

Sept. 2, 1958

C. W. MINTON
KNITTING MACHINE NEEDLE

2,849,872

Filed Aug. 26, 1954

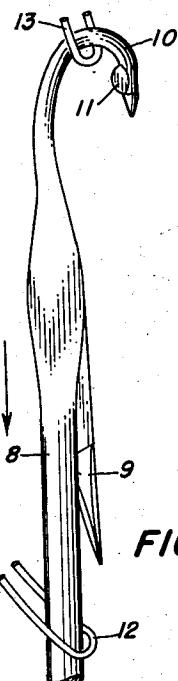


FIG. 1

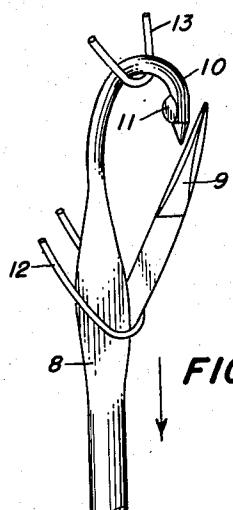


FIG. 2

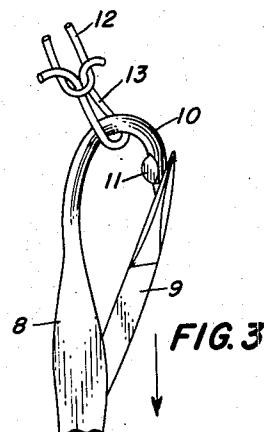


FIG. 3

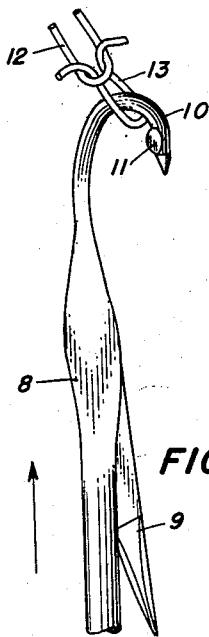


FIG. 4

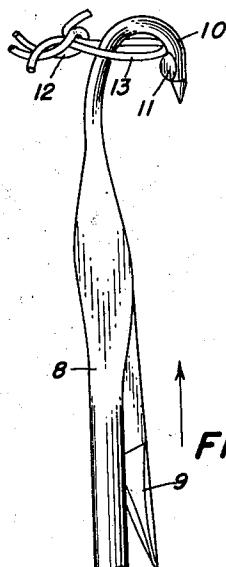


FIG. 5

FIG. 6

INVENTOR
CLARENCE W. MINTON

BY Mason, Porter, Diller & Stewart

ATTORNEY

United States Patent Office

2,849,872

Patented Sept. 2, 1958

1

2,849,872

KNITTING MACHINE NEEDLE

Clarence W. Minton, Nashville, Tenn., assignor to The Torrington Company, Torrington, Conn., a corporation of Maine

Application August 26, 1954, Serial No. 452,338

2 Claims. (Cl. 66—121)

An improved knitting machine needle is described in detail in the following specification. The needle is adapted for use in a variety of knitting operations and is an improvement upon needles of several different types.

In many instances, the yarn is held in the hook of a knitting machine needle in the form of a loop for a desired number of courses before the next stitch is taken. The loop in the hook has a tendency to get longer where the yarn is held slack in order to make a loose fabric. Even where the next succeeding loop is made on the hook immediately, the slack of the yarn in the first loop may cause the loop to become disengaged from the hook before it is locked by the next loop.

The primary object of the present invention is to provide the knitting machine needle hook with means which will definitely prevent the loop from escaping the hook until the succeeding stitch is taken. This will result in fewer drop stitches.

It is a further object of the invention to insure retention of the loop last formed on the hook through the successive movements by which additional yarn is taken on the hook without casting off for a desired number of courses depending upon the pattern.

A still further object of the invention is to provide a needle of greater efficiency on a float stitch construction. Here knitting is done on one or more needles depending upon the pattern. The stitch is held under the hook without taking any more yarn for a considerable number of courses depending upon the pattern being made. The improved hook will hold this loop under the hook and will not allow it to slide out and cause a drop stitch.

As illustrating the invention applied to the usual latch needle, the improved structure has been shown in the accompanying drawings in which

Fig. 1 is a side elevation of a knitting machine needle at the start of the transfer movement;

Fig. 2 is a side elevation of the needle during the formation of the new loop;

Fig. 3 is a like view at the conclusion of the formation of the loop;

Fig. 4 is a side elevation of the needle rising to engage yarn or thread for the next loop;

Fig. 5 is a similar view of the needle with the hook rising past the loop; and

Fig. 6 is a side elevation of loop escaping from the ordinary needle.

Briefly described, the present needle differs from the ones customarily employed in that the hook of the needle is provided on the inner side with a protuberance, boss or knob. This feature engages the loop in the hook and prevents it from slipping out of the hook if the loop becomes large.

As shown by way of example on the drawings, a needle 8 is provided of the usual latch type, having a pivoted latch 9. The needle ends in a rigid curved hook 10 of usual construction having a substantially round cross-section.

In order to accomplish the result of this invention, the

2

inner side of the hook 10 is swaged or pinched in any suitable way to form the protuberance or knob 11. This knob has an inner curved edge. This edge will not damage the yarn but will be of sufficient height to stop the loop of yarn as it slides around the inner edge of the hook.

In Fig. 1 I have shown the needle 8 at its upper limit of movement. Here the latch 9 is down and the first loop 12 is below the latch. The yarn or thread to form the second loop 13 has been picked up by the hook 10 and will be held during the downward movement of the needle 8.

As the needle is brought down in the direction shown by the arrow in Fig. 2, the lower loop 12 will bring the latch 9 into its upper position engaging with the hook 10. Further downward movement of the needle brings the loop 12 over the hook 10 and into the position around the second loop 13.

The second loop 13 then takes the position shown in Fig. 3. Here the first loop 12 is locked by the second loop 13 at the end of the downward movement of the needle 8.

In the knitting of loose fabrics, the loop 13 may be large and not under tension. In its slackness it may have a tendency to ride out of the hook. This occurs when the latch 9 drops into its lower position (see Fig. 6).

Fig. 4 shows the needle 8 in its upward movement. Here the loop 13 slides around the inner edge of the hook 10 until it is stopped by the knob 11. This retains the loop 13 and prevents its escape from the hook 10 or the formation of a drop stitch.

The upward extent of movement of the needle 8 is shown in Fig. 5, where the last loop 13 is still retained on the hook by the knob 11, regardless of slackness or extent of angular movement. The only release possible by the loop 13 is during the final stage of the upward movement of the needle when the loop 13 travels down past the lowered latch 9. The loop 13 then takes the position shown by the loop 12 in Fig. 1, while a new loop or stitch is formed within the hook of the needle.

For the sake of comparison, the action of the ordinary needle is shown in Fig. 6. Here the loop 13 is not restrained. If the loop is sufficiently loose, the resilience of the yarn causes it to spring beyond the hook 10, thus resulting in a drop stitch.

From the above it will be evident that the improved form of the hook can be applied to numerous types of needles. In each instance it forms a positive obstruction to the inadvertent loss of the loop of yarn.

50 The specific form and location of the knob may be varied without departing from the scope of the invention as defined in the following claims.

What I claim is:

55 1. A latch knitting needle having a rigid curved hook of substantially round cross-section with its end rearwardly directed in the same plane and spaced parallel to the main portion and an integral protuberance with a curved edge on the inner side of the hook end.

60 2. A latch knitting needle having a rigid curved hook of substantially round cross-section with its end rearwardly directed in the same plane and spaced parallel to the main portion and an integral protuberance with a relatively thinner curved edge on the inner side of the hook end.

65 References Cited in the file of this patent

UNITED STATES PATENTS

453,513	Shaw	June 2, 1891
636,584	Sturgess	Nov. 7, 1899
1,876,259	Miller	Sept. 6, 1932
2,072,209	Jones	Mar. 2, 1937
2,124,305	Lombardi	July 19, 1938
2,626,514	Schoenster	Jan. 27, 1953