Abstract: A method includes accepting a definition of a type of multi-unit memory device (28) including a set of memory units (24), each having a respective nominal storage capacity, the definition specifying a target memory size of the memory device such that a sum of nominal storage capacities of the memory units in the set is equal to the target memory size. A plurality of the memory units is accepted. The memory units have respective actual storage capacities, at least some of which differ from the respective nominal storage capacity. Multi-unit memory devices including respective sets of the memory units are assembled, such that at least one of the sets includes at least a first memory unit having a first actual capacity that is less than the respective nominal capacity and at least a second memory unit having a second actual capacity that is greater than the nominal capacity.
OPTIMIZED SELECTION OF MEMORY UNITS IN MULTI-UNIT MEMORY DEVICES

FIELD OF THE INVENTION

The present invention relates generally to memory devices, and particularly to memory devices that include multiple memory units.

BACKGROUND OF THE INVENTION

Some memory devices and products are fabricated from multiple memory units. For example, some memory devices are fabricated by assembling multiple memory dies in a Multi-Chip Package (MCP). Solid State Disks (SSDs), media players and other products sometimes comprise multiple memory units. Hard Disk Drives (HDDs) sometimes comprise multiple individual magnetic disks.

The storage capacities of individual memory units in a given device may differ from one unit to another. For example, U.S. Patent 6,363,008, whose disclosure is incorporated herein by reference, describes a multiple-bit-per-cell memory, which includes multiple memory arrays. The number of bits stored per cell is set separately for each of the memory arrays. Memory arrays that testing proves are accurate when writing, storing, and reading a larger number of bits per cell are set to store more bits per cell, and memory arrays that cannot accurately write, store, or read as many bits per cell are set to store fewer bits per cell.

PCT International Publication WO 2007/132456, whose disclosure is incorporated herein by reference, describes a method for data storage in a memory that includes a plurality of analog memory cells. The method includes estimating respective achievable storage capacities of the analog memory cells. The memory cells are then assigned respective storage configurations defining quantities of data to be stored in the memory cells based on the estimated achievable capacities. The data is stored in the memory cells in accordance with the respective assigned storage configurations. The achievable storage capacities of the analog memory cells are re-estimated after the memory has been installed in a host system and used for storing the data in the host system. The storage configurations are modified responsively to the re-estimated achievable capacities.

SUMMARY OF THE INVENTION

An embodiment of the present invention provides a method, including:

accepting a definition of a type of multi-unit memory device that includes a set of memory units, each having a respective nominal storage capacity, the definition specifying a target memory size of the multi-unit memory device such that a sum of nominal storage capacities of the memory units in the set is equal to the target memory size;
accepting a plurality of the memory units having respective actual storage capacities, at least some of which differ from the respective nominal storage capacity; and

assembling multi-unit memory devices including respective sets of the memory units in accordance with the definition, such that at least one of the sets includes at least a first memory unit having a first actual storage capacity that is less than the respective nominal storage capacity and at least a second memory unit having a second actual storage capacity that is greater than the nominal storage capacity.

In some embodiments, assembling the multi-unit memory devices includes accepting capacity indications, which are indicative of the respective actual storage capacities of the memory units, and selecting the sets of the memory units responsively to the capacity indications. Additionally or alternatively, assembling the multi-unit memory devices includes selecting the sets of the memory units such that the actual storage capacities of the memory units in each of the sets meet a predefined criterion. In an embodiment, the criterion specifies that a sum of the actual storage capacities of the memory units in any of the sets is no less than the target memory size. In another embodiment, the criterion specifies that a sum of the actual storage capacities of the memory units in any of the sets does not exceed the target memory size by more than a predefined value.

In a disclosed embodiment, selecting the sets includes selecting a given set by assigning to the given set a given memory unit, which has a largest actual storage capacity among the memory units that have not yet been assigned to any of the sets, and further assigning to the set an additional memory unit, which has a smallest actual storage capacity among the memory units that have not yet been assigned to any of the sets and such that a sum of the actual storage capacities of the memory units in the given set, including the given memory unit and the additional memory unit, meet the predefined criterion. In another embodiment, selecting the sets includes storing in at least some of the memory units information indicating an affiliation of the memory units with the sets, and assembling the multi-unit memory devices includes retrieving the information from the memory units and assembling the memory devices from the respective sets responsively to the retrieved information.

In yet another embodiment, the memory units include at least one unit type selected from a group of types consisting of unpackaged memory dies, packaged memory Integrated Circuits (ICs) and magnetic disks. In some embodiments, the memory units include the unpackaged memory dies, and the multi-unit memory device includes a Multi-Chip Package (MCP). In an embodiment, the definition further specifies a number of the memory units in the
multi-unit memory device, the first actual storage capacity is less than the target memory size divided by the specified number of the memory units by no more than 20%, and the second actual storage capacity is greater than the target memory size divided by the specified number of the memory units, such that a sum of the actual storage capacities of the memory units in the at least one of the sets is no less than the target memory size.

There is additionally provided, in accordance with an embodiment of the present invention, a method, including:

accepting a definition of a type of multi-unit memory device that includes a set of memory units, each having a respective nominal performance level, the definition specifying a target performance level of the multi-unit memory device;

accepting a plurality of the memory units having respective actual performance levels, at least some of which differ from the respective nominal performance levels; and

assembling multi-unit memory devices including respective sets of the memory units in accordance with the definition, such that at least one of the sets includes at least a first memory unit having a first actual performance level that is less than the respective nominal-performance level and at least a second memory unit having a second actual performance level that is greater than the nominal performance level, so as to cause the multi-unit memory devices to meet the target performance level.

In an embodiment, the target performance level, the nominal performance levels and the actual performance levels include, respectively, a target power consumption of the multi-unit memory device, nominal power consumptions of the respective memory units and actual power consumptions of the respective memory units. In another embodiment, the target performance level, the nominal performance levels and the actual performance levels include, respectively, a target programming speed of the multi-unit memory device, nominal programming speeds of the respective memory units and actual programming speeds of the respective memory units. In yet another embodiment, the target performance level, the nominal performance levels and the actual performance levels include, respectively, a target reading speed of the multi-unit memory device, nominal reading speeds of the respective memory units and actual reading speeds of the respective memory units.

There is also provided, in accordance with an embodiment of the present invention, apparatus, including:

an interface, which is operative to accept a definition of a type of multi-unit memory device that includes a set of memory units, each having a respective nominal storage capacity, the definition specifying a target memory size of the multi-unit memory device such that a
sum of nominal storage capacities of the memory units in the set is equal to the target memory size; and

a selection/assembly system, which is coupled to accept a plurality of the memory units having respective actual storage capacities, at least some of which differ from the respective nominal storage capacity, and to assemble multi-unit memory devices including respective sets of the memory units in accordance with the definition, such that at least one of the sets includes at least a first memory unit having a first actual storage capacity that is less than the respective nominal storage capacity and at least a second memory unit having a second actual storage capacity that is greater than the nominal storage capacity.

In an embodiment, the selection/assembly system includes:

a selection subsystem, which is coupled to select the sets and to store in at least some of the memory units information indicating an affiliation of the memory units with the sets; and

an assembly subsystem, which is coupled to retrieve the information from the memory units and to assemble the memory devices from the respective sets responsively to the retrieved information.

There is further provided, in accordance with an embodiment of the present invention, apparatus, including:

an interface, which is operative to accept a definition of a type of multi-unit memory device that includes a set of memory units, each having a respective nominal performance level, the definition specifying a target performance level of the multi-unit memory device; and

a selection/assembly system, which is coupled to accept a plurality of the memory units having respective actual performance levels, at least some of which differ from the respective nominal performance levels, and to assemble multi-unit memory devices including respective sets of the memory units in accordance with the definition, such that at least one of the sets includes at least a first memory unit having a first actual performance level that is less than the respective nominal performance level and at least a second memory unit having a second actual performance level that is greater than the nominal performance level, so as to cause the multi-unit memory devices to meet the target performance level.

There is additionally provided, in accordance with an embodiment of the present invention, a memory device, which has a target storage capacity and includes multiple memory units having respective nominal storage capacities and actual storage capacities, wherein one or more of the actual storage capacities are lower than the respective nominal
storage capacities and one or more other actual storage capacities are higher than the respective nominal storage capacities, such that a sum of the actual storage capacities of the multiple memory units is no less than the target storage capacity.

There is also provided, in accordance with an embodiment of the present invention, a memory device, which has a target performance level and includes multiple memory units having respective nominal performance levels and actual performance levels, wherein one or more of the actual performance levels are lower than the respective nominal performance levels and one or more other actual performance levels are higher than the respective nominal performance levels, such that a composite performance level of the memory device meets the target performance level.

There is further provided, in accordance with an embodiment of the present invention, a memory device, which includes a specified number of memory units and has a target memory size, wherein at least one of the memory units has a first actual capacity that is less than the target memory size divided by the specified number of memory units by no more than 20%, and wherein at least one other of the memory units has a second actual capacity that is greater than the target memory size divided by the specified number of units, such that a sum of the actual capacities of the memory units is no less than the target memory size.

The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram that schematically illustrates a system for manufacturing memory devices from multiple memory units, in accordance with an embodiment of the present invention;

Fig. 2 is a diagram that schematically illustrates a memory device from multiple memory units, in accordance with an embodiment of the present invention; and

Fig. 3 is a flow chart that schematically illustrates a method for manufacturing memory devices from multiple memory units, in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

OVERVIEW

Memory devices are sometimes constructed from multiple memory units. For example, an 8 GB memory device may be constructed from four 2 GB memory units. Typically, a memory device has a certain target storage capacity, the memory units have respective
nominal storage capacities, and the sum of nominal storage capacities of the memory units in any given memory device is equal to the target capacity of the device.

In many practical cases, however, the actual storage capacity of the memory units deviates from the nominal capacity due to manufacturing defects, process variations or other factors. Because of these statistical variations, the sum of the actual unit capacities in some memory devices may not reach the target capacity of the device. In other devices, the sum of the actual capacities may exceed the target capacity significantly, thus wasting memory resources.

Some known solutions reduce the likelihood of falling short of the target device capacity by designing the individual memory units with sufficient capacity margin. This margin, which usually remains unused in most of the memory devices, unnecessarily increases the cost and size of the memory units. In other known schemes, memory units whose actual capacities fall below the nominal capacity are discarded or downgraded (e.g., a 2 GB unit is classified as a 1 GB unit), thereby reducing yield and increasing manufacturing costs.

Embodiments of the present invention that are described herein provide improved methods and systems for producing memory devices from multiple memory units. The methods and systems described herein measure the actual capacities of the memory units, and automatically select sets of memory units from which the memory devices are to be assembled. The selection of memory units is based on their actual capacities, so that the total capacity of the units in any given memory device will meet or exceed the target capacity of the device.

Typically, a memory unit whose actual capacity is low is grouped in the same set with another unit whose actual storage capacity is higher than the nominal capacity. In some embodiments, the selection process takes into account additional criteria, such as avoiding situations in which the sum of actual capacities exceeds the target device capacity by a large amount.

When using the disclosed methods and systems, memory units having relatively low actual capacities are still usable and need not be discarded or downgraded. Since the disclosed methods can tolerate a certain number of low-capacity memory units, the memory units can be designed with little or no capacity margins. Memory units having relatively high actual capacities are grouped with low-capacity units, so that the overall amount of wasted memory is reduced considerably. In summary, the disclosed techniques provide considerable cost reduction and yield improvement in memory device manufacturing processes.
Although the embodiments described herein mainly refer to selection of sets of memory units having varying storage capacities, the principles of the present invention can also be used for assembling memory devices from memory units that differ from one another in various other performance levels, and in which the overall performance level of the memory device depends on the individual actual performance levels of its memory units. Such performance levels may comprise, for example, power consumption, programming speed or reading speed.

SYSTEM DESCRIPTION

Fig. 1 is a block diagram that schematically illustrates a system 20 for manufacturing memory devices 28, in accordance with an embodiment of the present invention. Each memory device 28 comprises multiple memory units 24. Such a configuration may be used, for example, in order to reach total storage capacities that are not achievable or expensive using a single memory unit, or for various other reasons.

Memory devices 28 may comprise any suitable device comprising multiple memory units, such as, for example, Multi-Chip Packages (MCPs), each comprising multiple memory dies. Alternatively, device 28 may comprise a Solid State Disk (SSD), a removable storage module, a Multi-Media Card (MMC) or Embedded MMC (eMMC), a Secure Digital (SD) memory card, a media player (e.g., MP3 or MP4 player), a digital camera, a mobile phone or other communication terminal, a mobile computing device or any other product, which comprises multiple packaged or unpackaged memory Integrated Circuits (ICs). Further alternatively, device 28 may comprise a Hard Disk Drive (HDD), which comprises multiple individual disks, or a hybrid HDD-SSD comprising one or more disks and one or more memory dies. Device 28 may comprise any desired number of memory units 24, which may be of the same type or of different types.

Memory units 24 may comprise any suitable type of memory, volatile or non-volatile, digital or analog, such as NAND, NOR and Charge Trap Flash (CTF) Flash cells, Phase Change Memory (PCM), Nitride Read Only Memory (NROM), Ferroelectric Random Access Memory (FRAM), Magnetic RAM (MRAM), Static RAM (SRAM) and Dynamic RAM (DRAM) cells. Device 28 may comprise any desired number of units 24.

Each memory device 28 has a predefined target storage capacity, i.e., a specified amount of data that the device is expected to store. Similarly, each individual memory unit 24 has a specified storage capacity, i.e., an amount of data that the unit is specified to store. (The terms "specified capacity" and "nominal capacity," with regard to the individual memory
units, are used interchangeably herein.) The sum of storage capacities of memory units 24 in a
given memory device 28 is thus expected to meet or exceed the target storage capacity of the
memory device, in order for device 28 to meet its specification. For example, an 8 GB
memory device may be fabricated using four 2 GB memory units. Units 24 in a given device
28 may sometimes have different specified capacities, e.g., an 8 GB device may be
constructed from one 4 GB unit and two 2 GB units.

In many practical cases, however, the actual storage capacities of units 24 are
distributed statistically and thus vary from one unit to another. For example, some of the
memory cells in a given memory unit may fail because of manufacturing defects or for any
other reason. As a result, the actual storage capacities of some memory units may fall below
their specified storage capacities. In such a case, the sum of the storage capacities of units 24
in a given device 28 may fall below the target capacity of the device.

Embodiments of the present invention that are described herein provide methods and
systems for producing memory devices from multiple memory units. The methods and
systems described herein automatically select sets of memory units 24 based on their actual
capacities, so that the total capacity of the units in a given memory device will meet or exceed
the target capacity of the device. Typically, units 24 whose actual capacity is low are grouped
in the same set with other units 24 whose actual storage capacity is higher than the specified
capacity. When a memory device is fabricated using such a set of memory units, the target
capacity of the memory device is met.

The description that follows refers to selection of unpackaged memory dies in a
production/assembly line of a MCP memory product. In this embodiment, memory units 24
comprise memory dies on a semiconductor wafer. This embodiment, however, is presented
purely by way of example. In alternative embodiments, the methods and systems described
herein can be used with various other sorts of memory devices and memory units, and at
various stages of the manufacturing process.

System 20 comprises a production line tester 32, which applies various tests to
memory units 24. In particular, tester 32 comprises a capacity measurement unit 36, which
measures the actual storage capacities of the different dies (memory units) on the wafer. The
capacity measurement unit produces capacity indications, which are indicative of the actual
storage capacities of the memory units. The capacity indications may comprise, for example,
measured or estimated values of the memory unit capacities, a classification of the unit
capacities into classes (e.g., "low capacity," "standard capacity" and "average capacity"),
Boolean flags indicating whether or not the measured capacities meet a certain threshold
value, or any other suitable kind of indication. Tester 32 may output the capacity indications over a suitable interface or store them in a suitable data structure. Alternatively, the capacity indication of each memory unit can be stored by tester 32 in one or more memory cells of the unit in question. This technique is applicable when the memory units comprise non-volatile memory, such as Flash memories.

System 20 comprises a selection subsystem 40, which selects sets of units 24 for fabricating memory devices 28. Subsystem 40 selects the sets based on the actual storage capacities of units 24, as represented by the capacity indications provided by tester 32. (Subsystem 40 may receive the capacity indications from tester 32. Alternatively, when tester 32 stores the capacity indications in units 24, subsystem 40 retrieves the indications from the memory units.)

The sets are selected so that the sum of actual storage capacities of units 24 in a given device 28 will not fall below the target capacity of the device. The selection criteria may also take into account other constraints, as will be described below. Typically, a given set of units 24 that is selected by subsystem 40 comprises at least one unit whose actual storage capacity is lower than its specified storage capacity, and at least one unit 24 whose actual storage capacity is higher than its specified storage capacity.

Thus, units 24 whose actual storage capacity falls below the specified capacity need not be discarded or downgraded, and can still be used to fabricate devices 28. The lower storage capacity of these units is compensated for by matching them with other units 24, whose actual storage capacity is higher than the specified storage capacity.

Subsystem 40 comprises an input interface 44 for receiving the capacity indications, a selection processor 48 for carrying out the selection methods described herein, and an output interface 52 for reporting the selected sets of memory units. Typically, processor 48 comprises a general-purpose computer, which is programmed in software to carry out the functions described herein. The software may be downloaded to the computer in electronic form, over a network, for example, or it may, alternatively or additionally, be provided and/or stored on tangible media, such as magnetic, optical, or electronic memory.

In some embodiments, processor 48 outputs, via interface 52, selection instructions that indicate which of units 24 are to be grouped together in order to fabricate devices 28. The selection instructions (or other indication of the sets of units 24 selected by subsystem 40) are provided to an assembly station 56. The assembly station assembles each memory device 28 from one of the sets of units 24 indicated by subsystem 40. (In some embodiments, the assembly station assembles devices 28 from packaged memory units. The packaging process,
as well as other parts of the manufacturing/assembly process that are not essential for demonstrating the disclosed methods, is omitted from this description for the sake of clarity.)

In Fig. 1, the selection instructions are sent from the selection subsystem to the assembly station over a suitable interface. Alternatively, e.g., when the memory units comprise non-volatile memory, the selection instructions can be stored in the memory units and retrieved by the assembly station. For example, the selection subsystem may store in each unit 24 an identifier, which indicates the set to which the unit belongs. The assembly station can then read the identifiers from units 24 and assemble each device 28 from units 24 having matching identifiers.

CONSTRUCTING MEMORY DEVICES FROM MULTIPLE MEMORY UNITS HAVING DIFFERENT ACTUAL CAPACITIES

The actual storage capacities of memory units 24 are typically distributed statistically over a certain range. The storage capacity may vary from one memory unit to another because of, for example, manufacturing defects that cause some of the memory cells to be defective, high levels of distortion in some of the memory cells, or any other reason. For example, for memory units whose specified capacity is 2 GB, the actual capacities may be distributed between 1.8 and 2.2 GB. Consider, for example, a memory device that is specified as a 4 GB device, and which is constructed from two memory units whose specified capacity is 2 GB.

If memory units 24 are paired arbitrarily, there is a high likelihood that the sum of two actual capacities will fall below the 4 GB target capacity. In such a case, device 28 will not reach its target capacity. There is also high likelihood that the sum of actual unit capacities with be much higher than the target capacity of the device, thus unnecessarily wasting memory resources. On the other hand, when units 24 are selected and grouped based on their actual capacities, the above-mentioned undesirable situations can be avoided.

Typically, selection processor 48 accepts a definition of the type of memory device 28, i.e., a definition that specifies the number of individual memory units 24 that are used for assembling each device 28, and the respective nominal (specified) capacities of these units. Based on this definition, selection processor 48 may apply various selection criteria to the capacity indications in order to properly select sets of memory units. Typically, the sets are selected so that the sum of actual capacities in any device 28 meets or exceeds the target capacity of the device. In addition, processor 48 may attempt to minimize excess memory, i.e., to avoid situations in which the sum of actual capacities is considerably larger than the target capacity of the device. Excess memory is usually caused by memory units whose actual
capacities are considerably larger than the specified capacity. Often, such units are better utilized by matching them with units whose actual capacity is especially low. Thus, in some embodiments, processor 48 selects the sets of memory units such that the sum of actual capacities in any given set does not exceed the target device capacity by more than a predefined value.

Consider a memory device comprising two memory units. In an example selection process, processor 48 sorts a given collection of memory units according to their actual capacities. Then, the processor runs an iterative selection process. In a given iteration, the processor selects the highest-capacity unit that was not yet selected. The processor pairs this unit with the lowest-capacity unit that has not yet been selected, and which still enables the sum of actual capacities of the two units to meet the target capacity of the device (and/or meet any other suitable criterion). Alternatively, any other suitable selection process or criteria can be used.

As noted above, the memory unit storage capacities may vary because of manufacturing defects or high distortion levels (which may be mitigated, for example, by using low-rate error correction codes or by reducing the number of programming levels assigned to the distorted cells, possibly after a certain number of programming and erasure cycles).

Fig. 2 is a diagram that schematically illustrates a memory device 57 comprising four memory units 58A...58D, which was fabricated using the disclosed methods, in accordance with an embodiment of the present invention. In this example, the target capacity of device 57 is 8 GB, and the specified capacity of units 58A...58D is 2 GB. In the specific device shown in Fig. 2, however, the actual capacities of the memory units deviate from their specified capacities. The actual capacities of units 58B and 58C is 2 GB. The actual capacity of unit 58A, however, is only 1.85 GB, smaller than the specified capacity. In order to compensate for this smaller capacity, the fourth memory unit of this device, unit 58D, has an actual capacity of 2.2 GB, higher than the specified capacity. The four memory units were selected so that the sum of their actual capacities (8.05 GB) meets or slightly exceeds the 8 GB target capacity of device 57.

Note that the features of the disclosed methods and systems can be formulated irrespective of any nominal storage capacity of the individual memory units. In some embodiments of the present invention, memory device 57 has a target memory size and a pre-specified number of memory units. At least one of the memory units in device 57 has an actual capacity that is lower than the target memory size divided by the specified number of memory units.
units (usually by no more than 20%). At least one other memory unit in the device has an actual storage capacity that is higher than the target memory size divided by the specified number of memory units. The memory units are selected so that the total sum of actual storage capacities is no less than the target memory size of the device.

Fig. 3 is a flow chart that schematically illustrates a method for manufacturing memory devices from multiple memory units, in accordance with an embodiment of the present invention. The method begins with capacity measurement unit 36 measuring the actual capacities of memory units 24, at a capacity measurement step 60. Unit 36 produces capacity indications corresponding to the different units, and provides the indications to selection processor 48 (either directly or by storing them in units 24).

Selection processor 48 selects, based on the capacity indications, sets of units 24 from which to construct devices 28 at a selection step 64. Processor 48 may apply any suitable rules or criteria to the capacities in order to select the sets of units, such as the criteria described above. Processor 48 issues selection instructions, which are provided to assembly station 56.

The assembly station constructs memory devices 28 from the sets of units 24 selected by processor 48, at an assembly step 68. Since memory units 24 in each device 28 are selected based on their actual capacities, devices 28 are able to meet their specified target capacities without unnecessary waste of memory resources. The number of units 24 that are discarded or downgraded because of low actual capacity is minimized.

When storing data in memory devices constructed from units having different capacities, the data storage and retrieval scheme should often take into account the different capacities of the different units. Some aspects of storing data in memory units having different capacities are described in PCT International Publication WO 2007/132456, cited above. Alternatively, any other suitable scheme can be used.

The embodiments described herein mainly address a configuration comprising a tester, a selection subsystem and an assembly station. The principles of the present invention are, however, not limited to this specific partitioning. In alternative embodiments, the functions of these three units can be implemented in a single unit or divided among multiple units, as desired. In other words, the tester, selection subsystem and assembly station are regarded herein collectively as a selection/assembly system, which selects sets of memory units and assembles multi-unit memory devices accordingly. The functions of the selection/assembly system may be partitioned into any desired number and types of subsystems.

Although the embodiments described herein mainly address selection of sets of memory units having varying storage capacities, the principles of the present invention can
also be used for assembling memory devices from memory units that differ from one another in various other performance levels, and in which the overall composite performance level of the memory device depends on the individual actual performance levels of its memory units.

For example, the individual memory units may have power consumption levels that vary from one unit to another. The composite (e.g., average or maximum) power consumption of the memory device depends on the actual power consumptions of the individual memory units from which it is assembled. Thus, the methods and systems described herein can be used to specify a target power consumption for the memory devices, to measure the actual power consumptions of the memory units, and then to select sets of memory units for assembling the memory devices, such that the composite power consumption of each device meets the specified target power consumption level. In alternative embodiments, the performance level on which the selection is based may comprise a programming speed, a reading speed, or any other suitable performance level.

It will thus be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and sub-combinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.
CLAIMS

1. A method, comprising:
 accepting a definition of a type of multi-unit memory device that comprises a set of memory units, each having a respective nominal storage capacity, the definition specifying a target memory size of the multi-unit memory device such that a sum of nominal storage capacities of the memory units in the set is equal to the target memory size;
 accepting a plurality of the memory units having respective actual storage capacities, at least some of which differ from the respective nominal storage capacity; and
 assembling multi-unit memory devices comprising respective sets of the memory units in accordance with the definition, such that at least one of the sets comprises at least a first memory unit having a first actual storage capacity that is less than the respective nominal storage capacity and at least a second memory unit having a second actual storage capacity that is greater than the nominal storage capacity.

2. The method according to claim 1, wherein assembling the multi-unit memory devices comprises accepting capacity indications, which are indicative of the respective actual storage capacities of the memory units, and selecting the sets of the memory units responsively to the capacity indications.

3. The method according to claim 1 or 2, wherein assembling the multi-unit memory devices comprises selecting the sets of the memory units such that the actual storage capacities of the memory units in each of the sets meet a predefined criterion.

4. The method according to claim 3, wherein the criterion specifies that a sum of the actual storage capacities of the memory units in any of the sets is no less than the target memory size.

5. The method according to claim 3, wherein the criterion specifies that a sum of the actual storage capacities of the memory units in any of the sets does not exceed the target memory size by more than a predefined value.

6. The method according to claim 3, wherein selecting the sets comprises selecting a given set by assigning to the given set a given memory unit, which has a largest actual storage capacity among the memory units that have not yet been assigned to any of the sets, and further assigning to the set an additional memory unit, which has a smallest actual storage capacity among the memory units that have not yet been assigned to any of the sets and such
that a sum of the actual storage capacities of the memory units in the given set, including the
given memory unit and the additional memory unit, meet the predefined criterion.

7. The method according to claim 3, wherein selecting the sets comprises storing in at
least some of the memory units information indicating an affiliation of the memory units with
the sets, and wherein assembling the multi-unit memory devices comprises retrieving the
information from the memory units and assembling the memory devices from the respective
sets responsively to the retrieved information.

8. The method according to claim 1 or 2, wherein the memory units comprise at least one
unit type selected from a group of types consisting of unpackaged memory dies, packaged
memory Integrated Circuits (ICs) and magnetic disks.

9. The method according to claim 8, wherein the memory units comprise the unpackaged
memory dies, and wherein the multi-unit memory device comprises a Multi-Chip Package
(MCP).

10. The method according to claim 1 or 2, wherein the definition further specifies a
number of the memory units in the multi-unit memory device, wherein the first actual storage
capacity is less than the target memory size divided by the specified number of the memory
units by no more than 20%, and wherein the second actual storage capacity is greater than the
target memory size divided by the specified number of the memory units, such that a sum of
the actual storage capacities of the memory units in the at least one of the sets is no less than
the target memory size.

11. A method, comprising:

accepting a definition of a type of multi-unit memory device that comprises a set of
memory units, each having a respective nominal performance level, the definition specifying a
target performance level of the multi-unit memory device;

accepting a plurality of the memory units having respective actual performance levels,
at least some of which differ from the respective nominal performance levels; and

assembling multi-unit memory devices comprising respective sets of the memory units
in accordance with the definition, such that at least one of the sets comprises at least a first
memory unit having a first actual performance level that is less than the respective nominal
performance level and at least a second memory unit having a second actual performance level
that is greater than the nominal performance level, so as to cause the multi-unit memory
devices to meet the target performance level.
12. The method according to claim 11, wherein the target performance level, the nominal performance levels and the actual performance levels comprise, respectively, a target power consumption of the multi-unit memory device, nominal power consumptions of the respective memory units and actual power consumptions of the respective memory units.

13. The method according to claim 11, wherein the target performance level, the nominal performance levels and the actual performance levels comprise, respectively, a target programming speed of the multi-unit memory device, nominal programming speeds of the respective memory units and actual programming speeds of the respective memory units.

14. The method according to claim 11, wherein the target performance level, the nominal performance levels and the actual performance levels comprise, respectively, a target reading speed of the multi-unit memory device, nominal reading speeds of the respective memory units and actual reading speeds of the respective memory units.

15. Apparatus, comprising:

 an interface, which is operative to accept a definition of a type of multi-unit memory device that comprises a set of memory units, each having a respective nominal storage capacity, the definition specifying a target memory size of the multi-unit memory device such that a sum of nominal storage capacities of the memory units in the set is equal to the target memory size; and

 a selection/assembly system, which is coupled to accept a plurality of the memory units having respective actual storage capacities, at least some of which differ from the respective nominal storage capacity, and to assemble multi-unit memory devices comprising respective sets of the memory units in accordance with the definition, such that at least one of the sets comprises at least a first memory unit having a first actual storage capacity that is less than the respective nominal storage capacity and at least a second memory unit having a second actual storage capacity that is greater than the nominal storage capacity.

16. The apparatus according to claim 15, wherein the interface is operative to accept capacity indications, which are indicative of the respective actual storage capacities of the memory units, and wherein the selection/assembly system is coupled to select the sets of the memory units responsively to the capacity indications.

17. The apparatus according to claim 15 or 16, wherein the selection/assembly system is coupled to select the sets of the memory units such that the actual storage capacities of the memory units in each of the sets meet a predefined criterion.
18. The apparatus according to claim 17, wherein the criterion specifies that a sum of the actual storage capacities of the memory units in any of the sets is no less than the target memory size.

19. The apparatus according to claim 17, wherein the criterion specifies that a sum of the actual storage capacities of the memory units in any of the sets does not exceed the target memory size by more than a predefined value.

20. The apparatus according to claim 17, wherein the selection/assembly system is coupled to select a given set by assigning to the given set a given memory unit, which has a largest actual storage capacity among the memory units that have not yet been assigned to any of the sets, and further assigning to the set an additional memory unit, which has a smallest actual storage capacity among the memory units that have not yet been assigned to any of the sets and such that a sum of the actual storage capacities of the memory units in the given set, including the given memory unit and the additional memory unit, meet the predefined criterion.

21. The apparatus according to claim 17, wherein the selection/assembly system comprises:
 a selection subsystem, which is coupled to select the sets and to store in at least some of the memory units information indicating an affiliation of the memory units with the sets; and
 an assembly subsystem, which is coupled to retrieve the information from the memory units and to assemble the memory devices from the respective sets responsively to the retrieved information.

22. The apparatus according to claim 15 or 16, wherein the memory units comprise at least one unit type selected from a group of types consisting of unpackaged memory dies, packaged memory Integrated Circuits (ICs) and magnetic disks.

23. The apparatus according to claim 22, wherein the memory units comprise the unpackaged memory dies, and wherein the multi-unit memory device comprises a Multi-Chip Package (MCP).

24. The apparatus according to claim 15 or 16, wherein the definition further specifies a number of the memory units in the multi-unit memory device, wherein the first actual storage capacity is less than the target memory size divided by the specified number of the memory units by no more than 20%, and wherein the second actual storage capacity is greater than the
target memory size divided by the specified number of the memory units, such that a sum of the actual storage capacities of the memory units in the at least one of the sets is no less than the target memory size.

25. Apparatus, comprising:

an interface, which is operative to accept a definition of a type of multi-unit memory device that comprises a set of memory units, each having a respective nominal performance level, the definition specifying a target performance level of the multi-unit memory device; and

a selection/assembly system, which is coupled to accept a plurality of the memory units having respective actual performance levels, at least some of which differ from the respective nominal performance levels, and to assemble multi-unit memory devices comprising respective sets of the memory units in accordance with the definition, such that at least one of the sets comprises at least a first memory unit having a first actual performance level that is less than the respective nominal performance level and at least a second memory unit having a second actual performance level that is greater than the nominal performance level, so as to cause the multi-unit memory devices to meet the target performance level.

26. The apparatus according to claim 25, wherein the target performance level, the nominal performance levels and the actual performance levels comprise, respectively, a target power consumption of the multi-unit memory device, nominal power consumptions of the respective memory units and actual power consumptions of the respective memory units.

27. The apparatus according to claim 25, wherein the target performance level, the nominal performance levels and the actual performance levels comprise, respectively, a target programming speed of the multi-unit memory device, nominal programming speeds of the respective memory units and actual programming speeds of the respective memory units.

28. The apparatus according to claim 25, wherein the target performance level, the nominal performance levels and the actual performance levels comprise, respectively, a target reading speed of the multi-unit memory device, nominal reading speeds of the respective memory units and actual reading speeds of the respective memory units.

29. A memory device, which has a target storage capacity and comprises multiple memory units having respective nominal storage capacities and actual storage capacities, wherein one or more of the actual storage capacities are lower than the respective nominal storage capacities and one or more other actual storage capacities are higher than the respective nominal storage capacities, such that a sum of the actual storage capacities of the multiple memory units is no less than the target storage capacity.
30. A memory device, which has a target performance level and comprises multiple memory units having respective nominal performance levels and actual performance levels, wherein one or more of the actual performance levels are lower than the respective nominal performance levels and one or more other actual performance levels are higher than the respective nominal performance levels, such that a composite performance level of the memory device meets the target performance level.

31. A memory device, which comprises a specified number of memory units and has a target memory size, wherein at least one of the memory units has a first actual capacity that is less than the target memory size divided by the specified number of memory units by no more than 20%, and wherein at least one other of the memory units has a second actual capacity that is greater than the target memory size divided by the specified number of units, such that a sum of the actual capacities of the memory units is no less than the target memory size.
FIG. 2

FIG. 3

MEASURE STORAGE CAPACITIES OF INDIVIDUAL MEMORY UNITS

SELECT SETS OF MEMORY UNITS TO MEET TARGET MEMORY SIZE OF MULTI-UNIT DEVICE

ASSEMBLE MULTI-UNIT MEMORY DEVICES USING SELECTED SETS