

10 the biasing element (130) has at least one biasing element parameter (132) that varies along a length of the cure tool (108), the biasing element parameter (132) including at least one of the following:

the biasing element CTE (134);
a biasing element cross section (136); and
15 a biasing element (130) stiffness.

A6. The tooling system (100) of Claim A0 wherein:

the biasing element parameter (132) varies non-linearly along a lengthwise direction (112) of the cure tool (108).

A7. The tooling system (100) of Claim A0 wherein:

25 the biasing element (130) comprises at least two of the biasing elements (130) having dissimilar biasing element parameters (132); and
the biasing elements (130) being configured to generate non-linear heat-up displacement (150) in the cure tool (108).

30 A8. The tooling system (100) of Claim A0 further comprising:

a support frame (102) for supporting the cure tool (108) and configured to limit movement of the cure tool (108) to a direction (154) associated with the heat-up displacement (150).

35

A9. The tooling system (100) of Claim A0 wherein:

the cure tool (108) comprises a cure tool (108) for a spar assembly (204) of a helicopter rotor blade (190); and

the components (174) of the composite article (170) comprise a composite layup (178) having a composite layup CTE (180), and a metallic component (182) having a metallic component CTE (184) that is different than the composite layup CTE (180).

A10. A tooling system (100), comprising:

a cure tool (108) having a cure tool coefficient of thermal expansion (CTE) (110) and configured for curing a composite article (170) formed of two or more components (174) having dissimilar component CTEs (176);

a biasing element (130) fixedly attached to the cure tool (108) and having a biasing element CTE (134) that is different than the cure tool CTE (110);

the biasing element (130) being configured such that a combination of the cure tool CTE (110) and the biasing element CTE (134) causes a heat-up displacement (150) in the cure tool (108) when heated to a cure temperature and the composite article (170) is cured in a distorted shape (162) such that when cooled to ambient temperature, the cured composite article (172) substantially assumes an as-designed shape (160) when unrestrained; and

the biasing element (130) being fixedly attached to the cure tool (108) at a location such that the heat-up displacement (150) is substantially opposite in direction (154) to a cool-down displacement (350) of a cured composite article (370) cured on a non-biasing cure tool (302).

A11. A method of manufacturing a composite article (170), comprising:

providing a cure tool (108) having a biasing element (130) fixedly attached thereto, the cure tool (108) having a cure tool coefficient of thermal expansion (CTE) (110), the biasing element (130) having a biasing element CTE (134) that is different than the cure tool CTE (110):

5 loading a composite article (170) on the cure tool (108), the composite article (170) being comprised of components (174) having dissimilar component CTEs (176);

10 heating the composite article (170) and the cure tool (108) to a curing temperature;

15 distorting the cure tool (108) into a distorted shape (162) in response to elevating the temperature of the cure tool (108) to the curing temperature due to the difference in the cure tool CTE (110) and the biasing element CTE (134);

curing the composite article (170) in the distorted shape (162); and

20 cooling the cured composite article (172) such that the cured composite article (172) changes shape from the distorted shape (162) to an as-designed shape (160).

A12. The method of Claim A0, further comprising the step of:

25 providing the cure tool (108) with a biasing element (130) attached to the cure tool (108) at a location causing a heat-up displacement (150) of the cured composite article (172) to be substantially opposite in direction (154) to a cool-down displacement (350) of a cured composite article (370) cured on a non-biasing cure tool (302).

A13. The method of Claim A0, further comprising the step of:

30 providing the cure tool (108) with a biasing element (130) attached to the cure tool (108) at a location causing the heat-up displacement (150) to be substantially equivalent in magnitude (152) to the cool-down displacement (350).

A14. The method of Claim A0, further comprising the step of:

35 providing the cure tool (108) with a biasing element (130) having a biasing element parameter (132) that varies along a lengthwise direction (112) of the

5 cure tool (108), the biasing element parameter (132) including at least one of the following:

- the biasing element CTE (134);
- a biasing element cross section (136); and
- a biasing element (130) stiffness.

10

A15. The method of Claim A0, further comprising the step of:

providing the cure tool (108) with a biasing element (130) having a biasing element parameter (132) that varies non-linearly along the lengthwise direction (112) of the cure tool (108).

15

A16. The method of Claim A0, further comprising the step of:

providing the cure tool (108) with a biasing element (130) formed from at least two biasing elements (130) having dissimilar biasing element parameters (132) configured to generate non-linear heat-up displacement (150) in the cure tool (108).

20

A17. The method of Claim A0, further including the steps of:

allowing the cure tool (108) and the composite article (170) to bow into the distorted shape (162) when heated to the curing temperature; and

allowing the composite article (170) to substantially straighten into the as-designed shape (160) when cooled to ambient temperature.

25

A18. The method of Claim A0, wherein the step of loading the composite article (170) on the cure tool (108) comprises loading at least one of the following components (174) on the cure tool (108):

35 an uncured composite layup (178), a pre-cured composite layup (178), a metallic component (182), an adhesive (188).

A19. The method of Claim A0, wherein the step of curing the composite article (170) comprises at least one of the following:

10 curing an adhesive (188) for bonding the components (174) together.

curing a resin matrix of the components (174); and

curing an adhesive (188) for bonding the components (174) together.

A20. The method of Claim A0, further comprising the step of:

15 composite layup (178) and a metallic component (182) included with the composite layup (178) in the cure tool (108).

5 WHAT IS CLAIMED IS:

1. A tooling system, comprising:

10 a cure tool (108) having a cure tool coefficient of thermal expansion (CTE) (110) and configured for curing a composite article (170) formed of two or more components (174) having dissimilar component CTEs (176);

15 a biasing element (130) fixedly attached to the cure tool (108) and having a biasing element CTE (134) that is different than the cure tool CTE (110); and

20 the biasing element (130) being configured such that a combination of the cure tool CTE (110) and the biasing element CTE (134) causes a heat-up displacement (150) in the cure tool (108) when heated and the composite article (170) is cured in a distorted shape (162) such that when cooled, the cured composite article (172) substantially assumes an as-designed shape (160).

25 2. The tooling system (100) of Claim 1, wherein:

30 the biasing element (130) is fixedly attached to the cure tool (108) at a location such that the heat-up displacement (150) is substantially opposite in direction (154) to a cool-down displacement (350) of a cured composite article (370) cured on a non-biasing cure tool (302).

35 3. The tooling system (100) of Claim 0, wherein:

30 the biasing element (130) is configured such that the heat-up displacement (150) is substantially equivalent in magnitude (152) to the cool-down displacement (350) of a cured composite article (370) cured on the non-biasing cure tool (302).

4. The tooling system (100) of Claim 0 wherein:

35 the heat-up displacement (150) comprises bowing (164) along a lengthwise direction (112) of the cure tool (108).

5

5. The tooling system (**100**) of Claim 0 wherein:
the biasing element (**130**) has at least one biasing element parameter (**132**) that varies along a length of the cure tool (**108**), the biasing element parameter (**132**) including at least one of the following:
10 the biasing element CTE (**134**);
a biasing element cross section (**136**); and
a biasing element (**130**) stiffness.
- 15 6. The tooling system (**100**) of Claim 0 wherein:
the biasing element parameter (**132**) varies non-linearly along a lengthwise direction (**112**) of the cure tool (**108**).
- 20 7. The tooling system (**100**) of Claim 0 wherein:
the biasing element (**130**) comprises at least two of the biasing elements (**130**) having dissimilar biasing element parameters (**132**); and
the biasing elements (**130**) being configured to generate non-linear heat-up displacement (**150**) in the cure tool (**108**).
- 25 8. The tooling system (**100**) of Claim 0 further comprising:
a support frame (**102**) for supporting the cure tool (**108**) and configured to limit movement of the cure tool (**108**) to a direction (**154**) associated with the heat-up displacement (**150**).
- 30 9. A tooling system (**100**), comprising:

5 a cure tool (108) having a cure tool coefficient of thermal expansion (CTE) (110) and configured for curing a composite article (170) formed of two or more components (174) having dissimilar component CTEs (176);

a biasing element (130) fixedly attached to the cure tool (108) and having a biasing element CTE (134) that is different than the cure tool CTE (110);

10 the biasing element (130) being configured such that a combination of the cure tool CTE (110) and the biasing element CTE (134) causes a heat-up displacement (150) in the cure tool (108) when heated to a cure temperature and the composite article (170) is cured in a distorted shape (162) such that when cooled to ambient temperature, the cured composite article (172) substantially assumes an as-designed shape (160) when unrestrained; and

15 the biasing element (130) being fixedly attached to the cure tool (108) at a location such that the heat-up displacement (150) is substantially opposite in direction (154) to a cool-down displacement (350) of a cured composite article (370) cured on a non-biasing cure tool (302).

20

10. A method of manufacturing a composite article (170), comprising:

25 providing a cure tool (108) having a biasing element (130) fixedly attached thereto, the cure tool (108) having a cure tool coefficient of thermal expansion (CTE) (110), the biasing element (130) having a biasing element CTE (134) that is different than the cure tool CTE (110);

30 loading a composite article (170) on the cure tool (108), the composite article (170) being comprised of components (174) having dissimilar component CTEs (176);

heating the composite article (170) and the cure tool (108) to a curing temperature;

35 distorting the cure tool (108) into a distorted shape (162) in response to elevating the temperature of the cure tool (108) to the curing temperature due to the difference in the cure tool CTE (110) and the biasing element CTE (134);

curing the composite article (170) in the distorted shape (162); and

5 cooling the cured composite article (172) such that the cured composite article (172) changes shape from the distorted shape (162) to an as-designed shape (160).

10 11. The method of Claim 10, further comprising the step of:

 providing the cure tool (108) with a biasing element (130) attached to the cure tool (108) at a location causing a heat-up displacement (150) of the cured composite article (172) to be substantially opposite in direction (154) to a cool-down displacement (350) of a cured composite article (370) cured on a non-biasing cure tool (302).

15 12. The method of Claim 10, further comprising the step of:

20 providing the cure tool (108) with a biasing element (130) having a biasing element parameter (132) that varies along a lengthwise direction (112) of the cure tool (108), the biasing element parameter (132) including at least one of the following:

25 the biasing element CTE (134);
 a biasing element cross section (136); and
 a biasing element (130) stiffness.

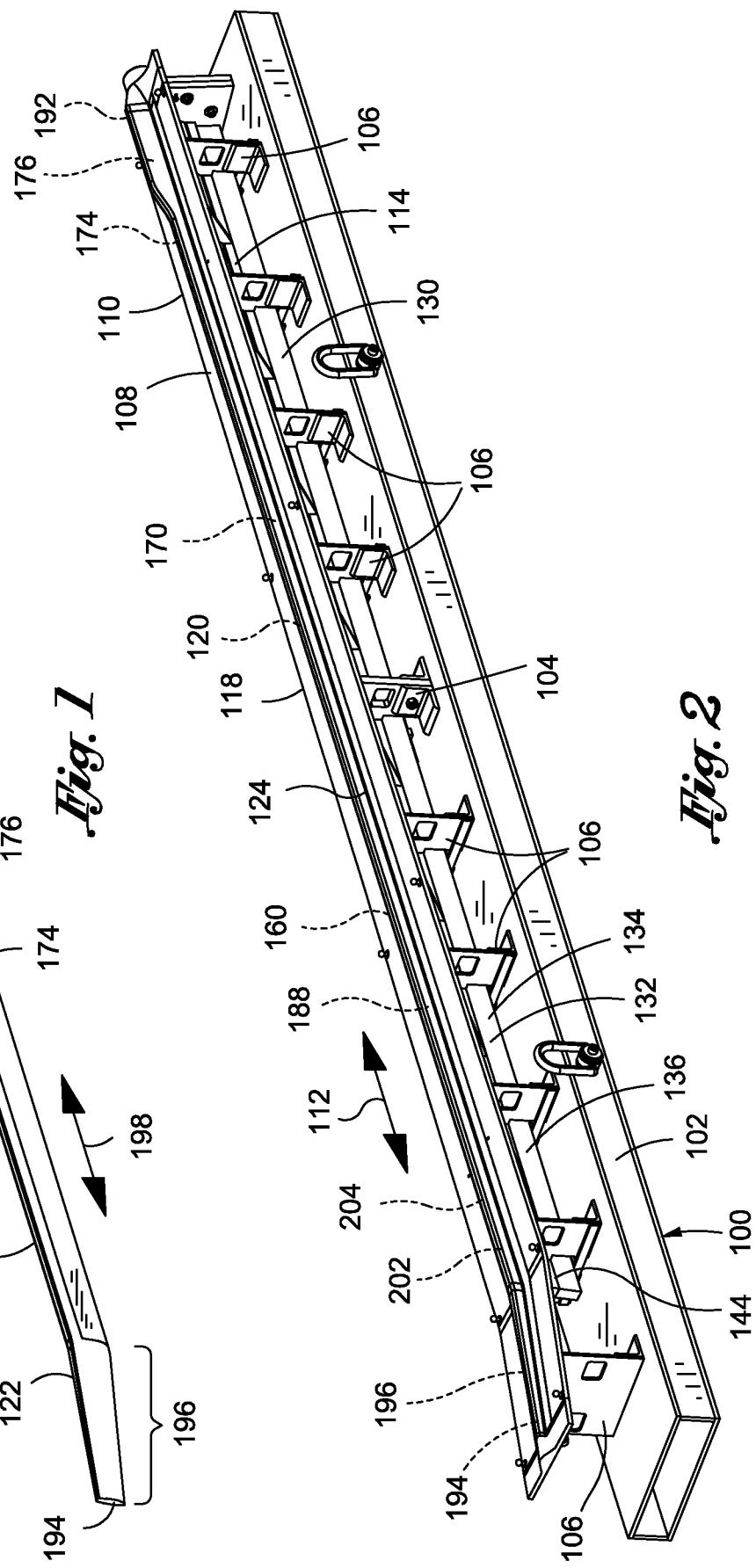
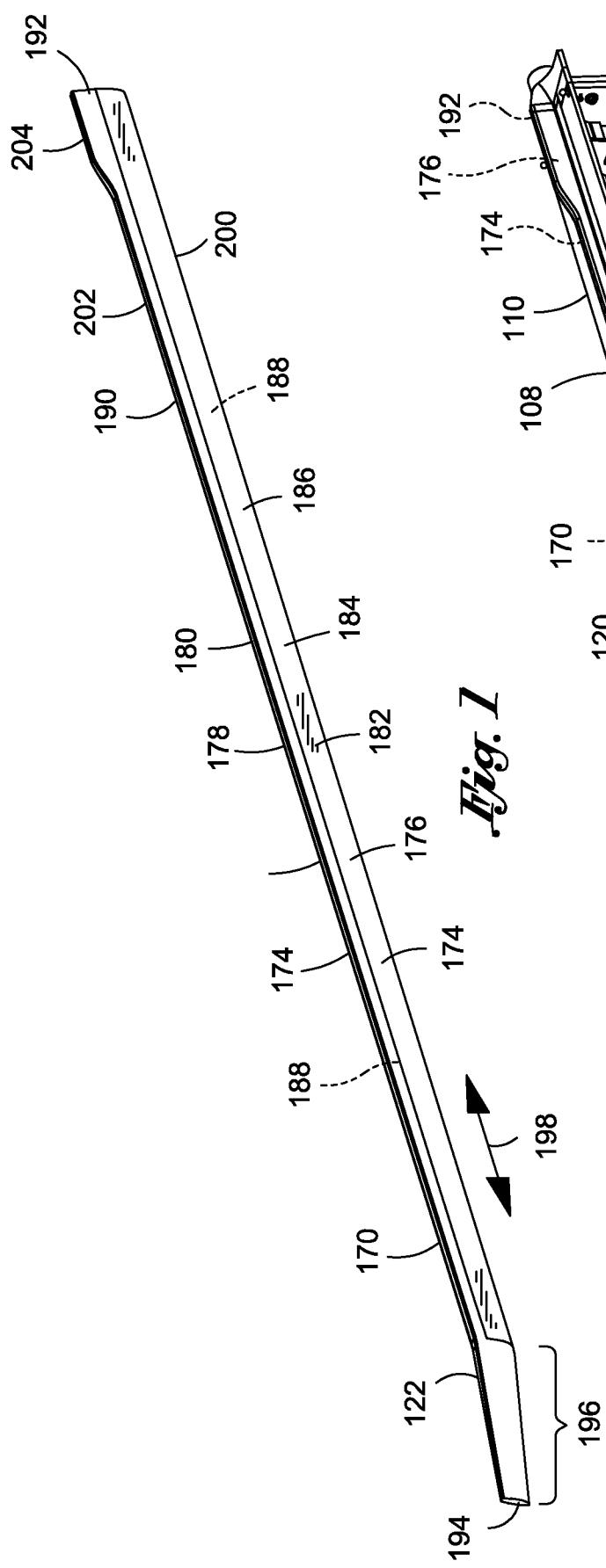
30 13. The method of Claim 0, further comprising the step of:

 providing the cure tool (108) with a biasing element (130) having a biasing element parameter (132) that varies non-linearly along the lengthwise direction (112) of the cure tool (108).

35 14. The method of Claim 0, further comprising the step of:

5 providing the cure tool (108) with a biasing element (130) formed from at least two biasing elements (130) having dissimilar biasing element parameters (132) configured to generate non-linear heat-up displacement (150) in the cure tool (108).

10



15. The method of Claim 0, further including the steps of:

allowing the cure tool (108) and the composite article (170) to bow into the distorted shape (162) when heated to the curing temperature; and

allowing the composite article (170) to substantially straighten into the as-designed shape (160) when cooled to ambient temperature.

15

20

2/11

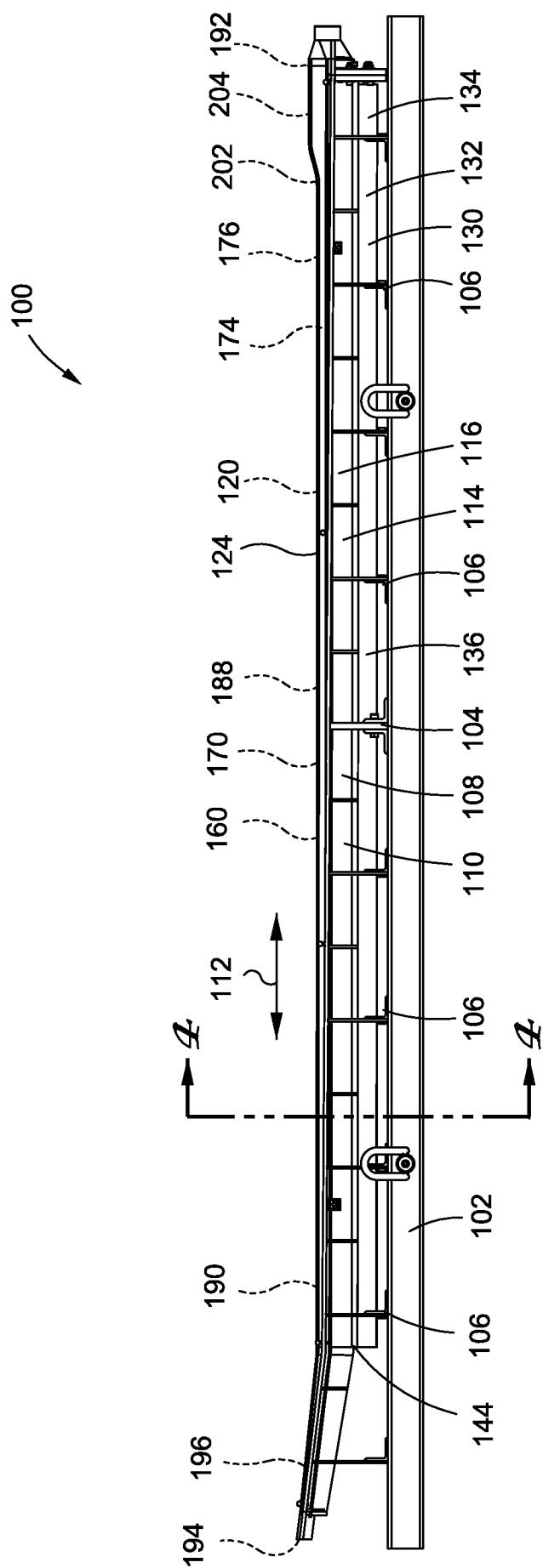
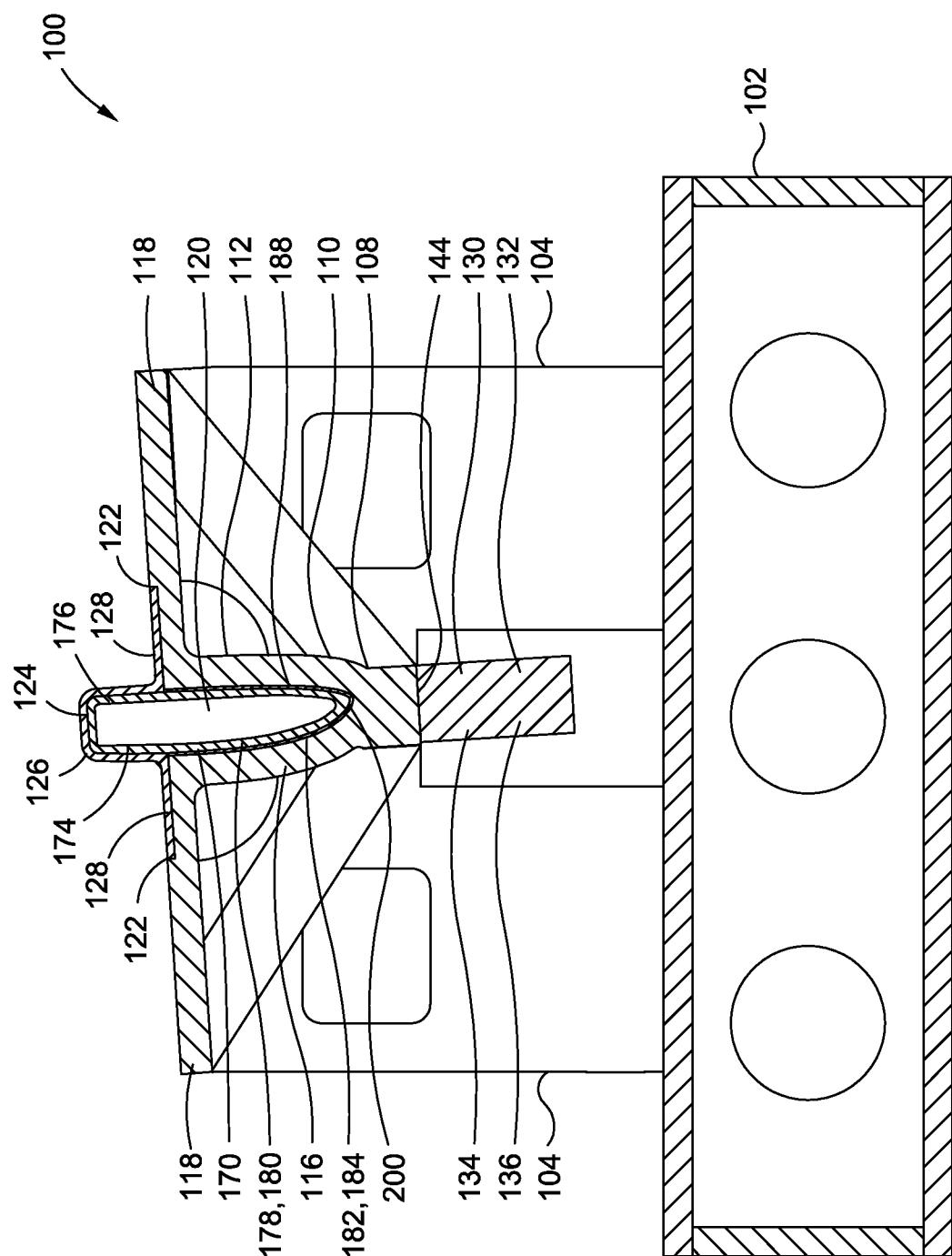
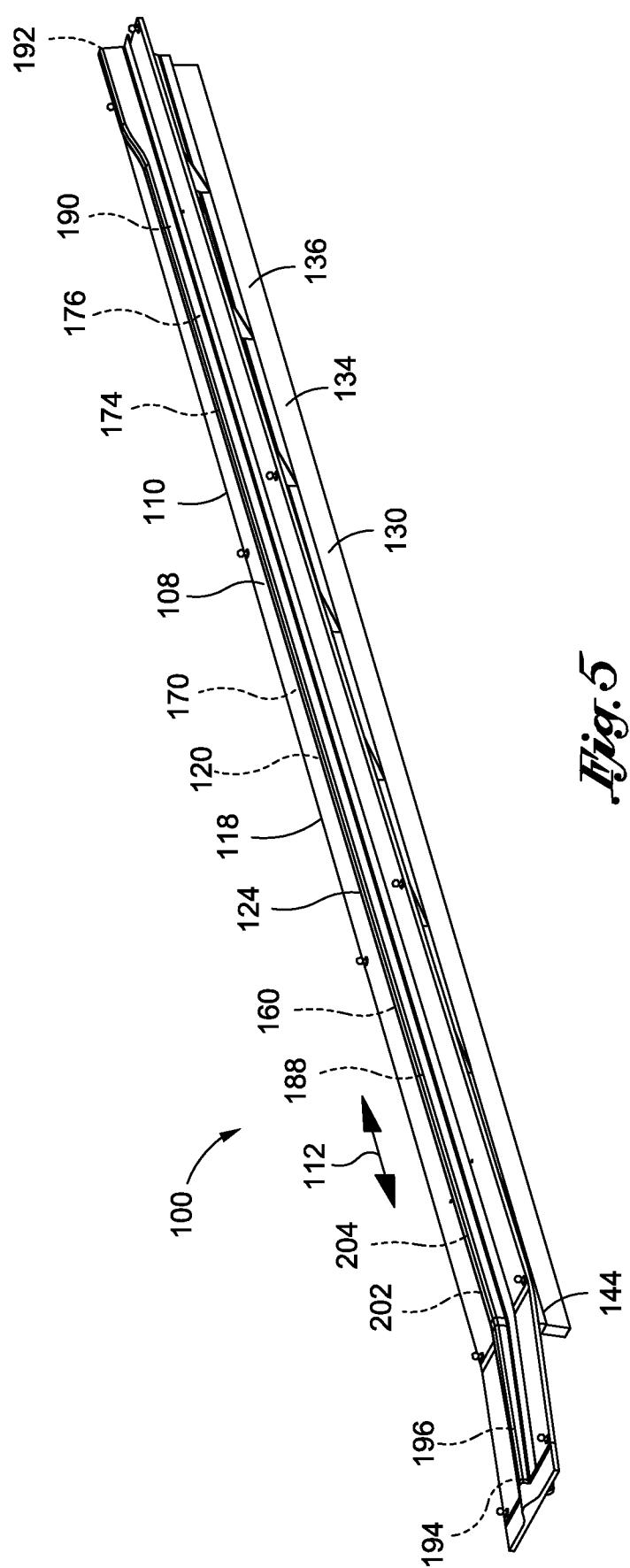




Fig. 3

Fig. 4

Fig. 5

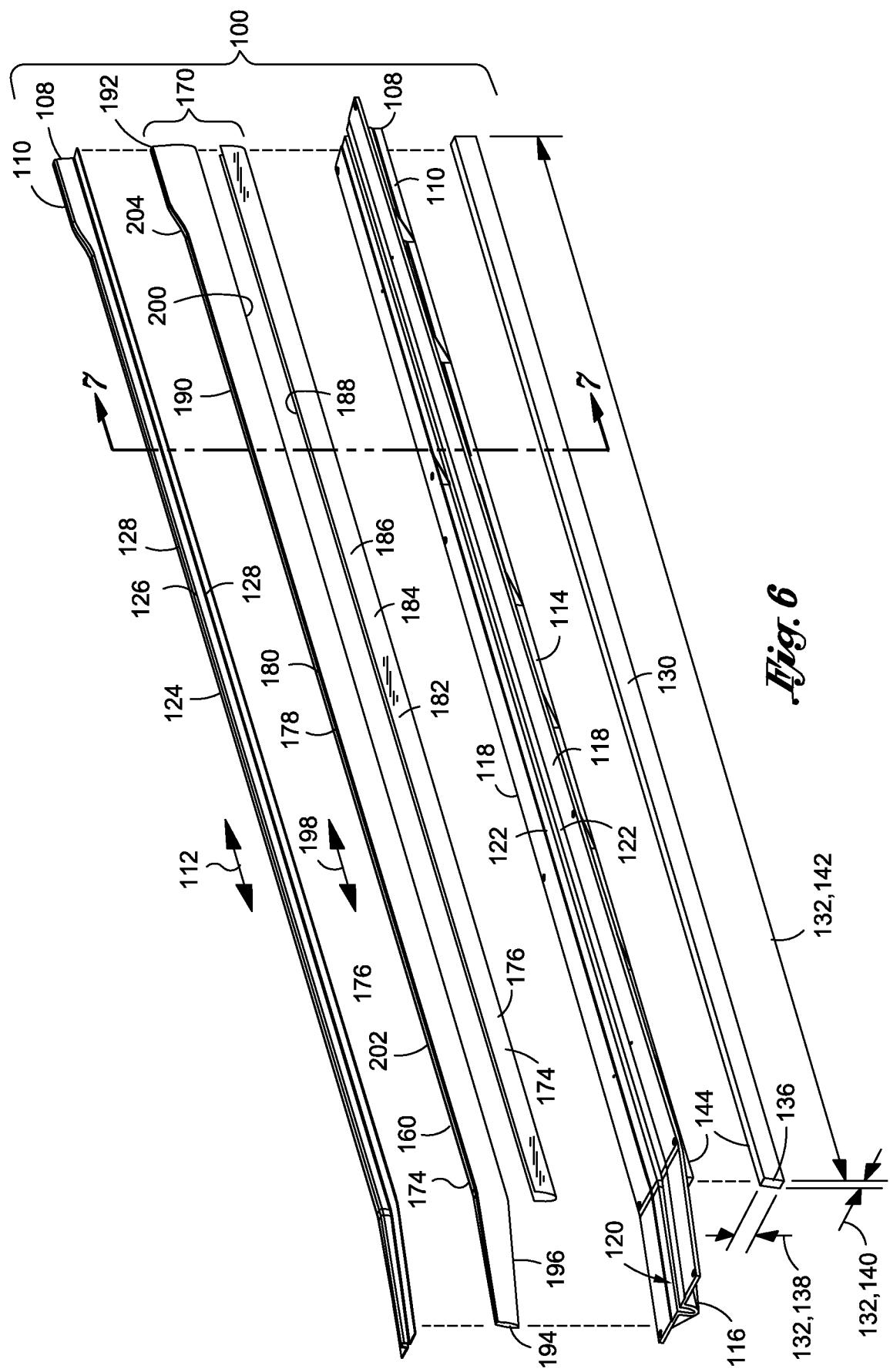
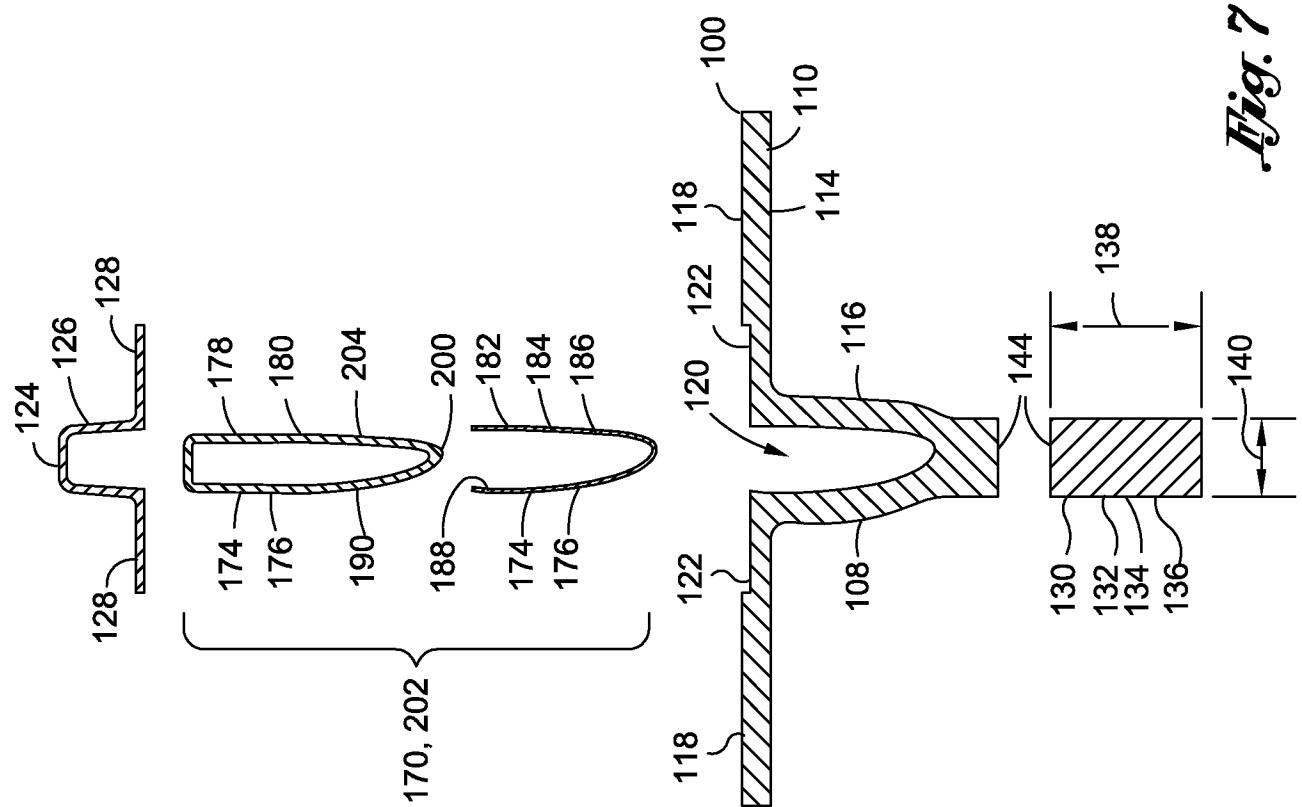
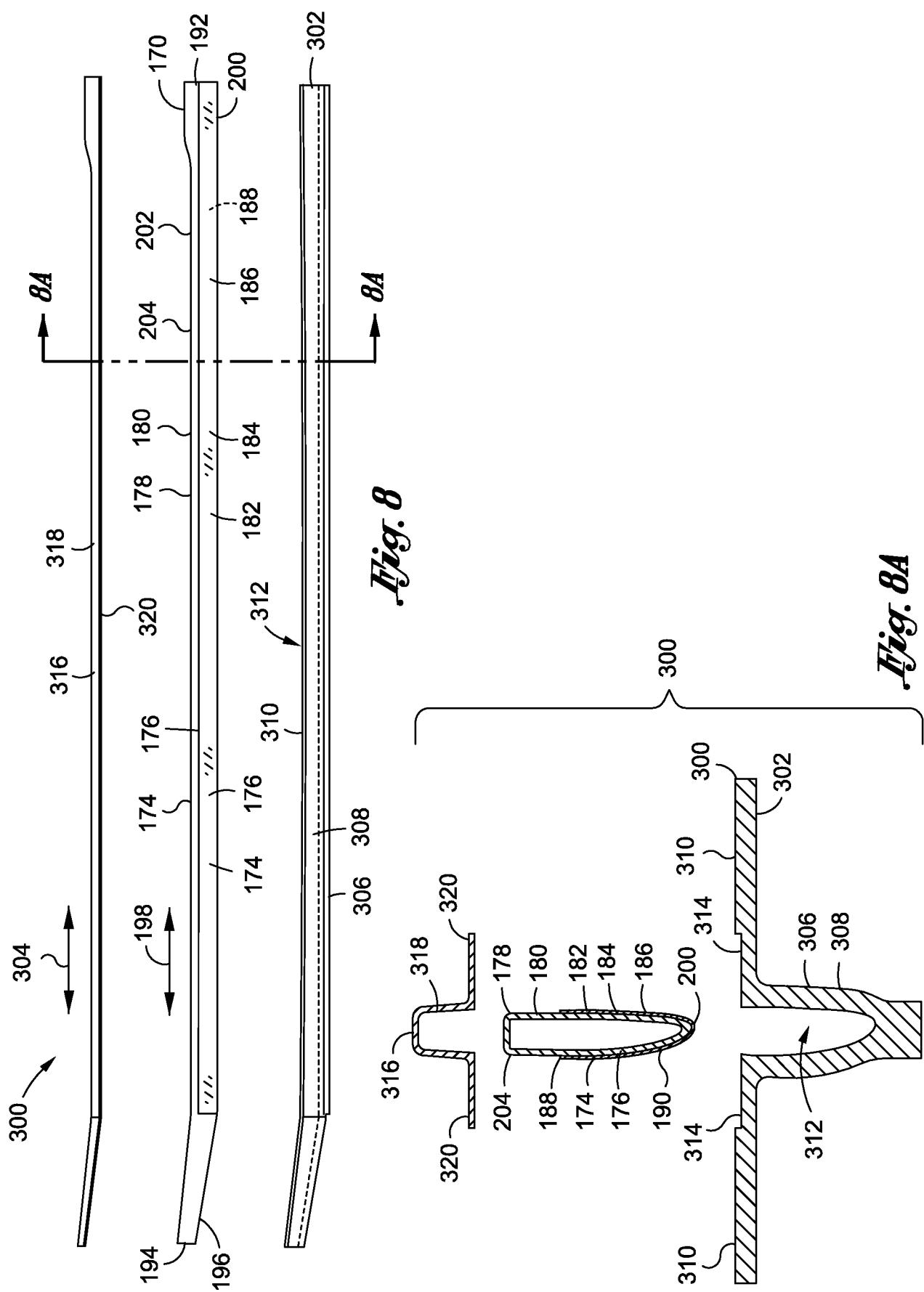
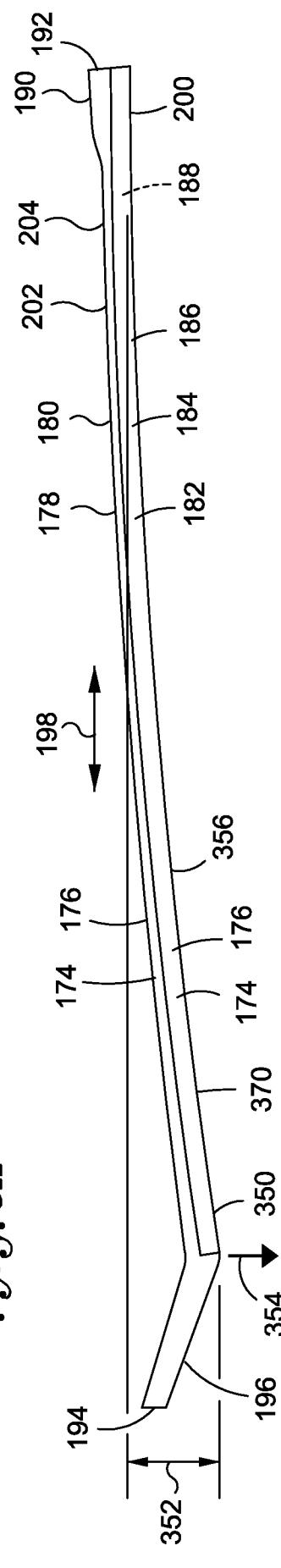
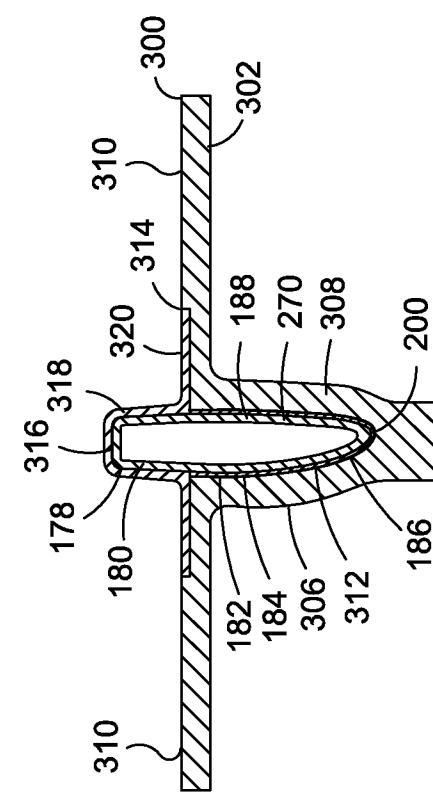
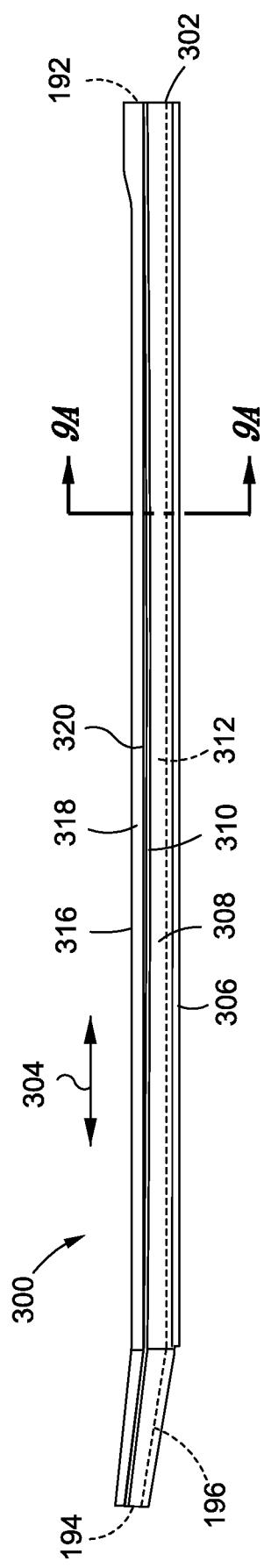
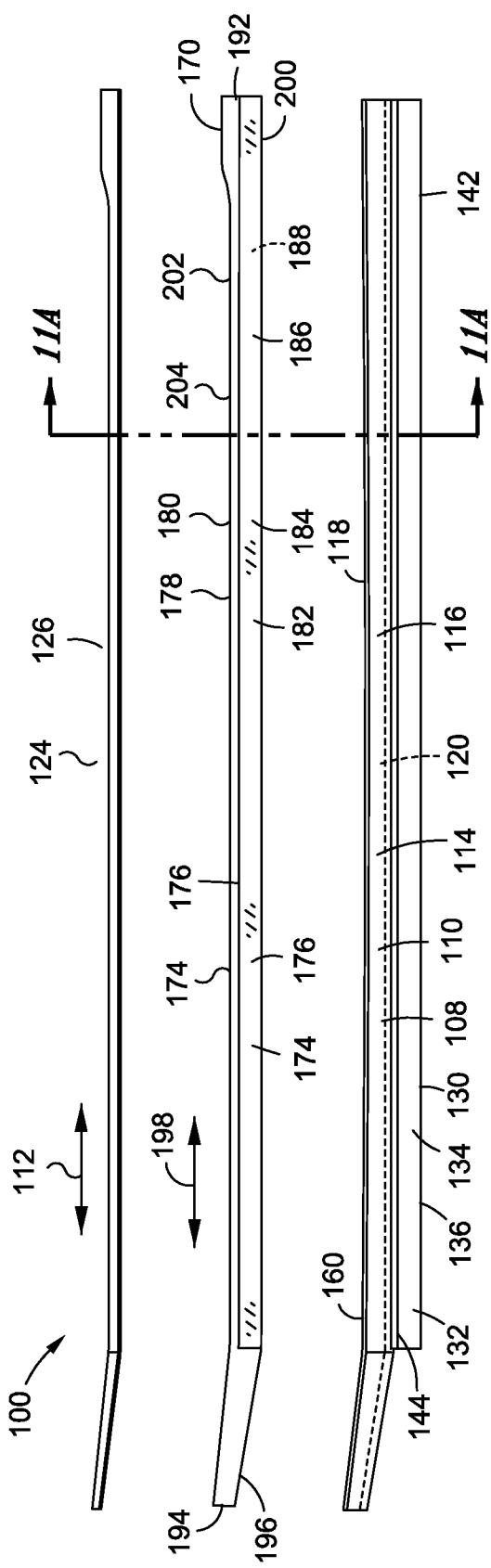
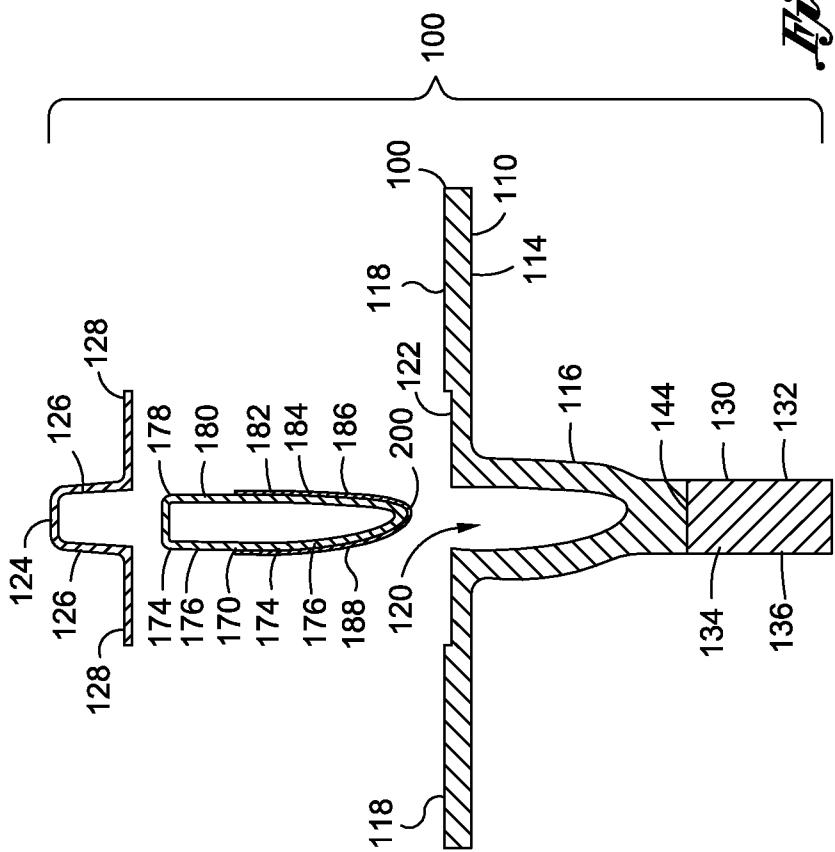









Fig. 6

*Fig. 11**Fig. 11A*

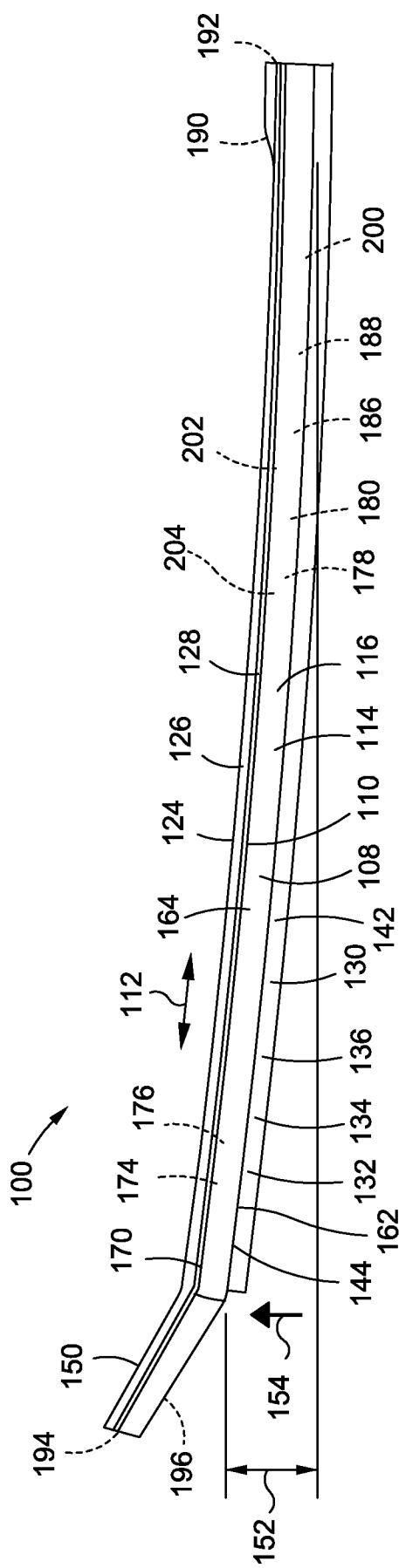


Fig. 12

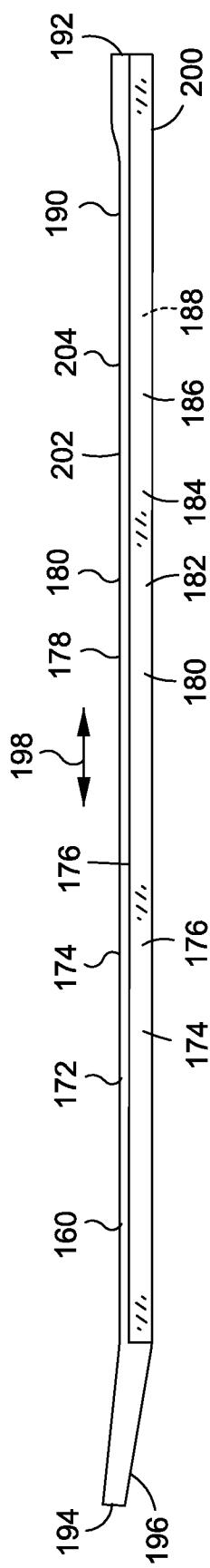
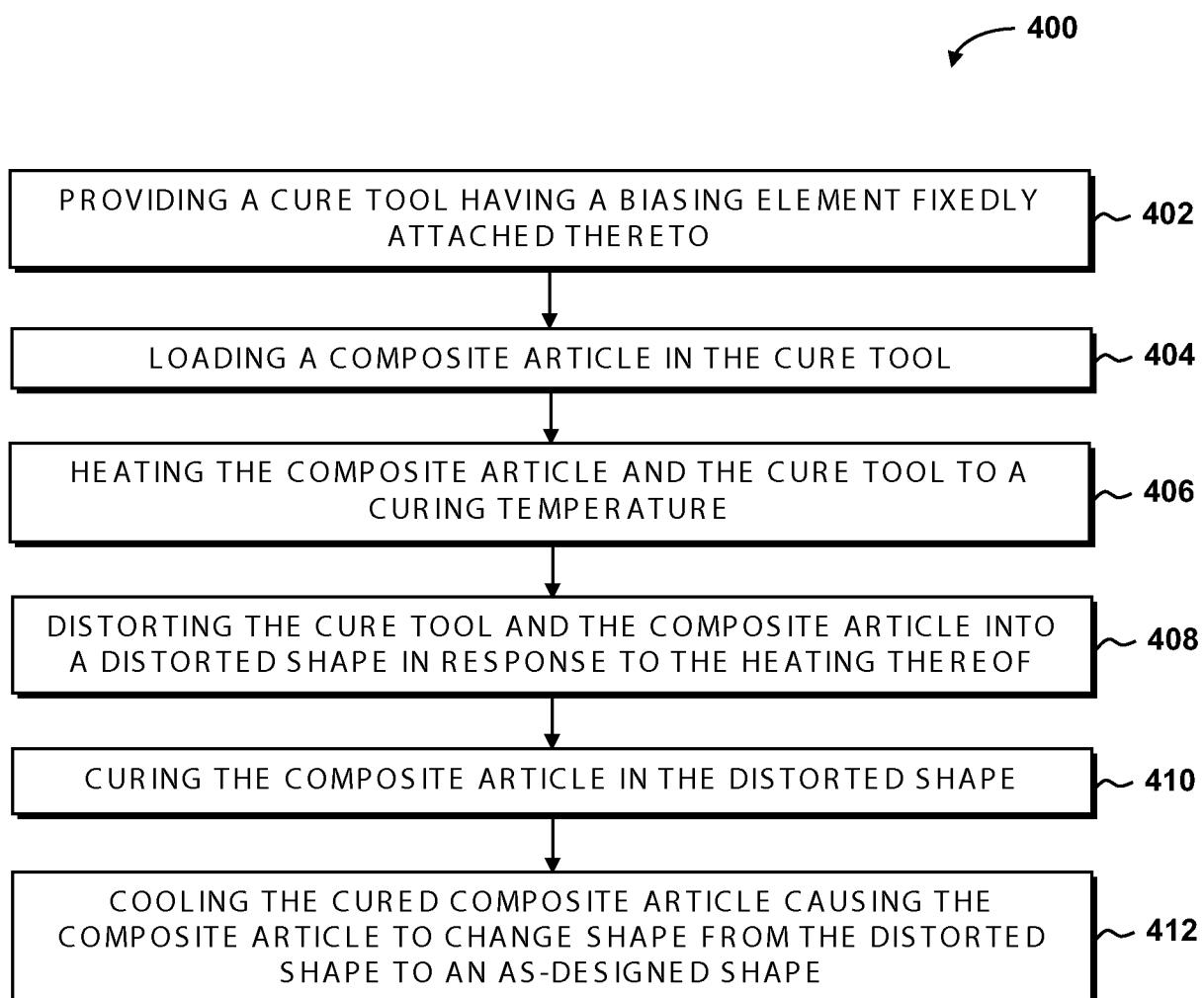



Fig. 13

Fig. 14

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2013/059512

A. CLASSIFICATION OF SUBJECT MATTER	INV.	B29C35/02	B29C33/38	B29C37/00	B29C70/46	B29C35/00
		B29D99/00				

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B29C B29D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 2 439 060 A2 (ROLLS ROYCE PLC [GB]) 11 April 2012 (2012-04-11) paragraphs [0001], [0021], [0029], [0045] - [0047] claim 4 figure 6 ----- A US 2009/176026 A1 (FROESCHNER NEAL A [US]) 9 July 2009 (2009-07-09) paragraphs [0001], [0013], [1415], [0016], [0018], [0019], [0022], [0023] figures 1-3,6 ----- A FR 2 587 271 A1 (PEUGEOT [FR]) 20 March 1987 (1987-03-20) page 1, line 11 - line 24 ----- -/-	1-15 1-15 1-15

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
17 December 2013	03/01/2014
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Ullrich, Klaus

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2013/059512

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 1 543 941 A1 (AIRBUS ESPANA SL [ES]) 22 June 2005 (2005-06-22) paragraphs [0002], [0009], [0012] -----	1-15
A	EP 2 487 024 A1 (ROLLS ROYCE PLC [GB]) 15 August 2012 (2012-08-15) paragraphs [0044] - [0052] figure 3 -----	1-15

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/059512

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
EP 2439060	A2	11-04-2012	EP US	2439060 A2 2012086152 A1	11-04-2012 12-04-2012
US 2009176026	A1	09-07-2009	EP US US WO	2242631 A1 2009176026 A1 2011151125 A1 2009089385 A1	27-10-2010 09-07-2009 23-06-2011 16-07-2009
FR 2587271	A1	20-03-1987	DE EP FR	3663474 D1 0223625 A1 2587271 A1	29-06-1989 27-05-1987 20-03-1987
EP 1543941	A1	22-06-2005	AT DE EP ES US	331604 T 60306533 T2 1543941 A1 2271513 T3 2005127576 A1	15-07-2006 01-02-2007 22-06-2005 16-04-2007 16-06-2005
EP 2487024	A1	15-08-2012	EP US	2487024 A1 2012205835 A1	15-08-2012 16-08-2012