ABSTRACT

The present disclosure discloses a method and a system to identify key logging activities. The
method comprises triggering of atleast one cloud computing network by opening of atleast
one browser of one or more digital device, generating of atleast one proof by the cloud
computing network and sending the generated proof to the sanitizer , triggering of the
sanitizer by opening of the browser of the digital device to generate one or more random
sequence of keystrokes , generating atleast one malicious list by the sanitizer by capturing the
system processes that capture the randomly generated keystrokes , updating the cloud
computing network by the sanitizer with the generated malicious list, retrieving of proof by
each of the system processes, verifying of the fetched proof of the system process by the proof
checker and updating the cloud computing network with the restricted system processes by

the proof checker .

REF FIG: 1

23

What is claimed is:

1.

A method, the method comprising steps of :

triggering of atleast one cloud computing network by opening of atleast one browser of
one or more digital device , wherein embedding the browser with a plugin, wherein the

plugin comprising atleast one sanitizer and atleast one proof checker;

generating of atleast one proof by the cloud computing network and sending the generated

proof to the sanitizer ;

triggering of the sanitizer by opening of the browser of the digital device to generate one

or more random sequence of keystrokes;:

generating atleast one malicious list by the sanitizer by capturing the system processes that
capture the randomly generated keystrokes and the system processes that perform atleast

one malicious operation;
updating the cloud computing network by the sanitizer with the generated malicious list;

retrieving of proof by each of the system processes, wherein the system processes show
atleast one of their identities or atleast one of their attributes to the sanitizer to fetch their
corresponding proofs from the sanitizer;

verifying of the fetched proof of the system process by the proof checker and allowing the

system processes with valid proof and restricting the rest of the system processes; and

updating the cloud computing network with the restricted system processes by the proof

checker , wherein the restricted system processes are stored into the malicious list.

2. The method of claim 1 wherein the cloud computing network stores atleast one proof.

3. The method of claim 2 wherein the proof comprises atleast one random number.

18

10.

The method of claim 1 wherein the cloud computing stores atleast one malicious list.

The method of claim 1 wherein the malicious operations performed by the system
processes comprises combination of one or more key logging operations or one or more
network call operations or one or more screen capture operations or one or more file write

operation or the like.

The method of claim 5 wherein generating of atleast one proof by the cloud computing

network occurs when the browser with the embedded plugin is opened.

The method of claim 1 wherein generation of malicious list by the sanitizer comprises
capturing of one or more randomly generated keystrokes by atleast one system processes
to create one or more filtered list; wherein the intersection of one or more malicious

operations with the filtered list generate atleast one malicious list.

The method of claim 1 further comprises alerting the user of malicious operations
performed by the system processes in the malicious list as created by the sanitizer and the

proof checker.

The method of claim 1 wherein notifying the user of the malicious list by the the sanitizer

and the proof checker.
A system , the system comprising :

atleast one browser of one or more digital device embedded with a plugin , wherein the

plugin comprising atleast one sanitizer and atleast one proof checker;

wherein the sanitizer operatively connected with the cloud computing network to receive
atleast one malicious list and atleast one proof from the cloud computing network;
wherein the sanitizer generates random key strokes and captures atleast one of the system

processes that capture such generated key strokes; wherein the sanitizer creates one

malicious list by capturing the system processes that capture the randomly generated

19

11.

12.

13.

14.

15.

16.

17.

keystrokes and the system processes that perform atleast one malicious operations and the

cloud computing network is updated with the malicious list by the sanitizer;

wherein the sanitizer receives atleast one proof for each system processes , the system
processes show atleast one of their identities or atleast one of their attributes to the

sanitizer to fetch its corresponding proof from the sanitizer; and

wherein the proof checker operatively connected with the sanitizer to verify the fetched
proof of the system process and allowing the system processes with valid proof and
restricting the rest of the system processes.

The system of claim 10 wherein the could computing network is triggered when the

browser is opened.

The system of claim 10 wherein the cloud computing network comprises atleast one proof.
The system of claim 12 wherein the proof comprises atleast one random number.

The system of claim 10 wherein the system processes that perform malicious operations
comprises combination of one or more key logging operations or network call operations

or screen capture operations or file write operation or the like.

The system of claim 10 wherein cloud computing network generates atleast one proof

when the system process performs atleast one malicious operations.

The system of claim 10 wherein the sanitizer adapted to alert the user of malicious
operation performed by the system processes in the malicious list as created by the

sanitizer.
The system of claim 10 wherein the proof checker adapted to alert the user of malicious

operation performed by the system processes in the malicious list as created by the proof

checker.

20

18. A computer readable code stored on a non-transitory computer readable medium that

when executed by a computing device, performs a method , the method comprising

triggering of atleast one cloud computing network by opening of atleast one browser of
one or more digital device , wherein embedding the browser with a plugin, wherein the

plugin comprising atleast one sanitizer and atleast one proof checker;

generating of atleast one proof by the cloud computing network and sending the generated

proof to the sanitizer ;

triggering of the sanitizer by opening of the browser of the digital device to generate one

or more random sequence of keystrokes;

generating atleast one malicious list by the sanitizer by capturing the system processes that
capture the randomly generated keystrokes and the system processes that perform atleast
one malicious operation;

updating the cloud computing network by the sanitizer with the generated malicious list;
retrieving of proof by each of the system processes, wherein the system processes show
atleast one of their identities or atleast one of their attributes to the sanitizer to fetch their

corresponding proofs from the sanitizer;

verifying of the fetched proof of the system process by the proof checker and allowing the

system processes with valid proof and restricting the rest of the system processes; and

updating the cloud computing network with the restricted system processes by the proof

checker , wherein the restricted system processes are stored into the malicious list.

21

o)
Dated this 14" day of December, 2013 //

A

Ajay Kumar Sarkar
Infosys Limited
Patent Agent No 1652

22

—

47 DEC 2013

ORIGINAL

5877 KW 2013

Applicant Name: INFOSYS LIMITED Page 1 of 7
IDF No.: IN-SETL-1974

Blacklisted processes

112

113

114

Figure 1

Infosys Limited
Agent No. : 1652

Applicant Name: INFOSYS LIMITED

Page 2 of 7
IDF No.: IN-SETL-1974

202 Overating SVStem
— Store proof Generate [Process 1
and kevstroke | NN
\ \‘l Process 2
Advice Prepare \+
T end user new Process 3
Update service Process 4
. (Form
with new <
Figure 2

Ajay‘Kuxar Sarkar
Infosys Limited
Agent No. : 1652

Applicant Name: INFOSYS LIMITED
IDF No.: IN-SETL-1974

302

T~
Feth

303

Verify proof

Allow/Deny
processes

Update service
with new

Page 3 of 7
Operating System
T™ Process 1
A Process 2
N Process 3
\4 Process 4
(Form

Figure 3

~
a‘
a‘/

Ajay ar Sarkar
Infosys Limited

Agent No. :

1652

Page 4 of 7

Applicant Name: INFOSYS LIMITED

IDF No.: IN-SETL-1974

User

17,]
(9]
1771
o
Q [T
S
[«
(on)
(]
T
<
)
<t
=
(03
N
m R BRI, ZR
3 N
N 8
<+ Nl =
<
238
2 m 7 ¥ooncfo-
O /5]
p—
o
4
SR I S

Figure 4

Sarkar

Ajay Ku

Infosys Limited
Agent No.

: 1652

Page 5 of 7

Applicant Name: INFOSYS LIMITED

IDF No.: IN-SETL-1974

User

[7]
Q
[72]
[7]
o R
=S 4 ;ﬁ
St
o
4
-
vy
St
)
-
[S]
A T IR R -
=
5]
S 3
e - v
~ S
ve
=
)
N
-
m Y i =T
175}
o
o
Ve
< 3
u .- L
i) B T RERRTREE . 2=
[
Oax
— g
S =
(2 v
o mmmmme e a2 N

Figure 5

Infosys Limited

1652

Agent No. :

Applicant Name: INFOSYS LIMITED Page 6 of 7
IDF No.: IN-SETL-1974

Key logging
operation

Intersection of
various

Screen
capture
operation

Network
call
operation

File write operation

Figure 6

Infosys Limited
Agent No. : 1652

Applicant Name: INFOSYS LIMITED

IDF No.: IN-SETL-1974

Password

Username

Submit

Page 7 of 7

Figure 7

Ajay r Sarkar
Infosys Limited
Agent No. : 1652

A METHOD AND A SYSTEM TO IDENTIFY KEY LOGGING ACTIVITIES
FIELD OF THE INVENTION
[0001] The present invention relates to a method and a system to identify key logging
activities. Particularly, the present invention relates to a method which alerts the user of
any keylogging activities happening in the system. More particularly a method of

detecting if a keylogger installed in the system sends information across the internet.

BACKGROUND

[0002] Keyloggers are the software’s or hardware’s that record all the keystrokes. These
keystrokes are stored mostly in a file or memory block on the host computer and can be
accessed at later point. Most keyloggers send that file to the hacker’s computer at some
later point of time. Latest keyloggers only send certain important information instead
sending all the entire set of keystrokes being made by the user. hackers would be more
interested to retrieve confidential information like credit card details or passwords.

[0003] Most keyloggers will make an entry to the registry of the operating system (OS)
during the time of installation and would be starting always when the operating system
boots from the system.. When the user presses a key on the keyboard, the keyboard driver
receives the scan code corresponding to the key being pressed. There will be a unique scan
code corresponding to all the keys on the keyboard. This scan code will be send to the
keyboard device driver which translates it to a virtual-key code, which is a device
independent value defined by the system that identifies the purpose of the key.

[0004] The keyboard driver then creates a message that includes the scan code, the virtual
key and other keystroke information and then places the message in the system message
queue. The message is then removed from the system message queue and is send to the
corresponding thread of the application. The thread’s message loop removes the message
and passes it to the appropriate window procedure of the application for processing.

[0005] The keylogger intercept the keystrokes either at the keyboard driver level by
replacing the keyboard driver with the malicious keylogger driver or by adding filters
between the keyboard driver and the system message queue or by hooking the various
windows application programming interface (API) calls. Hooking happens when the
keystroke message arrives in the message queue and the callback function associated with

the keyloggers is called to record the keystroke. This message is then stored to a file

2

which is transferred to the hacker via E-mail, file transfer protocol (FTP) or internet relay
chat (IRC) channel.

[0006] Keylogging is one such action of tracking or logging the keys struck on a keyboard,
typically in a covert manner so that the person using the keyboard is unaware that their
actions are being monitored. There are mainly two types of keyloggers — hardware based
keyloggers and software based keyloggers. Various proposals have been made to detect
and prevent keylogging activities in the system. Most of the anti-viruses use signature
based schemes to identify these keyloggers or spywares but it will be ineffective against
zero day keyloggers.

[0007] Various behavioral based detection systems have also been proposed which
identifies the behavior of key logging activities. Some other technology involves
preventing the keylogging activities include encrypting the keystrokes before it enters the
system and the decryption only happens when it reaches the application. This ensures that
the keylogger gets only the encrypted content and cannot decrypt it unless it has the key.
But still these techniques will be ineffective against the form grabbers.

[0008] In today’s era of Digital World, the consumer of digital services and utilities is
attacked in multiple ways. Keylogging is one such action of tracking (or logging) the keys
struck on a keyboard, typically in a covert manner so that the person using the keyboard is
unaware that their actions are being monitored. These programs which accomplish the
task of key logging are called keyloggers.

[0009] The keyloggers can attack the system at various levels. There exist vulnerability at
the kernel and the application level. In the application level, the keyloggers can hook the -
various events and record the keystrokes. This type of keylogger is easier to implement
and to detect. The user activity can also be recorded at the kernel level by replacing the
software driver wi-th the malicious keylogging drivers. These are difficult to implement as
well as to combat.

[0010] There are various technologies that exist to combat keyloggers. One among them
is signature based detection schemes of antivirus. They identifies the signature which are
the various characteristics of a keylogger such as file size, file name, a checksum or
registry entries and then detects it. But these will be ineffective against the zero day

keyloggers and unknown keyloggers.

[0011] Some other preventive measures have been taken to combat these which include
virtual keyboards. But there are aggressive keyloggers that could grab the screenshots on
every mouse clicks which determines the user entered key. Similarly various form
grabbers who grab the details entered in the form and sends these details to the hacker to a
remote computer are also present. Form grabbing is done by exploiting the vulnerabilities
in the web browsers.

[0012) There are various other proposals made which identifies the behavior of the
keyloggers and alert the user for its presence. But these can leéd to high false rates and
hence become ineffective.

[0013] Prior art document “Bait your hooks” by Stefano Ortolani has proposed an idea
which helps to detect the presence of keyloggers in the system. The proposal suggests
generating a specific sequence which will be recorded by the keylogger and find for those
processes which has recorded the keylogging events.

[0014] Some other technology involves preventing the keylogging activities include
encrypting the keystrokes before it enters the system and the decryption only happens
when it reaches the application. This ensures that the keylogger gets only the encrypted
content and cannot decrypt it unless it has the key. But still these techniques will be
ineffective against the form grabbers.

[0015] Form Grabbing is an advanced way of capturing web based data and this is usually
done by exploiting the vulnerability of the web browsers. This software will intercept the
web form data and store the credentials for further use.

[0016] Keyloggers are not malicious software but this property of keyloggers to store
keystrokes is used for stealing the confidential data by the hackers. These confidential data
is sent to the remote computer of the hacker.

[0017] Most modern keyloggers are considered to be legitimate software or hardware sold
on open market. Keylogger developers claim that they can be useful when it comes to
parental control, company tracking the employees and also for law enforcement. But most
of the times they are used to steal confidential information by the hackers.

[0018] The hackers were able to steal millions of dollars with the help of this software.

There should be a mechanism by which we need prevent the stealing of confidential data.

[0019] The prior art strategies have enjoyed various levels of success to detect the
presence of keyloggers by identifying the signature or behavior of the keyloggers. But still
they can be bypassed by various aggressi\}e keyloggers.

[0020] Thus there is a need to provide detection of these keyloggers. An advisory system
is developed which alerts the user if there is any keylogging activity happening in the
system. The alert happens when the keylogger tries to send the information with
keystrokes across the network to some remote machine or store it in local machine for
later usage. The present invention or disclosure is a virtual guard available as cloud based
service on demand which does this job, once requested, of alerting the user of possible
malicious keystroke activities. This service can be called or requested from the user’s
computer or any mobile gadget or device and it advices the user if any keystroke logging
happens in the system. This cloud based service can become available for multiple form

factors or devices.

SUMMARY OF INVENTION

[0021] According to one of the aspect of the presént disclosure there is provided a method
that comprises steps of triggering of atleast one cloud computing network by opening of
atleast one browser of one or more digital device . The browser is embedded with a
plugin, wherein the plugin comprising atleast one sanitizer and atleast one proof checker.

[0022] Further generating of atleast one proof by the cloud computing network and
sending the generated proof to the sanitizer and triggering of the sanitizer by opening of
the browser of the digital device to generate one or more random sequence of keystrokes.
Further generating atleast one malicious list by the sanitizer by capturing the system
processes that capture the randomly generated keystrokes and the system processes that
perform atleast one malicious operation;

[0023] Then updating the cloud computing network by the sanitizer with the generated
malicious list. Retrieving of proof by each of the system processes, wherein the system
processes show atleast one of their identities or atleast one of their attributes to the
sanitizer to fetch their corresponding proofs from the sanitizer.

[0024] The verifying of the fetched proof of the system process by the proof checker and
allowing the system processes with valid proof and restricting the rest of the system

processes and updating the cloud computing network with the restricted system processes

5

by the proof checker where the restricted system processes are stored into the malicious
list.

[0025] According to another aspect of the present disclosure there is provided a system
that comprises atleast one browser of one or more digital device embedded with a plugin ,
wherein the plugin comprising atleast one sanitizer and atleast one proof checker.

[0026] The sanitizer operatively connected with the cloud computing network to receive
atleast one malicious list and atleast one proof from the cloud computing network;
wherein the sanitizer generates random key strokes and captures atleast one of the system
processes that capture such generated key strokes, wherein the sanitizer creates one
malicious list by capturing the system processes that capture the randomly generated
keystrokes and the system processes that perform atleast one malicious operations and the
cloud computing network is updated with the malicious list by the sanitizer.

[0027] The sanitizer receives atleast one proof for each system processes , the system
processes show atleast one of their identities or atleast one of their attributes to the
sanitizer to fetch its corresponding proof from the sanitize . |

[0028] The proof checker operatively connected with the sanitizer to verify the fetched
proof of the system process and allowing the system processes with valid proof and
restricting the rest of the system processes.

[0029] It is identified that the keylogger is dangerous since it could be installed remotely.
Mostly stealing of information happens by sending confidential data across the internet to
the hacker’s system. The present invention aims at detecting if a keylogger installed in the
system sends information across the internet.

[0030]) The present invention has a systematic well defined approach of handling key
logging actions and also provides a feasible technical implementation with well-defined
sets of protocol. The invention is a service based architecture which tells the user about
the activity of keylogging in a system. This will give the user to use any computing device

from anywhere in the internet or cloud and create a unique secure experience everywhere.

BREIF DESCRIPTION OF THE ACCOMPANYING DRAWINGS
[0031] These are further features of the present disclosure are better understood by

reading the following detailed description of the drawing ,wherein,

[0032] Figure 1 illustrates an exemplary browser system with the sanitizer and the proof
checker.

[0033] Figure 2 illustrates the activity of the sanitizer.

[0034] Figure 3 illustrates activity of the proof checker with the sanitizer.

[0035] Figure 4 illustrates work flow of the sanitizer.

[0036] Figure 5 illustrates work flow of the proof checker.

[0037] Figure 6 illustrates an exemplary blacklisting process by taking an interaction of
malicious operations.

[0038] Figure 7 illustrates an exemplary browser alerting the presence of form grabber.

DETAILED DESCRIPTION

[0039] The present disclosure relates to detection of keyloggers. A system is developed
which alerts the user if there is any keylogging activity happening in the system. The alert
happens when the keylogger tries to send the information with keystrokes across the
network to some remote machine or store it in local machine for later usage.

[0040] This allows the user to walk to any host computer whether it is a computer in a
computer café or any business computer and this service alerts the user if any keylogging
activity happens in the system. The present service does an authentication of the user for
the server before and after any key logging activities starts on the local machine of the
user.

[0041] The detection system is a virtual guard available as cloud based service or could
computing network on demand alerting the user of possible malicious keystroke activities.
A modified browser, containing two new components proposed by us (sanitizer and proof
checker), works in tandem with the service. This cloud service can be called or requested
from the user’s computer or any mobile gadget or device having our modified browser and
it advices the user if any keystroke logging happens in the system.

[0042] Further by way of example and not limitation our invention can be deployed or
used in multiple form factors like mobile phones, tablet PC etc.

[0043] The utility of the method is achieving high rate detection by advising the user of
the host about the data which is being sent from the host computer. The method makes
sure that any data which is being sent from the host computer is sent with user’s

knowledge. The user has to give approval for the packet or data or information to be sent

7

across. This method therefore prevents the hackers to get access to the confidential data
even if he successfully installs the keylogger in the remote machine. The cloud service
after identifying the keylogging activity informs the user about the application which does
this activity.

[0044] The invention is a virtual guard available as cloud based service on demand which
does this job, once requested, of alerting the user of possible malicious keystroke
activities. A modified browser, containing two new components proposed by us (sanitizer
and proof checker), works in tandem with the service. This service can be called or
requested from the user’s computer or any mobile gadget/device having our modified
browser and it advices the user if any keystroke logging happens in the system.

[0045] By way of example and not limitation , the present disclosure discloses about a
defense-in-depth solution which is based on verification of proof when a network I/O or
file I/O operation is done. Further our invention can be deployed or used in multiple forms
of digital devices.

[0046] The system detects for keyloggers by using a software as a service offered on the
cloud server which is less subjected to fall in the evil hands and corruption. The
prevention of corruption of the system is ensured by providing a mutual authentication
between the service on the host and the server which offer and imposes the updates on the
service. This methodology ensures that the service gets its updates from a trusted server
and not from any malicious server. Any malicious server attempting to update the service
will not be able to corrupt the host service system since it can fail authentication.

[0047) Further the software as a service for detecting the keystrokes in the user system
and further advices the user if the logged keystrokes is being exported to any other remote
computer through the internet.

[0048) The present disclosure makes use of software as a service concept which advices
the user about the keylogging activity in the system under use. The services are hosted in
the cloud and being offered to the host computer where the user is allowed to perform
their activities securely.

[0049] In case of other form factors like mobile phones the communication between the

mobile phone and Computer happens with wireless connectivity.

[0050] Fig 1 shows the browser subsystems which are involved in a typical HTTP
transaction, the components the sanitizer 104 and the proof checker 108, are introduced is
the present disclosure. The different components of the system are explained below by
way of example and not limitation.

[0051] The evil server 112 controlled by an attacker (an evil entity). It collects data from
several vulnerable hosts and misuses it, thereby causing loss to end users.

[0052] Genuine server 113 controlled by genuine web administrators and accepts/serves
content without any malicious intent.

[0053] HTTP request 110 and HTTP Response 111 for any interaction on the web which
involves communication between browser and server take place via the HTTP protocol. A
HTTP client 102 (e.g., browser) sends data to a server via a HT'TP Request 110 and it gets
data form the server via a HTTP Response 111.

[0054] Network stack 114 is when a HTTP request 110 is triggered by a user’s action in a
browser 102, it passes through a component of the operating system called network stack
114 and reaches the destination server. It is in this component that encryption of content
happens.

[0055] Evil HTTP POST 109 is a web request sent by a malicious entity (e.g., form
grabber) to a malicious (Evil) server 112. A HTTP request 110 can be sent via two
methods — GET and POST. Typically, attackers use POST method as it allows sending
large data across websites.

[0056] Encryption module 107 is where on an “https” enabled webpage, once data is
submitted, it’reaches the encryption module, EM. This module helps in encrypting web
traffic before sending it to the web server. If any third party attempts to sniff the data after
it passes out of EM, it will only receive encrypted data and hence cannot extract original
content.

[0057] Form Grabber 106 (FG a malicious software which installs itself in the web traffic
pipeline, before the encryption module. Since it receives unencrypted data, it will be able
to send it to attacker’s website, thereby stealing user’s content.

[0058] Form grabbers 106 intercept form data even before the HTTP request reaches the
encryption module (EM) and exfiltrate the data to evil servers. Even if the sanitization

step fails, the sanitizer and the proof checker prevent this exfiltration of data.

[0059] By way of example and not limitation, every network 1/0, file I/O operation done
by any process goes through a proof checking phase.

[0060] Through mechanisms similar to key exchange protocols, the proof received from
the cloud service 101 is shared by the sanitizer 104 with legitimate processes.

[0061] The browser 102 of a digital device is embedded with a plugin .The plugin have
the sanitizer 104 and the proof checker 108.

[0062] By way of example and not limitation the proof-checker 108 will verify the proof
and based on the outcome of the check, it will inform and/or allow and/or block network
I/O, file 1/O operations. By way of example and not limitation malware such as form
grabbers, key loggers will not be able to submit valid proofs and hence the proof checking
phase will not pass. Thus, their operations will be blocked and end users will be alerted
about the malicious attempt on the host system.

[0063] Sanitizer 104 advices the user if any keylogging activities are taking place in the
system by analyzing the packets. It acts as a virtual remote service for the keylogger,
consuming the data returned by our cloud based service and triggering sanitization
actions. When the sanitizer gets invoked in the host computer, it generates a random
sequence of keystrokes, awaits for the keyloggers to record the keys and creates a filtered
list of suspicious processes.

[0064] The sanitizer 104 and proof checker 108 , into state-of-the-art web browsers 102 ,
which work in tandem with the cloud based services 101 also known as the cloud
computing network 101 .

[0065) The sanitizer 104, with the assistance of the cloud based service 101, advices the
user if any keylogging activities are taking place in the system by analyzing the packets.
The analysis of the packet is carried out by the sanitizer 104 and lets the user know that a
particular packet is being sent from the host computer to a typical destination. The
sanitizer will make sure that the user is aware of the packet which is leaving the system. If
the user is unaware of it, then the sanitizer 104 checks the application which sends the
packet from the host computer. The sanitizer 104 initially analyzes the behavior of the
applications that runs on the host computer.

[0066] The cloud based service 101 consists a kernel for the execution of the application
(the Sanitizer), on the client side, that analyses the network packets before it leaves the

host computer. The browser components 102, sanitizer 104 and proof checker 108 , work
10

in tandem with the cloud service. The sanitizer acts as a virtual remote service for the
keylogger, consuming the data returned by our cloud based service and triggering
sanitization actions.

[0067] By way of example and not limitation, when the sanitizer gets invoked in the host
computer, it generates a sequence of keystrokes which is randomly generated. This
generation of the keys is for the keyloggers to record the keys. The sanitizer lists all the
processes running in the system and checks if these processes perform a hooking
operation. A filtered list is created which consist of processes that perform hooking
operation.

[0068] The sanitizer then analyses those processes which performs a write operation on
the file or on the memory. Another list called write list is created that contains those
processes which performs the write operation. The process which performs screenshots
will also be monitored during this process. During this process no packets are allowed to
leave the system.

[0069] A new list of processes which does both the hooking and the write operation is
listed. This list is called the suspicious list. Among the processes in the suspicious list, the
sanitizer checks for those processes which are common among the suspicious list and the
list of processes which performs screen shots. These processes would be marked severe
and the rest of the processes would be marked normal in the suspicious list. (This entire
process is what we call sanitization and hence the name sanitizer).

[0070}) The sanitizer advices the user about the suspicious programs which does
keylogging activity and hence kills those programs according to users wish.

[0071] To prevent masquerade and to prevent the compromise of session keys, essential
identification and session key information must be communicated in encrypted form. The
mutual authentication protocol enables the server in cloud hosting the services and the
service running to satisfy themselves mutually about each other’s identity to exchange the
session keys. After the key exchange happens, and both the services at the host and the
server in the cloud established a session, the updates can be downloaded to the host.

[0072]) This way, the sanitizer acts as first line of defense against keyloggers residing in
the host machine.

[0073] Apart from the sanitization methodology, we also propose an additional layer of

protection, which acts as a defense-in-depth solution. When the user authenticates with the
11

cloud service before starting normal browsing session, the service also sends a unique
proof (which could be as simple as a random number) to the sanitizer. Whenever a
network call or file-write operation is made by any process/subsystem, it has to prove that
it has the necessary permission to do so.

[0074] The sanitizer operatively connected with the cloud computing network to receive a
malicious list or the black list and a proof from the cloud computing network.

[0075] The sanitizer generates random key strokes and captures the system processes that
capture such generated key strokes.

[0076}) Further the sanitizer creates one malicious list by capturing the system processes
that capture the randomly generated keystrokes and the system processes that perform
atleast one malicious operations and the cloud computing network is updated with the
malicious list by the sanitizer. The sanitizer receives atleast one proof for each system
processes , the system processes show atleast one of their identities or atleast one of their
attributes to the sanitizer to fetch its corresponding proof from the sanitizer.

[0077] The proof checker operatively connected with the sanitizer to verify the fetched
proof of the system process and allowing the system processes with valid proof and
restricting the rest of the system processes.

[0078] The could computing network is triggered when the browser is opened. Further
cloud computing network comprises atleast one proof. The proof comprises atleast one
random number. the cloud computing network generates atleast one proof when the
system process performs atleast one malicious operations.

[0079] By way of example and not limitation , the system processes that perform
malicious operations comprises combination of one or more key logging operations or
network call operations or screen capture operations or file write operation .

[0080] Fig.2 discloses the activity of sanitizer in detail.

[0081]) As soon as a user opens a browser, the sanitizer 202 gets invoked and it contacts
the cloud service 201. The cloud service 201 sends an existing blacklist of processes (if
any) along with proofs (tokens, which are generated using a random function) to the
sanitizer. Proofs will be used for a later verification operation by proof checker. After
receiving and storing the blacklist and proofs, the sanitizer 202 generates random

keystrokes and waits for processes to listen to them.

12

[0082] Listing 1 below shows a sample code snippet in Java to simulate key-press events,
using which random keystrokes can be generated.. This way, once keystrokes are
generated, the sanitizer waits for various processes to capture them.

[0083] Listing 1: Sample code to generate key strokes in Java

public class KeyStrokeGeneration {

public static void main(String[] args) throws AWTException {

Robot robot = new Robot();

System.out.printin("About to generate the keystrokes ‘Hi' programatically”);
robot.keyPress(KeyEvent.VK_H);

robot.keyPress(KeyEvent.VK_l);

}

}

[0084] Typically processes do operations such as saving the captured data to file,
capturing screenshot of user’s screen, and sending data across network, etc., after
capturing key strokes . The probability of processes doing a combination of these
processes is high if the process is a malicious process, since its primary goal is to steal
data, which cannot be achieved without performing these operations. This way, the
sanitizer can identify malicious processes, append them to blacklist or termed as the
malicious list and update the cloud service 201 with the same, while alerting the user.
Note that processes can use some stealth techniques to escape from sanitizer’s blacklisting
mechanism. To identify such rogue processes, we propose a second line of defense, which
is the proof checker. Detailed description of how proof checker works is explained in the

next section.

/

[0085] Figure 3 disclose the activity of the proof checker 303.

[0086) The key idea of having of proof checker 303 is as follows — Whenever a process
triggers a network call or a file write operation by way of example and not limitation, it
has to prove that it has the necessary privileges to do so. The proof checker 303 plays the
role of proof verification authority and allows a process to do the aforementioned
operations only if they submit a valid proof. The proof may be as simple as a random
number, which is sent by our cloud service to the sanitizer. By using techniques such as
cryptographic key establishment protocols, a process can show its identity/attributes and
get the proof from the sanitizer. Once it gets the proof, the proof checker verifies if it is

the relevant proof and grants access only if the check passes.

13

[0087] As soon as a user opens a browser, the sanitizer gets invoked and it contacts the
cloud service. The cloud service generates and sends proofs (tokens which are generated
by a random function), to the sanitizer. (This step is analogous to generation of unique
employee numbers by a central authority in a company and embedding the info on smart
cards). Each of the processes displays their process Ids and other attributes (such as their
capabilities in terms of which services they can invoke) to the sanitizer and fetch their
corresponding proofs.

[0088] Before performing any sensitive operation such as network activity, file write
operation etc., every process has to prove to the proof checker that it has the capability to
do so. (This is analogous to an employee swiping in at turnstiles and entering the campus
only after authentication). At the backend, the sanitizer and the proof checker will
synchronize the proofs so that the proof checker can verify the same proof sent by
sanitizer (This is analogous to the central authority synchronizing the authentication info
to the turnstile machines at the backend). If a process fails in the proof checking phase, it
will be denied access to the sensitive operation, the blacklist in the cloud service will be
updated with the fake process and the end user will be alerted about the security breach (In
the analogy, even if a person shows a fake ID card and try to impersonate a genuine
person, the turnstile machines reject the person and inform the security team about the
security breach). This way, the proof checker will restrict access to malicious processes.

[0089] Figure 4 discloses the work flow of the sanitizer.

[0090] At step 401 triggering of a cloud computing network by opening of a browser of a
digital device. The browser is embedded with a plugin. The plugin has a sanitizer and a
proof checker;

[0091] At step 402 as the browser is opened one or more proof is generated by the cloud
computing network and sent 1o the sanitizer. Further the black listed process as termed as
malicious processes that are already stored in the cloud computing network from before
are sent to the sanitizer.

[0092] At step 403 the triggering of the sanitizer by opening of the browser of the digital
device generates random sequence of keystrokes and generating of malicious list by the
sanitizer by capturing the system processes that capture the randomly generated

keystrokes and the system processes that perform malicious operations.

14

[0093] By way of example and not limitation , the malicious operations performed by the
system processes comprises combination of one or more key logging operations or one or
more network call operations or one or more screen capture operations or one or more file
write operation .

[0094] At step 404 the sanitizer filters the malicious operations or the processes that do
malicious or suspicious activities.

[0095] At step 405 the sanitizer updates the cloud computing network by the sanitizer
with the generated malicious list.

[0096) = The generation of malicious list by the sanitizer comprises capturing of the
randomly generated keystrokes by the system processes to create one or more filtered list;
where the intersection of the malicious operations with the filtered list generate one or
more malicious list.

[0097] At step 406 the user is alerted of malicious operations performed by the system
processes in the malicious list , where the malicious list is created by the sanitizer .

[0098] Figure 5 the work flow of the proof checker.

[0099] At step 501 triggering of a cloud computing network by opening of a browser of a
digital device. The browser is embedded with a plugin. The plugin has a sanitizer and a
proof checker;

[00100] At step 502 as the browser is opened one or more proof is generated by the cloud
computing network and sent to the sanitizer. Further the black listed process as termed as
malicious processes that are already stored in the cloud computing network from before
are sent to the sanitizer. The cloud computing network stores the proof. The proof can be
any type of random number .

[00101] At step 503 retrieving of proof by each of the system processes, where the system
processes show their identities or their attributes to the sanitizer to fetch their
corresponding proofs from the sanitizer.

[00102] Further step 504 discloses verifying of the fetched proof of the system process by
the proof checker and allowing the system processes with valid proof and restricting the
rest of the system processes.

[00103] At step 505 updating the cloud computing network with the restricted system
processes by the proof checker , where the restricted system processes are stored into the

malicious list.
15

[00104] At step 506 the user is alerted of malicious operations performed by the system
processes in the malicious list , where the malicious list is created by the proof checker .
[00105] According to one of the embodiments of the present disclosure there is provided a
computer readable code stored on a non-transitory computer readable medium that when
executed by a computing device, performs a method .The method comprises triggering of
a cloud computing network by opening of a browser of one or more digital devise ,
wherein embedding the browser with a plugin, wherein the plugin comprising a sanitizer

and a proof checker.

[00106] Then generating of a proof by the cloud computing network and sending the
generated proof to the sanitizer, trigger the sanitizer by opening of the browser of the
digital device to generate random sequence of keystrokes, generate a malicious list by the
sanitizer by capturing the system processes that capture the randomly generated
keystrokes and the system processes that perform a malicious operation.

[00107] Further update the cloud computing network by the sanitizer with the generated
malicious list and retrieving of proof by each of the system processes, wherein the system
processes show their identities or their attributes to the sanitizer to fetch their
corresponding proofs from the sanitizer.

[00108] Finally verify the fetched proof of the system process by the proof checker and
allowing the system processes with valid proof and restricting the rest of the system
processes; and updating the cloud computing network with the restricted system processes
by the proof checker , wherein the restricted system processes are stored into the

malicious list.

[00109] While this invention has been described in terms of several preferred
embodiments, it is contemplated that alternatives, modifications, permutations and
equivalents thereof will become apparent to those skilled in the art upon a reading of the
specification and study of the drawings. It is therefore intended that the true spirit and
scope of the present include all such alternatives, modifications, permutations and

equivalents.

16

[00110] Further in view of the many possible embodiments to which the principle of out
invention may be applied, we claim as our invention all such embodiments as may come

within the scope and sprit of the following claims and equivalent thereto.

17

	IN-CHE-2013-05877
	BIBLIOGRAPHY
	ABSTRACT
	CLAIMS
	DRAWINGS
	DESCRIPTION

