Abstract: A hearing aid (1) comprising a lid (31), an electronics module (4), and a microphone adapter (15), wherein the electronics module and the microphone adapter provides a groove (30) for sliding engagement with a pivot of the lid, the groove extending partially over the electronics module and partially over the adapter between a position where the lid is closed and a position where the lid is partially open.
COMPONENT FOR A HEARING AID AND A HEARING AID

FIELD OF THE INVENTION

The present invention relates to hearing aids. The invention, more specifically, relates to an assembly for an In-The-Ear (ITE) hearing aid.

BACKGROUND OF THE INVENTION

ITE hearing aids have traditionally been constructed by making a shell, which anatomically duplicates the relevant part of the user's ear canal. A receiver is placed in the shell, and the open end of the shell is closed with a faceplate subassembly, connected to the receiver by leads. The faceplate subassembly incorporates a microphone, electronics, a battery compartment and a hinged lid.

WO 98/47319 shows a modular In-The-Ear hearing aid wherein an electronics module provides a hinge for a lid. A microphone is integrated into the electronics module. The lid has an opening to allow sound passage to the microphone.

US patent 5 201 008 shows a modular ITE hearing aid. A battery compartment, a microphone and a volume control are arranged side by side on the top face.

WO 01/87013 shows a microphone assembly for an ITE hearing aid, wherein a microphone assembly comprises assembly portions that are snapped together, and a printed electric circuit board.

Hearing aids have been developed to very small sizes, however at the expense of complicated designs and complications in service. The smallest designs feature electronic modules with integrated electrically conductive strips with exposed ends, available for the soldering of leads to other components such as the microphone, the electronic circuit board, the receiver, a programming button etc. Designing and manufacturing such an electronic module is complicated because of the heterogeneous structure and because of the many interfacing requirements. Some designs have involved soldering leads to pads at several sides of the modules, some have required soldering of some leads, then arranging structural fittings and then soldering other
leads. Modification, e.g. to accommodate a different type of microphone has required a complete redesign. Attempts to modularize the design have been associated with more bulky structures.

SUMMARY OF THE INVENTION

The invention, in a first aspect, provides a sub-assembly for a hearing aid according to claim 1.

This provides a modular unit that can be miniaturized more than modular designs of the prior art. The complicated structure and electrical connections are substantially arranged in a general unit that interfaces with a microphone adapter. The microphone adapter has a comparatively simple design. Tailoring of hearing aids to different microphones therefore only requires tailoring of a rather simple adapter unit. The microphone adapter doubles to provide an extension of the groove for the sliding of the pivot for the lid. Therefore miniaturization of the general unit will not be constrained by the size of the lid. The lid can be sized with an extending hinge portion, allowing the lid to free an ample opening for easy access to the battery, and allowing for a lid locking structure.

The locking structure preferably comprises means for sliding the lid between a locked position and a position where the lid may pivot, in order to provide easy manipulation.

Further advantageous features appear from the dependent claims.

The invention, in a second aspect, provides a hearing aid as recited in claim 9. Still other objects of the present invention will become apparent to those skilled in the art from the following description wherein the invention will be explained in greater detail.

BRIEF DESCRIPTION OF THE DRAWINGS

By way of example, there is shown and described a preferred embodiment of this invention. As will be realized, the invention is capable of other different embodiments, and its several details are capable of modification in various, obvious aspects all without departing from the invention. Accordingly, the drawings and descriptions will be regarded as illustrative in nature and not as restrictive. In the drawings:
Fig. 1 shows a hearing aid;

Fig. 2 shows a sub-assembly for a hearing aid in exploded view;

Fig. 3 shows the sub-assembly as assembled and with part of a pivot;

Fig. 4 is similar to fig. 3, but illustrates the pivot in a different position;

Fig. 5 shows a lid for a hearing aid in perspective as seen from below;

Fig. 6 shows a vertical section of the sub-assembly together with a lid, as in an open position;

Fig. 7 shows a horizontal section through the subassembly in with the components pulled apart;

Fig. 8 is similar to fig. 7 but shows the components assembled;

Fig. 9 shows a vertical section of a microphone adapter according to a first embodiment;

Fig. 10 shows a vertical section of a microphone adapter according to a second embodiment;

Fig. 11 shows a side view of a hearing aid ready for use; and

Fig. 12 is similar to fig. 11 but shows the lid partially opened.

DETAILED DESCRIPTION

Reference is first made to Fig. 1, which illustrates a hearing as seen from the top, i.e. from the side generally facing outwards from the wearer in the normal use position.

Fig. 1 illustrates the hearing aid 1, generally comprising lid 31, faceplate 3, and shell 2. The lid comprises hinge portion 32, projection 25, and button 35. The figure further illustrates the outside of microphone adapter 13 according to a second embodiment, which features two sound inlets.
Reference is made to Fig.’s 2, 3 and 4 for an explanation of a sub-assembly for a hearing aid. The hearing aid sub-assembly comprises assembly 39, mainly consisting of electronics module 4 and microphone adapter 15 according to a first embodiment. The electronics module 4 comprises a solid body, which is adapted to fit inside the faceplate 3 and which provides battery compartment 5 with lower battery spring 6. The electronics module 4 has lateral recesses that provide tracks 8, and projecting parts that provide laterally spaced pin guideways 10. Fig.’s 2, 3 and 4 also illustrate part of the pin 34, which is a pivot of the lid 31.

Spaced above and generally parallel to the tracks 8 the electronics module 4 has dovetail guideways 12. The electronics module 4 is made of an electrically insulating material and provides supporting structure for various smaller parts as well as integrated electrical leads, as will be evident to those skilled in the art.

The microphone adapter 15 comprises a body for housing a microphone as will be explained further below. The fig.’s 2, 3 and 4 show grid 17, which communicates with the microphone sound ports, hinge recess 18 and lateral pin guideways 29. The microphone adapter 15 further comprises a flat front face 16 and projecting beams 19 with barbs. As will be understood from the figures 2 and 3, the beams 19 and the tracks 8 are adapted for mating engagement to guide these components during assembly and to snap lock them together. The adapter 15 and the electronics module 4 together provide the assembly 39. In the assembled state, the module pin guideway 10 effectively extends the adapter pin guideway 29 to provide a groove 30 for shifting the pin forwards and backwards. Fig.’s 2 and 3 depicting the pin 34 in the forward position while fig. 4 depicts the pin in the rearmost position.

The groove 30 has a forward slot defined by the nip between the adapter and the module. The groove is adapted to normally allow the pin to shift back and forth between respective predetermined end positions, however, due to inherent resilience of the adapted and the module together with suitable design of the slot, the slot permits pulling the lid apart from the assembly by forcing the pins though the slot. Also, the lid can be mounted on the assembly by forcing the pivots into the groove through the slot.
Fig.'s 2, 3 and 4 further show contact strips 40, 41, projecting from the electronics module and accessible for contacting from above. A first strip 40 is flat while a second strip 41, is crested. More contact strips may be arranged in juxtaposition, if necessary.

Reference is now made to Fig. 5, which shows the lid 31 as seen from the inside. Fig. 5 illustrates the lid 31, generally in the shape of a cap with projecting hinge portion 32, forward edge 33, rearward ratchet at the forward edge 33 and upper battery spring 38. Also part of part of the button 35 is visible. The upper battery spring 38 comprises a piece of flat, resilient, conductive material, e.g. brass, stamped and bent into a trident-like structure, with the base secured to the lid inside, the central prong bent downwards in fig. 5 to contact the button, and the lateral prongs bent slightly upwards in fig. 5. Opposite the prongs the spring extends into slanted, angled tabs adapted for contacting the battery.

As will be understood by those skilled in the art, when the battery is fitted and the lid closed, the battery spring angled tabs will serve to contact the battery, while the lateral prongs will contact a contact strip on the module adjacent the hinge thereby to establish an electrical connection between one pole of the battery and the strip of the electronics module. While the lid is closed, the lateral prongs bias the lid against the crested strip at a position intermediate the pins, so as to absorb any play in the hinge, and so as to arrest the motion of the lid. The central prong cooperates with the button 35, serving to bias the button upwards, and available to provide, on activation, contact to a respective contact strip of the module in connection with a programming input of the electronics.

At the hinge portion 32, the lid is provided with a transverse pin 34 with projecting ends adapted to provide pivot pins. Along the sides, the lid has inward oblique ribs or cams 36.

Reference is made to fig. 6, which illustrates a section through the assembly with lid 31, as in the open position. The section illustrates the button 35 and the pin 34, which has been shifted to the foremost position. At the bottom, the electronics module 4 comprises lugs 9 for attachment of an electronic circuit board. Fig. 6 further illustrates microphone, microphone port, sound conduit 26, and gasket 28. The adapter face lies against the module rear face 7 sandwiching between them a thin, resilient pad 11.
Reference is now made to fig.'s 7 and 8, which illustrate a horizontal section through the assembly, in exploded and in assembled state, respectively. Fig.'s 7 and 8 illustrate in particular the engagement between the beams 19 and the tracks 8, and the sandwiched arrangement of the resilient pad 11. The pad 11 provides mechanical biasing in the engagement, and it may in embodiments with exposed leads serve the purpose of providing electric insulation. Fig.'s 7 and 8, similarly to fig.'s 2, 3 and 4, illustrate a first embodiment of the adapter 15, accommodating a single microphone 23.

Reference is now made to fig. 9 for a vertical section through an adapter 13 according to the second embodiment, accommodating a directional microphone 22. The section in fig. 9 is taken in the axes of the adapter sound conduits 26, which slant upwards in fig. 9. The directional microphone has ports 24 defined by laterally opposing stubs 25. The stubs 25 have been covered by sleeve-like gaskets 28, upwards recessed to open for communication with the sound conduits 26. As may be understood from the figure, the microphone adapter 13 provides a compartment 21 suitable for accommodating the microphone with the gaskets 28, the gaskets providing sealing connection as well as resilient suspension of the microphone. Fig. 9 also illustrates the hinge recess 18, the sides of which serve to guide the lid 31 during shifting and pivoting. The microphone has solder pads 27 accessible at the lower side.

Reference is now made to fig. 10 for an illustration of a microphone adapter 14 according to a third embodiment, accommodating a pair of microphones. These microphones will generally be identical, omnidirectional microphones 23 that pick up the sound field at spaced positions in order that sound field gradients can be provided to the electronics circuit. These microphones are smaller, and they have the ports arranged at the topside, as illustrated in fig. 10. The microphone compartments 21 are adapted to these microphones, and the feature lower ledges 20. The gaskets 28 enclose the upper parts of the microphones, and the sound conduits 26 are adapted to the microphone ports, as will be evident to those skilled in the art. The microphone solder pads 27 are accessible at the bottom.

Reference is now made to fig.'s 11 and 12 for an illustration of the initial stages of opening of the lid 31. Fig. 11 shows the hearing aid 1 with adapter 13 of the second
embodiment in the position ready for use. In order to open the lid, the operator pushes the lid forwards, away from the grid 17. The pin 34 slides forwards in the groove 30, i.e. from the position of fig. 4 to the position of fig. 3, while the cams 36 of the lid slide forward in the dovetail guideways 12 (ref. also to fig. 4). In the foremost position, the pins rest against the foremost ends of the grooves, the cams 36 clear the dovetail guideways 12, and the lid 31 lifts slightly upwards under the resilient pressure of the upper battery spring 38. The lid ratchet 37 leaves its engagement with a cooperating structure of the module (not shown), and forward edge 33 is readily available for manipulation by the operator to turn the lid all the way to the position shown in fig. 6.

Closing the lid takes place through an opposite succession of steps. Initially, the lid is turned downwards, then pushed back towards the adapter. On sliding backwards, the lid cams engage the dovetail guideways, the angle of the cams helping to guide the parts together and, on driving the lift fully backwards, to press the lid hinge portion downwards into a solid engagement with the module. On sliding back, the lid ratchet 37 enters a catch of the module (not shown), and one of the lateral springs 41 ride over the crest of the crested stip to snap lock the engagement.

Following the description of the design of these components, a brief description of the assembly of the components shall be given. The microphone is fitted with a suitable sleeve and inserted into the battery compartment 5 of the adapter. The adapter is assembled with the electronics module 4 with the beams 19 in snap locking engagement with suitable hollows in the tracks 8. The combined unit is turned upside down, and the electronic circuit board put in place. Flexible leads are soldered to the microphone solder pads 27. The circuit board is soldered to the lugs 9, and the leads are connected to the circuit board. The lid may be snapped in place later on, as the nip between the adapter front face 16 and the module rear face 7 may yield resiliently to let the pins slip into the grooves. The combined unit is fixed in a faceplate 3. The shell 2 is made, normally customized to the user, and joined with the faceplate 3.

Modification to accommodate a different type of microphone requires providing a dedicated version of the adapter. Tailoring a dedicated adapter requires providing a body suitably shaped to interface with the electronics module and especially tailored to
accommodate the desired microphone. Other modifications and variations of the
structures and procedures will be evident to those skilled in the art.
CLAIMS

1. A component for a hearing aid comprising an electronics module, and a microphone adapter, wherein the electronics module and the microphone adapter provides a groove for sliding engagement with a pivot for a lid, the groove extending partially over the electronics module and partially over the adapter between a position where the lid is closed and a position where the lid is partially open.

2. The component according to claim 1, wherein the microphone adapter provides a fixture for securing a microphone and a sound conduit for conveying sound from the surroundings to a port of the microphone.

3. The component according to claim 1, comprising means for securing the lid in closed position.

4. The component according to claim 1, comprising sliding guides for guiding a sliding motion of the lid, substantially without swinging.

5. The component according to claim 1, comprising a pair of laterally spaced grooves for sliding engagement with laterally projecting pivots of the lid.

6. The component according to claim 5, comprising contact strips intermediate the grooves for contacting springs of the lid.

7. The component according to claim 1, wherein the electronics module and the microphone adapter comprises snap lock engagement means.

8. The component according to claim 1, comprising resilient means for securing the lid in the closed position.

9. A hearing aid comprising a lid, an electronics module, and a microphone adapter, wherein the electronics module and the microphone adapter provides a groove for sliding engagement with a pivot of the lid, the groove extending partially over the electronics module and partially over the adapter between a position where the lid is closed and a position where the lid is partially open.
Fig. 7

Fig. 8
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 HO4R25/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 HO4R

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)
EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 201 008 A (KROETSCH EDWARD S ET AL) 6 April 1993 (1993-04-06) cited in the application column 2, lines 61-68 column 3, lines 17,18 column 5, lines 17-56 figures 1-3,11</td>
<td>1-5,8,9</td>
</tr>
<tr>
<td></td>
<td>US 6 430 296 B1 (OLSEN JOERGEN MEJNER) 6 August 2002 (2002-08-06) figures 1-4,8-10 column 2, lines 2-9 column 2, lines 37-43 column 2, lines 47,48 column 3, line 14 - column 4, line 37 column 5, lines 17-39</td>
<td>1-3,8,9</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search: 21 January 2005
Date of mailing of the international search report: 27/01/2005

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax. (+31-70) 340-3016

Authorized officer
Fachado Romano, A
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4 598 177 A (HOULIHAN THOMAS D ET AL) 1 July 1986 (1986-07-01) column 1, lines 7-9 column 2, lines 3-6 column 3, lines 1-12 figures 4-8</td>
<td>1-4, 8, 9</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 5201008 A</td>
<td>06-04-1993</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 199622 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 710852 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6919098 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2264673 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2458323 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69800577 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69800577 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9847319 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 988776 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0988776 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000503197 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003059074 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004105561 A1</td>
</tr>
<tr>
<td>US 4598177 A</td>
<td>01-07-1986</td>
<td>NONE</td>
</tr>
</tbody>
</table>