A 0 0 OO

0 02/091148 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

14 November 2002 (14.11.2002) PCT WO 02/091148 A2

(51) International Patent Classification’: GOGF 1/08 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,

(21) International Application Number: PCT/CA02/00656 DE, DK, DM, DZ, EE, ES, F1, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK, LR,

(22) International Filing Date: 3 May 2002 (03.05.2002) LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,

(25) Filing Language: English TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(26) Publication Language: English

(30) Priority Data:

09/851,169 9 May 2001 (09.05.2001) US
(71) Applicant: MOSAID TECHNOLOGIES INCORPO-
RATED [CA/CA]J; 11 Hines Road, Kanata, Ontario K2K

2X1 (CA).

(72) Inventors: THOMAS, Terence, N.; 45 Kings Landing
Pvt, Kanata, Ontario K1S 5P8 (CA). DAVIS, Stephen, J.;
14 Wiltshire Circle, Nepean, Ontario K2J 41.1 (CA).

(74) Agent: FREEDMAN, Gordon; Freedman & Associates,
117 Centrepointe Drive, Suite 350, Nepean, Ontario K2G
5X3 (CA).

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: CALCULATING APPARATUS HAVING A PLURALITY OF STAGES

43

4b

(57) Abstract: A calculating apparatus, or system, having a plurality of stages, such as in a pipeline arrangement, has the clocking
rail or conductor positioned alongside the stages. With a large number, i.e., hundreds, of stages arranged in parallel sub-arrays, the
clocking conductor is snaked alongside the sub-arrays. In individual stages it is arranged that the shortest of the two calculations
taking place in a stage, takes place in the return path. An array can be divided into separate sections for independent processing.

10

15

20

235

WO 02/091148 PCT/CA02/00656

Calculating Apparatus Having A Plurality of Stages

Field of the invention

This invention relates to a clock distribution circuit for use with an apparatus

having a large number of stages in what is often referred to as a pipeline arrangement.
Background of the invention

It is becoming relatively common to exchange electronically stored documents
between parties to a transaction, for instance via a widely distributed information
network such as the Internet of the World Wide Web (WWW). A common problem
with the Internet is a lack of secure communication channels. Thus, in order for
hospitals, governments, banks, stockbrokers, and credit card companies to make use
of the Internet, privacy and security must be ensured. One approach to solving the
aforementioned problem uses data encryption prior to transmission. In a prior art
system, a host computer system is provided witfl an encryption unit, for example an
encryption processor that is in electrical communication with at least a mefnory circuit
for storing at least a private encryption key. When information is to be transmitted
from the host computer system to a recipient via the Internet and is of a confidential
nature, the information is first passed to the encryption processor for encryption using
the stored private key. Typically, a same private key is used every time a data
encryption operation is performed. Alternatively, an encryption key is selected from a
finite set of private encryption keys that is stored in the at least a memory circuit in

electrical communication with the encryption processor.

Of course, a data encryption operation that is performed by an encryption
processor is a mathematical algorithm in which an input data value, for instance a
hashed version of an electronic document, is the only variable value. It is, therefore,
possible to optimize the encryption processor to perform a desired encryption function
using a least amount of processor resources. Additionally, in the prior art encryption
units the optimized encryption processor is typically separate from the microprocessor

of the host computer system, because it is best optimized in this way.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656
2

Several standards exist today for privacy and strdng authentication on the
Internet through encryption/decryption. Typically, encryption/decryption is
performed based on algorithms which are intended to allow data transfer over an open
channel between parties while maintaining the privacy of the message contents. This
is accomplished by encrypting the data using an encryption key by the sender and
decrypting it using a decryption key by the receiver. In symmetric key cryptography,

the encryption and decryption keys are the same.

Encryption algorithms are typically classified into public-key and secret key
algorithms. In secret-key algorithms, keys are secret whereas in public-key
algorithms, one of the keys is known to the general public. Block ciphers are
representative of the secret-key cryptosystems in use today. Usually, for block
ciphers, symmetric keys are used. A block cipher takes a block of data, typically 32-
128 bits, as input data and produces the same number of bits as output data. The |
encryption and decryption operations are performed using the key, ha{fing alength
typically in the range of 56-128 bits. Thé encryption algorithm is designed such that
it is very difficult to decrypt a message without knowing the key.

In.addition to block ciphefs, Internet security protocols also rely on public-key
based algorithms. A public key cryptosystem such as the Rivest, Shamir, Adelman
(RSA) cryptosystem described in U.S. Pat. No. 5,144,667 issued to Pogue and Rivest
uses two keys, one of which is secret — private — and the other of which is publicly
available. Once someone publishes a public key, anyone may send that person a
secret message encrypted using that public key; however, decryption of the message
can only be accomplished by use of the private key. The advantage of such public-
key encryption is private keys are not distributed to all parties of a conversation
beforehand. In contrast, when symmetric encryption is used, multiple secret keys are
generated, one for each party intended to receive a message, and each secret key is
privately communicated. Attempting to distribute secret keys in a secure fashion
results in a similar problem as that faced in sending the message using only secret—key

encryption; this is typically referred to as the key distribution problem.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656

Key exchange is another application of public-key techniques. In a key
exchange protocol, two parties can agree on a secret key even if their conversation is
intercepted by a third party. The Diffie-Hellman exponential key exchange method,
described in U.S. Pat. No. 4,200,770, is an example of such a protocol.

Most public-key algbrithms, such as RSA and Diffie-Hellman key exchange,
are based on modular exponentiation, which is the computation of o mod p. This
expression means "multiply o by itself x times, divide the answer by p, and take the
remainder." This is very computationally expensive to perform, for the following
reason. In order to perform this operation, many repeated multiplication operations
and division operations are required. Techniques such as Montgomery's method,
described in "Modular Multiplication Without Trial Division," from Mathematics of
Computation, Vol. 44, No. 170 of April 1985, can reduce the number of division
operations required but do not overcome this overall computational expense. In
addition, for present day encryption systems the numbers used are very large
(typically 1024 bits or more), so the multiply and divide instructions found in
common CPUs cannot be used directly. Instead, special algorithms that break down
the large multiplication operations and division operations into operations small
enough to be performed on a CPU are used. These algorithms usually have a run time
proportional to the square of the number of machine words involved. These factors
result in multiplication of large numbers being a very slow operation. For example, a
Pentium® processor can perform a 32x32-bit multiply in 10 clock cycles. A 2048-bit
number can be represented in 64 32-bit words. A 2048x2048-bit multiply requires
64x64 separate 32x32-bit multiplication operations, which takes 40960 clocks on the .
Pentium® processor. An exponentiation with a 2048-bit exponent requires up to 4096
multiplication operations if done in the straightforward fashion, which requires about
167 million clock cycles. If the Pentium processor is running at 166 MHZ, the ;ntire
operation requires roughly one second. Of course, the division operatibns add further
time to the overall computation times. Clearly, a common CPU such as a Pentium

cannot expect to do key generation and exchange at any great rate.

Pipeline processors comprising a plurality of separate processing elements

arranged in a serial array, and in particular a large number of processing elements, are

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656

known in the prior art and are particularly well suited for executing data encryption
algorithms. Two types of pipeline processor are known: processors of an in-one-end-
and-out-the-other nature, wherein there is a single processing direction; and, bi-
directional processors of an in-and-out-the-same-end nature, wherein there is a
forward processing direction and a return processing direction. Considering a specific
example of a bi-directional pipeline processor, a first data block is read from a
memory buffer into a first processing element of the serial array, which element
performs a first stage of processing and then paéses the first data block on to a second
processing element. The second processing element performs a second stage of
processing while, in parallel, the first processing element reads a second data block
from the memory buffer and performs a same first processing stage on the second daté
block. In turn, each data block propagates in a step-by-step fashion from one
processing element to a next processing element along the forward processing
direction of the serial array. At each step, there is a processing stage that performs a
same mathematical operation on each data block that is provided thereto.
Simultaneously, a result that is calculated at each processing element is provided to a
previous processing elemenf of the serial array, with respect to the return processing
direction, which results comprise in aggregate the processed data returned by the
encryption processor. This assembly-line approach to data processing, using a large
number of processing elements, is a very efficient way of performing the
computationally expensive data encryption algorithms described previously. Of
course, the application of pipeline processors for performing computationally
expensive processing operations is other than limited strictly to data encryption

algorithms, which have been discussed in detail only by way of example.

It is a disadvantage of the prior art bi-directional pipeline processors that each
processing element of a serial array must be time-synchronized with every other
processing element of a samé serial array. Time-synchronization between processing
elements is necessary for the control of timing the gating of data blocks from one
processor element to a next processor element in the forward direction, and for timing
the gating of processed data from one processor element to a previous processor
element in the return direction. A clock typically controls the progression of data

blocks along the pipeline in each one of the forward direction and the return direction.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656

Unfortunately without careful clock distribution design, as a clock signal progresses
along the pipeline there are incremental delays between each stage, as for example
delays caused by the resistance and capacitance that is inherent in the clock circuit. In
earlier, slower acting pipeline processors, such delays were not important, and did not
adversely affect the overall operation, or calculation. With faster operation, these
delays are becoming significant, requiring more accurate and precise clock

distribution methods.

Further, in order to read data from a memory buffer, for example data for
processing by the pipeline processor, the first processing stage in the serial array must
also be time-synchronized with the memory buffer. This further encourages

synchronous clock distribution within a pipeline processor.

It would be advantageous to provide a system and a method for processing
data using a pipeline processor absent a need to synchronize a distributed clock value
that is provided to each processing element of the pipeline processor. Such a system
would be easily implemented using a relatively simple circuit design, in which large
blocks of processor elements are fabricated from a series of processor element sub-

units.
Object of the Invention

It is an object of the invention to provide a pipeline processor absent a

synchronous clock signal for all processing elements.
Summary of the invention

In its broadest concept, the invention provides a calculating apparatus having a
plurality of stages in an extended pipeline array, arranged in a series of side-by-side
sub-arrays, and a clock conductor extending in a sinuous form alongside the array,
connected to each stage. The array can be in the form of sections each having input
and output access whereby the whole array or sections of the array can process data.
The apparatus has forward and return paths and can be arranged so that the shortest

calculation taking place in a stage is arranged to take place in the return path.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656
6

In accordance with another embodiment of the invention there is provided an
apparatus for processing data comprising:

a plurality of individual processing elements arranged in a serial array wherein
a first processing element precedes a second processing element which precedes an
nth processing element; and,

a clock distribution circuit in electrical communication with each processing
element of the plurality of individual processing elements in the serial array such that,
in use, a clock signal propagated along the clock distribution circuit arrives at each
processing element delayed relative to the clock signal arriving at a preceding ‘
processing element;

wherein a time equal to an exact number of clock cycles, k, where k is
greater than zero, from when the data is clocked into a processing element to when the

data is clocked in by a subsequent processing element is insufficient for providing

accurate output data from the processing element but wherein the same time with the

additional delay is sufficient and wherein new data to be processed is clocked in by

the same processing element after the exact number of clock cycles, k.

In accordance with another embodiment of the invention there is provided a
switchable processing element comprising:

a first port for receiving a first clock signal;

a second port for receiving a second other clock signal;

a switch operable between two modes for selecting one of the first clock signal
and the second other clock signal; and

wherein the selected one of the first clock signal and the second other clock

signal is provided to the processing element.

In accordance with another aspect of the invention there is provided a method
for processing data comprising the steps of:

(a) providing a pipeline processor including a plurality of individual
processing elements arranged in a serial array such that a first processing element
precedes a second processing element which precedes an nth processing element;

(b) providing a clock signal to each processing element of the plurality of

individual processing elements in the serial array such that the clock signal arrives at

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656

.each individual processing element beyond the first processing element delayed
relative to the clock signal arriving at a preceding processing element;

(© providing data to the first processing element for processing therein;
and, .

(d) propagating the data to at least a next processing element for additional
processing therein,

wherein the clock signal provided to an element in the plurality of

individual processing elements is delayed relative to the clock signal provided to
another element of the plurality of individual processing elements by a substantial

amount relative to the clock period.

In accordance with another embodiment of the invention there is provided a
method for processing data within a pipeline processor comprising the steps of:

(@ providing a clock signal in a first direction along a first portion of the
pipeline processor having a number, n, processing elements such that the clock signal
arrives at each individual processing element beyond the first processing element of
the first portion delayed relative to the clock signal arriving at a preceding processing
element of the same first portion;

(b) providing a clock signal in a second substantially opposite direction
along a second other portion of the pipeline processor having a same number, n,
processing elements such that the clock signal arrives at each individual processing
element beyond the first processing element of the second other portion delayed
relative to the clock signal arriving at a preceding processing element of the same
second other portion;

(c) providing data to the first processing element of the first portion of the
pipeline processor for processing therein;

wherein the delay to the last processing element of the first portion is
an approximately same delay as the delay to the last processing element of the second
portion, such that at center of the pipeline processor the two adjacent processing

elements are in synchronization.

In accordance with yet another aspect of the invention there is provided a

macro for use in layout of an apparatus for processing data comprising:

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656

a plurality of individual processing elements arranged serially and having a
clock input conductor and a clock output conductor, the clock input conductor in
communication with a clock conductor having increased length from the clock input
conductor to each subsequent element within the within the plurality of individual
processing elements and wherein the clock conductor has decreased length from the
clock output conductor to each subsequent element within the within the plurality of
individual processing elements, | '

wherein the clock input conductor and output conductor are arranged such that
adjacently placed macros form space efficient blocks within a layout and such that the
input clock conductor of one macro and the out clock conductor of an adjacent macro
when coupled have approximately a same conductor path length as the conductor path
length between adjacent elements within a same macro when the macros are disposed

ina predetefmined space efficient placement.
Brief description of the drawings

The invention will be readily understood by the following description

of preferred embodiments, in conjunction with the following drawings, in which:

Figure 1 shows a simplified block diagram of a first preferred embodiment of

a pipeline processor according to the present invention;

Figure 2 shows a simplified block diagram of an array of processor elements
‘in electrical communication with a distributed clock circuit according to the present

invention;

Figure 3 shows a timing diagram for gating information to a plurality of

processor elements in a prior art pipeline processor;

Figure 4 shows a timing diagram for gating information to a plurality of

processor elements in a pipeline processor, according to the present invention;

Figure 5 shows individual timing diagrams for three adjacent processor

elements within a same processor array according to the present invention;

SUBSTITUTE SHEET (RULE 26)

WO 02/091148 PCT/CA02/00656

Figure 6 shows a sirﬁpliﬁed block diagram of a second preferred embodiment

of a pipeline processor according to the present invention;

Figure 7 shows a simplified block diagram of a third preferred embodiment of

a pipeline processor according to the present invention;

5 Figure 8a shows a simplified block diagram of a processor element having a
clock switching circuit and operating in a first mode according to the present

invention;

Figure 8b shows a simplified block diagram of a processor element having a
clock switching circuit and operating in a second mode-according to the present

10 invention

Fig. 9 is a simplified block diagram of macro blocks of processor units

arranged for providing a snaking clock signal from unit to unit;

Figure 10 is a block diagram of a resource efficient processing element design

for use in a pipeline array processor for performing encryption functions;
15 Figure 11 is a block diagram of a systolip array for modular multiplication;
Figure 12 is a block diagram of a single unit with its input pathways shown;
Figure 13 is a block diagram of a DP RAM Z unit;
Figure 14 is a block diagram of an Exp RAM unit;
Figure 15 is a block diagram of a Prec RAM unit;

20 Figure 16 is a block diagram of a speed efficient processing element design for

use in a pipeline array processor for performing encryption func‘iions;
Figure 17 is a block diagram of a systolic array for modular multiplication;

Figure 18 is a block diagram of a single unit with its input pathways shown;

and,

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656
10

Figure 19 is a block diagram of a DP RAM Z unit.
Detailed description of the invention

The present in{fention is concerned with the reduction of time delays between
stages. The result is obtained by positioning a clock cqnductor in the proximity of the
various stages, as by snaking the conductor alongside the stages. Thus the clock delay
is now substantially small between adj acent elements without a need for proper inter-
element synchronization. A further advantage is realized when a consistent time delay
is provided between adjacent elements in that interconnection between stages other

than those immediately adjacent is possible.

A further advantage is that, if desired, instead of the entire array of stages
being used for a large calculation, the array can be subdivided, for example into

halves or quarters, such that more than one calculation is carried out at a same time.

Referring to Figure 1, shown is a simplified block diagram of a pipeline
processor 7 in electrical communication with a real time clock 1 via a hardware |
connection 2, according to a first embodiment of the preseht invention. The pipeline
processor 7 includes a plurality of arrays 4a, 4b and 5 of processor elements
(processor elements not shown), for instance, arrays 4a and 4b each has 256
processing elements and array 5 has 512 processing elements. An input/output port 9
is separately in communication with the first processing element of each array 4a, 4b
and 5, for receiving data for processing by the pipeline processor 7, for example from
a client station (not shown) that is also in operative communication with the port 9. A
clock conductor 3, in electrical communication with clock source 1 via hardware
connection 2, is provided in the form of a distributed clock circuit extending in a
sinuous form alongside each of arrays 4a, 4b and 5. The clock conductor 3 is also
separately in electrical communication with each individual processor element of the

arrays 4a, 4b and S.

Referring to Figure 2, shown is a simplified block diagram of a serial array of
processor elements 8!, 8%, 8, ..., 8" and 8", the individual processor elements 8

comprising in aggregate the array 4a of pipeline processor 7 in Figure 1. Each

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656
11

processor element 8 is separately in electrical communication with the clock
conductor 3 via a connection 10. The clock conductor 3 is also in electrical
communication with a clock generator circuit, the clock source, via hardware
connection 2. An input/output port 9 in communication with the first processing
element of array 4a is for receiving data provided by a client station (not shown), also
in operative communication with input/output port 9, the data for processing by the

array 4a.

In operation, data is provided by the client station at port 9, for example as a
stream of individual blocks of data which comprise in aggregate a complete data file.
The first processor element 8! in array 4a receives a first data block via port 9 and
performs a predetermined first processing stage thereon. Of course, first processor
element 8" is time-synchronizéd with a memory buffer (not shown) of port 9 such that
the stream of data blocks is gated to first processor element 8! in synchronization. For
example, clock conductor 3 provides a time signal from real time clock 1, the time
signal arriving at first processor element 8' at a predetermined time relative to a clock
signal of the memory buffer. At the end of a first processing cycle, first processor
element 8! receives a second data block via port 9. At a same time the first processing
element 8' provides an output from the first data block along a forward processing-
path to second processor element ‘82. Additionally, the first processor element 8!
provides a second result calculated therein along a return processing-path to the buffer

of port 9.

During a second processing cycle, first processor element 8! performs a same
first processing operation on the second data block and second processor element 82
performs a second processing operation on the first data block. At the end of the
second processing cycle, the result of processing on the first data block is propagated
along the forward processing path between the second and the third processor
elements 8 and 8°, respectively. Simultaneously, the results of processing of the
second data block is propagated along the forward processing path between the first
and the second processor elements 8" and 8% respectively. Additionally, the second
processor element 8% provides a result calculated therein along a return processing-

path to the first processor element 8*. Of course, simultaneously gating data blocks

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656
12

along the forward processing-path and along the return processing-path between
adjacent processor elements requires synchronous timing. For instance, it is critical
that the processing operations that are performed along both processing-paths are

complete prior to the data being propagated in either direction.

Referring to Figure 3, shown is timing diagram for gating information to a
plurality of processor elements in a prior art pipeline processor. By way of example,
individual timing diagrams for a first five processor elements, denoted 1, 2, 3,4 and 5,
respectively, are shown. Each clock cycle is denoted by a pair of letters, for example
AB, CD, EF, etc. It is assumed for the purpose of this description that information is
gated to and from each processor element at a “rising edge” of any clock cycle. For
instance, along the forward processing path processor element 1 gates in a first block
of data at “rising edge” AB and processes the first block of data during one complete
clock cycle. Similarly, processor element 2 gates in the first block of data from
processing element 1 at “rising edge” CD and processes the first block of data duriﬁg
one complete clock cycle. Additionally, along the return processing-path, processor
element 1 gates in a block of processed data prom processor element 2 at “rising

edge” EF.

Of course, the clock cycle rate of the prior art system is at least as long as the

longest processing time required at each stage along one of the forward and the return

~ processing paths. For example, a data stream propagates along the serial array in a

stepwise fashion, and processing must be completed at every step before the data can
be propagated again. Thus if processing occurs in a shorter period of time along the
return processing path compared to the forward processing path, then a delay is
introduced at every stage along the reverse processing path in order to allow the

processing to be completed along the forward processing path.

Additionally, as is apparent from Figure 3, every processor element must be
synchronized with every other processor element of the array. For instance the clock 1
of Figure 1 must be distributed everywhere along the array in phase. This typically is
a complex problem that is costly and difficult to solve. The solutions are usually a

hybrid of hardware design and integrated circuit topology design and analysis.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656
13

An approach to overcoming the problem of clock distribution is a technique
wherein a first processor provides a clock signal to a second processor and from there
it is provided to a third processor and so forth. Thus, between adjacent elements,

synchronization exists but, between distant elements, synchronization is not assured.

Unfortunately, this method of avoiding clock synchronization is performed
absent a global clock and, as such, a clock is passed between every two elements
requiring data communication therebetween resulting in a different clock distribution

problem.

Referring to Figure 4, shown is a timing diagram for gating information to a
plurality of processor elements in a pipeline processor, according to the present
invention. By way of example, the individual timing diagrams for a subset of a serial
array comprising the first ten processor elements, denoted 1,2, 3,4, 5, 6,7, 8, 9, and
10, respectively, are shown. Each clock cycle is denoted by a pair of letters, for
example AB, CD, EF, etc. It is assumed for the purpose of this discussion that
information is gated into and out of each processor element at a “rising edge” of a
clock cycle. For instance, along the forward processing path processor element 1
gates in a first block of data at “rising edge” AB and processes the first block of data
during one complete clock cycle. Similarly, processor element 2 gates in the first
block of data from processing element 1 at “rising edge” CD and processes the first
block of data during one complete clock cycle. Additionally, along the return
processing-path, processor element 1 gates in a block of processed data prom
processor element 2 at “rising edge” EF. It is further assumed for the purpose of this
discussion that the processing operation requiring the greatest amount of time to be
completed at any processor element is along the forward processing-path. Of course,
as indicated by the diagonal lines in Fig. 4, the rising edge AB occurs at different

times for different processing elements.

Referring still to Figure 4, each timing diagram is offset slightly from the
timing diagram for a previous processor element by an amount, 8, equal to an
incremental delay of the clock signal reaching that processing element. Due to

capacitance and resistance that is inherent in the circuitry comprising the clock

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656
14

conductor, the finite period of time, 8, elapses between the arrival of the time signal at
the first processor element and the arrival of the time signal at the second processor
element. Alternatively, the clock is intentionally delayed iaetween provision to
different processing elements. Thus, the time-synchronization between processor
element 1 and processor element 2 is offset by the amount 8. Similarly, the time-
synchronization between each of the remaining pairs of adjacent processor elements
also is offset, for example by a same amount 5. Alternatively, the offset amount is

different but within known tolerances.

Still referring to Figure 4, the individual clock cycles are shorter than the clock
cycles of the prior art timing diagrams shown in Figure 3 for-a same processing
operation. This would seem to imply that there is insufficient time for the processor
elements to complete the processing operations along the forward processing-path
prior to gating in new dafa. For example, in Figure 3 the clock cycle is at least as long
as the longest processing operation, which operation is arranged to occur along the
forward path. In the present embodiment, however, there is an incrementally
increasing delay of the arrival of the clock signal at each pfocessing element beyond
processor element 1. In effect, this delay provides additional time for processing to Be
completed at, for example, processor element 2 in a forward processing path before a
next block of data is gated in at processing block 3 from processor element 2.
Advantageously, the minimum length of an individual clock cycle is reduced to a

length of time equal to the time required to complete the longest processing operation

less the' length of the clock delay between elements in the path requiring longer

processing times — here the forward path. Then, along the forward processing path
more than one full clock cycle elapses between gating a block of data into a processor
element and gating the processed block of data from that processor element into a
next processor element. Further, along the return processing path less than one full
clock cycle elapses between gating a block of data into a processor element and gating
the processed block of data into a next processor element (previous in the forward
path). The invention provides what can be termed “catch up” in the return

processing-path. Thus, the overall cycle time is less than the time required in one

SUBSTITUTE SHEET (RULE 26)

10

15

25

30

WO 02/091148 PCT/CA02/00656
15

direction of processing but at least an average of the processing time required in each

of the two directions.

Referring to Figure 5, shown are three individual timing diagrams for three
adjacent processor elements, denoted 3, 4 and 5, according to the present invention.
A first data block is gated into processor element 4 at 100 and is processed by
processor element 4 during clock cycle FG. For example, processor element 4 reads
the first data block from an output port of processor element 3, the first data block

having been gated into processor element 3 at 101. Processor element 4 also makes

" the first data block available to processor element 5, for example processor element 4

provides the first data block to an output port thereof and the first data block is read
by processor element 5 at 104. Clearly, steps 101, 100 and 104 comprise a portion of
the forward processing-path. As is obvious from Figure 5, a period of time that is
longer‘ than one complete clock cycle elapses between gating a block of data into a
processor element and gating a block of data resulting from pfocessing of the same

block of data into a next processor element along the forward processing-path.

Similarly, the steps 102, 100 and 103 comprise a portion of the reverse
processing-path, wherein a data block including data processed by a processor
element is provided to a previous processor element of the array. As is obvious from
Figure 5, a period of time that is shorter than one complete clock cycle elapses
between gating a processed block of data into a processor element and gating the
further processed block of data into a next processor element along the return
processing-path. Advantageously, the processing delay that accumulates along the
forward processing-path is “caught-up” along the return processing-path. This is a
phenomenon that is referred to as “bi-directional averaging”. Further, since the length
of the clock cycle time is reduced in the present invention, an overall advantage in

increased processing speed over prior art bi-directional pipeline processors is realized.

It is an advantage of the present invention that each processor element needs
only to communicate with two adjacent elements, such that an exact delay is always
determinable and can easily be maintained within predetermined limits. It is a further

advantage of the present invention that it is possible to isolate the circuit design to n

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656
16

adjacent processor elements, such that the entire pipeline processor is fabricated by
laying down a series of n element “macros”. Of course, every once in a while it is
necessary to connect one macro block to another, requiring additional circuitry to
cope with an extra delay between proceséor elements of different macro blocks.
Alterpatively, macros are designed for ease of interconnection such that a macro
begins and ends in a fashion compatible with positioning another identical macro
adjacent thereto for continued similar performance. In Fig. 9, a diagram of 2 macro
blocks 91 and 92 according to the invcption is shown. The macro blocks can be
arranged in any of a series of arrangements as shown providing approximately

consistent pathway delays between processing elements.

Referring to Figure 6, shown is a simplified block diagram of a pipeline
processor 12 according to a second preferred embodiment of the present invention.
The pipeline processor 12 includes a plurality of arrays 4a, 4b and 5 of processor
elements (processor elements not shown), for instance, arrays 4a and 4b each having
256 processing elements and array S having 512 processing elements. Dotted lines 6a
and 6b indicate optional electrical coupling for providing electrical communication
between the 256™ processing element of array 4a and the 256" element of array 4b,
and between the 1% element of array 45 and the 1* element of array 5, respectively. A
distributed clock circuit 3 is separately in electrical communication with each
processor element of the arrays 4a, 4b and 5. Also shown in Figure 6 is a clock
generator 1 in electrical communication with pipeline processdr 12 via a hardware
connection 2. An input/output port 9 in communication with the first processing
element of each array 4a, 4b, and 5 is for receiving data provided by a client station
(not shown), also in operative communication with input/output port 9, the data for

processing by an indicated one of the arrays 4a, 4b, and 5.

Referring to Figure 7, shown is a simplified block diagram of a pipeline
processor 13 according to a third preferred embodiment of the present invention. The
pipeline processor 13 includes a plurality of arrays 4a, 4b and 5 of processor elements
(processor elements not shown), for instance, arrays 4a and 4b each having 256
processing elements and array 5 having 512 processing elements. The 256

processing element of array 4a and the 256" element of array 4b are in electrical

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656
17

communication via the hardware connection 11a, and the 1 element of array 4b and
the 1 element of array 5 are in electrical communication via the hardware connection
11b, respectively. A distri‘buted clock circuit 3 is separately in electrical
communication with each processor element (not shown) of the arrays 4a, 4b and S.

Also shown in Figure 7 is a real time clock 1 in electrical communication with

~ pipeline processor 13 via a hardware connection 2. An input/output port 9 in

communication with the first processing element of array 4a is for receiving data
provided by a client station (not shown), also in operative communication with
input/output port 9, the data for processing by the serial arrangement of the arrays 4a,
4b, and 5. Optionally, separate inputs (not shown) are provided for gating data

directly to at least a processor element other than the 1 element of array 4a.

The pipeline processors 12 and 13 of Figures 6 and 7, respectively, are

operable in mode wherein data gated into the 256" processor element of the array 4a

'is made available to the 256™ processor element of array 4b. For instance, when more

than 256 processor elements are required for a particular processing operation, the
effective length of the processor array is increased by continuing the processing
operation within a second different array. Of course, when more than 512 processor
elements are required for a particular processing operation, the effective length of the
processor array is increased by continuing the processing operation within a third
different array. For example, either one of the pipeline processors shown in Figures 6
and 7 are operable for performing: 256 bit encryption using a single array; 512 bit
encryption using two different arrays; and, 1024 bit encryption using all three
different arrays. Of course, optionally the 256" processor element of array 4a is
coupled to the 1% element of array 4b, but then both the 256" element of array 4a and
the 1° element of array 4b must be synchronized with each other and with the buffer.
Such synchronization requirements increase the circuit design complexity due to the
‘critical need for a uniform distributed clock. Also, in most pipeline processor
arrangements it is necessary that each element provide processing operations during
each clock cycle and often, clock synchronization imposes a wait state which would
cause the 257™ element in the array to process data one clock cycle later than the

earlier elements.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656
18

Of course, when the 256" element of array 4a is coupled to the 256™ element
of array 4b, either optionally as shown in Figure 6 or permanently as shown in Figure
7, the advantage of “bi-directional averaging” is ‘lost. Advantageously, however, a
plurality of separate arrays of processor elements, each array preferably comprising a
same number of processor elements, is connectable in such a head-to-tail fashion.
Then, the clock signal is delayed progressively along every second array, but catches-

up again in between.

Of course, since clock distribution is not a significant concern and delays in
clock distribution are well supported, the clock signal is optionally switched into each
processing element such that the clock is provided from one of two clocking sources.
Then, with a processor circuit conﬁguration similar to that of Fig. 7, the clock is
switched in direction for the second processor array and provided through coupling
11a. Thus the advantages of “catch up” are maintained and synchronization between
adjacent arrays is obviated. Further, such a configuration supports arrayé of various
length that are couplable one to another to form longer arrays when needed without a
necessity for clock synchronization therebetween. Here, every processing element
within the second array requires two clock sources - one from a preceding element in .
a first direction and another from a preceding element in a second other direction.
Since clocks are delayed between processing elements, the switching circuit merely

acts to impart a portion or all of the necessary delay to the clock signal.

Referring to Fig. 8, a processing element is shown having a clock switching
circuit for use according to the present embodiment. A first clock signal is provided at
port 81. A second other clock signal is provided at port 82. Since, in use, the clock
only propagates along one direction, the ports 81 and 82 are optionally bi-directional
ports. Each port is coupled to a clock driver 84 and 83 respectively. The ports are also
coupled to a switch 85 for providing only one selected clock along a clock conductor
86 to the processing element 87. The clock is also provided to the two drivers only
one of which is enabled. In this way, each element works to propagate a clock signal

in one direction selectable from two available directions of clock propagation.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656
19

Advantageously, since it is known when a processor will complete processing,
it becomes possible to allocate that processor to processing downstream of another
processor. For example, assuming the processor 4a has processing elements for
processing 256 bit operations and begins processing a 256 bit operation. Assume 4b is
a similar processor. If, sometime after processing element 4a commences processing
and before it is completed a processing request for a 512 bit operation arrives, it is
possible to begin the operation on processing array 4b knowing that by the time data
has propagated to the last element of processing array 4a, that element will have
completed processing of the processing job in current processing. This improves
overall system performance by reducing downtime of a processor while awaiting

other processors to be available to support concatenated array processing.

Montgomery based Pipeline processing of encryption data

Applying Montgomery’s algorithm, the cost of a modular exponentiation is
reduced to a series of additions of very long integers. To avoid carry propagation in
multiplication/addition architectures several solutions are known. These use
Montgomery’s algorithm, in combination with a redundant radix number system or a

Residue Number System.

In S.E.Eldridge and C.D.Walter.Hardware implementation of Montgomery’s
modular multiplication algorithm. IEEE Transactions on Computers, 42(6):693—
699,July 1993, Montgomery’s modular multiplication algorithm is adapted for an
efficient hardware implementation. A gain in speed results from a higher clock
frequency, due to simpler combinatorial logic. Compared to previous techniques

based on Brickell’s Algorithm, a speed-up factor of two was reported.

The Research Laboratory of Digital Equipment Corp. reported in J. E.
Vuillemin, P. Bertin, D. Roncin, M. Shand, H.H. Touati, and P. Boucard.
Programmable active memories: Reconfigurable systems come of age. IEEE
Transactions on VLSI Systems, 4(1): 56-69, March 1996 and M.Shand and
J.Vuillemin. Fast implementations of RSA cryptography. In Proceedings 11th IEEE
Symposium on Computer Arithmetic, pages 252-259, 1993, an array of 16 XILINX
3090 FPGAs using several speed-up methods including the Chinese remainder

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656
20

theorem, asynchronous carry completion adder, and a windowing exponentiation
method is used to implement modular exponentiation. The implementation computes

a 970bit RSA decryption at a rate of 185kb/s (5.2ms per 970 bit decryption) and a 512
bit RSA decryption in excess of 300 kb/s (1.7ms per 512 bit decryption). A drawback
of this solution is that the binary representation of the modulus is hardwired into the
logic representation so that the architecture must be reconfigured with every new

modulus.

The problem of using high radices in Montgomery’s modular multiplication
algorithm is a more complex determination of a quotient. This behavior renders a
pipelined execution of the algorithm other than straightforward. In H.Orup.
Simplifying quotient determination in high-radix modular multiplication. In
Proceedings 12th Symposium on Computer Arithmetic, pages 1939, 1995, the
algorithm is rewritten to avoid any operation involved in the quotient determination.

The necessary pre—computation is performed only once for a given modulus.

P. A. Wang in the article New VLSI architectures of RSA public key crypto
systems. In Proceedings of 1997 IEEE International Symposium on Circuits and
Systems, volume 3, pages 20403, 1997 proposes a novel VLSI architecture for
Montgomery’s modular multiplication algorithm. The critical path that determines the
clock speed is pipelined. This is done by interleaving each iteration of the algorithm.
Compared to previous propositions, an improvement of the time—area product of a

factor two was reported.

J.Bajard, L.Didier, and P.Kornerup in the article An RNS Montgomery
modular multiplication algorithm. IEEE Transactions on Computers, 47(7) : 766 —76,
July 1998, describe a new approach using a Residue Number System (RNS). The
algorithm is implemented with n moduli in the RNS on n reasonably simple

processors. The resulting processing time is O(n).

Of course, most of the references cited above relate to hardware

implementations of processors that have little or no flexibility.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656
21

There have also been a number of proposals for systolic array architectures for

modular arithmetic. These vary in terms of complexity and flexibility.

InE. F. Brickell. A survey‘ of hardware implemeiitations of RSA. In Advances
in Cryptology —CRYPTO °89, pages 368-70.Springer-Verlag, 1990, E.F. Brickell

summarizes the chips available in 1990 for performing RSA encryption. In

In N. Takagi. A radix-4 modular multiplication hardware algorithni efficient
for iterative modular multiplication operations . In Proceedings 10th IEEE
Symposium on Computer Arithmetic, pages 35-42, 1991, the author proposes a
radix—4 hardware algorithm. A redundant number representation is used and the
propagation of carries in additions is therefore avoided. A processing speed—up of

about six times compared to previous work is reported.

More recently an approach has been presented that utilizes pre-computed
complements of the modulus and is based on the iterative Horner’s rule in J. Yong-
Yin and W. P. Burleson. VLSI array algorithms and architectures for RSA modular
multiplication. IEEE Transactions on VLSI Systems, 5(2): 21117, Jun 1997.
Compared to Montgomery’s algorithms these approaches use the most significant bits
of an intermediate result to decide which multiples of the modulus to subtract. The
drawback of these solutions is that they either need a large amount of storage space or

many clock cycles to complete a modular multiplication.

The most popular algorithm for modular exponentiation is the square &
multiply algorithm. Public—key encryption systems are, typically, based on modular
exponentiation or repeated point addition. Both operations are in their most basic -

forms done by the square and multiply algorithm.

Method 1.1 compute Z = X" mod M, where E = Z:; e e, {01}

L. Z=X

2. FORi=n-2downto0DO

3. Z=Z7'mod M

4, IFeg=1THENZ=Z7Z -Xmod M
5. END FOR

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656
22

Method 1.1 takes 2(n-1) operations in the worst case and 1.5(n-1) on average.
To compute a squaring and a multiplication in parallel, the following version of the

square & multiply method can be used:

Method 1.2 computes P = XE mod M, where E = Z:; e,.2", e € {0,1}

1 Po=1,Z=X
2 FORi=0ton-1DO
3. Zw=ZimodM (
4 IF ¢;=1 THEN Pjy; =P; - Z;mod M
ELSE Py =P
5. ENDFOR

Method 1.2 takes 2n operations in the worst case and 1.5n on average. A
speed—up is achieved by applying the 1 — ary method, such as that disclosed in D. E.
Knuth, The Art of Computer Programming. Volume 2: Seminumerical Algorithms.
Addison-Wesley, Reading, Massachusetts, 2nd edition, 1981, which is a
generalization of Method 1.1. The 1 — ary method processes 1 exponent bits at a time.
The drawback here is that (21 - 2) multiples of X must be pre-computed and stored. A
reduction to 2! pre—computations is possible. The resulting complexity is roughly n/l

multiplication operations and n squaring operations.

© As shown above, modular exponentiation is reduced to a series of modular
multiplication operations and squaring steps using the Montgomery method. The
method for modular multiplication described below was proposed by P. L.
Montgomery in P. L. Montgomery. Modular multiplication without trial division.
Mathematics of Computation, 44(170): 519-21, April 1985. It is a method for
multiplying two integers modulo M, while avoiding division by M. The idea is to
transform the intégers in m-residues and compute the multiplication with these m-
residues. In the end, the representations are transformed back to a normal |
representation thereof. This approach is only beneficial when a series of
multiplication operations in the transform domain are computed (e. g., modular

exponentiation).

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656
23

To compute the Montgomery multiplication, a radix R > M, with ged(M, R) =

1 is selected. Division by R is preferably inexpensive, thus an optimal choice is R =
2™ if M = Z;’;:mi 2’ The m-residue of x is xR mod M. M’ =M mod R is also

computed. A function MRED(T) is provided that computes TR mod M: This

function computes the normal representation of T, given that T is an m-residue.

Method 1.3 MRED(T): computes a Montgomery reduction of T
T<RM,R=2", M =3 "'m 2" ,gcd(M,R) =1

L. U=TM’ mod R

2. t=(T+UM)/R

3. IF t>M RETURNt-M
ELSE RETURN t

The result of MRED(T) is t = TR mod M.

Now to multiply two integers a and b in the transform domain, where their
respective representations are (aR mod M) and (bR mod M), a product of the two
representations is provided to MRED(T):

MRED((aR mod M) - (bR mod M)) = abR’R™* = abR mod M

For a modular exponentiation this step is repeated numerous times according
to Method 1.1 or 1.2 to get the final result ZR mod M or P,R mod M. One of these
values is provided to MRED(T) to get the result Z mod M or P, mod M.

The initial transform step still requires costly modular reductions. To avoid the
division involved, compute R* mod M using division. This step needs to be done only
once for a given cryptosystem. To get a and b in the transform domain MRED(a-R?
mod M) and MRED(b-R? modM) are executgd to get aR mod M and bR mod M.

Obviously, any variable can be transformed in this manner.

For a hardware implementation of Method 1.3: an m x m—bit multiplication
and a 2m-bit addition is used to compute step 2. The intermediate result can have as
many as 2m bits. Instead of computing U at once, one digit of an r—radix

representation is computed at a time. Choosing a radix r, such that gcd(M, 1) =1 is

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656
24

preferred. Division by r is also preferably inexpensive, thus an optimal choice is r =
2X. All variables are now represented in a basis—r representation. Another

improvement is to include the multiplication A x B in the algorithm.

Method 1.4 Montgomery Modular Multiplication for computing A‘-B mod M, where
M =308 mym, € 0125 ~1); B=Y"(2"Y'b,,b, € {0.1..2 ~1};
A4="24 a0, {0125 ~1};

A,B<M:M < R=2";M'=—-M"mod2*;gcd(2¥, M) =1

1. Se=0

2. FORi=0tom-1DO

3. qi=(((Si + aB) mod 2YM") mod 2"

4, Siv1 = (S + gM + a;B)/2*

5. ENDFOR

6. IF Sm=M RETURN S, -M
ELSE RETURN S,,

The result of applying the method 1.4 is Sp, = ABR! mod M. At most two k x
k— bit multiplication operations and a k—bit addition is required to compute step 3 for
a radix 2%, For step 4 two k xm-— bit multiplication operations and two m + k-bit
additions are needed. The maximal bit length of S is reduced to m+ k + 2 bits,
compared to the 2m bits of Method 1.3.

Method 1.5 is a simplification of Method 1.4 for radix r = 2. For the radix r =
2, the operations in step 3 of Method 1.4 are done modulo 2. The modulus M is odd
due to the condition ged(M, 2%y = 1. It follows immediately that M = 1 mod 2. Hence
M’ =-M"'mod 2 also degenerates to M’ = 1. Thus the multiplication by M’ mod 2 in
step 3 is optionally omitted.

Method 1.5 Montgomery Modular Multiplication (Radix r = 2) for computing

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656
25

Montgomery Modular Multiplication for computing A-B mod M, where
M=) m,m e 01}; B=3 (2")'b,.b, € {01}

4=>"02" a,,a,e{01}; 4,B<M;M <R=2";gcd(2, M) =1

=0

1 So=0

2 FORi=0tom-1DO

3 qi =(S;+aB) mod 2

4, Siv1 = (Si + qM + a;B)/2

5 END FOR

6 IF S =M RETURN S, - M
ELSE RETURN S,

The final comparison and subtraction in step 6 of Method 1.5 would be costly
to implement, as an m bit comparison is very slow and expensive in terms of resource
usage. It would also make a pipelined execution of the algorithm impossible. It can
easily be verified that Sir; <2M always holds if A, B <M. Sy, however, can not be
reused as input A or B for the next modular multiplication. If two more executions of
the for loop are performed with a1 = 0 and inputs A, B <2M, the inequality Sy <

2M is satisfied. Now, Sy can be used as input B for the next modular multiplication.

To further reduce the complexity of Method 1.5, B is shifted up by one
position, i.e., multiplied by two. This results in a; - B mod 2 = 0 and the addition in
step 3 is avoided. In the update of Si+1 (S + qiM + a;B)/2 is replaced by (S; + qiM)/2 +
a;B. The cost of this simplification is one more execution of the loop with am+2 = 0.

The Method below comprises these optimizations.

" Method 1.6 Montgomery Modular Multiplication (Radix r=2) for computing A‘B

m-1
i=0

mod M, where M =" (2*)'m,,m, 1}; B= ZZ’;;I(Z")"bI,b,. e {0,1};
A=>""2" a0, € {0.1}; A,B<2M;M < R=2"";g0d(2,M) =1

1. S():-”O
2. FORi=0tom+2DO
3. qi = (Sj) mod 2

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656

26

4, Sir1 = (Si+ q;M)/2 + a;B
5. END FOR

The algorithm above calculates Sp43 = (2" ™D AB) mod M. To get the correct

result an extra Montgomery modular multiplication by 2(m+2)

mod M is performed.
However, if further multiplication operations are required as in exponentiation
algorithms, it is better to pre—multiply all inputs by the factor 222 mod M. Thus

every intermediate result carries a factor 2™2 Montgomery multiplying the result by

- “1” eliminates this factor.

The final Montgomery multiplication with “1” insures that a final result is
smaller than M.

High—radix Montgomery algorithm

By avoiding costly comparison and subtraction operations of step 6 and

changing the conditions to 4M < 2™

and A, B <2M some optimisation results for
implementing method 1.4 in hardware. The penalty is two more executions of the

loop. The resulting methéd is as follows:

Method 1.7 Montgomery Modular Multiplication for computing A-B mod M,
where M = 72 (25Y m,,m, e {0,1..2¢ -1}

i = (M'mod 2)M, 11 = 5" (2 #iy, 7, € 0..2° ~1};

i=0

B= Z;:l(zk)ibnbi € {0>1---2k —1}; 4= 2177_1(2k)ia,,a,. € {0,1...2"' —1}; i

i=0
A, B <2M;AM <2 M'= —M™ mod 2*
80=0

FORi=0tom-1DO

gi = (Si + aB) modA 2k

Sia = (S, +q,M +a,B)/2*
END FOR |

AR A

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656
27

The quotient g; determination complexity is further be reduced by replacing B
by B - 2k. Since a;B mod 2K =0, step 3 is reduced to g; = S; mod 2¥. The addition in

‘ step 3 is avoided at the cost of an additional iteration of the loop, to compensate for

the extra factor 2* in B. A Montgomery method optimized for hardware

implementation is shown below:

Method 1.8 Montgomery Modular Multiplication for computing A - B mod M, where
M =322 mm, e {01..2° -1
i = (M'mod 25)M, 11 = 3" 24 iy, € {0,125 =1}

i=0

B=Y"12"b,b € 012 ~1}; 4=3" 2%V a,,a, € {01..2° ~1}a,, = 0

A,B < 2M:AM < 2%, M'= —M ™ mod 2*
1 Se=0
2 FORi=0tom-1DO
3. gi = S; mod 21.‘
4 S,y = (S, +q,M)/2* +a,B
5 END FOR

The final result is then Montgomery multiplied by 1 to eliminate the factors

therein as discussed herein above.

In a thesis submitted to the Faculty of the Worcester Polytechnic Institute
entitled Modular Exponentiation on Reconfigurable Hardware and submitted by
Thomas Blum on April 8th,1999 incorporated herein by reference, Thomas Blum
proposed two different pipeline architectures for performing encryption functions
using modular multiplication and Montgomery spaces: an area efficient architecture

based on Method 1.6 and a speed efficient architecture. As target devices Xilinx

XC4000 family devices were used.

A general radix 2 systolic array uses m times m processing elements, where m
is the number of bits of the modulus and each element processes a single bit. 2m
modular multiplication operations can be processed simultaneously, featuring a

throughput of one modular multiplication per clock cycle and a latency of 2m cycles.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656
28

As this approach results in unrealistically large CLB counts for typical bit lengths
required in modern public—key schemes, only one row of processing elements was
implemented. With this approach two modular multiplication operations can be
processed simultaneously.and the performance reduces to a throughput of two

modular multiplication operations per 2m cycles. The latency remains 2m cycles.

The second consideration was the choice of the radix r = 2, Increasing k
reduces the amount of steps to be executed in Method 1.8. Such an approach,
however, requires more resources; The main expense lies in the computation of the 2k
multiples of M and B. These are either pré—computed and stored in RAM or calculated
by a multiplexer network. Clearly, the CLB count becomes smallest for r =2, as no

multiples of M or B have to be calculated or pre-computed.

Us{ng a radix r = 2, the equation according to Method 1.6 is computed. To
further reduce the required number of CLBs the following measures are optionally
taken: each unit processes more than a single bit. A single adder is used to
precompute B+M and to perform the other addition operation during normal
processing. Squares and multiplication operations are computed in parallel. This

design is divided hierarchically into three levels.
Processing Element Computes u bits of a modular multiplication.

Modular Multiplication An array of processing elements computes a modular

multiplication.

Modular Exponentiation Combine modular multiplication operations to a modular

exponentiation accor‘ding to Algorithm 1.2.

Processing Elements
Figure 10 shows the implementation of a processing element.
In the processing elements the following registers are present:

. M-Reg (u bits): storage of the modulus

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656
29

. B-Reg (u bits): storage of the B multiplier

. B+M-Reg (u bits): storage of the intermediate result B + M

. S-Reg (u + 1 bits): storage of the intermediate result (inclusive carry)
. S-Reg-2 (u - 1 bits): storage of the intermediate result

. Control-Reg (3 bits): control of the multiplexers and clock enables

. a;,q; (2 bits): multiplier A, quotient Q
. Result-Reg (u bits): storage of the result at the end of a multiplication

The registers need a total of (6u + 5)/2 CLBs, the adder u/2 + 2 CLBs, the
multipléxers 4 - /2 CLBs, and the decoder 2 CLBs. The possibility of re-using
registers for combinatorial logic allows some savings of CLBs. Muxg and Muxges are
implemented in the CLBs of B-Reg and Result-Reg, Mux; and Mux; partially in M-
Reg and B+M-Reg. The resulting costs are approximately 3u + 4 CLBs per u-bit

processing unit. That is 3 to 4 CLBs per bit, depending on the unit size u.

Before a unit can compute a modular multiplication, the system parameters
have to be loaded. M is stored into M-Reg of the unit. At the beginning of a modular
multiplication, the operand B is loaded from either B-in or S-Reg, according to the
select line of multiplexer B-Mux. The next step is to compute M + B once and store
the result in the B+M-Reg. This operation needs two clock cycles, as the result is
clocked into S-Reg first. The select lines of Mux; and Mux; are controlled by a; or the

control word respectively.

In the followiﬁg 2(m + 2) cycles a modular multiplication is computed
according to Method 1.6. Multiplexer Mux; selects one of its inputs 0, M, B, B+ M to
be fed in the adder according to the value of the binary variables a; and q;. Mux, feeds
the u - 1 most significant bits of the previous result S-Reg; plus the least significant
result bit of the next unit (division by twp/ shift right) into the second input of the
adder. The result is stored in S-Reg for one cycle. The least significant bit goes into

the unit to the right (division by two / shift right) and the carry to the unit to the left.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656
30

In this cycle a second modular multiplication is calculated in the adder, with updated
values of S-Regy, a; and q;. The second multiplication uses the same operand B but a

different operand A.

At the end of a modular multiplication, Sy.3 is valid for one cycle at the output
of the adder. This value is both stored into Result-Reg, as fed via S-Reg into B-Reg.

The result of the second multiplication is fed into Result-Reg one cycle later.

Figure 11 shows how the processing elements are connected to an array for
computing an m~bit modular multiplication. To perform the method for m bits with u
bits processed per unit m/u + 1 units are used. Unity has only u - 1 B inputs as By is
added to a shifted value S; + ¢;M. The result bit S-Regy is always zero according to
the properties of Montgomery’s algorithm. Unityy, processes the most significant bit
of B and the temporary overflow of the intermediate result S;+1. There is no M input

into this unit.

The inputs and outputs of the units are connected to each other in the
following way. The control word, g; and a; are pumped from right to left through the
units. The result is pumped from left to right. The carry-out signals are fed to the
carry-in inputs to the right. Output S_0_Out is always connected to input S_0_In of
the unit to the right. This represents the division by 2 of the equation.

At first the modulus M is fed into the units. To allow enough time for the
signals to propagate to all the units, M is valid for two clock cycles. We use two M-
Bﬁses, the M-even-Bus connected to all even numbered units and the M-odd-Bus
connected to all odd numbered units this approach allows to feed u bits to the units per

clock cycle. Thus it takes m/u cycles to load the full modulus M.

The operand B is loaded similarly. The signals are also valid for two clock
cycles. After the operand B is loaded, the perforfnance of the steps of Method 1.6

begins.

Starting at the rightmost unit, unito, the control word, a;, and ; are fed into
their registers. The adder computes S-Reg-2 plus B, M, or B + M in one clock cycle

according to a; and q;. The least significant bit of the result is read back as g1 for the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656

31

next computat{on. The resulting carry bit, the control word, a; and g; are pumped into

the unit to the left, where the same computation takes place in the next clock cycle.

In such a systolic fashion the control word, a;, g, and the carry bits are
pumped from right to left through the whole unit array. The division by two in
Method 1.6 leads also to a shift—right operation. The least significant bit of a unit’s
addition (So) is always fed back into the unit to the right. After a modular
multiplication is completed, the results are pumped from left to right through the units

and consecutively stored in RAM for further processing.

A single processing element computes u bits of Si+; = (Si + qi - M)/2 + a; - B.
In clock cycle i, unity computes bits 0. . . u~- 1 of S;. In cycle i+ 1, unit; uses the
resulting carry and computes bits u . . . 2u - 1 of S;. Unitp uses the right shifted
(division by 2) bit u of S; (Sg) to compute bits 0 . . . u - 1-of S;41 in clock cycle 1 +2.
Clock cycle i + 1 is unproductive in unity while waiting for the result of unit;. This
inefficiency is avoided by computing squares and multiplication operations in
parallel according to Method 1.2. Both pj+1 and z;+1 depend on z1 So, the intermediate
result z; is stored in the B—Registers and fed with p; into the a; input of the units for |

squaring and multiplication.

Figure 12 shows how the array of units is utilized for modular exponentiation.
At the heart of the design is a finite state machine (FSM) with 17 states. An idle state,
four states for loading the system parameters, and four times three states for
computing the modular exponentiation. The actual modular exponentiation is
executed in four main states, pre-computationl, pre-computation2, computation, and
post-computation. Each of these main states is subdivided in three sub—states, load-B,
B+M, and calculate-multiplication. The control word fed into control-in is encoded .
according to the states. The FSM is clocked at half the clock rate. The same is true for
loading and reading the RAM and DP RAM elements. This measure makes sure the
maximal propagation time is in the units. Thus the minimal clock cycle time and the
resulting speed of a modular exponentiation relates to the effective computation time

in the units and not to the computation of overhead.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656
32

Before a modular exponentiation is computed, the system parameters are
loaded. The modulus M is read 2u bits at the time from I/O into M-Reg. Reading
starts from low order bits to high order bits. M is fed from M-Reg u bits at the time
alternatively to M-even-Bus and M-odd-Bus. The signals are valid two cycles at a
time. The exponent E is read 16 bits at the time from I/O and stored into Exp-RAM.
The first 16 bit wide word from I/O specifies the length of the exponent in bits. Up to
64 following words contain the actual exponent. The pre—computation factor A(m*2)

mod M is read from I/O 2u bits at the time. It is stored into Prec-RAM.

In state Pre-computel we read the X value from I/O, u bits per clock cycle,
and store it into DP RAM Z. At the same time the pre—computation factor 22(m+2)
mod M is read from Prec RAM and fed u bits per clock cycle alternatively via the B-
even-Bus and B-odd-Bus to the B-registers of the units. In the next two clock cycles,

B + M is calculated in the units.

The initial values for Method 1.2 are available. Both values have to be
multiplied by 2, which can be done in parallel as both multiplication operations use a

222 mod M that is already stored in B. The time-division-

common operand
multiplexing (TDM) unit reads X from DP RAM Z and multiplexes X and 1. After
2(m+3) clock cycles the low order bits of the result appear at Result-Out and are

stored in DP RAM Z. The low order bits of the next result appear at Result-Out one
cycle later and are stored in DP RAM P. This process repeats for 2m cycles, until all
digits of the two results are saved in DP RAM Z and DP RAM P. The result X - 22 |

mod M is also stored in the B-registers of the units.

In state pre-compute2 the actual steps of Method 1.2 begin. For both
calculations of Z1 and P1 Z0 is used as an operand. This value is stored in the B-
registers. The second operand Z0 or PO respectively, is read from DP RAM Z and DP
RAM P and “pumped” via TDM as a; into the units. After another 2(m + 3) clock
cycles the low order bits of the result of Z1 and P1 appear at Result-Out. Z1 is stored
in DP RAM Z. P1 is needed only if the first bit of the exponent €0 is equal to “1”.
Depending on e0, P1 is either stored in DP RAM P or discarded.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656
33

In state compute the loop of method 1.2 is executed n - 1 times. Z; in DP RAM
Z is updated after every cycle and “pumped” back as a; into the units. P; in DP RAM P
is updated only if the relevant bit of the exponent e; is equal to “1”. In this way always

the last stored P is “pumped” back into the units.

After the processing of e.1, the FSM enters state post-compute. To eliminate
the factor 2m+2 from the result Py, a final Montgomery multiplication by 1 is
computed. First the vector 0, 0, . . . 0, 1 is fed alternatively via the B-even-Bus and B-
odd-Bus into the B—registers of the units. Py is “pumped” from DP RAM P as g; into
the units. After state post-compute is executed, u bits of the result P, = XE mod M are
valid at the I/O port. Every two clock cycles another u bits appear at I/O. State pre-

computel can be re—entered immediately now for the calculation of another X value.

A full modular exponentiation is computed in 2(n + 2)(m + 4) clock cycles.
That is the delay it takes from inserting the first u bits of X into the device until the
first u result bits appear at the output. At that point, another X value can enter the
device. With a additional latency of m/u clock cycles the last u bits appear on the

output bus.

Hereinbelow the function blocks in Figure 12 are explained. Figure 13 shows
the design of DP RAM Z. An m/u % u bit DP RAM is at the heart of this unit. It has
separate write (A) and read (DPRA) address inputs. The write-counter counting up to
m/u computes the write address (A). The write-counter starts counting (clock-enable)
in sub-states B-load when the first u bits of Z; appear at data in. At the same time the
enable signal of the DP RAM is active and data is stored in DP RAM. Terminal-count
resets count-enable and write—enable of DP RAM when m/u is reached. The read-
counter is enabled in the sub—states compute. When read-counter reaches its upper
limit m + 2, terminal-count triggers the FSM to transit into sub-state B-load. The
loga(m/u) most significant bits of the read-counter value (q out) address DPRA of the
DP RAM. Every u cycles another value stored in the DP RAM is read. This value is
loaded into the shift register when the log,(u) least significant bits of q out reach zero.

The next u cycles u bits appear bit by bit at the serial output of the shift register. The

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656
34

last value of z; is stored in a u-bit register. This measure allows us to select an
m/uxu~bit DP RAM instead of an 2m/uxu-bit DP RAM (m=2x,x=8§,9,10).

DP RAM P works almost the same way. It has an additional input e;, that
activates the write-enable signal of the DP RAM in the case of e; = 1.

~ Figure 14 shows the design of Exp RAM. In the first cycle of the load-
exponent state, the first word is read from I/O and stored into the 10-bit register. Its
value specifies the length of the exponent in bits. In the next cycles the exponent is
read 16-bit at a time and stored in RAM. The storage address ’is computed by a 6-bit
write counter. At the beginning of each compute state the 10-bit read counter is
enabled. Its 6 most significant bits compute the memory address. Thus every 16th
activation, a new value is read from RAM. This value is stored in the 16-bit shift—
register at the same time when the 4 least significant bits of read counter are equal to
zero. When read counter reaches the value specified in the 10-bit register, the

terminate signal triggers the FSM to enter state post-compute.

Figure 15 shows the design of Prec RAM. In state load—pre—factor the pre-
computation factor is read 2u bits at the time from I/O and stored in RAM. A counter
that counts up to m/2u addresses the RAM. When all m/2u values are read, the

terminal-count signal triggers the FSM to leave state load—pre—factor.

In state pre—comiputel the pre—computation factor is read from RAM and fed
to the B—registers of the units. The counter is incremented each clock cycle and 2u
bits are loaded in the 2u-bit register. From there u bits are fed on B-even-bus each

positive edge of the clock. On the negative clock edge, u bits are fed on the B-odd-

. bus.

A Speed Efficient Architecture

The above design was optimized in terms of resource usage. Using a radix r =
2% k> 1, reduces the number of steps in Method 1.6 by a factor k. The computation of
Method 1.8 is executed m + 3 times (i =0 to m + 2)

A speed efficient design is readily divided hierarchically into three levels.

SUBSTITUTE SHEET (RULE 26)

WO 02/091148 PCT/CA02/00656
35

‘Processing Element Computes 4 bits of a modular multiplication.

Modular Multiplication An array of processing elements computes a modular

multiplication.

Modular Exponentiation Combines modular multiplication operations to a modular

5 exponentiation according to Method 12.
Figure 16 shows the implementation of a processing element.

The following elements are provided:
. B-Reg (4 bits): storage of the B multiplier
. B-Adder-Reg (5 bits): storage of multiples of B

10 . S-Reg (4 bits): storage of the intermediate result S;
. Control-Reg (3 bits): control of the multiplexers and clock enables
. a;-Reg (4 bits): multiplier A
. gi-Reg (4 bits): quotient Q
. Result-Reg (4 bits): storage of the result at the end of a multiplication

15 . B-Adder (4 bits): Adds B to the previously computed multiple of B
. B+M -Adder (4 bits): Adds a multiple of M " to a multiple of B
. S+B+M ~ -Adder (5 bits): Adds the intermediate result M ~ 5 ©B*
. B-RAM (16x4 bits): Stores 16 multiples of B
. M ~ -RAM (16x4 bits): Stores 16 multiples of M

20 The operation of the units is evident from the thesis of T. Blum, referenced

above, and from a review of the diagrams.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 02/091148 PCT/CA02/00656

36

Figure 17 shows how the processing elements are connected to an array for

computing a full size modular multiplication.
Figure 18 shows how the array of units is utilized for modular exponentiation.

Figure 19 shows the design of DP RAM Z. An mx4 bit DP RAM is at the
heart of this unit. It has separate write (A) and read (DPRA) address inputs. Two
counters that count up to m -+ 2 compute these addresses. The write-counter starts
counting (clock-enable) in sub—states B-load when the first digit of Z; appears at data
in. At the same time the enable signal of the DP RAM is active and data is stored in
DP RAM. When m + 2 is reached, the terminal-count signal of the write-counter
resets the two enable signals. The read-counter is enabled in sub—states compute. The
data of DP RAM is addressed by q out of the read-counter and appears immediately at
DPO. When read-counter reaches m + 2, terminal-count triggers the FSM to transit

into sub-state B-load. The last two values of z; are stored in a 4-bit register each.

This measure allows us to choose a 100% utilized m x 4-bit DP RAM instead
of an only 50% utilized 2m x 4-bit DP RAM. DP RAM P works almost the same
way. It has an additional input e;, that activates the write-enable signal of the DP
RAM in the case of g; = “1.”

Since the above pipeline processor architectures embody many pipelined
processing elements, it is often difficult and costly to synchronise each element to the
clock source within a same integrated circuit. Therefore, the present invention is
highly advantageous in reducing overall resource requirements by reducing clock
distribution problems. Also, since in one direction addition is required while in the
other direction multiplication is required, it is evident that more time is necessary
along one path than the other and, so, time-averaging of the paths is possible in

accordance with an embodiment of the invention.

Numerous other embodiments may be envisaged without departing from the

spirit or scope of the invention.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656
37

What is claimed is:

1. An apparatus for processing data comprising:

a plurality of individual processing elements arranged in a serial array wherein
a first processing element precedes a second processing element which precedes an
nth processing element; and,

a clock distribution circuit in electrical communication with each processing
element of ’(;he plurality of individual processing elements in the serial array such that,
in use, a clock signal propagated along the clock distribution circuit arrives at each
processing element delayed relative to the clock signal arriving at a preceding
processing element;

wherein a time équal to an exact number of clock cycles, k, where k is
greater than zero, from when the data is clocked into a processing element to when the
data is clocked in by a subsequent processing element is insufficient for providing
accurate output data from the processing element but wherein the same time with the
additional delay is sufficient and wherein new data to be processed is clocked in by

the same processing element after the exact number of clock cycles, k.
2. The apparatus according to claim 1, the serial array having a first path in a first
direction and a second path in a second other direction, the second path at each stage

having a process time shorter than the process time of the first path at each stage.

3. The apparatus according to claim 2 wherein the clock signal is distributed

independently to each processing element.

4, The apparatus according to claim 3 wherein the delay between any two

adjacent processing elements is approximately a same delay.

5. The apparatus according to claim 4 wherein the direction of propagation of the

clock signal is switchable.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656

38
6. The apparatus according to claim 4 wherein the exact number of clock cycles,
k, is one clock cycle.
7. The apparatus according to claim 2 wherein the clock signal is gated from a

preceding processing element to a next processing element.

8. The apparatus according to claim 7 wherein the direction of propagation of the

clock signal is switchable.

9. The apparatus according to claim 2 wherein at least a processing element of

the serial array is time-synchronized to an external circuit.

10. The apparatus according to claim 9 wherein the external circuit includes a

memory buffer.

11. The apparatus according to claim 10 wherein the external circuit includes an
input/output port for receiving data from an external data source and for providing

said data to the memory buffer.

12. The apparatus according to claim 11 wherein the serial array comprises:
a first pipeline array having a first predetermined number of processing elements, n;
and,

a second different pipeline array having a second predetermined number of

processing elements, m.

13. The apparatus according to claim 12 wherein at least a processing element of
the first pipeline array is in electrical communication with the memory buffer via a
hardware connection, the at least a processing element of the first pipeline array being

time-synchronized to the memory buffer for retrieving data therefrom.-

14. The apparatus according to claim 13 wherein the at least a processing element

of the first pipeline array is a first processing element of the first pipeline array.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656
39

15. The apparatus according to claim 13 wherein the nth element of the first
pipeline array and the mth element of the second pipeline array are in electrical
communication via a hardware connection, such that data having been provided to the
first processing element of the first pipeline array and propagated to the nth
processing element thereof'is further propagated to the mth processing element of the

second pipeline array for additional processing therein.

16. The apparatus according to claim 15 wherein the first predetermined number
of processing elements, n, and the second predetermined number of processing
elements, m are a same predetermined number of processing elements and wherein, in
use, the delay to the nth element and to the mth element is approximately equal such
that a tail-to-head data transfer between the nth element of the first pipeline array and

the mth element of the second pipeline array is substantially time-synchronized.

17. The apparatus according to claim 13 wherein at least a processing element of
the second pipeline array is in electrical communication with the memory buffer via a
second hardware connection, the at least a processing element of the second pipeline

array being time-synchronized to the memory buffer for retrieving data therefrom.

18. The apparatus according to claim 17 wherein the at least a processing element

of the second pipeline array is a first processing element of the second pipeline array.

19.. The apparatus according to claim 17 wherein the nth element of the first
pipeline array and the mth element of the second pipeline array are in electrical
communication via a hardware connection, such that data having been provided to the
first processing element of the first pipeline array and propagated to the nth
processing element thereof is further propagated to the mth processing element of the

second pipeline array for additional processing therein.

20. The apparatus according to claim 17 comprising a third pipeline array having a

third predetermined number of processing elements, g.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656
40

~21. The apparatus according to claim 20 wherein at least a processing element of

the third pipeline array is in electrical communication with the memory buffer via a
third hardware connection, the at least a processing element of the second pipeline

array being time-synchronized to the memory buffer for retrieving data therefrom.

22. The apparatus according to claim 21 wherein the at least a processing element

of the third pipeline array is a first processing element of the third pipeline array.

23. The apparatus according to claim 21 wherein the nth element of the first
pipeline array and the mth element of the second pipeline array are in electrical
communication via a first hardware connection, and the first element of the second
pipeline array and the first element of the third array are in electrical communication
via a second hardware connection, such that that a tail-to-head data transfer between
the nth element of the first pipeline array and the mth element of the second pipeline
array is substantially time-synchronized and such that a head-to-tail data transfer
between the first element of the second pipeline array and the first element of the third

pipeline array is substantially time-synchronized.

24. The apparatus according to claim 12 comprising a third pipeline array having a

third predetermined number of processing elements, .

25. The apparatus according to claim 24 wherein the nth element of the first
pipeline array and the mth element of the second pipeline array are in electrical
communication via a first hardware connection, and the first element of the second
pipeline array and the first element of the third array are in electrical communication

via a second hardware connection.
26. A switchable processing element comprising:

a first port for receiving a first clock signal;

a second port for receiving a second other clock signal;

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656
41

a switch operable between two modes for selecting one of the first clock signal
and the second other clock signal; and
wherein the selected one of the first clock signal and the second other clock

signal is provided to the processing element.

27. A method for processing data comprising the steps of: ‘

(@) providing a pipeline processor including a plurality of individual
processing elements arranged in a serial array such that a first processing element
precedes a second processing element which precedes an nth processing element;

(b) providing a clock signal to each processing element of the plurality of
individual processing elements in the serial array such that the clock signal arrives at
each individual processing element beyond the first processing element delayed
relative to the clock signal arriving at a preceding processing element;

(¢) providing data to the first processing element for processing therein;
and,

(d) propagating the data to at least a next processing element for additional
processing therein,

wherein the clock signal provided to an element in the plurality of
individual processing elements is delayed relative to the clock signal provided to
another element of the plurality of individual processing elements by a substantial

amount relative to the clock period.

28. A method according to claim 27 wherein a time equal to an exact number of
clock cycles, n, where n>0 from when the data is provided to the first processing

element to when the data is propagated to the at least a next processing element is

~ insufficient for providing accurate output data from the first processing element but

wherein the same time with the additional delay is sufficient and wherein new data to |
be processed is provided to the first processing element after the exact number of

clock cycles, n.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656
42

29. + The method according to claim 27 wherein the at least a next processing
element propagates data in a second other processing direction away from the first

processing element for additional processing therein.

30. The method according to claim 29 wherein the step of providing data
comprises the steps of:

synchronizing the first processing element to an external circuit, the external
circuit for receiving the data for processing by the first processing element from an
external source; and,

reading the data for processing by the first processing element from the

external circuit.

31. The method according to claim 30 wherein the external circuit is a memory

buffer for receiving the data for processing by the first processing element.

32. The method according to claim 29 wherein one of the first and second

direction requires a shorter processing time relative to the other.

33. The method according to claim 32 wherein the clock signal is distributed

independently to each processing element.

34. The method according to claim 33 wherein the exact number of clock cycles,

k, is one clock cycle.

35. The method according to claim 33 wherein the delay between any two

adjacent elements is approximately a same delay.
36. The method according to claim 33 wherein the delay plus the exact number of

clock cycles is a longer period of time than the processing time in the direction of

delay.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 02/091148 PCT/CA02/00656
43

37. The method according to claim 36 wherein the exact number of clock cycles
minus the delay is a longer period of time than the processing time in the direction
other than the direction of delay but a shorter period of time than the processing time

in the direction of the delay.

'38. The method according to claim 37 wherein the clock cycle is at least an

average of the processing times in each direction.

39. The method according to claim 32 wherein the clock signal is gated from a
preceding processing element to a next processing element, each processing element

having therein circuitry for causing a known delay in the clock signal.

40. The method according to claim 32 wherein the data is provided for encryption

to the pipeline processor.

41. A method for processing data within a pipeline processor comprising the steps

of:

(@) providing a clock signal in a first direction along a first portion of the
pipeline processor having a number, n, processing elements such that the clock signal
arrives at each individual processing element beyond the first processing element of
the first portion delayed relative to the clock signal arriving at a preceding processing
element of the same first portion;

(b) providing a clock signal in a second substantially dpposite direction
along a secbnd other portion of the pipeline processor having a same number, n,
processing elements such that the clock signal arrives at each individual processing
element beyond the first processing element of the second other portion delayed
relative to the clock signal arriving at a preceding processing element of the same
second other portion;

(c) providing data to the first processing element of the first portion of the
pipeline processor for processing therein;

wherein the delay to the last processing element of the first portion is

an approximately same delay as the delay to the last processing element of the second

SUBSTITUTE SHEET (RULE 26)

10

15

20

WO 02/091148 PCT/CA02/00656
44

portion, such that at center of the pipeline processor the two adjacent processing

elements are in synchronization.

42. The method according to claim 41 wherein the data is provided for encryption

by the pipeline processor.

43. A macro for use in layout of an apparatus for processing data comprising:

a plurality of individual processing elements arranged serially and having a
clock input conductor and a clock output conductor, the clock input conductor in
communication with a clock conductor having increased length from the clock input
conductor to each subsequent element within the within the plurality of individual
processing elements and wherein the clock conductor has decreased length ﬁ01n the
clock output conductor to each subsequent element within the within the plurality of
individual processing elements,

wherein the clock input conductor and output conductor are arranged
such that adjacently placed macros form space efficient blocks within a layout and
such that the input clock conductor of one macro and the out clock conductor of an
adjacent macro when coupled have approximately a same conductor path length as the
conductor path length between adjacent elements within a same macro when the

.macros are disposed in a predetermined space efficient placement.

SUBSTITUTE SHEET (RULE 26)

WO 02/091148 PCT/CA02/00656

117

4b

ol g

43 __,__._____fL'_,g[

Figure 1 3

10

Figure 2

WO 02/091148 PCT/CA02/00656

2117
A B C D E F G H I J K L
» | 1
> |2
» |3
» | 4
=5“

Time —

Figure 3

317

A BCDE F GH | J KL

A A
(L
. |+ 1
\\\\ \\\\\\\\\\\\\\\\
\\\\\ .
\\\ \.\\\\\\\\\\\\\\.\ | _L—
| —
\\\\\ \\.\\\\\\\\\\\\
I
L —
\\\\\\.\\ \\\J\\\\\\\\\\
e
Y
S I—

Time —

Figuré 4

WO 02/091148 PCT/CA02/00656

102 " 104"

Figure 5

-

Ga\

I

4a '_ﬂ e

A=
.

Figure 6 3

WO 02/091148

< LR

PCT/CA02/00656

517

11a

11b

\ 13

| Figure 7

WO 02/091148 PCT/CA02/00656

6/17

85 ~
86
81 f)//
—

A 4
v

o

v

i \ 82
84 —
83

Figure 8a
85

/
- s

87—

|——86

aN

<
hal

Z]

) 2/,: \\ 82

83

87—

Figure 8b

PCT/CA02/00656

WO 02/091148

M7

2 el el e i

sl e e e
LA I s A

R M e e e

afalulal=lululs

— ot e e b o e fo— — — — —

h

L L5h GG A

(o)}

Figure 9

PCT/CA02/00656

WO 02/091148

8/17

0} @Inbi4

¢ bay's
_ + —
MO 0°S b :Fﬁ
o Auen _.F nt |
U jinsey - n boy's
i ¢ |+n
“«— — o H 5
O Wnsed n| 5 | n| X
[0} =
e
uj Auen b
1
no-e b z [|
[0} n-
-
< I I el
u-rerTb z| %
[
o jonuod ¢l o
o)
1 ()
! b4
- Ha O e 3
ujonuoy o | £ 2
O
@)

PCT/CA02/00656

WO 02/091148

917

L1 @b

\

)

2 L-(njw) spun

g

)

0 un 1 3N —— ((nyw) yun)
SoJ_mwlmw_lSoJ_:wmm Ul Insayl«—INO }nsey U] }InsoY<----<{INQ }nsey
—0 0 S u o S«———IN0 0'S u o g« "*pIN0 0 S
_||v_c_-_lc N0 Auegl—»{ul Aiep Ino-Aueg>>ul Aued
ue — I E no-re i b——u-H e9b no-Te bl eTb
ur o bclodlv Ul joauon INQ [oUOD——lu|TjonuoD INQ [0AU0D> T P(Ul joJuo)
____u'g ui D __u'g u'i D Ul g)
A A A H ;ﬁ
Ul ppo I . sng ppo N
Ul usna |\ . sng usaAa N
Ul ppo g | sng_ppo_g :
U uena g shg uane g

PCT/CA02/00656

WO 02/091148

10/17

Zl 8inbi4

oSy
T NV n_m@ 4 T NV %@
. A A T A A
7 ! hllgee)
N0 HNsaY
ald
Y _] » U] [0QU0D
" o ue o (njw)Tsun
hq } g
n > U uers g
1 A O _ -
0 U pPo A
nz- 3N.—r\v - > _Ul_uons |y)
ujdxg Yl 281d U urx

WO 02/091148

PCT/CA02/00656

1117
u-bit- 1
Register '
»D_load 4 4 I
’ Q_OutH » SEL
|—IClk_En
»»Clock
Shift-
m/u x uDP RAM Register
Data_In Y | - o-load
1 » DI DPO »ld_enable | {.|pata Out
Clock »A QOout—> ~
> DPRA > Clock
Status »WR_EN :
—}» »\WR CLK =
3 | Status- _ i t‘
Decoder L_20:(U)
'l } Iog;(m/u)
| T¥log(m/u) 1+log,(m)
Write- CReacti-
— e
S-R-FF Counter ounter Terminal_Count
R term_cnt Hr term_cnt g
>CLK QOut ok En |
»S Q_out L ook
- >bClock 1p Clock

Figure 13

PCT/CA02/00656

WO 02/091148

12117

7] @Inbi4 =1
9
o 00[D (e %0010 e
ug N« ug Mo [«
ol _ r. |
L] 1am— i
(0} o O 110 O —|Jopoos(¢
q=e dle i Jajunon 18)UNon T smmis _
“ XN 14 snjej
ajeuIwls) B« peSY SIIAN N T S
4 —
ol e o010
| 30010 ¢
v 1 N0 O
0= MO MM [« Uz M0 le
NI S |« Ul O«
MO0 (< Ia)sibay
< U9-0l 4
< [lino © Ve ol
I | 2 a|qeus pile
peo "l ' 0da Qe | —
) ! 9l uj"eleq
U3 NI}« 9l
Is)sibey NV 91 X ¥9
-WIYS-199}

PCT/CA02/00656

WO 02/091148

1317

Gl @inbi4

JUNoY jeululIs]

-

<

(nz/w)*boj
sng ueng ¢

-« |

wsuml_u_oowm_ 300[D M_O.‘

N0 0
no ugo
ur g
lo)sibay

39-n

plelelloR
CERfo sle
o wie . Nrelel[g¥% P shieis
oo o 0O Y«
12lunoy 44574
L | #g-(nz/w)°Boj
%0010
MO HM
NI HMje
%00]0 4«
o o _ Vie
ng U3 N[Ole _
ul-a——odda = RA—
J9)s1foy ne nz
1g-ng WYY N X ¢

WO 02/091148 PCT/CA02/00656

14/17
B_In M_In |S_In)
l‘* oxo] |2 3
’ 33 S le——
Mux_B 4 4| 38 '5| Control_In
1 T T - O o
‘Vu @ 3] -
B_Reg 4 | Control_Out
v A 4 'QJ
N k. S — =
B_Adder 4 r 2 _
N5 bit Reg / 4
B_Chrry_Out . 2 . a_I-Out
) 1! - - i o[
D in D in o) q_i-In
| Adlet] ~ Adl« Cly4
4 B-RAM M-RAM : Pt
i 16x14 bit 16x14 bit 1 q_-
D_out D_out B carry_in
43 4y carry_0 -
~_ 7 ol2,
KB_I\NflAdd]
+M-Adaer“ < | Carry_In
— carry 1 |[® V-
SN
S+B+M-Adder Py
= |3
6% gL s 4
y » Ic—l- t >
S_Re & 0| Result_Out
Camyout 2, e r o] |&| "o
: |
\ Result_In
] L 4’ >
S Out

Figure 16

PCT/CA02/00656

15/17

/1 2inbi

INO INSSY «———

WO 02/091148

INO'S <
uj joJuon
un-l e
u-i b —
e L+W SHUN
(own ||l LN 1 (Z nn N T (W s)
_ _ 4— _ _ - <+ _
_ | [HINO_lnsayY Ul)insaY | 1IN0 _)NsaY Ul JInsey |, JiN0 _nssy
Ul SN0 S _ups| o s A up s o s
IO Aueollu Aues ino Auen [Plui Auen o Auen [ur Auen
no Aueo gPPlu Auen g ino Aueo g ul Auen g
>ul- b NO- b—>ul-t b INO-I b ul-b o~ b> " ul b
—»\uj- e IO e ul-l e O~ e PAUl-l € O~ > U- e
»U[[0JIUOD INQO [OJUOD | U[[0JJUOD INQ |0JIU0D U] [0J3UC) INO [0UOY [»----- U] {0JJUCD
L c__r_>_ J L u g u N IR up g EH_>_) ek)
Ul usne |\) SNg usne N
ul_ppo I ! Sng pPPO W |
ur uene g | SNg uens g
ul ppo g SNg pPpo ¢

PCT/CA02/00656

WO 02/091148

16/17

gl ainbi

—

Z NVd dd

y
pas
=

EI
N

Jaunoo b

A 4

7

d NV dd

Jajunon e

A

NvY dx3 4

m

L{InO soy

INQ jnsey

»uj ' b

uj dx3g

aulyoew
olels

NV 99id

~

\ 4

u|” jonuon

uyre

A

ul ppo g

)y

u| oaid

ur

M_REG

14

A 4

Ul usne g

——uj ppo I\

Iy

> U] Usna |\
\—

0 Z+W syun

PCT/CA02/00656

WO 02/091148

17117

61 inbi

N4

' ul ejeq

= Moo S
N <
MO M00|D et
) (wyBol| U MO
44-4-S —{I0 O
< JUD Wi}
unoy jeulus] —
A0 _HM [« Jsuno)
NI UM [« -peay
vdda
'
v }00]D e
195 1 oda 10 |« (WyBo| U NI
nooea | XN Y et
InQ ejedg . NYY da ¥ X W 4.. JUO Wis}
i=)1Fglelg)
-8}
YO0[Dde- }00[D4« |
ug YO« ug MO«
N0 O N0 O
ul Qe ur Qe
O3y H9-H O3 Ha-¥

J901D

Jepooeq| z
-smeis [dhes

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

