

(11) EP 3 568 024 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: **25.11.2020 Bulletin 2020/48**

(21) Application number: 18704863.2

(22) Date of filing: 12.01.2018

(51) Int Cl.: A23C 9/12 (2006.01) C12R 1/225 (2006.01)

C12N 9/38 (2006.01)

A23C 9/123 (2006.01) C12R 1/46 (2006.01)

(86) International application number: PCT/EP2018/050708

(87) International publication number: WO 2018/130630 (19.07.2018 Gazette 2018/29)

(54) PROCESS FOR PRODUCING A FERMENTED MILK PRODUCT

VERFAHREN ZUR HERSTELLUNG EINES FERMENTIERTEN MILCHPRODUKTS PROCÉDÉ DE PRODUCTION D'UN PRODUIT LAITER FERMENTÉ

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB

GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 13.01.2017 EP 17151378

(43) Date of publication of application: **20.11.2019 Bulletin 2019/47**

(73) Proprietor: Chr. Hansen A/S 2970 Hoersholm (DK)

(72) Inventors:

 BA, Zhaoyong 2980 Kokkedal (DK)

 BUCHHORN, Gaelle Lettier 2830 Virum (DK) BULDO, Patrizia 2400 Copenhagen NV (DK)

 HOEGHOLM, Tina 2980 Kokkedal (DK)

 RUNGE, Mette Oehrstroem 3070 Snekkersten (DK)

 SCHOELER, Jeppe 8000 Aarhus C (DK)

 VOJINOVIC, Vojislav 3230 Graested (DK)

(56) References cited:

WO-A1-2007/021204 WO-A1-2009/071539 WO-A1-2015/193449 WO-A1-2015/193459 US-A1- 2009 088 391 US-A1- 2015 086 675

P 3 568 024 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

10

15

20

25

30

35

50

FIELD OF THE INVENTION

⁵ [0001] The present invention relates to a process for producing a fermented milk product.

BACKGROUND OF THE INVENTION

[0002] WO 2009/071539 discloses a lactase originating from *Bifidobacterium bifidum*, which is capable of very efficient hydrolysis in milk, and which is active over a broad pH range, including low pH, e.g. a pH below 5. The lactase may be used in processes for producing milk and fermented milk products, such as cheese, yogurt, butter, butter milk, sour cream etc., for reducing the content of lactose.

[0003] WO 2013/160413 discloses a method of producing a fermented milk product using a combination of glucosenegative lactic acid bacteria strains and a conventional lactase with an object of reducing the content of lactose in the fermented milk product while increasing the content of glucose.

[0004] EP-A1 -2 957 180 in one embodiment discloses a method of producing a fermented milk product using a combination of a starter cultures and a conventional lactase with an object of reducing content of lactose and the level of post-acidification in the fermented milk product. EP-A1-2 957 180 in a second embodiment discloses a method of producing a fermented milk product using lactose-deficient lactic acid bacteria.

SUMMARY OF THE INVENTION

[0005] The object of the present invention is to provide an improved process for producing a fermented milk product.

[0006] The object of the present invention is obtained by a process for producing a fermented milk product comprising the steps of

- 1) adding a starter culture comprising at least one lactic acid bacteria strain to a milk base,
- 2) fermenting the milk for a period of time until a target pH is reached,
- 3) wherein the starter culture comprises at least one lactose-deficient strain, which is capable of metabolizing a non-lactose carbohydrate, and
- 4) adding a low pH stable lactase to the process either at the start, during or at the end of the fermentation step, wherein the low pH stable lactase retains its activity at a pH of 5.0 and a temperature of 37 °C at a level of at least 5 % as compared to its activity at the optimum pH of the lactase.

[0007] Lactose-deficient lactic acid bacteria typically grow on a non-lactose carbohydrate source, such as sucrose, galactose and glucose, added to the milk in an amount measured so as stop the fermentation process and the growth of the lactic acid bacteria by depletion of the added carbohydrate source. Hereby, the post-acidification during subsequent storage is lowered significantly or even fully prevented. A low pH stable lactase will be active during the full course of a fermentation process and hence allows conversion of most or all of the lactose present in milk to glucose and galactose. Hereby, it is possible to produce a fermented milk product with a reduced content of lactose or a lactose-free product. Also, it is possible to produce a fermented milk product with an increased natural sweetness, as glucose and galactose has a much higher sweetness than lactose.

[0008] The present invention is based on the recognition that by using a combination of a low pH stable lactase and lactose-deficient lactic acid bacteria, it is possible to obtain a fermented milk product, which at the same time has reduced lactose content, an increased sweetness and reduced post-acidification. Furthermore, it has surprisingly been found that the said combination results in a fermented milk product having an increased texture as compared to using lactose-deficient lactic acid bacteria and no lactase and as compared to using a low pH stable lactase and lactose-positive lactic acid bacteria.

[0009] Furthermore, when the lactase is added before the fermentation step the process of the invention has provided a possibility of reducing or even eliminating the amount of non-lactose carbohydrate to be added to the milk. Thus, the glucose and galactose formed by the enzymatic action of lactase will be available for the growth of the lactose-deficient lactic acid bacteria.

[0010] Finally, when the lactase is added after the fermentation step, it is possible to take full advantage of the ability of the lactose-deficient lactic acid bacteria to avoid post-acidification.

[0011] Worldwide, a significant numbers of consumers are intolerant or sensitive to lactose. Therefore, there is presently a high demand for dairy products, including fermented milk products, with a reduced content of lactose or which is substantially free of lactose. The present invention has provided a new approach for producing such product in a simple and cost-efficient manner.

DETAILED DISCLOSURE OF THE INVENTION

Lactase

30

35

50

55

[0012] The lactase of the fermented milk product of the invention may be any lactase, which retains its activity at a pH of 5.0 and a temperature of 37 °C at a level of at least 5 % as compared to its activity at the optimum pH of the lactase. [0013] In relation to the present invention the activity in LAU of the lactase is measured as specified in the "Definitions" section below.

[0014] In a preferred embodiment of the invention, the lactase retains its activity at a pH of 5.0 and a temperature of 37 °C at a level of at least 10 %, preferably at least 20 %, more preferably at least 30 %, more preferably at least 40 %, more preferably at least 50 %, more preferably at least 60 %, more preferably at least 70 %, and most preferably at least 80 %, as compared to its activity at the optimum pH of the lactase.

[0015] In a preferred embodiment of the invention, the lactase retains its activity at a pH of 4.0 and a temperature of 37 °C at a level of at least 5 %, preferably at least 10 %, more preferably at least 20 %, more preferably at least 30 %, more preferably at least 40 %, more preferably at least 50 %, more preferably at least 60 %, more preferably at least 70 %, and most preferably at least 80 %, as compared to its activity at the optimum pH of the lactase.

[0016] In a preferred embodiment of the invention, the lactase retains its activity at a pH of 3.0 and a temperature of 37 °C at a level of at least 5 %, preferably at least 10 %, more preferably at least 20 %, more preferably at least 30 %, more preferably at least 40 %, more preferably at least 50 %, more preferably at least 60 %, more preferably at least 70 %, and most preferably at least 80 %, as compared to its activity at the optimum pH of the lactase.

[0017] In connection with the present invention the optimum pH of the lactase is determined by measuring the lactase activity at pH using the method indicated in the "Definitions" section below and determining the pH with optimum activity. In a preferred embodiment of the invention, the lactase retains its activity at a temperature of 10 °C and a pH of 6.0 at a level of at least 10 % as compared to its activity at the optimum temperature of the lactase. Preferably, the lactase retains its activity at a temperature of 10 °C and a pH of 6.0 at a level of at least 20 %, more preferably at least 30 %, more preferably at least 40 %, more preferably at least 50 %, more preferably at least 60 %, more preferably at least 70 %, and most preferably at least 80 %, as compared to its activity at the optimum temperature of the lactase.

[0018] In connection with the present invention the optimum temperature of the lactase is determined by measuring the lactase activity at different temperatures using the method indicated in the "Definitions" section below and determining the temperature with optimum activity.

[0019] In a preferred embodiment, the lactase to be used in the product of the present invention has a lactase activity at 37°C and pH 5 which is at least 55%, such as at least 60%, at least 65%, at least 70% or at least 75%, of its lactase activity at 37°C and pH 6.

[0020] In another preferred embodiment, the lactase to be used in the product of the present invention has a lactase activity at 37°C and pH 4.5 which is at least 10%, such as at least 20%, at least 30%, at least 35% or at least 40%, of its lactase activity at 37°C and pH 6.

[0021] In another preferred embodiment, the lactase to be used in the product of the present invention has a pH optimum of the lactase activity at 37°C which is above pH 5.5.

[0022] In another preferred embodiment, the lactase to be used in the product of the present invention has a lactase activity at a temperature of 52°C and a pH of 6.5 which is at least 50%, such as at least 55%, at least 60%, at least 65%, at least 70%, at least 75% or at least 80%, of its lactase activity at a temperature of 38°C and a pH of 6.5.

[0023] In a preferred embodiment of the present invention, Km of the lactase at 5°C is below 25 mM, such as below 20 mM, below 15 mM or below 10 mM. In another preferred embodiment, Km of the lactase at 37°C is below 25 mM, such as below 20 mM or below 15 mM. The skilled person will know how to determine Km for the lactase activity at a specific temperature. Km may be determined by the method described in WO2009/071539.

[0024] In another preferred embodiment, the enzyme when hydrolyzing the lactose in the milk product has a ratio of lactase to transgalactosylase activity of more than 1:1, such as more than 2:1 or more than 3:1. In another preferred embodiment, the enzyme treatment is performed under conditions where the lactase activity of the enzyme is higher than the transgalactosylase activity, such as at least two times higher or at least three times higher.

[0025] The ratio of lactase to transgalactosylase activity in the milk product may, e.g., be determined by HPLC analysis. In another preferred embodiment, the enzyme treatment is performed under conditions where at least 50% (w/w%) of the hydrolyzed lactose is converted into free galactose. In another preferred embodiment, the enzyme treatment is performed under conditions where the hydrolyzed lactose is converted into equal amounts of free glucose and free galactose.

[0026] A lactase in the context of the present invention is a glycoside hydrolase having the ability to hydrolyze the disaccharide lactose into constituent galactose and glucose monomers. The group of lactases, to which the lactase of the invention belongs, comprises but is not limited to enzymes assigned to subclass EC 3.2.1.108. Enzymes assigned to other subclasses, such as, e.g., EC 3.2.1.23, may also be lactases in the context of the present invention. A lactase

in the context of the invention may have other activities than the lactose hydrolyzing activity, such as for example a transgalactosylating activity. In the context of the invention, the lactose hydrolyzing activity of the lactase may be referred to as its lactase activity or its beta-galactosidase activity.

[0027] Enzymes having lactase activity to be used in a method of the present invention may be of animal, of plant or of microbial origin. Preferred lactases are obtained from microbial sources, in particular from a filamentous fungus or yeast, or from a bacterium.

[0028] The enzyme may, e.g., be derived from a strain of Agaricus, e.g. A. bisporus; Ascovaginospora; Aspergillus, e.g. A. niger, A. awamori, A. foetidus, A. japonicus, A. oryzae; Candida; Chaetomium; Chaetotomastia; Dictyostelium, e.g. D. discoideum; Kluveromyces, e.g. K. fragilis, K. lactis; Mucor, e.g. M. javanicus, M. mucedo, M. subtilissimus; Neurospora, e.g. N. crassa; Rhizomucor, e.g. R. pusillus; Rhizopus, e.g. R. arrhizus, R. japonicus, R. stolonifer; Sclerotinia, e.g. S. libertiana; Torula; Torulopsis; Trichophyton, e.g. T. rubrum; Whetzelinia, e.g. W. sclerotiorum; Bacillus, e.g. B. coagulans, B. circulans, B. megaterium, B. novalis, B. subtilis, B. pumilus, B. stearothermophilus, B. thuringiensis; Bifidobacterium, e.g. B. longum, B. bifidum, B. animalis; Chryseobacterium; Citrobacter, e.g. C. freundii; Clostridium, e.g. C. perfringens; Diplodia, e.g. D. gossypina; Enterobacter, e.g. E. aerogenes, E. cloacae Edwardsiella, E. tarda; Erwinia, e.g. E. herbicola; Escherichia, e.g. E. coli; Klebsiella, e.g. K. pneumoniae; Miriococcum; Myrothesium; Mucor; Neurospora, e.g. N. crassa; Proteus, e.g. P. vulgaris; Providencia, e.g. P. stuartii; Pycnoporus, e.g. Pycnoporus cinnabarinus, Pycnoporus sanguineus; Ruminococcus, e.g. R. torques; Salmonella, e.g. S. typhimurium; Serratia, e.g. S. liquefasciens, S. marcescens; Shigella, e.g. S. flexneri; Streptomyces, e.g. S. antibioticus, S. castaneoglobisporus, S. violeceoruber; Trametes; Trichoderma, e.g. T. reesei, T. viride; Yersinia, e.g. Y. enterocolitica.

[0029] In a preferred embodiment, the lactase originates from a bacterium, e.g. from the family Bifidobacteriaceae, such as from the genus *Bifidobacterium*, such as from a strain of *B. bifidum*, *B. animalis* or *B. longum*. In a more preferred embodiment, the lactase originates from *Bifidobacterium bifidum*.

[0030] In a preferred embodiment, an enzyme having lactase activity to be used in the product of the present invention comprises an amino acid sequence which is at least 50% identical to a sequence selected from the group consisting of amino acids 28-1931 of SEQ ID NO: 1, amino acids 28-1331 of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4 and lactase active fragments thereof. In a more preferred embodiment, the enzyme comprises an amino acid sequence which is at least 60%, such as at least 70%, at least 80%, at least 90%, at least 95% or at least 98% identical to a sequence selected from the group consisting of amino acids 28-1931 of SEQ ID NO: 1, amino acids 28-1331 of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4 and lactase active fragments thereof.

[0031] A preferred enzyme is a lactase having a sequence which is at least 50%, such as at least 60%, at least 70%, at least 80%, at least 90%, at least 95% or at least 98% identical to amino acids 28-1931 of SEQ ID NO: 1 or to a lactase active fragment thereof. Such lactase active fragment of SEQ ID NO: 1 may be any fragment of SEQ ID NO: 1 having lactase activity. A lactase active fragment of SEQ ID NO: 1 may be, e.g., amino acids 28-979, amino acids 28-1170, amino acids 28-1323, amino acids 28-1331, or amino acids 28-1600 of SEQ ID NO: 1.

[0032] In a preferred embodiment, an enzyme having lactase activity to be used in the product of the present invention comprises an amino acid sequence which is at least 50% identical to amino acids 28-1331 of SEQ ID NO: 2. In a more preferred embodiment, the enzyme comprises an amino acid sequence which is at least 60%, such as at least 70%, at least 80%, at least 90%, at least 95% or at least 98% identical to amino acids 28-1331 of SEQ ID NO: 2.

[0033] In another embodiment, an enzyme having lactase activity to be used in product of the present invention has an amino acid sequence which is at least 50% identical to SEQ ID NO: 3. Preferably, the enzyme has an amino acid sequence which is at least 60%, such as at least 70%, at least 80%, at least 90%, at least 95% or at least 98% identical to SEQ ID NO: 3.

[0034] In another embodiment, an enzyme having lactase activity to be used in the product of the present invention has an amino acid sequence which is at least 50% identical to SEQ ID NO: 4. Preferably, the enzyme has an amino acid sequence which is at least 60%, such as at least 70%, at least 80%, at least 90%, at least 95% or at least 98% identical to SEQ ID NO: 4.

[0035] For purposes of the present invention, the degree of identity between two amino acid sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch (1970) J. Mol. Biol. 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al. (2000) Trends in Genetics 16: 276-277), preferably version 3.0.0 or later. The optional parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix. The output of Needle labelled "longest identity" (obtained using the -no brief option) is used as the percent identity and is calculated as follows:

(Identical Residues x 100)/(Length of Alignment — Total Number of Gaps in Alignment)

55

30

35

40

45

[0036] A particular commercial lactase suitable for use in the present invention is Lactase F "Amano" 100SD available from Amano Enzyme Europe.

[0037] Lactases to be used in a method of the present invention may be extracellular. They may have a signal sequence at their N-terminus, which is cleaved off during secretion.

[0038] Lactases to be used in a method of the present invention may be derived from any of the sources mentioned herein. The term "derived" means in this context that the enzyme may have been isolated from an organism where it is present natively, i.e. the identity of the amino acid sequence of the enzyme are identical to a native enzyme. The term "derived" also means that the enzymes may have been produced recombinantly in a host organism, the recombinantly produced enzyme having either an identity identical to a native enzyme or having a modified amino acid sequence, e.g. having one or more amino acids which are deleted, inserted and/or substituted, i.e. a recombinantly produced enzyme which is a mutant and/or a fragment of a native amino acid sequence. Within the meaning of a native enzyme are included natural variants. Furthermore, the term "derived" includes enzymes produced synthetically by, e.g., peptide synthesis. The term "derived" also encompasses enzymes which have been modified e.g. by glycosylation, phosphorylation etc., whether *in vivo* or *in vitro*. With respect to recombinantly produced enzyme the term "derived from" refers to the identity of the enzyme and not the identity of the host organism in which it is produced recombinantly.

[0039] The lactase may be obtained from a microorganism by use of any suitable technique. For instance, a lactase enzyme preparation may be obtained by fermentation of a suitable microorganism and subsequent isolation of a lactase preparation from the resulting fermented broth or microorganism by methods known in the art. The lactase may also be obtained by use of recombinant DNA techniques. Such method normally comprises cultivation of a host cell transformed with a recombinant DNA vector comprising a DNA sequence encoding the lactase in question and the DNA sequence being operationally linked with an appropriate expression signal such that it is capable of expressing the lactase in a culture medium under conditions permitting the expression of the enzyme and recovering the enzyme from the culture. The DNA sequence may also be incorporated into the genome of the host cell. The DNA sequence may be of genomic, cDNA or synthetic origin or any combinations of these, and may be isolated or synthesized in accordance with methods known in the art.

[0040] Lactases to be used in a method of the present invention may be purified. The term "purified" as used herein covers lactase enzyme protein essentially free from insoluble components from the production organism. The term "purified" also covers lactase enzyme protein essentially free from insoluble components from the native organism from which it is obtained. Preferably, it is also separated from some of the soluble components of the organism and culture medium from which it is derived. More preferably, it is separated by one or more of the unit operations: filtration, precipitation, or chromatography.

[0041] Accordingly, the enzyme having lactase activity may be purified, viz. only minor amounts of other proteins being present. The expression "other proteins" relate in particular to other enzymes. The term "purified" as used herein also refers to removal of other components, particularly other proteins and most particularly other enzymes present in the cell of origin of the lactase. The lactase may be "substantially pure", i.e. free from other components from the organism in which it is produced, i.e., e.g., a host organism for recombinantly produced lactase. Preferably, the lactase is an at least 40% (w/w) pure enzyme protein preparation, more preferably at least 50%, 60%, 70%, 80% or even at least 90% pure. [0042] The term enzyme having lactase activity includes whatever auxiliary compounds that may be necessary for the enzyme's catalytic activity, such as, e.g., an appropriate acceptor or cofactor, which may or may not be naturally present in the reaction system.

[0043] The enzyme may be in any form suited for the use in question, such as, e.g., in the form of a dry powder or granulate, a non-dusting granulate, a liquid, a stabilized liquid, or a protected enzyme.

Lactose-deficient lactic acid bacteria

10

20

30

35

40

45

50

[0044] The terms "deficiency in lactose metabolism" and "lactose deficient" are used in the context of the present invention to characterize LAB which either partially or completely lost the ability to use lactose as a source for cell growth or maintaining cell viability. Respective LAB are capable of metabolizing one or several carbohydrates selected from sucrose, galactose and/or glucose or another fermentable carbohydrate. Since these carbohydrates are not naturally present in milk in sufficient amounts to support fermentation by lactose deficient mutants, it is necessary to add these carbohydrates to the milk. Lactose deficient and partially deficient LAB can be characterized as white colonies on a medium containing lactose and X-Gal.

[0045] In a particular embodiment of the invention, the lactose-deficient strain is capable of metabolizing a non-lactose carbohydrate selected from the group consisting of sucrose, galactose and glucose, preferably sucrose. In a particular embodiment of the invention, the lactose-deficient strain is capable of metabolizing galactose.

[0046] In a particular embodiment of the invention, the lactose-deficient strain is selected from the group consisting of lactose-deficient *Streptococcus thermophilus* and lactose-deficient *Lactobacillus delbrueckii* subsp. *bulgaricus*.

[0047] In a particular embodiment of the invention, the lactose-deficient strain is selected from the group consisting of:

- (a) a Streptococcus thermophilus strain, which strain is:
 - (i) the strain deposited with DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7B, D-38124 Braunschweig, on 2014-06-12 under the accession no. DSM 28952;
 - (ii) or a strain derived from DSM 28952, wherein the derived strain is further characterized as having the ability to generate white colonies on a medium containing lactose and X-Gal;
- (b) a Streptococcus thermophilus strain, which strain is:
- (i) the strain deposited with DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7B, D-38124 Braunschweig, on 2014-06-12 under the accession no. DSM 28953;
 - (ii) or a strain derived from DSM 28953, wherein the derived strain is further characterized as having the ability to generate white colonies on a medium containing lactose and X-Gal;
- (c) a Lactobacillus delbrueckii ssp. bulgaricus strain, which strain is:
 - (i) the strain deposited with DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7B, D-38124 Braunschweig, on 2014-06-12 under the accession no. DSM 28910;
 - (ii) or a strain derived from DSM 28910, wherein the derived strain is further characterized as having the ability to generate white colonies on a medium containing lactose and X-Gal.

[0048] In a particular embodiment of the invention, the starter culture contains both at least one lactose-deficient *Streptococcus thermophilus* and at least one lactose-deficient *Lactobacillus delbrueckii* subsp. *bulgaricus*.

[0049] In a particular embodiment of the invention, the starter culture contains both at least one *Streptococcus thermophilus* and at least one *Lactobacillus delbrueckii* subsp. *bulgaricus*, and wherein all *Streptococcus thermophilus* and all *Lactobacillus delbrueckii* subsp. *bulgaricus* strains are lactose-deficient.

Steps of the process of the invention

5

20

35

50

55

[0050] In a particular embodiment of the invention, the fermentation step is terminated by a method selected from the group consisting of 1) acidification of the fermented milk rendering at least one strain of the starter culture unable to grow, 2) cooling treatment and 3) depletion of the non-lactose carbohydrate.

[0051] In a particular embodiment of the invention, non-lactose carbohydrate is added to the milk base at the start of the fermentation step.

[0052] Preferably, the non-lactose carbohydrate is added to the milk base in an amount measured so as to become depleted and hence result in stopping the growth of lactic acid bacteria and in stopping the fermentation. Preferably, the non-lactose carbohydrate is added to the milk base in an amount measured so as to become depleted and hence result in stopping the growth of lactic acid bacteria and in stopping the fermentation at a selected target pH value.

[0053] The amount of non-lactose carbohydrate to be added to the milk base depends on a number of parameters, including the lactic acid bacteria strains used in the starter culture, the composition of the milk base, the fermentation temperature and the desired target pH. Also, the amount of non-lactose carbohydrate to be added to the milk base may depend on the type and amount of lactase used in the process. The amount of non-lactose carbohydrate to be added to the milk base can be determined by experimentation, and it is well within the skills of a skilled person to carry out such experimentation.

[0054] In a particular embodiment of the invention, the added non-lactose carbohydrate is selected from the group consisting of sucrose, galactose and glucose, preferably sucrose.

[0055] In a first aspect of the invention, the low pH stable lactase is added to the milk base at the start of the fermentation step. In this aspect the added lactase will convert the lactose of the milk base to glucose and galactose, which will be available for metabolization for the starter culture in addition to the added non-lactose carbohydrate. In this case, it will not be possible to stop the fermentation by depletion of the added non-lactose carbohydrate. Thus, in a particular embodiment of the first aspect of the invention, the fermentation step is terminated by a method selected from the group consisting of 1) acidification of the fermented milk rendering at least one strain of the starter culture unable to grow, and 2) cooling treatment.

[0056] In a particular embodiment of the first aspect of the invention no non-lactose carbohydrate is added to the fermentation step and at least one lactose-deficient lactic acid strain of the starter culture is capable of metabolizing a carbohydrate selected from the group consisting of glucose and galactose. In this embodiment the lactose-deficient lactic acid strain of the starter culture grows solely on the glucose and/or galactose formed by the enzymatic action of the low pH lactase. In this embodiment of the invention, the fermentation is stopped at a target pH value by a method

selected from the group consisting of 1) acidification of the fermented milk rendering at least one strain of the starter culture unable to grow, 2) cooling treatment and 3) depletion of the glucose and/or galactose formed by the low pH stable lactase.

[0057] In a second aspect of the invention, the low pH stable lactase is added to the fermented milk at the end of the fermentation. In this case, the lactase-containing fermented milk product is preferably stored at a temperature of at least 2 °C for at least 1 day. In a particular embodiment of the process of the invention, the lactase-containing fermented milk product is stored for at least two days, preferably at least 3 days, more preferably at least 4 days, more preferably at least 5 days, more preferably at least 6 days, and most preferably at least 7 days.

[0058] In a particular embodiment of the second aspect of the invention, the fermentation step is terminated by depletion of the non-lactose carbohydrate.

10

30

35

50

[0059] In a particular embodiment of the invention the target pH is between 3.2 and 4.8, more preferably between 3.6 and 4.6, more preferably between 3.8 and 4.5 and most preferably between 4.0 and 4.4.

[0060] In a particular embodiment of the invention the fermentation temperature is between 35 °C and 45 °C, preferably between 37 °C and 43 °C, and more preferably between 40 °C and 43 °C.

[0061] In another particular embodiment of the invention the fermentation is between 15 °C and 35 °C, preferably between 25 °C and 35 °C, and more preferably between 30 °C and 33 °C.

[0062] In a particular embodiment of the invention, the fermented milk product is packaged at a temperature between 15 and 45 °C.

[0063] In a particular embodiment of the invention, the pH value of the fermented milk product is maintained within a range of 0.3 pH units, preferably within a range of 0.2 pH units and most preferably within a range of 0.1 pH units, when stored after termination of the fermentation at the temperature used for fermentation over a period of 20 hours.

[0064] In a particular embodiment of the invention, the amount of added non-lactose carbohydrate is from 1 mg/g to 30 mg/g, preferably from 2 mg/g to 20 mg/g, and more preferably from 3 mg/g to 10 mg/g milk base.

[0065] In a particular embodiment of the invention, the amount of added non-lactose carbohydrate is from 0.1 % to 10 %, preferably from 0.2 % to 8 %, preferably from 0.3 % to 2 %, preferably from 0.4 % to 1.5 %, and more preferably from 0.5 % to 1.2 %, wherein % is (w/w) based on milk base.

[0066] The starter culture may have the strain composition of any conventional starter culture of lactic acid bacteria, including single strain culture and culture blends, used for producing a specific type of fermented milk product. Other useful bacteria, which may be added to the product in addition to the starter culture, include the probiotic bacteria *Bifidobacterium spp.*

[0067] In a particular embodiment of the invention, the fermented milk product after fermentation is subjected to a heat treatment so as to reduce the level of bacteria of the starter culture to no more than 1X10exp02 CFU per g fermented milk product. In this case a particular embodiment is characterized in that the lactase is added after the heat treatment. In this case the lactase-containing fermented milk product is stored at a temperature of at least 2 °C for at least 1 day. In a particular embodiment of the process of the invention, the lactase-containing fermented milk product is stored for at least two days, preferably at least 3 days, more preferably at least 4 days, more preferably at least 5 days, more preferably at least 6 days, and most preferably at least 7 days.

[0068] The heat treatment so as to reduce the level of bacteria of the starter culture to no more than 1.0X10exp02 CFU per g fermented milk is preferably carried out by subjecting the starter culture fermented milk product to a temperature of between 50 °C and 110 °C, preferably between 50 °C and 90 °C, preferably between 50 °C and 90 °C, preferably between 60 °C and 85 °C, more preferably between 65 °C and 82 °C, and most preferably between 70 °C and 80 °C. The heat treatment is preferably carried out for a period of between 5 seconds and 180 seconds, preferably between 5 seconds and 120 seconds, more preferably between 5 seconds and 90 seconds, more preferably between 5 seconds and 60 seconds, more preferably between 8 seconds and 50 seconds and most preferably between 10 and 40 seconds. Preferably, the level of bacteria of the starter culture is reduced to no more than 1.0X10exp01 CFU per g fermented

milk, more preferably 0 CFU per g. Fermented milk products subjected to a heat treatment so as to reduce the level of bacteria to no more than 1X10exp02 CFU per g are suitable for use storage at ambient temperature, such as storage at a temperature of at least 5 °C, preferably at least 10 °C, more preferably at least 15 °C, and most preferably at least 20 °C.

[0069] The low pH stable lactase is added in a suitable amount to achieve the desired degree of lactose hydrolysis under the chosen reaction conditions. In a particular embodiment of the invention, lactase is added in an amount of between 100 and 20000 LAU per liter milk base, preferably between 100 and 10000 LAU per liter milk base, preferably less than 3000, such as less than 1500, less than 1000, less than 750 or less than 500, LAU per liter milk base.

[0070] In a preferred embodiment, the lactase is added at a concentration of between 5 and 400 LAU per g lactose in the milk base, preferably between 5 and 200 LAU per g lactose in the milk base, preferably between 5 and 100 LAU per g lactose in the milk base, preferably less than 50, such as less than 40, less than 30, less than 20 or less than 10, LAU per g lactose in the milk base.

[0071] In a preferred embodiment of the invention, the lactase is added to the milk base in an amount of between 2.0

mg/ml and 50 mg/ml, preferably between 5 mg/ml and 48 mg/ml, more preferably between 10 mg/ml and 46 mg/ml, and most preferably between 20 mg/ml and 45 mg/ml.

[0072] In a preferred embodiment of the invention, the residual level of lactose at the end of fermentation is less than 40 mg/ml, preferably less than 35 mg/ml, more preferably less than 30 mg/ml, more preferably less than 25 mg/ml, more preferably less than 10 mg/ml, more preferably less than 10 mg/ml, more preferably less than 5 mg/ml, more preferably less than 3 mg/ml, and most preferably less than 1.5 mg/ml.

[0073] In a preferred embodiment of the invention, the milk base at the start of the fermentation step has a content of lactose of between 30.0 mg/ml and 70 mg/ml, preferably between 35 mg/ml and 65 mg/ml, more preferably between 40 mg/ml and 60 mg/ml, and most preferably between 50 mg/ml and 60 mg/ml.

[0074] In a preferred embodiment of the invention, wherein the low pH-stable lactase is added to the process at the end of the fermentation step, the fermented milk product, to which the lactase is to be added, has a viscosity, which allows easy distribution of the lactase in the fermented milk product, e.g. by mixing.

[0075] In a preferred embodiment of the process of the invention, the lactase to be added to the process is provided in a sterile formulation. In another preferred embodiment of the process of the invention the lactase is added to the process under aseptic conditions, e.g. by sterile filtration of a solution of the lactase.

Fermented milk product

[0076] The present disclosure further relates to a fermented milk product produced by the process of the invention.

[0077] In a particular aspect the fermented milk product produced by the process of the invention comprises the starter culture of step 3) of the said process and the low pH stable lactase added in step 4) of the said process.

[0078] In a particular aspect the fermented milk product is a product, which may be produced using a lactic acid bacteria strain selected from the group consisting of lactose-deficient *Streptococcus thermophilus* and lactose-deficient *Lactobacillus delbrueckii* subsp. *bulgaricus*.

[0079] In a particular aspect the fermented milk product is selected form the group consisting of yogurt, cream cheese, sour milk, sour cream, buttermilk, fermented whey, cultured milk, Smetana, Kefir, drinking yogurt, and Yakult. Preferably, the yogurt is selected from the group consisting of set yogurt, stirred yogurt and drinking yogurt.

[0080] In a preferred aspect the fermented milk product contains a further food product selected from the group consisting of fruit beverage, fermented cereal products, chemically acidified cereal products, soy milk products and any mixture thereof.

[0081] The fermented milk product typically contains protein in a level of between 2.0 % by weight to 3.5 % by weight. The fermented milk product may also be a low protein product with a protein level of between 1.0 % by weight and 2.0 % by weight. Alternatively, the fermented milk product may be a high protein product with a protein level of above 3.5 % by weight.

Use

[0082] The present invention further relates to the use in a process for producing a fermented milk product comprising the steps of

- 1) adding a starter culture comprising at least one lactic acid bacteria strain to a milk base, and
- 2) fermenting the milk for a period of time until a target pH is reached, of
- 3) the starter culture comprising at least one lactose-deficient strain, which is capable of metabolizing a non-lactose carbohydrate, and
- 4) a low pH stable lactase added to the process either at the start, during or at the end of the fermentation step, wherein the low pH stable lactase retains its activity at a pH of 5.0 and a temperature of 37 °C at a level of at least 5 % as compared to its activity at the optimum pH of the lactase.

Definitions

[0083] In connection with the present invention the following definitions apply:

"LAU" means "Lactose Units" and 1 lactase unit (1 LAU) is the amount of enzyme which releases 1 micromole glucose per minute in M-buffer at pH 6.5 and 37°C with a lactose concentration of 4.75% w/v. M-buffer is prepared by dissolving 3.98 g $C_6H_5Na_3O_7$ - $2H_2O$, 8.31 g citric acid, 0.9 g K_2SO_4 , 2.6 g K_2HPO_4 , 7.35 g KH_2PO_4 , 5.45 g KOH, 4.15 g $MgCl_2$ - $6H_2O$, 3.75 g $CaCl_2$ - $2H_2O$ and 1.4 g $NaHCO_3$ in 4 liter water, adding 12.5 ml 4N NaOH, adjusting to pH 6.5 using HCI, and adding water up to a total volume of 5 liter.

[0084] The activity in LAU of a specific lactase may be determined by direct measurement of glucose released from lactose under the conditions described above. The skilled person will know how to determine such activity. Alternatively,

8

40

35

30

15

20

50

the activity may be determined by using the lactase activity assay described in Example 1 of the present application. Here, the activity is obtained by comparing to a standard curve run with a lactase of known activity, and the activity of the unknown sample calculated from this. The lactase of known activity may, e.g., be Lactozym obtained from Novozymes A/S, Denmark.

[0085] The expression "heat treatment" means any treatment using any temperature, for any period of time and by any means or equipment, which inactivates at least a portion of the bacteria of the starter culture. In this connection the term "inactivate" means any stop, reduction or inhibition of growth of the bacteria, e.g. cell lysing.

[0086] The expression "lactic acid bacteria" ("LAB") designates a gram-positive, microaerophilic or anaerobic bacteria, which ferment sugars with the production of acids including lactic acid as the predominantly produced acid, acetic acid and propionic acid. The industrially most useful lactic acid bacteria are found within the order "Lactobacillales" which includes *Lactococcus spp., Streptococcus spp., Lactobacillus spp., Leuconostoc spp., Pseudoleuconostoc spp., Pediococcus spp., Brevibacterium spp., Enterococcus spp.* and *Propionibacterium spp.* These are frequently used as food cultures alone or in combination with other lactic acid bacteria.

10

30

35

45

50

[0087] Lactic acid bacteria, including bacteria of the species Lactobacillus sp. and Lactococcus sp., are normally supplied to the dairy industry either as frozen or freeze-dried cultures for bulk starter propagation or as so-called "Direct Vat Set" (DVS) cultures, intended for direct inoculation into a fermentation vessel or vat for the production of a dairy product, such as a fermented milk product or a cheese. Such lactic acid bacterial cultures are in general referred to as "starter cultures" or "starters". Typically, a starter culture for yogurt comprises Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, and in most countries a yogurt is by legislation defined as a fermented milk product produced using a starter culture comprising the two said strains.

[0088] The term "milk" is to be understood as the lacteal secretion obtained by milking of any mammal, such as cows, sheep, goats, buffaloes or camels. In a preferred embodiment, the milk is cow's milk. The term milk also includes protein/fat solutions made of plant materials, e.g. soy milk.

[0089] The term "milk base" may be any raw and/or processed milk material that can be subjected to fermentation according to the method of the invention. Thus, useful milk bases include, but are not limited to, solutions/-suspensions of any milk or milk like products comprising protein, such as whole or low fat milk, skim milk, buttermilk, reconstituted milk powder, condensed milk, dried milk, whey, whey permeate, lactose, mother liquid from crystallization of lactose, whey protein concentrate, or cream. Obviously, the milk base may originate from any mammal, e.g. being substantially pure mammalian milk, or reconstituted milk powder.

[0090] Prior to fermentation, the milk base may be homogenized and pasteurized according to methods known in the art.
[0091] "Homogenizing" as used herein means intensive mixing to obtain a soluble suspension or emulsion. If homogenization is performed prior to fermentation, it may be performed so as to break up the milk fat into smaller sizes so that it no longer separates from the milk. This may be accomplished by forcing the milk at high pressure through small orifices.
[0092] "Pasteurizing" as used herein means treatment of the milk base to reduce or eliminate the presence of live organisms, such as microorganisms. Preferably, pasteurization is attained by maintaining a specified temperature for a specified period of time. The specified temperature is usually attained by heating. The temperature and duration may be selected in order to kill or inactivate certain bacteria, such as harmful bacteria. A rapid cooling step may follow.

[0093] "Fermentation" in the methods of the present invention means the conversion of carbohydrates into alcohols or acids through the action of a microorganism. Preferably, fermentation in the methods of the invention comprises conversion of lactose to lactic acid.

[0094] Fermentation processes to be used in production of dairy products are well known and the person of skill in the art will know how to select suitable process conditions, such as temperature, oxygen, amount and characteristics of microorganism(s) and process time. Obviously, fermentation conditions are selected so as to support the achievement of the present invention, i.e. to obtain a dairy product in solid (such as a cheese) or liquid form (such as a fermented milk product).

[0095] The use of the terms "a" and "an" and "the" and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms "comprising", "having", "including" and "containing" are to be construed as open-ended terms (i.e., meaning "including, but not limited to,") unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.

[0096] The expression "fermented milk product" means a food or feed product wherein the preparation of the food or feed product involves fermentation of a milk base with a lactic acid bacteria. "Fermented milk product" as used herein

includes but is not limited to products such as thermophilic fermented milk products, e.g. yoghurt, mesophilic fermented milk products, e.g. sour cream and buttermilk, as well as fermented whey.

[0097] The term "thermophile" herein refers to microorganisms that thrive best at temperatures above 35°C. The industrially most useful thermophilic bacteria include Streptococcus spp. and Lactobacillus spp. The term "thermophilic fermentation" herein refers to fermentation at a temperature above about 35°C, such as between about 35°C to about 45°C. The term "thermophilic fermented milk product" refers to fermented milk products prepared by thermophilic fermentation of a thermophilic starter culture and include such fermented milk products as set-yoghurt, stirred-yoghurt and drinking yoghurt, e.g. Yakult.

[0098] The term "mesophile" herein refers to microorganisms that thrive best at moderate temperatures (15°C-35°C). The industrially most useful mesophilic bacteria include Lactococcus spp. and Leuconostoc spp. The term "mesophilic fermentation" herein refers to fermentation at a temperature between about 22°C and about 35°C. The term "mesophilic fermented milk product" refers to fermented milk products prepared by mesophilic fermentation of a mesophilic starter culture and include such fermented milk products as buttermilk, sour milk, cultured milk, smetana, sour cream, Kefir and fresh cheese, such as quark, tvarog and cream cheese.

[0099] In connection with the present invention, "shear stress" may be measured by the following method: Seven days after production, the fermented milk product was brought to 13°C and manually stirred gently by means of a spoon (5 times) until homogeneity of the sample. The rheological properties of the sample were assessed on a rheometer (Anton Paar Physica Rheometer with ASC, Automatic Sample Changer, Anton Paar® GmbH, Austria) by using a bob-cup. The rheometer was set to a constant temperature of 13 °C during the time of measurement. Settings were as follows:

Holding time (to rebuild to somewhat original structure)

5 minutes without any physical stress (oscillation or rotation) applied to the sample. Oscillation step (to measure the elastic and viscous modulus, G' and G", respectively, therefore calculating the complex modulus G*)

Constant strain = 0.3 %, frequency (f) = [0.5..8] Hz 6 measuring points over 60 s (one every 10 s)

Rotation step (to measure shear stress at 300 1/s)

Two steps were designed:

10

20

25

30

35

50

1) Shear rate = [0.3-300] 1/s and 2) Shear rate = [275-0.3] 1/s.

Each step contained 21 measuring points over 210 s (on every 10 s).

The shear stress at 300 1/s was chosen for further analysis, as this correlates to mouth thickness when swallowing a fermented milk product.

[0100] In connection with the present invention, "gel firmness" may be measured by the following method:

Gel firmness is measured by a back extrusion test with a texture analyzer (TA.XT Plus, Stable Micro System, Surrey, UK) supplied with a 35mm parallel plate. The travel distance is set to 15 mm, and the travel speed to 2 mm/s. The test is performed after 7 days from production. The fermented milk product was brought to 13°C and manually stirred gently, and measured in a 250 g plastic container. The maximal force (N or g) obtained by force versus distance curves is used as "gel firmness" parameter, the positive area (N* mm) as degree of deformation, the maximal negative force (N) as ropiness.

[0101] The term "low pH stable lactase" herein refers to a lactase, which retains its activity at a pH of 5.0 and a temperature of 37 °C at a level of at least 5 % as compared to its activity at the optimum pH of the lactase.

[0102] The term "activity at the optimum pH" means the lactase activity at the pH, where the lactase has its optimum activity.

[0103] The term "non-lactose carbohydrate" means any carbohydrate, which is not lactose, and which a lactose-deficient lactic acid bacterium used in the process of the invention is capable of metabolizing.

[0104] The expression "at the start of the fermentation step" means shortly before, at the same time as or shortly after addition of the starter culture to the milk base. Here, the term "shortly" means less than 30 minutes".

[0105] The expression "during the fermentation step" means at any time during the fermentation after the start and before the end of the fermentation.

[0106] The expression "at the end of the fermentation step" means shortly before, at the same time as or shortly after the target pH is reached. Here, the term "shortly" means less than 30 minutes".

[0107] The term "target pH" means the pH at which the fermentation step ends. Depending on various parameters of the process, the fermentation step is terminated by a method selected from the group consisting of 1) acidification of

the fermented milk rendering at least one strain of the starter culture unable to grow, 2) cooling treatment and 3) depletion of the non-lactose carbohydrate.

DEPOSITS AND EXPERT SOLUTION

5

- **[0108]** The Applicant requests that a sample of the deposited microorganism should be made available only to an expert approved by the Applicant.
- **[0109]** Streptococcus thermophilus strain deposited with DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7B, D-38124 Braunschweig, on 2014-06-12 under the accession no. DSM 28952.
- [0110] Streptococcus thermophilus strain deposited with DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7B, D-38124 Braunschweig, on 2014-06-12 under the accession no. DSM 28953.
 - **[0111]** Lactobacillus delbrueckii ssp. bulgaricus strain deposited with DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7B, D-38124 Braunschweig, on 2014-06-12 under the accession no. DSM 28910;
- The deposits were made according to the Budapest treaty on the international recognition of the deposit of microorganisms for the purposes of patent procedure.

EXAMPLES

20 Example 1

Lactase activity-assay in Eppendorf tubes at 37 oc, pH 6.5

Principle:

25

[0112] Lactase hydrolyses lactose into glucose and galactose. Glucose is measured after a modified version of the common glucose oxidase / peroxidase assay (Werner, W. et al. (1970) Z. analyt. Chem. 252: 224.).

[0113] LAU is defined as the amount of enzyme liberating 1 micromole of glucose per min at 37°C, pH 6.5 in M-buffer (M-buffer is defined in the description of the present patent application). Alternatively, the activity in LAU for a specific lactase may be determined by the method described here. The value obtained is compared to a standard curve run with a lactase of known activity, and the activity of the unknown sample calculated from this. The lactase of known activity may, e.g., be Lactozym obtained from Novozymes A/S, Denmark.

Solutions:

35

40

45

50

30

[0114] Assay buffer: 50 mM succinate, 50 mM HEPES, 50 mM CHES, 150 mM KCI, 2 mM $CaCl_2$, 1 mM $CaCl_2$, 0.01% Triton X100, pH 6.5

[0115] GOD-Perid solution: 65 mM sodium phosphate, pH 7, 0.4 g/l Glucose oxidase, 0.013 g/l HRP (Horse Radish Peroxidase), 0.65 g/l ABTS (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)).

Substrate:

[0116] 160 mM lactose, 50 mM succinate, 50 mM HEPES, 50 mM CHES, 150 mM KCl, 2 mM $CaCl_2$, 1 mom $MgCl_2$, pH 6.5.

Standard:

[0117] Lactozym (available from Novozymes A/S, Denmark) with a known activity in LAU/g is used as standard, diluted in assay buffer in the range from 0.09 - 0.7 LAU/g.

Sam ples:

[0118] Enzyme samples are diluted appropriately in assay buffer.

55 Procedure:

[0119]

- 1. 375 µl substrate is incubated 5 minutes at 37°C.
- 2. 25 μ l enzyme diluted in assay buffer is added.
- 3. The reaction is stopped after 30 minutes by adding 60 μ l 1 M NaOH
- 4. $20~\mu l$ is transferred to a 96 well microtiter plate and $200~\mu l$ GOD-Perid solution is added. After 30 minutes at room temperature, the absorbance is measured at 420 nm.

Example 2

5

10

15

20

25

30

35

40

45

50

[0120] 100 ml 15 or 30%(w/w) whey permeate containing primarily lactose and ions was made by mixing 15 or 30 g spray-dried whey permeate powder (Variolac, Aria) in 85 or 70 ml ionic water respectively. The solution was poured in a flask containing a magnetic stirring bar and placed in a water bath at 37°C. After 15 min, enzyme was added. Enzymes tested were Lactozym, a commercially available lactase from Novozymes A/S, Denmark, having an activity of 3060 LAU/g, and an experimental lactase from *Bifidobacterium bifidum* having the encoded sequence shown in SEQ ID NO: 2 and an activity of 295 LAU/g.

[0121] Dosages were 4225 LAU/I milk of Lactozym and 2025 LAU/I milk of the *Bifidobacterium* lactase. Milk samples were taken at regular intervals up till 5.5 hrs. and the enzyme was inactivated by heating to 99°C for 10 min in a thermomixer. Samples were diluted appropriately and filtered through a 0.20 µm filter.

[0122] Lactose hydrolysis was measured using a Dionex BioLC equipped with a Dionex PA1 column and a Pulsed Amperiometrisk Detektor (PAD). Peaks were identified and quantified by comparing with known standards of lactose, glucose and galactose.

[0123] Results are given below.

Table 1: Lactose, glucose and galactose in 15% DS whey permeate after treatment with Lactozym or *Bifidobacterium* lactase.

lactace.							
	Lactozym			Bifidobacterium lactase			
Time min	Lactose mM	Glucose mM	Galactose mM	Lactose mM	Glucose mM	Galactose mM	
0	499	1	2	499	1	2	
30	312	135	106	410	61	63	
60	211	224	155	349	119	122	
120	110	295	221	220	199	202	
180	66	324	249	149	281	290	
240	50	346	279	84	336	348	
330	37	372	312	31	350	368	

Table 2: Lactose, glucose and galactose in 30% DS whey permeate after treatment with Lactozym or *Bifidobacterium* lactase.

		Lactozym		Bifidobacterium lactase		
Time min	Lactose mM	Glucose mM	Galactose mM	Lactose mM	Glucose mM	Galactose mM
0	848	1	4	848	1	4
30	824	109	75	819	43	45
60	615	253	150	788	86	83
120	420	370	242	651	159	158
180	291	459	300	625	232	230
240	246	559	373	501	283	273
330	154	544	367	391	333	324
1440	54	649	545	20	727	739

[0124] Also when tested at higher lactose concentrations as in 15% or 30% whey permeate no or very little galactooligosaccharides are produced. Again, the produced galactose and glucose levels are equal and match the amount of lactose hydrolyzed. For comparison, Lactozym produces less galactose than glucose, clearly showing that galactooligosaccharides have been produced.

Example 3

5

10

15

[0125] pH profile (at 37°C) and temperature profile (at pH 6.5) of experimental lactase from Bifidobacterium bifidum using lactose as substrate.

Principle:

[0126] Lactase hydrolyses lactose and glucose + galactose is formed. Glucose is measured after a modified version of the common glucose oxidase / peroxidase assay (Werner, W. et al. (1970) Z. analyt. Chem. 252: 224.)

pH profile

Substrate:

²⁰ **[0127]** 167 mM lactose, 50 mM succinate, 50 mM HEPES, 50 mM CHES, 150 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂ and pH adjusted to pH 3, 4, 5, 6, 7, 8, 9 and 10 with NaOH.

Enzyme Sample:

²⁵ **[0128]** Experimental lactase from *Bifidobacterium bifidum* having the encoded sequence shown in SEQ ID NO: 2 was diluted appropriately in 150 mM KCI, 2 mM CaCl₂, 1 mM MgCl₂, 0.01% Triton X100.

Procedure:

30 [0129]

35

40

45

50

- 10 μl enzyme sample diluted in enzyme dilution buffer was added to PCR tubes at room temp.
- 90 μl substrate was added at room temp. and quickly placed in a Peltier Thermal Cycler (PCT-200, MJ research) at 37^oC and incubated for 30 min and then placed on ice.
- The reaction was stopped by adding 100 μl 0.25 M NaOH.
- 20 μl was transferred to a 96 well microtitre plate and 230 μl 65 mM sodium phosphate, pH 7, 0.4 g/l Glucose oxidase, 0.013 g/l HRP, 0.65 g/l ABTS solution was added. After 30 minutes at room temperature, the absorbance was measured at 420 nm.

Table 3:

рН	B. bifidum lactase relative activity (% of activity at pH6)
3	0
4	4
5	75
6	100
7	85
8	39
9	10
10	4

Temperature profile

Substrate:

5 [0130] 167 mM lactose, 50 mM succinate, 50 mM HEPES, 50 mM CHES, 150 mM KCI, 2 mM $CaCl_2$, 1 mM $MgCl_2$ and pH adjusted to pH 6.5 with NaOH.

Enzyme Sample:

10 [0131] Experimental lactase from Bifidobacterium bifidum having the encoded sequence shown in SEQ ID NO: 2 was diluted appropriately in 50 mM succinate, 50 mM HEPES, 50 mM CHES, 150 mM KCI, 2 mM CaCl₂, 1 mM MgCl₂, 0.01% Triton X100 and pH adjusted to pH 6.5.

Procedure:

[0132]

- 10 μl enzyme sample diluted in enzyme dilution buffer was added to PCR tubes at room temp.
- 90 μl preheated (in a Peltier Thermal Cycler 30-70°C) substrate was added and incubation was performed with a temp. gradient from 30-70°C for 30 min. and then placed on ice.
- The reaction was stopped by adding 100 μ I 0.25 M NaOH.
- 20 μ l was transferred to a 96 well microtitre plate and 230 μ l 65 mM sodium phosphate, pH 7, 0.4 g/l Glucose oxidase, 0.013 g/l HRP, 0.65 g/l ABTS solution was added. After 30 minutes at room temperature, the absorbance was measured at 420 nm.

	Table 4:
Temp. °C	B. bifidum lactase relative activity (% of activity at 38.1 °C)
20	54
21	63
22	64
24	68
26	73
29	81
31	88
34	94
36	96
38	100
43	96
48	91
52	83
57	76
62	58
66	32
69	20
70	17

30

35

40

45

15

20

55

Example 4

Determination of Km for lactase enzymes at 5°C

5 Principle:

[0133] Lactase hydrolyses lactose and glucose + galactose is formed. Glucose is measured after a modified version of the common glucose oxidase / peroxidase assay (Werner, W. et al. (1970) Z. analyt. Chem. 252: 224.)

Substrate:

[0134] Different lactose concentrations ranging from Km/5 to 10* Km, 50 mM succinate, 50 mM HEPES, 50 mM CHES, 150 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂ and pH adjusted to pH 6.5 with NaOH.

15 Enzyme Sample:

[0135] Experimental lactase from Bifidobacterium bifidum having the encoded sequence shown in SEQ ID NO: 2 was diluted appropriately in 50 mM succinate, 50 mM HEPES, 50 mM CHES, 150 mM KCI, 2 mM CaCl₂, 1 mM MgCl₂, 0.01% Triton X100, pH adjusted to pH 6.5 with NaOH.

[0136] 12 g/l Lactozym (commercially available lactase from Novozymes A/S, Denmark) was diluted 6000 times in the same buffer.

Procedure:

25 [0137]

- 10 μ l enzyme sample (5°C) was added to a 96 well microtitre plate on ice.
- 90 μl substrate (5°C) was added and incubated for 2 hours at 5°C.
- The reaction was stopped by adding 100 μ I 0.25 M NaOH.
- 30 20 μl was transferred to a 96 well microtitre plate and 230 μl 65 mM sodium phosphate, pH 7, 0.4 g/l Glucose oxidase, 0.013 g/l HRP, 0.65 g/l ABTS solution was added. After 30 minutes at room temperature, the absorbance was measured at 420 nm.

Km determination:

[0138] Computerized nonlinear least-squares fitting and the Michaelis-Menten equation:

$$v = (Vmax*S)/(Km+S)$$

35

40

55

was used. Km for the Bifidobacterium lactase and Lactozym were determined to be 8 mM and 30 mM, respectively. [0139] In a similar test performed at 37°C, Km for the Bifidobacterium lactase and Lactozym were determined to be 13 mM and 30 mM, respectively.

Example 5 45

Production of yogurt using lactase from Bifidobacterium bifidum and a lactose-deficient starter culture - Different levels of sucrose and lactase

50 Experimental plan

[0140] For the selected combination of a low pH stable lactase and a lactose-deficient starter culture, two levels of added sucrose (0.5 % and 0.7 %), and two levels of added lactase (800 LAU/L and 1000 LAU/L), were tested. As reference fermentations with no added lactase and two levels of sucrose (1.0 % and 1.5 %) were carried out. The lactase was added at the start of the fermentation together with the starter culture.

Milk base

[0141]

ידיטן

Table 5: Composition of milk base

	Amount (g)	Protein content (%)	Carbohydrate (%)	Fat (%)
Skim milk	1000	3.5	4.8	0.1
1.5 % milk	2000	3.4	4.7	1.5
Protein powder "Promilk 802FB"	14	80.0		
Protein powder "Milex 240"	95	34.0		
Total milk base	3109	4.71	4.57	1.00

15

5

10

Starter culture

[0142] The starter culture is composed of *Streptococcus thermophilus* strain deposited under the accession no. DSM 28952, *Streptococcus thermophilus* strain deposited under the accession no. DSM 28953, and *Lactobacillus delbrueckii* subsp. *bulgaricus* strain deposited under accession no. DSM 28910.

Lactase

[0143] Lactase from Bifidobacterium bifidum having the encoded sequence of SEQ ID NO. 2.

25

20

Measurements

[0144] Fat, protein and lactose levels were determined using MilkoScan analysis. Post-acidification was measured over a period of 28 days storage at 5 °C.

[0145] The level of sucrose, glucose, galactose, fructose and lactose in the fermented milk at day 1 and day 14 after production was measured by HPLC.

Gel firmness

35

[0146] Gel firmness is measured by a back extrusion test with a texture analyzer (TA.XT Plus, Stable Micro System, Surrey, UK) supplied with a 35mm parallel plate. The travel distance is set to 15 mm, and the travel speed to 2 mm/s. The test is performed after 7 days from production. The fermented milk product was brought to 13°C and manually stirred gently, and measured in a 250 g plastic container. The maximal force (g) obtained by force versus distance curves is used as "gel firmness" parameter.

Shear stress

45

[0147] Seven days after incubation, the fermented milk product was brought to 13°C and manually stirred gently by means of a spoon (5 times) until homogeneity of the sample. The rheological properties of the sample were assessed on a rheometer (Anton Paar Physica Rheometer with ASC, Automatic Sample Changer, Anton Paar® GmbH, Austria) by using a bob-cup. The rheometer was set to a constant temperature of 13 °C during the time of measurement. Settings were as follows:

Holding time (to rebuild to somewhat original structure)

50

5 minutes without any physical stress (oscillation or rotation) applied to the sample. Oscillation step (to measure the elastic and viscous modulus, G' and G", respectively, therefore calculating the complex modulus G*)

Constant strain = 0.3 %, frequency (f) = [0.5..8] Hz 6 measuring points over 60 s (one every 10 s)

55

Rotation step (to measure shear stress at 300 1/s) Two steps were designed:

1) Shear rate = [0.3-300] 1/s and 2) Shear rate = [275-0.3] 1/s.

Each step contained 21 measuring points over 210 s (on every 10 s).

The shear stress at 300 1/s was chosen for further analysis, as this correlates to mouth thickness when swallowing a fermented milk product.

Procedure

5

15

20

25

30

35

45

50

55

[0148] The ingredients of the milk base were mixed and allowed to re-hydrate for 2 hours at 5 °C. The milk base was then pasteurized at 90 °C for 20 minutes. The fermentation was carried out at 43 °C to an end pH of 4.55 to form yogurt. The yogurt was cooled in a PTU (Post Treatment Unit) at a cooling temperature of 25 °C at 2 bars. The cooled yogurt was stored at 6 °C.

Results

Post-acidification

[0149]

Table 6: Post-acidification

	Ref. 1	Ref. 2	Test Sample 1	Test Sample 2	Test Sample 3	Test Sample 4
Sucrose (%)	1	1.5	0.5	0.5	0.7	0.7
Lactase (LAU/ L)	0	0	800	1000	800	1000
Ferment. time (Hours: Min.)	7:25	7:05	7:15	7:15	7:00	7:00
End pH	4.58	4.55	4.55	4.55	4.55	4.55
pH Day 1	4.58	4.53	4.54	4.53	4.50	4.51
pH Day 7	4.54	4.49	4.50	4.50	4.47	4.49
pH Day 14	4.49	4.43	4.49	4.49	4.46	4.47
pH Day 21	4.35	4.34	4.45	4.45	4.42	4.43
pH Day 28	4.35	4.34	4.45	4.42	4.43	4.42
pH drop	0.23	0.19	0.09	0.11	0.07	0.09

[0150] For all six samples, i.e. 2 reference samples and 4 samples produced according to the invention (test samples), a pH of about 4.55 was reached in 7 hours.

[0151] As will appear from Table 6, the post-acidification over a period of 28 days was strongly reduced for the samples produced according to the invention as compared to the reference samples.

Carbohydrate analysis

[0152]

Table 7: Residual carbohydrate levels after 1 day from production

	Ref. 1	Ref. 2	Test Sample 1	Test Sample 2	Test Sample 3	Test Sample 4
Sucrose (%) start ferment.	1	1.5	0.5	0.5	0.7	0.7
Lactase (LAU/ L)	0	0	800	1000	800	1000
Fructose (mg/g)	1.62	1.91	0.80*	0.74*	1.27	1.18
Galactose (mg/g)	< 0.9	1.78*	29.01	29.87	28.78	29.29

(continued)

	Ref. 1	Ref. 2	Test Sample 1	Test Sample 2	Test Sample 3	Test Sample 4	
Glucose (mg/g)	0.77*	1.73	27.60	27.84	28.08	28.19	
Lactose (mg/g)	54.16	53.37	1.18	0.40	1.20	0.40	
Sucrose (mg/g) < 0.3 4.6 < 0.3 < 0.3 1.3 0.7						0.7	
*value is between Limit of Detection and Limit of Quantification.							

[0153] All levels of Table 7 are mean values of two samples.

[0154] For the 4 test samples, at the end of fermentation the level of lactose was very low and the level of glucose and galactose was very high as compared to the reference samples indicating high activity of the added lactase. For the test samples using a lactase level of 1000 LAU/L a residual lactose level of approx. 0.04 % was obtained, and for the test samples using a lactase level of 800 LAU/L a residual lactose level of approx. 0.1 % was obtained.

[0155] Fermented milk having a low lactose level and a high level of glucose and galactose has a much higher level of perceived sweetness than fermented milk with a high lactose level and a low level of glucose and galactose like the reference samples. The reason for this is that glucose and galactose has a much higher sweetness index than lactose.

20 Gel firmness

5

10

15

25

30

35

40

45

50

55

[0156]

Table 8: Gel firmness

Ref. 1 Ref. 2 Test Sample 1 Test Sample 2 Test Sample 3 Test Sample 4 1 1.5 0.5 0.5 0.7 0.7 Sucrose (%) start ferment. Lactase (LAU/L) 0 0 800 1000 800 1000 Gel firmness (g) 45.76 47.42 48.19 54.57 50.19 46.60

[0157] All levels of Table 8 are mean values of two samples.

[0158] As will appear from Table 8, 3 out of the 4 test samples had significantly higher gel firmness than the 2 reference samples.

Shear stress

[0159]

Table 9: Shear stress measured at 300 s⁻¹

	Ref. 1	Ref. 2	Test Sample 1	Test Sample 2	Test Sample 3	Test Sample 4
Sucrose (%) start ferment.	1	1.5	0.5	0.5	0.7	0.7
Lactase (LAU/ L)	0	0	800	1000	800	1000
Shear stress (Pa)	67.1	65.3	78.2	84.4	84.7	77.6

[0160] All levels of Table 9 are mean values of two samples.

[0161] As will appear from Table 9, the 4 test samples had significantly higher shear stress measured at 300 s^{-1} than the 2 reference samples. In the group of 4 test samples, the combinations of 1) a level of added sucrose of 0.5 % and a lactase level of 1000 LAU/L, and 2) a level of added sucrose of 0.7 % and a lactase level of 800 LAU/L, had the highest shear stress.

Example 6

5

10

15

20

25

30

35

40

45

55

Production of yogurt using lactase from Bifidobacterium bifidum and a lactose-deficient starter culture - addition of excess level of sucrose before fermentation I

Experimental plan

[0162] Fermentations were carried out with a reference sample containing no lactase and 9.5 % sucrose and 2 test samples containing 800 LAU/L of lactase and 6.5 % and 7.0 % sucrose. The lactase was added at the start of the fermentation together with the starter culture.

Milk base

[0163]

Table 10: Composition of basic milk base 1

	Amount (g)	Protein content (%)	Carbohydrate (%)	Fat (%)
Skim milk	984	3.5	4.8	0.1
1.5 % milk	1911	3.4	4.7	1.5
Protein powder "Promilk 802FB"	13.3	80.0		
Protein powder "Milex 240"	91.5	34.0	54.00	1.00
Total milk base	3000	4.71	4.57	1.02

Table 11: Composition of basic milk base 2

	Amount (g)	Protein content (%)	Carbohydrate (%)	Fat (%)
Skim milk	984	3.5	4.8	0.1
1.5 % milk	1911	3.4	4.7	1.5
Protein powder "Promilk 802FB"	17.40	80.0		
Protein powder "Milex 240"	109.50	34.0	5400	1.00
Sucrose	180.00		100.0	
Total milk base	3202	4.70	11.75	0.96

[0164] Basic milk base 2 was used to prepare the final milk bases for the reference sample and the two test samples by addition of additional sucrose.

Starter culture

[0165] The starter culture is composed of *Streptococcus thermophilus* strain deposited under the accession no. DSM 28952, *Streptococcus thermophilus* strain deposited under the accession no. DSM 28953, and *Lactobacillus delbrueckii* subsp. *bulgaricus* strain deposited under accession no. DSM 28910.

50 Lactase

[0166] Lactase from Bifidobacterium bifidum having the encoded sequence of SEQ ID NO. 2.

Measurements

[0167] All measurements were carried out using the same methods as in Example 5.

Procedure

[0168] The ingredients of the milk base were mixed and allowed to re-hydrate for 2 hours at 5 °C. The milk base was then pasteurized at 95 °C for 5 minutes. The milk base was then homogenized at 65 °C at 200 bar. The fermentation was carried out at 43 °C to an end pH of 4.55 to form yogurt. The yogurt was cooled in a PTU (Post Treatment Unit) at a cooling temperature of 25 °C at 2 bars. The cooled yogurt was stored at 6 °C.

Results

5

10

15

20

25

30

35

40

45

55

Post-acidification

[0169]

Table 12: Post-acidification

Sample	1	2	3
Lactase (LAU/L)	0	800	800
Fermentation time	6 h 15 min	6 h 15 min	6 h 15 min
End pH	4.55	4.51	4.51
pH Day 4	4.54	4.44	4.44
pH Day 7	4.51	4.42	4.42
pH Day 14	4.40	4.38	4.37
pH Day 21	4.38	4.38	4.37
pH Day 28	4.36	4.37	4.36
pH drop	0.19	0.14	0.15

Carbohydrate analysis

[0170]

Table 13: Carbohydrate analysis

					1	
Sample	1		2		3	
Lactase (LAU/L)	0		800		800	
Sucrose (%) start ferment.	9.5		6.5		7.0	
	Day 1	Day 28	Day 1	Day 28	Day 1	Day 28
Fructose (mg/g)	2.4	3.07	1.7	2.01	1.9	2.00
Galactose (mg/g)	< 2.0	8.99	26.4	29.03	26.4	28.72
Glucose (mg/g)	< 1.0	8.84	26.2	27.52	26.2	27.22
Lactose (mg/g)	51.4	38.04	2.8	< 2	2.7	< 2
Sucrose (mg/g	64.3	64.23	41.7	42.38	46.0	46.26

⁵⁰ **[0171]** All levels of Table 13 are mean values of two samples.

[0172] As will appear from Table 13, for the 2 test samples, at the end of fermentation the level of lactose was very low and the level of glucose and galactose was very high as compared to the reference sample indicating high activity of the added lactase.

[0173] Fermented milk having a low lactose level and a high level of glucose and galactose has a much higher level of sweetness than fermented milk with a high lactose level and a low level of glucose and galactose like the reference samples. The reason for this is that glucose and galactose has a much higher sweetness than lactose.

Gel firmness and shear stress

[0174]

•

5

10

15

20

25

Table 14: Gel firmness and shear stress at 300 s⁻¹

Sample	1		2		3	
Lactase (LAU/L)	0		800		800	
Sucrose (%) start ferment.	9.5		6.5		7.0	
Gel firmness (g)	46.36		46.76		45.75	
Shear stress at 1 s-1 (Pa)	9.4	9.2	9.3	8.8	10.3	10.2
Shear stress at 30.2 s-1 (Pa)	39.2	38.8	41.6	39.2	44.7	45.1
Shear stress at 135 s-1 (Pa)	58.3	58.0	67.2	64.5	72.3	72.2
Shear stress at 300 s-1 (Pa)	69.4	69.1	80.6	78.2	84.4	84.4

[0175] As will appear from Table 14, the shear stress at 300 s⁻1 of the two test samples containing lactase was significantly increased as compared to the reference sample with no lactase.

Example 7

Production of yogurt using lactase from Bifidobacterium bifidum and a lactose-deficient starter culture - addition of excess level of sucrose before fermentation II

Experimental plan

[0176] Fermentations were carried out with two reference samples containing no lactase and 1.5 % and 9.5 % sucrose and 3 test samples containing 1000 LAU/L of lactase and 0.5 %, 6.5 % and 7.0 % sucrose. The lactase was added at the start of the fermentation together with the starter culture.

Milk base

³⁵ **[0177]** The two basic milk bases of Example 6 were used to prepare the final milk bases for the reference samples and the three test samples by addition of additional sucrose.

Starter culture

[0178] The starter culture is composed of Streptococcus thermophilus strain deposited under the accession no. DSM 28952, Streptococcus thermophilus strain deposited under the accession no. DSM 28953, and Lactobacillus delbrueckii subsp. bulgaricus strain deposited under accession no. DSM 28910.

Lactase

45

[0179] Lactase from Bifidobacterium bifidum having the encoded sequence of SEQ ID NO. 2.

Measurements

[0180] All measurements were carried out using the same methods as in Example 5.

Procedure

[0181] The ingredients of the milk base were mixed and allowed to re-hydrate for 2 hours at 5 °C. The milk base was then pasteurized at 90 °C for 20 minutes. The fermentation was carried out at 43 °C to an end pH of 4.55 to form yogurt. The yogurt was cooled in a PTU (Post Treatment Unit) at a cooling temperature of 25 °C at 2 bars. The cooled yogurt was stored at 6 °C.

Results

Post-acidification

5 [0182]

10

15

20

30

35

40

45

50

55

Table 15: Post-acidification

Sam ple	1	2	3	4	5
Lactase (LAU/L)	0	1000	0	1000	1000
Fermentation time	6 h 50 min	6 h 55 min	6 h 35 min	6 h 10 min	5 h 40 min
End pH	4.55*	4.55*	4.55*	4.55*	4.55*
pH Day 1	4.54	4.51	4.52	4.48	4.47
pH Day 7	4.45	4.45	4.40	4.34	4.35
pH Day 14	4.37	4.44	4.37	4.32	4.34
pH Day 21	4.35	4.39	4.35	4.29	4.29
pH Day 28	4.34	4.37	4.33	4.27	4.26
pH drop	0.21	0.18	0.22	0.28	0.29
*The fermentation is	stopped by o	cooling at pH	= 4.55.		

²⁵ **[0183]** As will appear from Table 15, the post-acidification was at the same level for the reference samples containing no lactase and the test samples containing lactase.

Carbohydrate analysis

[0184]

Table 16: Carbohydrate analysis Day 1

	,				
Sam ple	1	2	3	4	5
Lactase (LAU/ L)	0	1000	0	1000	1000
Sucrose (%) start ferment.	1.5	0.5	9.5	6.5	7.0
Fructose (mg/g)	1.96	< 1	2.70	1.74	1.88
Galactose (mg/g)	< 2	29.19	< 2	27.83	27.89
Glucose (mg/g)	< 1	27.37	< 1	27.29	27.40
Lactose (mg/g)	56.11	< 2	54.56	< 2	< 2
Sucrose (mg/g	5.45	< 4	63.44	39.79	45.44

Table 17: Carbohydrate analysis Day 28

Sam ple	1	2	3	4	5
Lactase (LAU/ L)	0	1000	0	1000	1000
Sucrose (%) start ferment.	1.5	0.5	9.5	6.5	7.0
Fructose (mg/g)	1.88	< 1	4.72	2.95	3.39
Galactose (mg/g)	3.90	28.83	< 2	28.79	29.15
Glucose (mg/g)	2.69	26.78	1.66	26.83	27.27
Lactose (mg/g)	50.71	< 2	52.42	< 2	< 2

(continued)

Sam ple	1	2	3	4	5
Sucrose (mg/g	4.18	< 4	62.07	39.91	46.17

[0185] As will appear from Tables 16 and 17, for the 3 test samples, at the end of fermentation the level of lactose was very low and the level of glucose and galactose was very high as compared to the reference sample indicating high activity of the added lactase.

[0186] Fermented milk having a low lactose level and a high level of glucose and galactose has a much higher level of sweetness than fermented milk with a high lactose level and a low level of glucose and galactose like the reference samples. The reason for this is that glucose and galactose has a much higher sweetness than lactose.

Gel firmness and shear stress

[0187]

5

10

15

20

25

30

35

45

50

Table 18: Gel firmness and shear stress

Sam ple	1		2		3		4		5	
Lactase (LAU/L)	0		1000		0		1000		1000	
Sucrose (%) start ferment.	1.5		0.5		9.5		6.5		7.0	
Gel firmness (g)	51.13		49.41		45.04		45.94		47.89	
Shear stress at 1 s-1 (Pa)	9.4	9.3	8.4	8.5	8.1	8.5	7.7	7.8	8.3	8.5
Shear stress at 30.2 s-1 (Pa)	39.4	38.5	38.2	37.6	34.3	34.7	37.3	37.1	38.8	38.9
Shear stress at 135 s-1 (Pa)	61.0	59.5	65.8	65.1	56.8	56.8	72.7	72.3	74.8	74.9
Shear stress at 300 s-1 (Pa)	72.1	70.5	78.8	77.6	69.1	69.1	86.7	86.6	89.4	89.4

[0188] As will appear from Table 18, the shear stress of the three test samples containing lactase was significantly increased as compared to the reference sample with no lactase.

Example 8

Production of yogurt using lactase from Bifidobacterium bifidum and a lactose-deficient starter culture - addition of lactase before and after fermentation

40 Experimental plan

[0189]

Table 19: Experimental plan

Sample	Timing of lactase addition	Milk Base	Sucrose (%)	Lactase (LAU/L)
1	None	1	0.70	0
2	Together with culture	1	0.70	600
3	Together with culture	1	0.70	800
4	Together with culture	1	0.70	1000
5	Together with culture	1	0.70	1400
6	None	2	0.97	0
7	After fermentation	2	0.97	800
8	After fermentation	2	0.97	1600

(continued)

Sample	Timing of lactase addition	Milk Base	Sucrose (%)	Lactase (LAU/L)
9	After fermentation	2	0.97	2400
10	After fermentation	2	0.97	3200

[0190] The fermentation temperature was 43 °C. The end pH was 4.50. The ingredients of the milk base were mixed and allowed to re-hydrate for 2 hours at 6 °C. The milk base was then pasteurized at 95 °C for 5 minutes and homogenized at 200/50 bar at 65 °C. The fermentation was carried out at 43 °C to an end pH of 4.50 to form yogurt. The yogurt was cooled to 6 °C. The cooled yogurt was stored at 6 °C.

Starter culture

5

10

20

30

35

40

45

50

[0191] The starter culture is composed of Streptococcus thermophilus strain deposited under the accession no. DSM 28952, Streptococcus thermophilus strain deposited under the accession no. DSM 28953, and Lactobacillus delbrueckii subsp. bulgaricus strain deposited under accession no. DSM 28910.

Lactase

[0192] Lactase from Bifidobacterium bifidum having the encoded sequence of SEQ ID NO. 2.

Milk base

²⁵ [0193]

Table 20: Composition of milk base 1

	Amount (g)	Protein content (%)	Carbohydrate (%)	Fat (%)
Sucrose	22	0.0	100.0	0.0
0.5 % milk	1500	3.8	4.8	0.5
1.5 % milk	1500	3.6	4.7	1.5
Arla Skimmed Milk Powder	103	34.0	54.0	1.0
Total milk base	3125	4.67	7.05	0.98

Table 21: Composition of milk base 2

	Amount (g)	Protein content (%)	Carbohydrate (%)	Fat (%)
Sucrose	30	0.0	100.0	0.0
0.5 % milk	1500	3.8	4.8	0.5
1.5 % milk	1500	3.6	4.7	1.5
Arla Skimmed Milk Powder	103	34.0	54.0	1.0
Total milk base	3133	4.66	7.30	1.00

Measurem ents

[0194] All measurements were carried out using the same methods as in Example 5.

Results

Post-acidification

⁵ [0195]

10

15

20

25

30

35

40

45

50

55

Table 22: Post-acidification

Sample	Timing of lactase addition	Milk Base	Lactase (LAU/L)	pH Day 0	pH Day 7	pH Day 28	pH Day 42	pH drop
1	None	1	0	4.89*	4.89*	4.87	4.84	0.05
2	Together with culture	1	600	4.26	4.23	4.23	4.22	0.04
3	Together with culture	1	800	4.22	4.26	4.24	4.24	-0.02
4	Together with culture	1	1000	4.32	4.26	4.26	4.26	0.06
5	Together with culture	1	1400	4.36	4.30	4.28	4.27	0.09
6	None	2	0	4.47	4.47	4.47	4.44	0.03
7	After fermentation	2	800	4.43	4.40	4,42	4.38	0.05
8	After fermentation	2	1600	4.44	4.40	4,42	4.39	0.05
9	After fermentation	2	2400	4.41	4.43	4.40	4.40	0.01
10	After fermentation	2	3200	NA	4.43	4.41	4.40	NA

[0196] As will appear from Table 22, the post-acidification over a period of 42 days was at a low level of below 0.09 for all lactase levels tested with lactase addition at the start of fermentation and at an even lower level of below 0.05 for all lactase levels tested with lactase addition at the end of fermentation. The addition of lactase at the end of the fermentation did not result in a statistically different post-acidification as compared to the reference sample with no added lactase. Thus, the present experiment shows that the use of a low pH stable lactase in combination with a lactose-deficient starter culture does not result in an unacceptable increase of the low post-acidification, which may be obtained with such a starter culture. This is true both when the lactase is added at the start and at the end of fermentation.

Gel firmness and shear stress

[0197]

Table 23: Gel firmness and Shear Stress

Sample	Timing of lactase addition	Milk Base	Sucrose (%)	Lactase (LAU/L)	Gel firmness (g)	Shear Stress (Pa)
1	None	1	0.70	0	0.187*	46.4*
2	Together with culture	1	0.70	600	0.281	63.9
3	Together with culture	1	0.70	800	0.302	65.3
4	Together with culture	1	0.70	1000	0.318	64.5
5	Together with culture	1	0.70	1400	0.307	63.7
6	None	2	0.97	0	0.304	53.1
7	After fermentation	2	0.97	800	0.312	51.4
8	After fermentation	2	0.97	1600	0.322	52.8
9	After fermentation	2	0.97	2400	0.323	52.9

(continued)

Sample	Timing of lactase addition	Milk Base	Sucrose (%)	Lactase (LAU/L)	Gel firmness (g)	Shear Stress (Pa)			
10	After fermentation	2	0.97	3200	0.320	51.7			
* Insufficient sucrose to obtain fermentation to target pH. Therefore, this sample cannot be used as reference.									

[0198] As will appear from Table 23, high levels of both gel firmness and shear stress was obtained for all lactase levels tested with lactase addition at the start of fermentation. For lactase levels tested with lactase addition at the end of fermentation, the levels of gel firmness and shear stress are somewhat lower, which is due to the mixing of the lactase into the yogurt, which partly disrupts the texture of the yogurt. For all lactase levels tested with lactase addition at the end of fermentation, the gel firmness is slightly higher than the reference sample with no added lactase. For all lactase levels tested with lactase addition at the end of fermentation, the shear stress is maintained at the same level or slightly lower.

Carbohydrate analysis

[0199]

5

10

15

20

25

30

35

40

45

50

Table 24: Carbohydrate analysis

	rable 24. Outborryardie dridiysis									
Sam -ple	Lactase (LAU/L)	Galactose Day 20 (mg/g)	Glucose Day 20 (mg/g)	Sucrose Day 20 (mg/g)	Lactose Day 20 (mg/g)	Lactose 24 hours (%)	Lactose Day 20 (%)			
1	0	2.4	2.3	< 1.0	50.7	ND	ND			
2	600	29.5	27.7	< 1.0	< 0.5	> 0.1	0.023			
3	800	30.2	28.1	< 1.0	< 0.5	0.028	0.016			
4	1000	30.0	27.8	< 1.0	< 0.5	0.014	0.014			
5	1400	29.5	27.4	< 1.0	< 0.5	0.006	0.013			
6	0	4.2	4.2	< 1.0	49.2	ND	ND			
7	800	31.2	30.7	< 1.0	< 0.5	> 0.2	0.014			
8	1600	30.7	30.2	< 1.0	< 0.5	> 0.1	0.012			
9	2400	31.2	30.6	< 1.0	< 0.5	0.029	0.011			
10	3200	31.8	31.2	< 1.0	< 0.5	0.015	0.011			

[0200] As will appear from Table 24, at Day 20 high concentrations of galactose and glucose are formed for all lactase levels tested both with lactase addition at the start and at the end of fermentation. Also, at Day 20 the level of glucose was below the detection limit of 0.5 mg/g, which qualifies as lactose free in some countries. For the higher levels of lactase, most of the lactose removal has been obtained 24 hours after the end of fermentation.

Example 9

Production of yogurt using lactase from Bifidobacterium bifidum and a lactose-deficient starter culture - addition of lactase before fermentation II

Experimental plan

[0201]

Table 25: Experimental plan

Sample	Sucrose (%)	Lactase (LAU/L)
1	0	0
2	0	1000
3	0	1200
4	0	1600
5	0.2	0
6	0.2	1000
7	0.2	1200
8	0.2	1600
9	0.7	0
10	0.7	1000
11	0.7	1200
12	0.7	1600

[0202] The fermentation temperature was 43 °C. The end pH was 4.45. The ingredients of the milk base were mixed and allowed to re-hydrate for 2 hours at 6 °C. The milk base was then pasteurized at 95 °C for 5 minutes and homogenized at 200/50 bar at 65 °C. The fermentation was carried out at 43 °C to an end pH of 4.45 to form yogurt. The yogurt was cooled to 5 °C. The cooled yogurt was stored at 6 °C.

Starter culture

5

10

15

20

25

[0203] The starter culture is composed of *Streptococcus thermophilus* strain deposited under the accession no. DSM 28952, *Streptococcus thermophilus* strain deposited under the accession no. DSM 28953, and *Lactobacillus delbrueckii* subsp. *bulgaricus* strain deposited under accession no. DSM 28910.

Lactase

³⁵ **[0204]** Lactase from *Bifidobacterium bifidum* having the encoded sequence of SEQ ID NO. 2.

Milk base

[0205]

Table 26: Composition of milk base

	Amount (g)	Protein content (%)	Carbohydrate (%)	Fat (%)
0.5 % milk	1500	3.8	4.8	0.5
1.5 % milk	1500	3.6	4.7	1.5
Arla Skimmed Milk Powder	103	34.0	54.0	1.0
Total milk base	3103	4.70	6.39	0.99

Measurements

[0206] All measurements were carried out using the same methods as in Example 5.

45

Results

Post-acidification

5 [0207]

10

15

20

25

30

40

45

50

Table 27: Post-acidification

	Sample	Sucrose (%)	Lactase (LAU/L)	pH Day 0	pH Day 1	pH Day 14	pH Day 28	pH Day 42	pH drop
0	1	0	0	ND	ND	ND	ND	ND	ND
	2	0	1000	4.45	4.39	4.36	4.33	4.39	0.06
	3	0	1200	4.45	4.39	4.38	4.34	4.39	0.06
_	4	0	1600	4.46	4.39	4.38	4.34	4.39	0.07
5	5	0.2	0	ND	ND	ND	ND	ND	ND
	6	0.2	1000	4.50	4.44	4.40	4.40	4.43	0.07
	7	0.2	1200	4.53	4.47	4.46	4.42	4.46	0.07
0	8	0.2	1600	4.53	4.49	4.46	4.44	4.47	0.06
	9	0.7	0	4.76	4.73	4.69	4.68	4.70	0.06
	10	0.7	1000	4.44	4.40	4.39	4.33	4.38	0.06
-	11	0.7	1200	4.46	4.40	4.39	4.33	4.39	0.07
5	12	0.7	1600	4.47	4.41	4.40	4.34	4.41	0.06

[0208] As will appear from Table 27, the post-acidification over a period of 42 days was at a low very level of approx. 0.06 for all lactase and sucrose levels tested. Thus, the present experiment shows that the use of a low pH stable lactase in combination with a lactose-deficient starter culture does not result in an unacceptable increase of the low post-acidification, which may be obtained with such a starter culture.

Gel firmness and shear stress

³⁵ [0209]

Table 28: Gel firmness and Shear Stress

Sample	Sucrose (%)	Lactase (LAU/L)	Gel firmness (g)	Shear Stress (Pa)
1	0	0	ND	ND
2	0	1000	0.386	70.3
3	0	1200	0.377	69.8
4	0	1600	0.388	69.5
5	0.20	0	ND	ND
6	0.20	1000	0.380	70.7
7	0.20	1200	0.378	69.5
8	0.20	1600	0.397	70.2
9	0.70	0	ND	ND
10	0.70	1000	0.362	71.2
11	0.70	1200	0.375	72.2
12	0.70	1600	0.362	71.9

[0210] As will appear from Table 28, high levels of both gel firmness and shear stress was obtained for all lactase levels tested. The gel firmness and shear strength are at the same order of magnitude for all three levels of lactase tested.

Carbohydrate analysis

[0211]

5

10

15

20

25

35

40

45

50

Table 29: Carbohydrate analysis

				-	-		
Sam -ple	Sucrose (%)	Lactase (LAU/L)	Fructose (mg/g)	Galactose (mg/g)	Glucose (mg/g)	Lactose (mg/g)	Sucrose (mg/g)
1	0	0	< 0.5	6.3	< 0.5	45.5	<2
2	0	1000	< 0.5	30.7	26.0	< 0.9	<2
3	0	1200	< 0.5	31.5	26.6	< 0.9	<2
4	0	1600	< 0.5	30.9	25.8	< 0.9	<2
5	0.20	0	< 0.5	11.7	6.7	36.1	<2
6	0.20	1000	< 0.5	30.8	27.8	< 0.9	<2
7	0.20	1200	< 0.5	31.6	28.3	< 0.9	<2
8	0.20	1600	< 0.5	31.5	28.0	< 0.9	<2
9	0.70	0	1.1	9.1	9.1	43.4	<2
10	0.70	1000	1,1	31.1	29.5	< 0.9	<2
11	0.70	1200	1.0	32.1	30.3	< 0.9	1.8
12	0.70	1600	0.9	31.8	29.9	< 0.9	1.9

[0212] As will appear from Table 29, for the test samples containing lactase, at the end of fermentation the level of lactose was very low and the level of glucose and galactose was very high as compared to the reference sample indicating high activity of the added lactase.

[0213] Fermented milk having a low lactose level and a high level of glucose and galactose has a much higher level of sweetness than fermented milk with a high lactose level and a low level of glucose and galactose like the reference samples. The reason for this is that glucose and galactose has a much higher sweetness than lactose.

Sequence listing

[0214]

SEQ ID NO.: 1 shows the sequence of a mutant of SEQ ID NO. 4.

SEQ ID NO.: 2 shows the sequence of a mutant of SEQ ID NO. 4.

SEQ ID NO.: 3 shows the sequence of a lactase from Bifidobacterium bifidum DSM20215.

SEQ ID NO.: 4 shows the sequence of a lactase from *Bifidobacterium bifidum* NCI MB41171, the nucleotide sequence of which is listed in NCBI with the accession number DQ448279.

[0215] SEQ ID NO: 4 is discussed in the following references, wherein it is referred to as bbgIII:

Appl Microbiol Biotechnol (2007) 76:1365-1372, T K Goulas et al.

Appl Microbiol Biotechnol (2009) 82: 1079-1088, T Goulas et al.

Appl Microbiol Biotechnol (2009) 84:899-907, T Goulas et al.

SEQUENCE LISTING

⁵⁵ [0216]

<110> Chr. Hansen A/S

	<120> Process for producing a fermented milk product																
	<130> F	P6170F	PC00														
5	<160> 4	1															
	<170> F	Patentl	n vers	ion 3.5	5												
10	<210> 7 <211> 7 <212> F <213> E	1931 PRT	acteriu	ım bific	dum												
15	<400> 1	1															
		Met 1	Lys	Lys	Pro	Leu 5	Gly	Lys	Ile	Val	Ala 10	Ser	Thr	Ala	Leu	Leu 15	Ile
20		Ser	Val	Ala	Phe 20	Ser	Ser	Ser	Ile	Ala 25	Ser	Ala	Ala	Val	Glu 30	Asp	Ala
25		Thr	Arg	Ser 35	Asp	Ser	Thr	Thr	Gln 40	Met	Ser	Ser	Thr	Pro 45	Glu	Val	Ala
30		Tyr	Ser 50	Ser	Ala	Val	Asp	Ser 55	Lys	Gln	Asn	Arg	Thr 60	Ser	Asp	Phe	Asp
		Ala 65	Asn	Trp	Lys	Phe	Met 70	Leu	Ser	Asp	Ser	Val 75	Gln	Ala	Gln	Asp	Pro 80
35		Ala	Phe	Asp	Asp	Ser 85	Ala	Trp	Gln	Gln	Val 90	Asp	Leu	Pro	His	Asp 95	Tyr
40		Ser	Ile	Thr	Gln 100	Lys	Tyr	Ser	Gln	Ser 105	Asn	Glu	Ala	Glu	Ser 110	Ala	Tyr
45		Leu	Pro	Gly 115	Gly	Thr	Gly	Trp	Tyr 120	Arg	Lys	Ser	Phe	Thr 125	Ile	Asp	Arg
		Asp	Leu 130	Ala	Gly	Lys	Arg	Ile 135	Ala	Ile	Asn	Phe	Asp 140	Gly	Val	Tyr	Met
50		Asn 145	Ala	Thr	Val	Trp	Phe 150	Asn	Gly	Val	Lys	Leu 155	Gly	Thr	His	Pro	Tyr 160
55		Gly	Tyr	Ser	Pro	Phe 165	Ser	Phe	Asp	Leu	Thr 170	Gly	Asn	Ala	Lys	Phe 175	Gly

	Gly	Glu	Asn	Thr 180	Ile	Val	Val	Lys	Val 185	Glu	Asn	Arg	Leu	Pro 190	Ser	Ser
5	Arg	Trp	Tyr 195	Ser	Gly	Ser	Gly	Ile 200	Tyr	Arg	Asp	Val	Thr 205	Leu	Thr	Val
10	Thr	Asp 210	Gly	Val	His	Val	Gly 215	Asn	Asn	Gly	Val	Ala 220	Ile	Lys	Thr	Pro
	Ser 225	Leu	Ala	Thr	Gln	Asn 230	Gly	Gly	Asp	Val	Thr 235	Met	Asn	Leu	Thr	Thr 240
15	Lys	Val	Ala	Asn	Asp 245	Thr	Glu	Ala	Ala	Ala 250	Asn	Ile	Thr	Leu	Lys 255	Gln
20	Thr	Val	Phe	Pro 260	Lys	Gly	Gly	Lys	Thr 265	Asp	Ala	Ala	Ile	Gly 270	Thr	Val
25	Thr	Thr	Ala 275	Ser	Lys	Ser	Ile	Ala 280	Ala	Gly	Ala	Ser	Ala 285	Asp	Val	Thr
	Ser	Thr 290	Ile	Thr	Ala	Ala	Ser 295	Pro	Lys	Leu	Trp	Ser 300	Ile	Lys	Asn	Pro
30	Asn 305	Leu	Tyr	Thr	Val	A rg 310	Thr	Glu	Val	Leu	Asn 315	Gly	Gly	Lys	Val	Leu 320
35	Asp	Thr	Tyr	Asp	Thr 325	Glu	Tyr	Gly	Phe	Arg 330	Trp	Thr	Gly	Phe	Asp 335	Ala
40	Thr	Ser	Gly	Phe 340	Ser	Leu	Asn	Gly	Glu 345	Lys	Val	Lys	Leu	Lys 350	Gly	Val
70	Ser	Met	His 355	His	Asp	Gln	Gly	Ser 360	Leu	Gly	Ala	Val	Ala 365	Asn	Arg	Arg
45	Ala	Ile 370	Glu	Arg	Gln	Val	Glu 375	Ile	Leu	Gln	Lys	Met 380	Gly	Val	Asn	Ser
50	Ile 385	Arg	Thr	Thr	His	As n 390	Pro	Ala	Ala	Lys	Ala 395	Leu	Ile	Asp	Val	Cys 400
	Asn	Glu	Lys	Gly	Val 405	Leu	Val	Val	Glu	Glu 410	Val	Phe	Asp	Met	Trp 415	Asn
55	Arg	Ser	Lys	Asn 420	Gly	Asn	Thr	Glu	Asp 425	Tyr	Gly	Lys	Trp	Phe 430	Gly	Gln

	Ala	Ile	Ala 435	Gly	Asp	Asn	Ala	Val 440	Leu	Gly	Gly	Asp	Lys 445	Asp	Glu	Thr
5	Trp	Ala 450	Lys	Phe	Asp	Leu	Thr 455	Ser	Thr	Ile	Asn	Arg 460	Asp	Arg	Asn	Ala
10	Pro 465	Ser	Val	Ile	Met	Trp 470	Ser	Leu	Gly	Asn	Glu 475	Met	Met	Glu	Gly	Ile 480
	Ser	Gly	Ser	Val	Ser 485	Gly	Phe	Pro	Ala	Thr 490	Ser	Ala	Lys	Leu	Val 495	Ala
15	Trp	Thr	Lys	Ala 500	Ala	Asp	Ser	Thr	A rg 505	Pro	Met	Thr	Tyr	Gly 510	Asp	Asn
20	Lys	Ile	Lys 515	Ala	Asn	Trp	Asn	Glu 520	Ser	Asn	Thr	Met	Gly 525	Asp	Asn	Leu
25	Thr	Ala 530	Asn	Gly	Gly	Val	Val 535	Gly	Thr	Asn	Tyr	Ser 540	Asp	Gly	Ala	Asn
	Tyr 545	Asp	Lys	Ile	Arg	Thr 550	Thr	His	Pro	Ser	Trp 555	Ala	Ile	Tyr	Gly	Ser 560
30	Glu	Thr	Ala	Ser	Ala 565	Ile	Asn	Ser	Arg	Gly 570	Ile	Tyr	Asn	Arg	Thr 575	Thr
35	Gly	Gly	Ala	Gln 580	Ser	Ser	Asp	Lys	Gln 585	Leu	Thr	Ser	Tyr	Asp 590	Asn	Ser
	Ala	Val	Gly 595	Trp	Gly	Ala	Val	Ala 600	Ser	Ser	Ala	Trp	Tyr 605	Asp	Val	Val
40	Gln	Arg 610	Asp	Phe	Val	Ala	Gly 615	Thr	Tyr	Val	Trp	Thr 620	Gly	Phe	Asp	Tyr
45	Leu 625	Gly	Glu	Pro	Thr	Pro 630	Trp	Asn	Gly	Thr	Gly 635	Ser	Gly	Ala	Val	Gly 640
50	Ser	Trp	Pro	Ser	Pro 645	Lys	Asn	Ser	Tyr	Phe 650	Gly	Ile	Val	Asp	Thr 655	Ala
	Gly	Phe	Pro	Lys 660	Asp	Thr	Tyr	Tyr	Phe 665	Tyr	Gln	Ser	Gln	Trp 670	Asn	Asp
55	Asp	Val	His 675	Thr	Leu	His	Ile	Leu 680	Pro	Ala	Trp	Asn	Glu 685	Asn	Val	Val

	Ala	Lys 690	Gly	Ser	Gly	Asn	Asn 695	Val	Pro	Val	Val	Val 700	Tyr	Thr	Asp	Ala
5	Ala 705	Lys	Val	Lys	Leu	Tyr 710	Phe	Thr	Pro	Lys	Gly 715	Ser	Thr	Glu	Lys	Arg 720
10	Leu	Ile	Gly	Glu	Lys 725	Ser	Phe	Thr	Lys	Lys 730	Thr	Thr	Ala	Ala	Gly 735	Tyr
	Thr	Tyr	Gln	Val 740	Tyr	Glu	Gly	Ser	Asp 745	Lys	Asp	Ser	Thr	A la 750	His	Lys
15	Asn	Met	Tyr 755	Leu	Thr	Trp	Asn	Val 760	Pro	Trp	Ala	Glu	Gly 765	Thr	Ile	Ser
20	Ala	Glu 770	Ala	Tyr	Asp	Glu	Asn 775	Asn	Arg	Leu	Ile	Pro 780	Glu	Gly	Ser	Thr
25	Glu 785	Gly	Asn	Ala	Ser	Val 790	Thr	Thr	Thr	Gly	Lys 795	Ala	Ala	Lys	Leu	Lys 800
	Ala	Asp	Ala	Asp	Arg 805	Lys	Thr	Ile	Thr	Ala 810	Asp	Gly	Lys	Asp	Leu 815	Ser
30	Tyr	Ile	Glu	Val 820	Asp	Val	Thr	Asp	Ala 825	Asn	Gly	His	Ile	Val 830	Pro	Asp
35	Ala	Ala	Asn 835	Arg	Val	Thr	Phe	Asp 840	Val	Lys	Gly	Ala	Gly 845	Lys	Leu	Val
40	Gly	Val 850	Asp	Asn	Gly	Ser	Ser 855	Pro	Asp	His	Asp	Ser 860	Tyr	Gln	Ala	Asp
	Asn 865	Arg	Lys	Ala	Phe	Ser 870	Gly	Lys	Val	Leu	Ala 875	Ile	Val	Gln	Ser	Thr 880
45	Lys	Glu	Ala	Gly	Glu 885	Ile	Thr	Val	Thr	Ala 890	Lys	Ala	Asp	Gly	Leu 895	Gln
50	Ser	Ser	Thr	Val 900	Lys	Ile	Ala	Thr	Thr 905	Ala	Val	Pro	Gly	Thr 910	Ser	Thr
_	Glu	Lys	Thr 915	Val	Arg	Ser	Phe	Tyr 920	Tyr	Ser	Arg	Asn	Tyr 925	Tyr	Val	Lys
55	Thr	Gly	Asn	Lys	Pro	Ile	Leu	Pro	Ser	Asp	Val	Glu	Val	Arg	Tyr	Ser

5	asp Gly Thr Ser Asp Arg Gln Asn Val Thr Trp Asp 950 955	Ala Val Ser Asp 960
10	asp Gln Ile Ala Lys Ala Gly Ser Phe Ser Val Ala 965 970	Gly Thr Val Ala 975
	Sly Gln Lys Ile Ser Val Arg Val Thr Met Ile Asp 980 985	Glu Ile Gly Ala 990
15	eu Leu Asn Tyr Ser Ala Ser Thr Pro Val Gly Thr 995 1000	Pro Ala Val Leu 1005
20	Pro Gly Ser Arg Pro Ala Val Leu Pro Asp Gly Th 1010 1015 10	r Val Thr Ser 20
	ala Asn Phe Ala Val His Trp Thr Lys Pro Ala As 1025 1030 10	p Thr Val Tyr 35
25	asn Thr Ala Gly Thr Val Lys Val Pro Gly Thr Al 1040 1045 10	a Thr Val Phe 50
30	Gly Lys Glu Phe Lys Val Thr Ala Thr Ile Arg Va 1055 1060 10	l Gln Arg Ser 65
35	In Val Thr Ile Gly Ser Ser Val Ser Gly Asn Al 1070 1075 10	a Leu Arg Leu 80
	Thr Gln Asn Ile Pro Ala Asp Lys Gln Ser Asp Th 1085 1090 10	r Leu Asp Ala 95
40	le Lys Asp Gly Ser Thr Thr Val Asp Ala Asn Th 1100 1105 11	r Gly Gly Gly 10
45	ala Asn Pro Ser Ala Trp Thr Asn Trp Ala Tyr Se 1115 1120 11	er Lys Ala Gly 25
50	is Asn Thr Ala Glu Ile Thr Phe Glu Tyr Ala Th 1130 1135 11	r Glu Gln Gln 40
	eu Gly Gln Ile Val Met Tyr Phe Phe Arg Asp Se 1145 1150 11	er Asn Ala Val 55
55	arg Phe Pro Asp Ala Gly Lys Thr Lys Ile Gln Il 1160 1165 11	e Ser Ala Asp 70

	Gly	Lys 1175	Asn	Trp	Thr	Asp	Leu 1180	Ala	Ala	Thr	Glu	Thr 1185	Ile	Ala	Ala
5	Gln	Glu 1190	Ser	Ser	Asp	Arg	Val 1195	Lys	Pro	Tyr	Thr	Tyr 1200	Asp	Phe	Ala
10	Pro	Val 1205	Gly	Ala	Thr	Phe	Val 1210	Lys	Val	Thr	Val	Thr 1215	Asn	Ala	Asp
	Thr	Thr 1220	Thr	Pro	Ser	Gly	Val 1225	Val	Cys	Ala	Gly	Leu 1230	Thr	Glu	Ile
15	Glu	Leu 1235	Lys	Thr	Ala	Thr	Ser 1240	Lys	Phe	Val	Thr	Asn 1245	Thr	Ser	Ala
20	Ala	Leu 1250	Ser	Ser	Leu	Thr	Val 1255	Asn	Gly	Thr	Lys	Val 1260	Ser	Asp	Ser
25	Val	Leu 1265	Ala	Ala	Gly	Ser	Tyr 1270	Asn	Thr	Pro	Ala	Ile 1275	Ile	Ala	Asp
	Val	Lys 1280	Ala	Glu	Gly	Glu	Gly 1285	Asn	Ala	Ser	Val	Thr 1290	Val	Leu	Pro
30	Ala	His 1295	Asp	Asn	Val	Ile	Arg 1300	Val	Ile	Thr	Glu	Ser 1305	Glu	Asp	His
35	Val	Thr 1310	Arg	Lys	Thr	Phe	Thr 1315	Ile	Asn	Leu	Gly	Thr 1320	Glu	Gln	Glu
		Pro 1325										Ala 1335	Ala	Asp	Met
40	Thr	Val 1340	Thr	Val	Gly	Ser	Glu 1345	Gln	Thr	Ser	Gly	Thr 1350	Ala	Thr	Glu
45	Gly	Pro 1355	Lys	Lys	Phe	Ala	Val 1360	Asp	Gly	Asn	Thr	Ser 1365	Thr	Tyr	Trp
50	His	Ser 1370	Asn	Trp	Thr	Pro	Thr 1375	Thr	Val	Asn	Asp	Leu 1380	Trp	Ile	Ala
	Phe	Glu 1385	Leu	Gln	Lys	Pro	Thr 1390	Lys	Leu	Asp	Ala	Leu 1395	Arg	Tyr	Leu
55	Pro	Arg 1400	Pro	Ala	Gly	Ser	Lys 1405	Asn	Gly	Ser	Val	Thr 1410	Glu	Tyr	Lys

	Val	Gln 1415	Val	Ser	Asp	Asp	Gly 1420	Thr	Asn	Trp	Thr	Asp 1425	Ala	Gly	Ser
5	Gly	Thr 1430	Trp	Thr	Thr	Asp	Tyr 1435	Gly	Trp	Lys	Leu	Ala 1440	Glu	Phe	Asn
10	Gln	Pro 1445	Val	Thr	Thr	Lys	His 1450	Val	Arg	Leu	Lys	Ala 1455	Val	His	Thr
	Tyr	Ala 1460	Asp	Ser	Gly	Asn	Asp 1465	Lys	Phe	Met	Ser	Ala 1470	Ser	Glu	Ile
15	Arg	Leu 1475	Arg	Lys	Ala	Val	Asp 1480	Thr	Thr	Asp	Ile	Ser 1485	Gly	Ala	Thr
20	Val	Thr 1490	Val	Pro	Ala	Lys	Leu 1495	Thr	Val	Asp	Arg	Val 1500	Asp	Ala	Asp
25	His	Pro 1505	Ala	Thr	Phe	Ala	Thr 1510	Lys	Asp	Val	Thr	Val 1515	Thr	Leu	Gly
	Asp	Ala 1520	Thr	Leu	Arg	Tyr	Gly 1525	Val	Asp	Tyr	Leu	Leu 1530	Asp	Tyr	Ala
30	Gly	Asn 1535	Thr	Ala	Val	Gly	Lys 1540	Ala	Thr	Val	Thr	Val 1545	Arg	Gly	Ile
35	Asp	Lys 1550	Tyr	Ser	Gly	Thr	Val 1555	Ala	Lys	Thr	Phe	Thr 1560	Ile	Glu	Leu
		Asn 1565										Ser 1575	Val	Ser	Val
40	Lys	Thr 1580	Lys	Pro	Ser	Lys	Leu 1585	Thr	Tyr	Val	Val	Gly 1590	Asp	Ala	Phe
45	Asp	Pro 1595	Ala	Gly	Leu	Val	Leu 1600	Gln	Leu	Asn	Tyr	Asp 1605	Asp	Asp	Ser
50	Thr	Gly 1610	Thr	Val	Thr	Trp	Asn 1615	Thr	Gln	Thr	Ala	Gly 1620	Asp	Phe	Thr
	Phe	Lys 1625	Pro	Ala	Leu	Asp	Ala 1630	Lys	Leu	Lys	Val	Thr 1635	Asp	Lys	Thr
55	Val	Thr 1640	Val	Thr	Tyr	Gln	Gly 1645	Lys	Ser	Ala	Val	Ile 1650	Asp	Ile	Thr

	Val	Ser 1655	Gln	Pro	Ala	Pro	Thr 1660	Val	Ser	Lys	Thr	Asp 1665	Leu	Asp	Lys
5	Ala	Ile 1670	Lys	Ala	Ile	Glu	Ala 1675	Lys	Asn	Pro	Asp	Ser 1680	Ser	Lys	Tyr
10	Thr	Ala 1685	Asp	Ser	Trp	Lys	Thr 1690	Phe	Ala	Asp	Ala	Met 1695	Ala	His	Ala
	Lys	Ala 1700	Val	Ile	Ala	Asp	Asp 1705	Ser	Ala	Thr	Gln	Gln 1710	Asp	Val	Asp
15	Asn	Ala 1715	Leu	Lys	Ala	Leu	Thr 1720	Asp	Ala	Tyr	Ala	Gly 1725	Leu	Thr	Glu
20	Lys	Thr 1730	Pro	Glu	Pro	Ala	Pro 1735	Val	Ser	Lys	Ser	Glu 1740	Leu	Asp	Lys
25	Lys	Ile 17 4 5	Lys	Ala	Ile	Glu	Ala 1750	Glu	Lys	Leu	Asp	Gly 1755	Ser	Lys	Tyr
	Thr	Ala 1760	Glu	Ser	Trp	Lys	Ala 1765	Phe	Glu	Thr	Ala	Leu 1770	Ala	His	Ala
30	Lys	Ala 1775	Val	Ile	Ala	Ser	Asp 1780	Ser	Ala	Thr	Gln	Gln 1785	Asn	Val	Asp
35	Ala	Ala 1790	Leu	Gly	Ala	Leu	Thr 1795	Ser	Ala	Arg	Asp	Gly 1800	Leu	Thr	Glu
40	Lys	Gly 1805	Glu	Val	Lys	Pro	Asp 1810	Pro	Lys	Pro	Glu	Pro 1815	Gly	Thr	Val
	Asp	Lys 1820	Ala	Ala	Leu	Asp	Lys 1825	Ala	Val	Lys	Lys	Val 1830	Glu	Ala	Glu
45	Lys	Leu 1835	Asp	Gly	Ser	Lys	Tyr 1840	Thr	Ala	Asp	Ser	Trp 1845	Lys	Ala	Phe
50	Glu	Thr 1850	Ala	Leu	Ala	His	Ala 1855	Lys	Ala	Val	Ile	Gly 1860	Asn	Ala	Asn
55	Ser	Thr 1865	Gln	Phe	Asp	Ile	Asp 1870	Asn	Ala	Leu	Ser	Met 1875	Leu	Asn	Asp
	Ala	Arg	Ala	Ala	Leu	Lys	Glu	Lys	Pro	Gly	Arg	Ile	Ile	Ala	Ile

			1880					1885					1890			
5		Ile	Asp 1895	Gly	Ser	Ala	Leu	Ser 1900	Lys	Thr	Gly	Ala	Ser 1905	Val	Ala	Ile
10		Ile	Ala 1910	Ser	Val	Ala	Ala	Ala 1915	Met	Leu	Ala	Val	Gly 1920	Ala	Gly	Val
		Met	Ala 1925	Leu	Arg	Arg	Lys	Arg 1930	Ser							
15	<210> 2 <211> 13 <212> PI <213> Bi	RT	cterium	bifidu	m											
20	<400> 2															
25																
30																
35																
40																
45																
50																
55																

	Met 1	Lys	Lys	Pro	Leu 5	Gly	Lys	Ile	Val	Ala 10	Ser	Thr	Ala	Leu	Leu 15	Ile
5	Ser	Val	Ala	Phe 20	Ser	Ser	Ser	Ile	Ala 25	Ser	Ala	Ile	Glu	Asp 30	Ala	Thr
10	Arg	Ser	Asp 35	Ser	Thr	Thr	Gln	Met 40	Ser	Ser	Thr	Pro	Glu 45	Val	Ala	Tyr
15	Ser	Ser 50	Ala	Val	Asp	Ser	Lys 55	Gln	Asn	Arg	Thr	Ser 60	Asp	Phe	Asp	Ala
	Asn 65	Trp	Lys	Phe	Met	Leu 70	Ser	Asp	Ser	Val	Gln 75	Ala	Gln	Asp	Pro	Ala 80
20	Phe	Asp	Asp	Ser	Ala 85	Trp	Gln	Gln	Val	Asp 90	Leu	Pro	His	Asp	Tyr 95	Ser
25	Ile	Thr	Gln	Lys 100	Tyr	Ser	Gln	Ser	Asn 105	Glu	Ala	Glu	Ser	Ala 110	Tyr	Leu
30	Pro	Gly	Gly 115	Thr	Gly	Trp	Tyr	Arg 120	Lys	Ser	Phe	Thr	Ile 125	Asp	Arg	Asp
	Leu	Ala 130	Gly	Lys	Arg	Ile	Ala 135	Ile	Asn	Phe	Asp	Gly 140	Val	Tyr	Met	Asn
35	Ala 145	Thr	Val	Trp	Phe	Asn 150	Gly	Val	Lys	Leu	Gly 155	Thr	His	Pro	Tyr	Gly 160
40	Tyr	Ser	Pro	Phe	Ser	Phe	Asp	Leu	Thr	Gly	Asn	Ala	Lys	Phe	Gly	Gly
45																
50																
55																

					165					170					175	
5	Glu	Asn	Thr	Ile 180	Val	Val	Lys	Val	Glu 185	Asn	Arg	Leu	Pro	Ser 190	Ser	Arg
10	Trp	Tyr	Ser 195	Gly	Ser	Gly	Ile	Tyr 200	Arg	Asp	Val	Thr	Leu 205	Thr	Val	Thr
	Asp	Gly 210	Val	His	Val	Gly	Asn 215	Asn	Gly	Val	Ala	Ile 220	Lys	Thr	Pro	Ser
15	Leu 225	Ala	Thr	Gln	Asn	Gly 230	Gly	Asp	Val	Thr	Met 235	Asn	Leu	Thr	Thr	Lys 240
20	Val	Ala	Asn	Asp	Thr 245	Glu	Ala	Ala	Ala	Asn 250	Ile	Thr	Leu	Lys	Gln 255	Thr
25	Val	Phe	Pro	Lys 260	Gly	Gly	Lys	Thr	Asp 265	Ala	Ala	Ile	Gly	Thr 270	Val	Thr
25	Thr	Ala	Ser 275	Lys	Ser	Ile	Ala	Ala 280	Gly	Ala	Ser	Ala	Asp 285	Val	Thr	Ser
30	Thr	Ile 290	Thr	Ala	Ala	Ser	Pro 295	Lys	Leu	Trp	Ser	Ile 300	Lys	Asn	Pro	Asn
35	Leu 305	Tyr	Thr	Val	Arg	Thr 310	Glu	Val	Leu	Asn	Gly 315	Gly	Lys	Val	Leu	Asp 320
	Thr	Tyr	Asp	Thr		Tyr	_	Phe	Arg				Phe		Ala 335	
40	Ser	Gly	Phe	Ser 340	Leu	Asn	Gly	Glu	Lys 345	Val	Lys	Leu	Lys	Gly 350	Val	Ser
45	Met	His	His 355	Asp	Gln	Gly	Ser	Leu 360	Gly	Ala	Val	Ala	Asn 365	Arg	Arg	Ala
50	Ile	Glu 370	Arg	Gln	Val	Glu	Ile 375	Leu	Gln	Lys	Met	Gly 380	Val	Asn	Ser	Ile
	Arg 385	Thr	Thr	His	Asn	Pro 390	Ala	Ala	Lys	Ala	Leu 395	Ile	Asp	Val	Cys	Asn 400
55	Glu	Lys	Gly	Val	Leu 405	Val	Val	Glu	Glu	Val 410	Phe	Asp	Met	Trp	Asn 415	Arg

	Ser	Lys	Asn	Gly 420	Asn	Thr	Glu	Asp	Tyr 425	Gly	Lys	Trp	Phe	Gly 430	Gln	Ala
5	Ile	Ala	Gly 435	Asp	Asn	Ala	Val	Leu 440	Gly	Gly	Asp	Lys	Asp 445	Glu	Thr	Trp
10	Ala	Lys 450	Phe	Asp	Leu	Thr	Ser 455	Thr	Ile	Asn	Arg	Asp 460	Arg	Asn	Ala	Pro
	Ser 465	Val	Ile	Met	Trp	Ser 470	Leu	Gly	Asn	Glu	Met 475	Met	Glu	Gly	Ile	Ser 480
15	Gly	Ser	Val	Ser	Gly 485	Phe	Ser	Ala	Thr	Ser 490	Ala	Lys	Leu	Val	Ala 495	Trp
20	Thr	Lys	Ala	Ala 500	Asp	Ser	Thr	Arg	Pro 505	Met	Thr	Tyr	Gly	Asp 510	Asn	Lys
25	Ile	Lys	Ala 515	Asn	Trp	Asn	Glu	Ser 520	Asn	Thr	Met	Gly	Asp 525	Asn	Leu	Thr
	Ala	Asn 530	Gly	Gly	Val	Val	Gly 535	Thr	Asn	Tyr	Ser	Asp 540	Gly	Ala	Asn	Tyr
30	Asp 545	Lys	Ile	Arg	Thr	Thr 550	His	Pro	Ser	Trp	A la 555	Ile	Tyr	Gly	Ser	Glu 560
35	Thr	Ala	Ser	Ala	Ile 565	Asn	Ser	Arg	Gly	Ile 570	Tyr	Asn	Arg	Thr	Thr 575	Gly
40	Gly	Ala	Gln	Ser 580	Ser	Asp	Lys	Gln	Leu 585	Thr	Ser	Tyr	Asp	A sn 590	Ser	Ala
40	Val	Gly	Trp 595	Gly	Ala	Val	Ala	Ser 600	Ser	Ala	Trp	Tyr	Asp 605	Val	Val	Gln
45	Arg	Asp 610	Phe	Val	Ala	Gly	Thr 615	Tyr	Val	Trp	Thr	Gly 620	Phe	Asp	Tyr	Leu
50	Gly 625	Glu	Pro	Thr	Pro	Trp 630	Asn	Gly	Thr	Gly	Ser 635	Gly	Ala	Val	Gly	Ser 640
	Trp	Pro	Ser	Pro	Lys 645	Asn	Ser	Tyr	Phe	Gly 650	Ile	Val	Asp	Thr	Ala 655	Gly
55	Phe	Pro	Lys	Asp 660	Thr	Tyr	Tyr	Phe	Tyr 665	Gln	Ser	Gln	Trp	Asn 670	Asp	Asp

	Val	His	Thr 675	Leu	His	Ile	Leu	Pro 680	Ala	Trp	Asn	Glu	Asn 685	Val	Val	Ala
5	Lys	Gly 690	Ser	Gly	Asn	Asn	Val 695	Pro	Val	Val	Val	Tyr 700	Thr	Asp	Ala	Ala
10	Lys 705	Val	Lys	Leu	Tyr	Phe 710	Thr	Pro	Lys	Gly	Ser 715	Thr	Glu	Gln	Arg	Leu 720
	Ile	Gly	Glu	Lys	Ser 725	Phe	Thr	Lys	Lys	Thr 730	Thr	Ala	Ala	Gly	Tyr 735	Thr
15	Tyr	Gln	Val	Tyr 740	Glu	Gly	Ser	Asp	Lys 745	Asp	Ser	Thr	Ala	His 750	Lys	Asn
20	Met	Tyr	Leu 755	Thr	Trp	Asn	Val	Pro 760	Trp	Ala	Glu	Gly	Thr 765	Ile	Ser	Ala
25	Glu	A la 770	Tyr	Asp	Glu	Asn	As n 775	Arg	Leu	Ile	Pro	Glu 780	Gly	Ser	Thr	Glu
	Gly 785	Asn	Ala	Ser	Val	Thr 790	Thr	Thr	Gly	Lys	Ala 795	Ala	Lys	Leu	Lys	Ala 800
30	Asp	Ala	Asp	Arg	Lys 805	Thr	Ile	Thr	Ala	Asp 810	Gly	Lys	Asp	Leu	Ser 815	Tyr
35	Ile	Glu	Val	Asp 820	Val	Thr	Asp	Ala	Asn 825	Gly	His	Ile	Val	Pro 830	Asp	Ala
	Ala	Asn	Arg 835	Val	Thr	Phe	Asp	Val 840	Lys	Gly	Ala	Gly	Lys 845	Leu	Val	Gly
40	Val	Asp 850	Asn	Gly	Ser	Ser	Pro 855	Asp	His	Asp	Ser	Tyr 860	Gln	Ala	Asp	Asn
45	A rg 865	Lys	Ala	Phe	Ser	Gly 870	Lys	Val	Leu	Ala	Ile 875	Val	Gln	Ser	Thr	Lys 880
50	Glu	Ala	Gly	Glu	Ile 885	Thr	Val	Thr	Ala	Lys 890	Ala	Asp	Gly	Leu	Gln 895	Ser
	Ser	Thr	Val	Lys 900	Ile	Ala	Thr	Thr	Ala 905	Val	Pro	Gly	Thr	Ser 910	Thr	Glu
55	Lys	Thr	Val 915	Arg	Ser	Phe	Tyr	Tyr 920	Ser	Arg	Asn	Tyr	Tyr 925	Val	Lys	Thr

	Gly	Asn 930	Lys	Pro	Ile	Leu	Pro 935	Ser 1	Asp V	al Gl	u Va 94	ıl Arç	, Туг	Ser	Asp
5	Gly 945	Thr	Ser	Asp	Arg	Gln 950	Asn	Val :	Chr T	rp As 95	_	a Val	. Ser	Asp	960
10	Gln	Ile	Ala	Lys	Ala 965	Gly	Ser	Phe S		al Al 70	a Gl	y Thi	· Val	. Ala 975	_
	Gln	Lys	Ile	Ser 980	Val	Arg	Val		Met I 1985	le As	p Gl	u Ile	990		ı Leu
15	Leu	Asn	Tyr 995	Ser	Ala	Ser		Pro 1000	Val	Gly T	hr P		.a V 005	/al I	eu Pro
20	Gly	Ser 1010	_	Pro	Ala	. Val	. Leu 101		Asp	Gly	Thr	Val 1020	Thr	Ser	Ala
25	Asn	Phe 1025		. Val	. His	Trp	Thr 103	_	s Pro	Ala	Asp	Thr 1035	Val	Tyr	Asn
	Thr	Ala 1040		Thr	· Val	. Lys	Val 104		Gly	Thr	Ala	Thr 1050	Val	Phe	Gly
30	Lys	Glu 1055		. Lys	. Val	. Thr	Ala 106		r Ile	Arg	Val	Gln 1065	Arg	Ser	Gln
35	Val	Thr 1070		Gly	Ser	Ser	Val		Gly	Asn	Ala	Leu 1080	Arg	Leu	Thr
40	Gln	Asn 1085		Pro	Ala	Asp	Lys 109		n Ser	Asp	Thr	Leu 1095	Asp	Ala	Ile
	Lys	Asp 1100		Ser	Thr	Thr	Val		Ala	Asn	Thr	Gly 1110	Gly	Gly	Ala
45	Asn	Pro 1115		· Ala	Trp	Thr	Asn 112	_	Ala	Tyr	Ser	Lys 1125	Ala	Gly	His
50	Asn	Thr 1130		Glu	ı Ile	. Thr	Phe		ı Tyr	Ala	Thr	Glu 1140	Gln	Gln	Leu
	Gly	Gln 1145		val	. Met	. Tyr	Phe 115		e Arg	Asp	Ser	Asn 1155	Ala	Val	Arg
55	Phe	Pro	Asp	Ala	ı Gly	' Lys	Thr	Lys	s Ile	Gln	Ile	Ser	Ala	Asp	Gly

		1160					1165					1170			
5	Lys	Asn 1175	Trp	Thr	Asp	Leu	Ala 1180	Ala	Thr	Glu	Thr	Ile 1185	Ala	Ala	Gln
10	Glu	Ser 1190	Ser	Asp	Arg	Val	Lys 1195	Pro	Tyr	Thr	Tyr	Asp 1200	Phe	Ala	Pro
	Val	Gly 1205	Ala	Thr	Phe	Val	Arg 1210	Val	Thr	Val	Thr	Asn 1215	Ala	Asp	Thr
15	Thr	Thr 1220	Pro	Ser	Gly	Val	Val 1225	Cys	Ala	Gly	Leu	Thr 1230	Glu	Ile	Glu
20	Leu	Lys 1235	Thr	Ala	Thr	Ser	Lys 1240	Phe	Val	Ala	Asn	Thr 1245	Ser	Ala	Ala
25	Leu	Ser 1250	Ser	Leu	Thr	Val	Asn 1255	Gly	Thr	Lys	Val	Ser 1260	Asp	Ser	Val
	Leu	Ala 1265	Ala	Gly	Ser	Tyr	Asn 1270	Thr	Pro	Ala	Ile	Ile 1275	Ala	Asp	Val
30	Lys	Ala 1280	Glu	Gly	Glu	Gly	Asn 1285	Ala	Ser	Val	Thr	Val 1290	Leu	Pro	Ala
35	His	Asp 1295	Asn	Val	Ile	Arg	Val 1300	Ile	Thr	Glu	Ser	Glu 1305	Asp	His	Val
40		Arg 1310					Ile 1315							Glu	Phe
	Pro	Ala 1325	Asp	Ser	Asp	Glu	Arg 1330	Asp	Gln	His	Gln	His 1335	Gln	His	Gln
45	His	Gln 1340	Gln												
50	<210> 3 <211> 1752 <212> PRT <213> Bifidoba	cterium	bifidu	m											
	\4UU > 3														

	Met 1	Ala	Val	Arg	Arg 5	Leu	Gly	Gly	Arg	Ile 10	Val	Ala	Phe	Ala	Ala 15	Thr
5	Val	Ala	Leu	Ser	Ile	Pro	Leu	Gly	Leu	Leu	Thr	Asn	Ser	Ala	Trp	Ala
10																
15																
20																
25																
30																
35																
40																
45																
50																
55																

5	Val	Glu	Asp 35	Ala	Thr	Arg	Ser	Asp 40	Ser	Thr	Thr	Gln	Met 45	Ser	Ser	Thr
10	Pro	Glu 50	Val	Val	Tyr	Ser	Ser 55	Ala	Val	Asp	Ser	Lys 60	Gln	Asn	Arg	Thr
	Ser 65	Asp	Phe	Asp	Ala	Asn 70	Trp	Lys	Phe	Met	Leu 75	Ser	Asp	Ser	Val	Gln 80
15	Ala	Gln	Asp	Pro	Ala 85	Phe	Asp	Asp	Ser	Ala 90	Trp	Gln	Gln	Val	Asp 95	Leu
20	Pro	His	Asp	Tyr 100	Ser	Ile	Thr	Gln	Lys 105	Tyr	Ser	Gln	Ser	Asn 110	Glu	Ala
25	Glu	Ser	Ala 115	Tyr	Leu	Pro	Gly	Gly 120	Thr	Gly	Trp	Tyr	Arg 125	Lys	Ser	Phe
25	Thr	Ile 130	Asp	Arg	Asp	Leu	Ala 135	Gly	Lys	Arg	Ile	Ala 140	Ile	Asn	Phe	Asp
30	Gly 145	Val	Tyr	Met	Asn	Ala 150	Thr	Val	Trp	Phe	Asn 155	Gly	Val	Lys	Leu	Gly 160
35	Thr	His	Pro	Tyr	Gly 165	Tyr	Ser	Pro	Phe	Ser 170	Phe	Asp	Leu	Thr	Gly 175	Asn
	Ala	Lys	Phe	Gly 180	Gly	Glu	Asn	Thr	Ile 185	Val	Val	Lys	Val	Glu 190	Asn	Arg
40	Leu	Pro	Ser 195	Ser	Arg	Trp	Tyr	Ser 200	Gly	Ser	Gly	Ile	Tyr 205	Arg	Asp	Val
45	Thr	Leu 210	Thr	Val	Thr	Asp	Gly 215	Val	His	Val	Gly	Asn 220	Asn	Gly	Val	Ala
50	Ile 225	Lys	Thr	Pro	Ser	Leu 230	Ala	Thr	Gln	Asn	Gly 235	Gly	Asp	Val	Thr	Met 240
	Asn	Leu	Thr	Thr	Lys 245	Val	Ala	Asn	Asp	Thr 250	Glu	Ala	Ala	Ala	Asn 255	Ile
55	Thr	Leu	Lys	Gln 260	Thr	Val	Phe	Pro	Lys 265	Gly	Gly	Lys	Thr	Asp 270	Ala	Ala

	Ile	Gly	Thr 275	Val	Thr	Thr	Ala	Ser 280	Lys	Ser	Ile	Ala	Ala 285	Gly	Ala	Ser
5	Ala	Asp 290	Val	Thr	Ser	Thr	Ile 295	Thr	Ala	Ala	Ser	Pro 300	Lys	Leu	Trp	Ser
10	Ile 305	Lys	Asn	Pro	Asn	Leu 310	Tyr	Thr	Val	Arg	Thr 315	Glu	Val	Leu	Asn	Gly 320
	Gly	Lys	Val	Leu	Asp 325	Thr	Tyr	Asp	Thr	Glu 330	Tyr	Gly	Phe	Arg	Trp 335	Thr
15	Gly	Phe	Asp	Ala 340	Thr	Ser	Gly	Phe	Ser 345	Leu	Asn	Gly	Glu	Lys 350	Val	Lys
20	Leu	Lys	Gly 355	Val	Ser	Met	His	His 360	Asp	Gln	Gly	Ser	Leu 365	Gly	Ala	Val
25	Ala	Asn 370	Arg	Arg	Ala	Ile	Glu 375	Arg	Gln	Val	Glu	Ile 380	Leu	Gln	Lys	Met
	Gly 385	Val	Asn	Ser	Ile	A rg 390	Thr	Thr	His	Asn	Pro 395	Ala	Ala	Lys	Ala	Leu 400
30	Ile	Asp	Val	Cys	Asn 405	Glu	Lys	Gly	Val	Leu 410	Val	Val	Glu	Glu	Val 415	Phe
35	Asp	Met	Trp	Asn 420	Arg	Ser	Lys	Asn	Gly 425	Asn	Thr	Glu	Asp	Tyr 430	Gly	Lys
	Trp	Phe	Gly 435	Gln	Ala	Ile	Ala	Gly 440	Asp	Asn	Ala	Val	Leu 445	Gly	Gly	Asp
40	Lys	Asp 450	Glu	Thr	Trp	Ala	Lys 455	Phe	Asp	Leu	Thr	Ser 460	Thr	Ile	Asn	Arg
45	Asp 465	Arg	Asn	Ala	Pro	Ser 470	Val	Ile	Met	Trp	Ser 475	Leu	Gly	Asn	Glu	Met 480
50	Met	Glu	Gly	Ile	Ser 485	Gly	Ser	Val	Ser	Gly 490	Phe	Pro	Ala	Thr	Ser 495	Ala
	Lys	Leu	Val	Ala 500	Trp	Thr	Lys	Ala	Ala 505	Asp	Ser	Thr	Arg	Pro 510	Met	Thr
55	Tyr	Gly	Asp 515	Asn	Lys	Ile	Lys	A la 520	Asn	Trp	Asn	Glu	Ser 525	Asn	Thr	Met

	Gly	Asp 530	Asn	Leu	Thr	Ala	As n 535	Gly	Gly	Val	Val	Gly 540	Thr	Asn	Tyr	Ser
5	Asp 545	Gly	Ala	Asn	Tyr	Asp 550	Lys	Ile	Arg	Thr	Thr 555	His	Pro	Ser	Trp	Ala 560
10	Ile	Tyr	Gly	Ser	Glu 565	Thr	Ala	Ser	Ala	Ile 570	Asn	Ser	Arg	Gly	Ile 575	Tyr
	Asn	Arg	Thr	Thr 580	Gly	Gly	Ala	Gln	Ser 585	Ser	Asp	Lys	Gln	Leu 590	Thr	Ser
15	Tyr	Asp	Asn 595	Ser	Ala	Val	Gly	Trp 600	Gly	Ala	Val	Ala	Ser 605	Ser	Ala	Trp
20	Tyr	Asp 610	Val	Val	Gln	Arg	Asp 615	Phe	Val	Ala	Gly	Thr 620	Tyr	Val	Trp	Thr
25	Gly 625	Phe	Asp	Tyr	Leu	Gly 630	Glu	Pro	Thr	Pro	Trp 635	Asn	Gly	Thr	Gly	Ser 640
	Gly	Ala	Val	Gly	Ser 645	Trp	Pro	Ser	Pro	Lys 650	Asn	Ser	Tyr	Phe	Gly 655	Ile
30	Val	Asp	Thr	Ala 660	Gly	Phe	Pro	Lys	Asp 665	Thr	Tyr	Tyr	Phe	Tyr 670	Gln	Ser
35	Gln	Trp	Asn 675	Asp	Asp	Val	His	Thr 680	Leu	His	Ile	Leu	Pro 685	Ala	Trp	Asn
40	Glu	Asn 690	Val	Val	Ala	Lys	Gly 695	Ser	Gly	Asn	Asn	Val 700	Pro	Val	Val	Val
40	Tyr 705	Thr	Asp	Ala	Ala	Lys 710	Val	Lys	Leu	Tyr	Phe 715	Thr	Pro	Lys	Gly	Ser 720
45	Thr	Glu	Lys	Arg	Leu 725	Ile	Gly	Glu	Lys	Ser 730	Phe	Thr	Lys	Lys	Thr 735	Thr
50	Ala	Ala	Gly	Tyr 740	Thr	Tyr	Gln	Val	Tyr 745	Glu	Gly	Ser	Asp	Lys 750	Asp	Ser
	Thr	Ala	His 755	Lys	Asn	Met	Tyr	Leu 760	Thr	Trp	Asn	Val	Pro 765	Trp	Ala	Glu
55	Gly	Thr 770	Ile	Ser	Ala	Glu	Ala 775	Tyr	Asp	Glu	Asn	As n 780	Arg	Leu	Ile	Pro

	Glu 785	Gly	Ser	Thr	Glu	Gly 790	Asn	Ala	Ser	Val	Thr 795	Thr	Thr	Gly	Lys	Ala 800
5	Ala	Lys	Leu	Lys	Ala 805	Asp	Ala	Asp	Arg	Lys 810	Thr	Ile	Thr	Ala	Asp 815	Gly
10	Lys	Asp	Leu	Ser 820	Tyr	Ile	Glu	Val	Asp 825	Val	Thr	Asp	Ala	As n 830	Gly	His
	Ile	Val	Pro 835	Asp	Ala	Ala	Asn	Arg 840	Val	Thr	Phe	Asp	Val 845	Lys	Gly	Ala
15	Gly	Lys 850	Leu	Val	Gly	Val	Asp 855	Asn	Gly	Ser	Ser	Pro 860	Asp	His	Asp	Ser
20	Tyr 865	Gln	Ala	Asp	Asn	A rg 870	Lys	Ala	Phe	Ser	Gly 875	Lys	Val	Leu	Ala	Ile 880
25	Val	Gln	Ser	Thr	Lys 885	Glu	Ala	Gly	Glu	Ile 890	Thr	Val	Thr	Ala	Lys 895	Ala
	Asp	Gly	Leu	Gln 900	Ser	Ser	Thr	Val	Lys 905	Ile	Ala	Thr	Thr	Ala 910	Val	Pro
30	Gly	Thr	Ser 915	Thr	Glu	Lys	Thr	Val 920	Arg	Ser	Phe	Tyr	Tyr 925	Ser	Arg	Asn
35	Tyr	Tyr 930	Val	Lys	Thr	Gly	Asn 935	Lys	Pro	Ile	Leu	Pro 940	Ser	Asp	Val	Glu
40	Val 945	Arg	Tyr	Ser	Asp	Gly 950	Thr	Ser	Asp	Arg	Gln 955	Asn	Val	Thr	Trp	Asp 960
	Ala	Val	Ser	Asp	Asp 965	Gln	Ile	Ala	Lys	Ala 970	Gly	Ser	Phe	Ser	Val 975	Ala
45	Gly	Thr	Val	Ala 980	Gly	Gln	Lys	Ile	Ser 985	Val	Arg	Val	Thr	Met 990	Ile	Asp
50	Glu	Ile	Gly 995	Ala	Leu	Leu	Asn	Tyr 1000		r Ala	a Sei	r Thi	r Pro		al Gl	ly Thr
55	Pro	Ala 1010	V a]	L Let	ı Pro	o Gly	7 Sei 10:		rg Pi	ro Al	La Va		∋u I 020	Pro 1	Asp (Gly
55	Thr	Val	Thi	Seı	r Ala	a Ası	n Phe	e Al	la Va	al Hi	is Tı	rp Tl	nr 1	Lys I	Pro A	Ala

		1025					1030					1035			
5	Asp	Thr 1040	Val	Tyr	Asn	Thr	Ala 1045	Gly	Thr	Val	Lys	Val 1050	Pro	Gly	Thr
10	Ala	Thr 1055	Val	Phe	Gly	Lys	Glu 1060	Phe	Lys	Val	Thr	Ala 1065	Thr	Ile	Arg
10	Val	Gln 1070	Arg	Ser	Gln	Val	Thr 1075	Ile	Gly	Ser	Ser	Val 1080	Ser	Gly	Asn
15	Ala	Leu 1085	Arg	Leu	Thr	Gln	Asn 1090	Ile	Pro	Ala	Asp	Lys 1095	Gln	Ser	Asp
20	Thr	Leu 1100	Asp	Ala	Ile	Lys	Asp 1105	Gly	Ser	Thr	Thr	Val 1110	Asp	Ala	Asn
	Thr	Gly 1115	Gly	Gly	Ala	Asn	Pro 1120	Ser	Ala	Trp	Thr	Asn 1125	Trp	Ala	Tyr
25	Ser	Lys 1130	Ala	Gly	His	Asn	Thr 1135	Ala	Glu	Ile	Thr	Phe 1140	Glu	Tyr	Ala
30	Thr	Glu 1145	Gln	Gln	Leu	Gly	Gln 1150	Ile	Val	Met	Tyr	Phe 1155	Phe	Arg	Asp
35	Ser	Asn 1160	Ala	Val	Arg	Phe	Pro 1165	Asp	Ala	Gly	Lys	Thr 1170	Lys	Ile	Gln
	Ile	Ser 1175	Ala	Asp	Gly	Lys	Asn 1180	Trp	Thr	Asp	Leu	Ala 1185	Ala	Thr	Glu
40	Thr	Ile 1190	Ala	Ala	Gln	Glu	Ser 1195	Ser	Asp	Arg	Val	Lys 1200	Pro	Tyr	Thr
45	Tyr	Asp 1205	Phe	Ala	Pro	Val	Gly 1210	Ala	Thr	Phe	Val	Lys 1215	Val	Thr	Val
50	Thr	Asn 1220	Ala	Asp	Thr	Thr	Thr 1225	Pro	Ser	Gly	Val	Val 1230	Cys	Ala	Gly
	Leu	Thr 1235	Glu	Ile	Glu	Leu	Lys 1240	Thr	Ala	Thr	Ser	Lys 1245	Phe	Val	Thr
55	Asn	Thr 1250	Ser	Ala	Ala	Leu	Ser 1255	Ser	Leu	Thr	Val	Asn 1260	Gly	Thr	Lys

	Val	Ser 1265	Asp	Ser	Val	Leu	Ala 1270	Ala	Gly	Ser	Tyr	Asn 1275	Thr	Pro	Ala
5	Ile	Ile 1280	Ala	Asp	Val	Lys	Ala 1285	Glu	Gly	Glu	Gly	Asn 1290	Ala	Ser	Val
10	Thr	Val 1295	Leu	Pro	Ala	His	Asp 1300	Asn	Val	Ile	Arg	Val 1305	Ile	Thr	Glu
	Ser	Glu 1310	Asp	His	Val	Thr	Arg 1315	Lys	Thr	Phe	Thr	Ile 1320	Asn	Leu	Gly
15	Thr	Glu 1325	Gln	Glu	Phe	Pro	Ala 1330	Asp	Ser	Asp	Glu	Arg 1335	Asp	Tyr	Pro
20	Ala	Ala 1340	Asp	Met	Thr	Val	Thr 1345	Val	Gly	Ser	Glu	Gln 1350	Thr	Ser	Gly
25	Thr	Ala 1355	Thr	Glu	Gly	Pro	Lys 1360	Lys	Phe	Ala	Val	Asp 1365	Gly	Asn	Thr
	Ser	Thr 1370	Tyr	Trp	His	Ser	Asn 1375	Trp	Thr	Pro	Thr	Thr 1380	Val	Asn	Asp
30	Leu	Trp 1385	Ile	Ala	Phe	Glu	Leu 1390	Gln	Lys	Pro	Thr	Lys 1395	Leu	Asp	Ala
35	Leu	Arg 1400	Tyr	Leu	Pro	Arg	Pro 1405	Ala	Gly	Ser	Lys	Asn 1410	Gly	Ser	Val
	Thr	Glu 1415	Tyr	Lys	Val	Gln	Val 1420		Asp	-	-	Thr 1425	Asn	Trp	Thr
40	Asp	Ala 1430	Gly	Ser	Gly	Thr	Trp 1435	Thr	Thr	Asp	Tyr	Gly 1440	Trp	Lys	Leu
45	Ala	Glu 1445	Phe	Asn	Gln	Pro	Val 1450	Thr	Thr	Lys	His	Val 1455	Arg	Leu	Lys
50	Ala	Val 1460	His	Thr	Tyr	Ala	Asp 1465	Ser	Gly	Asn	Asp	Lys 1470	Phe	Met	Ser
	Ala	Ser 1475	Glu	Ile	Arg	Leu	Arg 1480	Lys	Ala	Val	Asp	Thr 1485	Thr	Asp	Ile
55	Ser	Gly 1490	Ala	Thr	Val	Thr	Val 1495	Pro	Ala	Lys	Leu	Thr 1500	Val	Asp	Arg

	Val	Asp 1505	Ala	Asp	His	Pro	Ala 1510	Thr	Phe	Ala	Thr	Lys 1515	Asp	Val	Thr
5	Val	Thr 1520	Leu	Gly	Asp	Ala	Thr 1525	Leu	Arg	Tyr	Gly	Val 1530	Asp	Tyr	Leu
10	Leu	Asp 1535	Tyr	Ala	Gly	Asn	Thr 1540	Ala	Val	Gly	Lys	Ala 1545	Thr	Val	Thr
	Val	Arg 1550	Gly	Ile	Asp	Lys	Tyr 1555	Ser	Gly	Thr	Val	Ala 1560	Lys	Thr	Phe
15	Thr	Ile 1565	Glu	Leu	Lys	Asn	Ala 1570	Pro	Ala	Pro	Glu	Pro 1575	Thr	Leu	Thr
20	Ser	Val 1580	Ser	Val	Lys	Thr	Lys 1585	Pro	Ser	Lys	Leu	Thr 1590	Tyr	Val	Val
25	Gly	Asp 1595	Ala	Phe	Asp	Pro	Ala 1600	Gly	Leu	Val	Leu	Gln 1605	His	Asp	Arg
	Gln	Ala 1610	Asp	Arg	Pro	Pro	Gln 1615	Pro	Leu	Val	Gly	Glu 1620	Gln	Ala	Asp
30	Glu	Arg 1625	Gly	Leu	Thr	Cys	Gly 1630	Thr	Arg	Cys	Asp	Arg 1635	Val	Glu	Gln
35	Leu	Arg 1640	Lys	His	Glu	Asn	Arg 1645	Glu	Ala	His	Arg	Thr 1650	Gly	Leu	Asp
	His	Leu 1655										Val 1665		Glu	Gln
40	Ala	Thr 1670	Phe	Lys	Val	His	Val 1675	His	Ala	Asp	Gln	Gly 1680	Asp	Gly	Arg
45	His	Asp 1685	Asp	Ala	Asp	Glu	Arg 1690	Asp	Ile	Asp	Pro	His 1695	Val	Pro	Val
50	Asp	His 1700	Ala	Val	Gly	Glu	Leu 1705	Ala	Arg	Ala	Ala	Cys 1710	His	His	Val
	Ile	Gly 1715	Leu	Arg	Val	Asp	Thr 1720	His	Arg	Leu	Lys	Ala 1725	Ser	Gly	Phe
55	Gln	Ile 1730	Pro	Ala	Asp	Asp	Met 1735	Ala	Glu	Ile	Asp	Arg 1740	Ile	Thr	Gly

Phe His Arg Phe Glu Arg His Val Gly 1745 1750

5	<210> 4 <211> 1935 <212> PRT <213> Bifidob	acteriu	m bific	dum												
40	<400> 4															
10	Met 1	Ala	Val	Arg	Arg 5	Leu	Gly	Gly	Arg	Ile 10	Val	Ala	Phe	Ala	Ala 15	Thr
15	Val	Ala	Leu	Ser 20	Ile	Pro	Leu	Gly	Leu 25	Leu	Thr	Asn	Ser	Ala 30	Trp	Ala
20	Val	Glu	Asp 35	Ala	Thr	Arg	Ser	Asp 40	Ser	Thr	Thr	Gln	Met 45	Ser	Ser	Thr
25	Pro	Glu 50	Val	Val	Tyr	Ser	Ser 55	Ala	Val	Asp	Ser	Lys 60	Gln	Asn	Arg	Thr
	Ser 65	Asp	Phe	Asp	Ala	Asn 70	Trp	Lys	Phe	Met	Leu 75	Ser	Asp	Ser	Val	Gln 80
30	Ala	Gln	Asp	Pro	Ala 85	Phe	Asp	Asp	Ser	Ala 90	Trp	Gln	Gln	Val	Asp 95	Leu
35	Pro	His	Asp	Tyr 100	Ser	Ile	Thr	Gln	Lys 105	Tyr	Ser	Gln	Ser	Asn 110	Glu	Ala
40	Glu	Ser	Ala 115	Tyr	Leu	Pro	Gly	Gly 120	Thr	Gly	Trp	Tyr	Arg 125	Lys	Ser	Phe
40	Thr	Ile 130	Asp	Arg	Asp	Leu	Ala 135	Gly	Lys	Arg	Ile	Ala 140	Ile	Asn	Phe	Asp
45	Gly 145	Val	Tyr	Met	Asn	Ala 150	Thr	Val	Trp	Phe	Asn 155	Gly	Val	Lys	Leu	Gly 160
50	Thr	His	Pro	Tyr	Gly 165	Tyr	Ser	Pro	Phe	Ser 170	Phe	Asp	Leu	Thr	Gly 175	Asn
55	Ala	Lys	Phe	Gly 180	Gly	Glu	Asn	Thr	Ile 185	Val	Val	Lys	Val	Glu 190	Asn	Arg
55	Leu	Pro	Ser 195	Ser	Arg	Trp	Tyr	Ser 200	Gly	Ser	Gly	Ile	Tyr 205	Arg	Asp	Val

	Thr	Leu 210	Thr	Val	Thr	Asp	Gly 215	Val	His	Val	Gly	Asn 220	Asn	Gly	Val	Ala
5	Ile 225	Lys	Thr	Pro	Ser	Leu 230	Ala	Thr	Gln	Asn	Gly 235	Gly	Asn	Val	Thr	Met 240
10	Asn	Leu	Thr	Thr	Lys 245	Val	Ala	Asn	Asp	Thr 250	Lys	Ala	Ala	Ala	Asn 255	Ile
	Thr	Leu	Lys	Gln 260	Thr	Val	Phe	Pro	Lys 265	Gly	Gly	Lys	Thr	Asp 270	Ala	Ala
15	Ile	Gly	Thr 275	Val	Thr	Thr	Ala	Ser 280	Lys	Ser	Ile	Ala	Ala 285	Gly	Ala	Ser
20	Ala	Asp 290	Val	Thr	Ser	Thr	Ile 295	Thr	Ala	Ala	Ser	Pro 300	Lys	Leu	Trp	Ser
25	Ile 305	Lys	Asn	Pro	Asn	Leu 310	Tyr	Thr	Val	Arg	Thr 315	Glu	Val	Leu	Asn	Gly 320
	Gly	Lys	Val	Leu	Asp 325	Thr	Tyr	Asp	Thr	Glu 330	Tyr	Gly	Phe	Arg	Trp 335	Thr
30	Gly	Phe	Asp	Ala 340	Thr	Ser	Gly	Phe	Ser 345	Leu	Asn	Gly	Glu	Lys 350	Val	Lys
35	Leu	Lys	Gly 355	Val	Ser	Met	His	His 360	Asp	Gln	Gly	Ser	Leu 365	Gly	Ala	Val
40	Ala	Asn 370	Arg	Arg	Ala	Ile	Glu 375	Arg	Gln	Val	Glu	Ile 380	Leu	Gln	Lys	Met
	Gly 385	Val	Asn	Ser	Ile	Arg 390	Thr	Thr	His	Asn	Pro 395	Ala	Ala	Lys	Ala	Leu 400
45	Ile	Asp	Val	Cys	Asn 405	Glu	Lys	Gly	Val	Leu 410	Val	Val	Glu	Glu	Val 415	Phe
50	Asp	Met	Trp	Asn 420	Arg	Ser	Lys	Asn	Gly 425	Asn	Thr	Glu	Asp	Tyr 430	Gly	Lys
55	Trp	Phe	Gly 435	Gln	Ala	Ile	Ala	Gly 440	Asp	Asn	Ala	Val	Leu 445	Gly	Gly	Asp
55	Lys	Asp	Glu	Thr	Trp	Ala	Lys	Phe	Asp	Leu	Thr	Ser	Thr	Ile	Asn	Arg

5	Asp 465	Arg	Asn	Ala	Pro	Ser 470	Val	Ile	Met	Trp	Ser 475	Leu	Gly	Asn	Glu	Met 480
10	Met	Glu	Gly	Ile	Ser 485	Gly	Ser	Val	Ser	Gly 490	Phe	Pro	Ala	Thr	Ser 495	Ala
	Lys	Leu	Val	Ala 500	Trp	Thr	Lys	Ala	Ala 505	Asp	Ser	Thr	Arg	Pro 510	Met	Thr
15	Tyr	Gly	Asp 515	Asn	Lys	Ile	Lys	Ala 520	Asn	Trp	Asn	Glu	Ser 525	Asn	Thr	Met
20	Gly	Asp 530	Asn	Leu	Thr	Ala	Asn 535	Gly	Gly	Val	Val	Gly 540	Thr	Asn	Tyr	Ser
	Asp 545	Gly	Ala	Asn	Tyr	Asp 550	Lys	Ile	Arg	Thr	Thr 555	His	Pro	Ser	Trp	Ala 560
25	Ile	Tyr	Gly	Ser	Glu 565	Thr	Ala	Ser	Ala	Ile 570	Asn	Ser	Arg	Gly	Ile 575	Tyr
30	Asn	Arg	Thr	Thr 580	Gly	Gly	Ala	Gln	Ser 585	Ser	Asp	Lys	Gln	Leu 590	Thr	Ser
35	Tyr	Asp	Asn 595	Ser	Ala	Val	Gly	Trp 600	Gly	Ala	Val	Ala	Ser 605	Ser	Ala	Trp
	Tyr	Asp 610	Val	Val	Gln	Arg	Asp 615	Phe	Val	Ala	Gly	Thr 620	Tyr	Val	Trp	Thr
40	Gly 625	Phe	Asp	Tyr	Leu	Gly 630	Glu	Pro	Thr	Pro	Trp 635	Asn	Gly	Thr	Gly	Ser 640
45	Gly	Ala	Val	Gly	Ser 645	Trp	Pro	Ser	Pro	Lys 650	Asn	Ser	Tyr	Phe	Gly 655	Ile
50	Val	Asp	Thr	Ala 660	Gly	Phe	Pro	Lys	Asp 665	Thr	Tyr	Tyr	Phe	Tyr 670	Gln	Ser
	Gln	Trp	Asn 675	Asp	Asp	Val	His	Thr 680	Leu	His	Ile	Leu	Pro 685	Ala	Trp	Asn
55	Glu	Asn 690	Val	Val	Ala	Lys	Gly 695	Ser	Gly	Asn	Asn	Val 700	Pro	Val	Val	Val

	Tyr 705	Thr	Asp	Ala	Ala	Lys 710	Val	Lys	Leu	Tyr	Phe 715	Thr	Pro	Lys	Gly	Ser 720
5	Thr	Glu	Lys	Arg	Leu 725	Ile	Gly	Glu	Lys	Ser 730	Phe	Thr	Lys	Lys	Thr 735	Thr
10	Ala	Ala	Gly	Tyr 740	Thr	Tyr	Gln	Val	Tyr 745	Glu	Gly	Ala	Asp	Lys 750	Asp	Ser
	Thr	Ala	His 755	Lys	Asn	Met	Tyr	Leu 760	Thr	Trp	Asn	Val	Pro 765	Trp	Ala	Glu
15	Gly	Thr 770	Ile	Ser	Ala	Glu	Ala 775	Tyr	Asp	Glu	Asn	Asn 780	Arg	Leu	Ile	Pro
20	Glu 785	Gly	Ser	Thr	Glu	Gly 790	Asn	Ala	Ser	Val	Thr 795	Thr	Thr	Gly	Lys	Ala 800
25	Ala	Lys	Leu	Lys	Ala 805	Asp	Ala	Asp	Arg	Lys 810	Thr	Ile	Thr	Ala	Asp 815	Gly
	Lys	Asp	Leu	Ser 820	Tyr	Ile	Glu	Val	Asp 825	Val	Thr	Asp	Ala	As n 830	Gly	His
30	Ile	Val	Pro 835	Asp	Ala	Ala	Asn	Arg 840	Val	Thr	Phe	Asp	Val 845	Lys	Gly	Ala
35	Gly	Lys 850	Leu	Val	Gly	Val	Asp 855	Asn	Gly	Ser	Ser	Pro 860	Asp	His	Asp	Ser
40	Tyr 865	Gln	Ala	Asp	Asn	A rg 870	Lys	Ala	Phe	Ser	Gly 875	Lys	Val	Leu	Ala	Ile 880
40	Val	Gln	Ser	Thr	Lys 885	Glu	Ala	Gly	Glu	Ile 890	Thr	Val	Thr	Ala	Lys 895	Ala
45	Asp	Gly	Leu	Gln 900	Ser	Ser	Thr	Val	Lys 905	Ile	Ala	Thr	Thr	Ala 910	Val	Pro
50	Gly	Thr	Ser 915	Thr	Glu	Lys	Thr	Val 920	Arg	Ser	Phe	Tyr	Tyr 925	Ser	Arg	Asn
	Tyr	Tyr 930	Val	Lys	Thr	Gly	Asn 935	Lys	Pro	Ile	Leu	Pro 940	Ser	Asp	Val	Glu
55	Val 945	Arg	Tyr	Ser	Asp	Gly 950	Thr	Ser	Asp	Arg	Gln 955	Asn	Val	Thr	Trp	Asp 960

	Ala	Val	Ser		Asp 965	Gln	Ile A	la Ly		la G1 70	Ly S€	er Phe	e Sei	val 975	
5	Gly	Thr		Ala 980	Gly	Gln	Lys I		er Va 85	al Aı	rg Va	al Thi	990		Asp
10	Glu	Ile	Gly 995	Ala	Leu	Leu		yr : 000	Ser i	Ala S	Ser 1		co 7 005	/al G	Gly Thr
	Pro	Ala 1010		Leu	Pro	Gly	Ser 1015	_	Pro	Ala	Val	Leu 1020	Pro	Asp	Gly
15	Thr	Val 1025		Ser	Ala	Asn	Phe 1030		Val	Asp	Trp	Thr 1035	Lys	Pro	Ala
20	Asp	Thr 1040		Tyr	Asn	Thr	Ala 1045	_	Thr	Val	Lys	Val 1050	Pro	Gly	Thr
25	Ala	Thr 1055		Phe	Gly	Lys	Glu 1060		Lys	Val	Thr	Ala 1065	Thr	Ile	Arg
	Val	Gln 1070		Ser	Gln	Val	Thr 1075		Gly	Ser	Ser	Val 1080	Ser	Gly	Asn
30	Ala	Leu 1085	_	Leu	Thr	Gln	Asn 1090		Pro	Ala	Asp	Lys 1095	Gln	Ser	Asp
35	Thr	Leu 1100	_	Ala	Ile	Lys	Asp 1105	_	Ser	Thr	Thr	Val 1110	Asp	Ala	Asn
	Thr	Gly 1115	_	Gly	Ala	Asn	Pro 1120		Ala	Trp	Thr	Asn 1125	Trp	Ala	Tyr
40	Ser	Lys 1130		Gly	His	Asn	Thr 1135		Glu	Ile	Thr	Phe 1140	Glu	Tyr	Ala
45	Thr	Glu 1145		Gln	Leu	Gly	Gln 1150		Val	Met	Tyr	Phe 1155	Phe	Arg	Asp
50	Ser	Asn 1160		Val	Arg	Phe	Pro 1165	_	Ala	Gly	Lys	Thr 1170	Lys	Ile	Gln
	Ile	Ser 1175		Asp	Gly	Lys	Asn 1180	_	Thr	Asp	Leu	Ala 1185	Ala	Thr	Glu
55	Thr	Ile 1190		Ala	Gln	Glu	Ser 1195		Asp	Arg	Val	Lys 1200	Pro	Tyr	Thr

	Tyr	Asp 1205		Ala	Pro	Val	Gly 1210	Ala	Thr	Phe	Val	Lys 1215	Val	Thr	Val
5	Thr	Asn 1220	Ala	Asp	Thr	Thr	Thr 1225	Pro	Ser	Gly	Val	Val 1230	Cys	Ala	Gly
10	Leu	Thr 1235	Glu	Ile	Glu	Leu	Lys 1240	Thr	Ala	Thr	Ser	Lys 1245	Phe	Val	Thr
	Asn	Thr 1250	Ser	Ala	Ala	Leu	Ser 1255	Ser	Leu	Thr	Val	Asn 1260	Gly	Thr	Lys
15	Val	Ser 1265	Asp	Ser	Val	Leu	Ala 1270	Ala	Gly	Ser	Tyr	Asn 1275	Thr	Pro	Ala
20	Ile	Ile 1280	Ala	Asp	Val	Lys	Ala 1285	Glu	Gly	Glu	Gly	Asn 1290	Ala	Ser	Val
25	Thr	Val 1295	Leu	Pro	Ala	His	Asp 1300	Asn	Val	Ile	Arg	Val 1305	Ile	Thr	Glu
	Ser	Glu 1310	Asp	His	Val	Thr	Arg 1315	Lys	Thr	Phe	Thr	Ile 1320	Asn	Leu	Gly
30	Thr	Glu 1325	Gln	Glu	Phe	Pro	Ala 1330	Asp	Ser	Asp	Glu	Arg 1335	Asp	Tyr	Pro
35	Ala	Ala 1340	Asp	Met	Thr	Val	Thr 1345	Ala	Gly	Ser	Glu	Gln 1350	Thr	Ser	Gly
40	Thr	Ala 1355	Thr	Glu	Gly	Pro	Lys 1360	Lys	Phe	Ala	Val	Asp 1365	Gly	Asn	Thr
	Ser	Thr 1370	Tyr	Trp	His	Ser	Asn 1375	Trp	Thr	Pro	Thr	Thr 1380	Val	Asn	Asp
45	Leu	Trp 1385	Ile	Ala	Phe	Glu	Leu 1390	Gln	Lys	Pro	Thr	Lys 1395	Leu	Asp	Ala
50	Leu	Arg 1400	Tyr	Leu	Pro	Arg	Pro 1405	Ala	Gly	Ser	Lys	Asn 1410	Gly	Ser	Val
55	Thr	Glu 1415	Tyr	Lys	Val	Gln	Val 1420	Ser	Asp	Asp	Gly	Thr 1425	Asn	Trp	Thr
55	Asp	Ala	Gly	Ser	Gly	Thr	Trp	Thr	Thr	Asp	Tyr	Gly	Trp	Lys	Leu

		1430					1433					1440			
5	Ala	Glu 1445		Asn	Gln	Pro	Val 1450	Thr	Thr	Lys	His	Val 1455	Arg	Leu	Lys
10	Ala	Val 1460	His	Thr	Tyr	Ala	Asp 1465	Ser	Gly	Asn	Asp	Lys 1470	Phe	Met	Ser
	Ala	Ser 1475	Glu	Ile	Arg	Leu	Arg 1480	Lys	Ala	Val	Asp	Thr 1485	Thr	Asp	Ile
15	Ser	Gly 1490	Ala	Thr	Val	Thr	Val 1495	Pro	Ala	Lys	Leu	Thr 1500	Val	Asp	Arg
20	Val	Asp 1505	Ala	Asp	His	Pro	Ala 1510	Thr	Phe	Ala	Thr	Lys 1515	Asp	Val	Thr
	Val	Thr 1520	Leu	Gly	Asp	Ala	Thr 1525	Leu	Arg	Tyr	Gly	Val 1530	Asp	Tyr	Leu
25	Leu	Asp 1535	Tyr	Ala	Gly	Asn	Thr 1540	Ala	Val	Gly	Lys	Ala 1545	Thr	Val	Thr
30	Val	Arg 1550	Gly	Ile	Asp	Lys	Tyr 1555	Ser	Gly	Thr	Val	Ala 1560	Lys	Thr	Phe
35	Thr	Ile 1565	Glu	Leu	Lys	Asn	Ala 1570	Pro	Ala	Pro	Glu	Pro 1575	Thr	Leu	Thr
	Ser	Val 1580	Ser	Val	Lys	Thr	Lys 1585	Pro	Ser	Lys	Leu	Thr 1590	Tyr	Val	Val
40	Gly	Asp 1595	Ala	Phe	Asp	Pro	Ala 1600	Gly	Leu	Val	Leu	Gln 1605	Leu	Asn	Tyr
45	Asp	Asp 1610	Asp	Ser	Thr	Gly	Thr 1615	Val	Thr	Trp	Asn	Thr 1620	Gln	Thr	Ala
50	Gly	Asp 1625	Phe	Thr	Phe	Lys	Pro 1630	Ala	Leu	Asp	Ala	Lys 1635	Leu	Lys	Val
	Thr	Asp 1640	Lys	Thr	Val	Thr	Val 1645	Thr	Tyr	Gln	Gly	Lys 1650	Ser	Ala	Val
55	Ile	Asp 1655	Ile	Thr	Val	Ser	Gln 1660	Pro	Ala	Pro	Thr	Val 1665	Ser	Lys	Thr

	Asp	Leu 1670		Lys	Ala	Ile	Lys 1675	Ala	Ile	Glu	Ala	Lys 1680	Asn	Pro	Asp
5	Ser	Ser 1685	Lys	Tyr	Thr	Ala	Asp 1690	Ser	Trp	Lys	Thr	Phe 1695	Ala	Asp	Ala
10	Met	Ala 1700	His	Ala	Lys	Ala	Val 1705	Ile	Ala	Asp	Asp	Ser 1710	Ala	Thr	Gln
	Gln	Asp 1715		Asp	Lys	Ala	Leu 1720	Lys	Ala	Leu	Thr	Asp 1725	Ala	Tyr	Ala
15	Gly	Leu 1730	Thr	Glu	Lys	Thr	Pro 1735	Glu	Pro	Ala	Pro	Val 1740	Ser	Lys	Ser
20	Glu	Leu 1745	Asp	Lys	Lys	Ile	Lys 1750	Ala	Ile	Glu	Ala	Glu 1755	Lys	Leu	Asp
25	Gly	Ser 1760	Lys	Tyr	Thr	Ala	Glu 1765	Ser	Trp	Lys	Ala	Phe 1770	Glu	Thr	Ala
	Leu	Ala 1775		Ala	Lys	Ala	Val 1780	Ile	Ala	Ser	Asp	Ser 1785	Ala	Thr	Gln
30	Gln	Asp 1790	Val	Asp	Ala	Ala	Leu 1795	Gly	Ala	Leu	Thr	Ser 1800	Ala	Arg	Asp
35	Gly	Leu 1805	Thr	Glu	Lys	Gly	Glu 1810	Val	Lys	Pro	Asp	Pro 1815	Lys	Pro	Glu
		_			_	_				_	_	Ala 1830		Lys	Lys
40	Val	Glu 1835	Ala	Glu	Lys	Leu	Asp 1840	Gly	Ser	Lys	Tyr	Thr 1845	Ala	Asp	Ser
45	Trp	Lys 1850	Ala	Phe	Glu	Thr	Ala 1855	Leu	Ala	His	Ala	Lys 1860	Ala	Val	Ile
50	Gly	Asn 1865	Ala	Asn	Ser	Thr	Gln 1870	Phe	Asp	Ile	Asp	Asn 1875	Ala	Leu	Ser
	Met	Leu 1880	Asn	Asp	Ala	Arg	Ala 1885	Ala	Leu	Lys	Glu	Lys 1890	Pro	Gly	Arg
55	Ile	Ile 1895	Ala	Ile	Ile	Asp	Gly 1900	Gly	Ala	Leu	Ser	Lys 1905	Thr	Gly	Ala

Ser Val Ala Ile Ile Ala Ser Val Ala Ala Ala Met Lys Ala Val 1910 1915 1920

Gly Ala Gly Val Met Ala Leu Arg Pro Pro Lys Trp 1925 1930 1935

Claims

- 1. A process for producing a fermented milk product comprising the steps of
 - 1) adding a starter culture comprising at least one lactic acid bacteria strain to a milk base,
 - 2) fermenting the milk for a period of time until a target pH is reached.
 - 3) wherein the starter culture comprises at least one lactose-deficient strain, which is capable of metabolizing a non-lactose carbohydrate, and
 - 4) adding a low pH stable lactase to the process either at the start, during or at the end of the fermentation step, wherein the low pH stable lactase retains its activity at a pH of 5.0 and a temperature of 37 °C at a level of at least 5 % as compared to its activity at the optimum pH of the lactase.
- 2. A process according to claim 1, wherein the low pH stable lactase retains its activity at a temperature of 10 °C and a pH of 6.0 at a level of at least 10 % as compared to its activity at the optimum temperature of the lactase.
- **3.** A process according to claim 1 or 2, the wherein lactose-deficient strain is capable of metabolizing a non-lactose carbohydrate selected from the group consisting of sucrose, galactose and glucose.
- **4.** A process according to any of the preceding claims, wherein non-lactose carbohydrate is added to the milk base at the start of the fermentation step.
- 5. A process according to claim 4, wherein the non-lactose carbohydrate is added to the milk base in an amount measured so as to become depleted and hence result in stopping the growth of lactic acid bacteria and in stopping the fermentation.
 - **6.** A process according to any of the preceding claims, wherein the low pH stable lactase is added to the milk base at the start of the fermentation step.
 - 7. A process according to claim 6, wherein no non-lactose carbohydrate is added to the fermentation step, and wherein at least one lactose-deficient lactic acid strain of the starter culture is capable of metabolizing a carbohydrate selected from the group consisting of glucose and galactose.
 - **8.** A process according to any of claims 1-5, wherein the low pH stable lactase is added to the milk base at the end of the fermentation step.
- **9.** A process according to any of claims 1-8, wherein the lactose-deficient strain is selected from the group consisting of lactose-deficient *Streptococcus thermophilus* and lactose-deficient *Lactobacillus delbrueckii* subsp. *bulgaricus*.
 - **10.** A process according to claim 9, wherein the lactose-deficient strain is selected from the group consisting of:
 - (a) a Streptococcus thermophilus strain, which strain is:
 - (i) the strain deposited with DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7B, D-38124 Braunschweig, on 2014-06-12 under the accession no. DSM 28952;
 - (ii) or a strain derived from DSM 28952, wherein the derived strain is further characterized as having the ability to generate white colonies on a medium containing lactose and X-Gal;
 - (b) a Streptococcus thermophilus strain, which strain is:
 - (i) the strain deposited with DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH,

61

5

10

15

20

25

35

40

50

Inhoffenstr. 7B, D-38124 Braunschweig, on 2014-06-12 under the accession no. DSM 28953;

- (ii) or a strain derived from DSM 28953, wherein the derived strain is further characterized as having the ability to generate white colonies on a medium containing lactose and X-Gal;
- (c) a Lactobacillus delbrueckii ssp. bulgaricus strain, which strain is:
 - (i) the strain deposited with DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7B, D-38124 Braunschweig, on 2014-06-12 under the accession no. DSM 28910;
 - (ii) or a strain derived from DSM 28910, wherein the derived strain is further characterized as having the ability to generate white colonies on a medium containing lactose and X-Gal.
 - **11.** A process according to claim 9 or 10, wherein the starter culture contains both at least one lactose-deficient *Streptococcus thermophilus* and at least one lactose-deficient *Lactobacillus delbrueckii* subsp. *bulgaricus*.
- 12. A process according to any of claims 9-11, wherein the starter culture contains both at least one *Streptococcus* thermophilus and at least one *Lactobacillus delbrueckii* subsp. bulgaricus, and wherein all *Streptococcus thermophilus* and all *Lactobacillus delbrueckii* subsp. bulgaricus strains are lactose-deficient.
 - 13. Use in a process for producing a fermented milk product comprising the steps of
 - 1) adding a starter culture comprising at least one lactic acid bacteria strain to a milk base,
 - 2) fermenting the milk for a period of time until a target pH is reached,
 - 3) the starter culture comprising at least one lactose-deficient strain, which is capable of metabolizing a non-lactose carbohydrate, and
 - 4) a low pH stable lactase added to the process either at the start, during or at the end of the fermentation step, wherein the low pH stable lactase retains its activity at a pH of 5.0 and a temperature of 37 °C at a level of at least 5 % as compared to its activity at the optimum pH of the lactase.
- 14. Use according to claim 13 to increase the texture of the fermented milk product as compared to using lactose-deficient lactic acid bacteria and no lactase and as compared to using a low pH stable lactase and lactose-positive lactic acid bacteria.

35 Patentansprüche

5

10

20

25

40

45

- 1. Prozess zum Produzieren eines fermentierten Milchprodukts, umfassend die folgenden Schritte:
 - 1) Hinzufügen einer Starterkultur, die zumindest einen Milchsäurebakterienstamm umfasst, zu einer Milchbasis,
 - 2) Fermentierenlassen der Milch für einen Zeitraum, bis ein Ziel-pH-Wert erreicht ist,
 - 3) wobei die Starterkultur zumindest einen laktosedefizienten Stamm umfasst, der in der Lage ist, ein Nicht-Laktose-Kohlenhydrat zu metabolisieren, und
 - 4) Hinzufügen einer stabilen Laktase mit niedrigem pH-Wert zu dem Prozess, entweder zu Beginn, während oder gegen Ende des Fermentierungsschrittes, wobei die stabile Laktase mit niedrigem pH-Wert ihre Aktivität verglichen mit ihrer Aktivität bei dem optimalen pH-Wert der Laktase bei einem pH-Wert von 5,0 und einer Temperatur von 37 °C auf einem Niveau von zumindest 5 % hält.
- 2. Prozess nach Anspruch 1, wobei die stabile Laktase mit niedrigem pH-Wert ihre Aktivität verglichen mit ihrer Aktivität bei der optimalen Temperatur der Laktase bei einer Temperatur von 10 °C und einem pH-Wert von 6,0 auf einem Niveau von zumindest 10 % hält.
- 3. Prozess nach Anspruch 1 oder 2, wobei der laktosedefiziente Stamm in der Lage ist, ein Nicht-Laktose-Kohlenhydrat zu metabolisieren, das aus der Gruppe bestehend aus Saccharose, Galactose und Glucose ausgewählt ist.
- Prozess nach einem der vorangehenden Ansprüche, wobei das Nicht-Laktose-Kohlenhydrat zu Beginn des Fermentierungsschrittes zu der Milchbasis hinzugefügt wird.
 - 5. Prozess nach Anspruch 4, wobei das Nicht-Laktose-Kohlenhydrat in einer Menge, die abgemessen wird, um gesättigt

zu werden und somit zu einem Anhalten des Wachstums der Milchsäurebakterien und einem Anhalten der Fermentierung zu führen, hinzugefügt wird.

6. Prozess nach einem der vorangehenden Ansprüche, wobei die stabile Laktase mit niedrigem pH-Wert zu Beginn des Fermentierungsschrittes zu der Milchbasis hinzugefügt wird.

5

10

15

20

25

30

35

40

45

50

- 7. Prozess nach Anspruch 6, wobei kein Nicht-Laktose-Kohlenhydrat zu dem Fermentierungsschritt hinzugefügt wird und wobei zumindest ein laktosedefizienter Milchsäurestamm der Starterkultur in der Lage ist, ein Kohlenhydrat zu metabolisieren, das aus der Gruppe bestehend aus Glucose und Galactose ausgewählt ist.
- **8.** Prozess nach einem der Ansprüche 1-5, wobei die stabile Laktase mit niedrigem pH-Wert gegen Ende des Fermentierungsschrittes zu der Milchbasis hinzugefügt wird.
- **9.** Prozess nach einem der Ansprüche 1-8, wobei der laktosedefiziente Stamm aus der Gruppe bestehend aus laktosedefizientem *Streptococcus thermophilus* und laktosedefizientem *Lactobacillus delbrueckii subsp. bulgaricus* ausgewählt ist.
- **10.** Prozess nach Anspruch 9, wobei der laktosedefiziente Stamm aus der Gruppe ausgewählt ist, die aus Folgendem besteht:
 - (a) einem Streptococcus-thermophilus-Stamm, wobei es sich bei dem Stamm um Folgendes handelt:
 - (i) den Stamm, der am 12.06.2014 bei der DSMZ-Deutschen Sammlung von Mikroorganismen und Zell-kulturen GmbH, Inhoffenstr. 7B, D-38124 Braunschweig, mit der Hinterlegungsnr. DSM 28952 hinterlegt wurde:
 - (ii) oder einen Stamm, der von DSM 28952 abgeleitet wurde, wobei der abgeleitete Stamm ferner **dadurch gekennzeichnet ist, dass** er die Fähigkeit aufweist, weiße Kolonien auf einem Medium zu erzeugen, das Lactose und X-Gal enthält;
 - (b) einem Streptococcus-thermophilus-Stamm, wobei es sich bei dem Stamm um Folgendes handelt:
 - (i) den Stamm, der am 12.06.2014 bei der DSMZ-Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7B, D-38124 Braunschweig, mit der Hinterlegungsnr. DSM 28953 hinterlegt wurde:
 - (ii) oder einen Stamm, der von DSM 28953 abgeleitet wurde, wobei der abgeleitete Stamm ferner **dadurch gekennzeichnet ist, dass** er die Fähigkeit aufweist, weiße Kolonien auf einem Medium zu erzeugen, das Lactose und X-Gal enthält;
 - (c) einen Lactobacillus-delbrueckii-ssp.-bulgaricus-Stamm, wobei es sich bei dem Stamm um Folgendes handelt:
 - (i) den Stamm, der am 12.06.2014 bei der DSMZ-Deutschen Sammlung von Mikroorganismen und Zell-kulturen GmbH, Inhoffenstr. 7B, D-38124 Braunschweig, mit der Hinterlegungsnr. DSM 28910 hinterlegt wurde:
 - (ii) oder einen Stamm, der von DSM 28910 abgeleitet wurde, wobei der abgeleitete Stamm ferner **dadurch gekennzeichnet ist, dass** er die Fähigkeit aufweist, weiße Kolonien auf einem Medium zu erzeugen, das Lactose und X-Gal enthält.
- **11.** Prozess nach Anspruch 9 oder 10, wobei die Starterkultur sowohl zumindest einen laktosedefizienten *Streptococcus thermophilus* als auch zumindest einen laktosedefizienten *Lactobacillus delbrueckii subsp. bulgaricus* enthält.
- 12. Prozess nach einem der Ansprüche 9-11, wobei die Starterkultur sowohl zumindest einen Streptococcus thermophilus und zumindest einen Lactobacillus delbrueckii subsp. bulgaricus enthält und wobei alle Streptococcus-thermophilus- und alle Lactobacillus-delbrueckii-subsp.-bulgaricus-Stämme laktosedefizient sind.
- **13.** Verwendung in einem Prozess zum Produzieren eines fermentierten Milchprodukts, umfassend die folgenden Schritte:

- 1) Hinzufügen einer Starterkultur, die zumindest einen Milchsäurebakterienstamm umfasst, zu einer Milchbasis,
- 2) Fermentierenlassen der Milch für einen Zeitraum, bis ein Ziel-pH-Wert
- 3) der Starterkultur erreicht ist, die zumindest einen laktosedefizienten Stamm umfasst, der in der Lage ist, ein Nicht-Laktose-Kohlenhydrat zu metabolisieren, und
- 4) wobei eine stabile Laktase mit niedrigem pH-Wert entweder zu Beginn, während oder gegen Ende des Fermentierungsschrittes zu dem Prozess hinzugefügt wird, wobei die stabile Laktase mit niedrigem pH-Wert ihre Aktivität verglichen mit ihrer Aktivität bei dem optimalen pH-Wert der Laktase bei einem pH-Wert von 5,0 und einer Temperatur von 37 °C auf einem Niveau von zumindest 5 % hält.
- 10 **14.** Verwendung nach Anspruch 13, um die Textur des fermentierten Milchprodukts verglichen mit Verwenden von laktosedefizienten Milchsäurebakterien und keiner Lactase und verglichen mit Verwendung einer stabilen Lactase mit niedrigem pH-Wert und laktosepositiven Milchsäurebakterien zu erhöhen.

15 Revendications

5

20

25

35

45

- 1. Procédé de production d'un produit laitier fermenté comprenant les étapes
 - 1) d'ajout d'une culture starter comprenant au moins une souche de bactéries lactiques à une base de lait,
 - 2) de fermentation du lait pendant un certain temps jusqu'à ce qu'un pH cible soit atteint,
 - 3) dans lequel la culture starter comprend au moins une souche déficiente en lactose, qui est capable de métaboliser un glucide sans lactose, et
 - 4) d'ajout d'une lactase stable à pH bas au procédé, au début, pendant ou à la fin de l'étape de fermentation, dans lequel la lactase stable à pH bas maintient son activité à un pH de 5,0 et une température de 37 °C à un niveau d'au moins 5 % par rapport à son activité au pH optimal de la lactase.
- 2. Procédé selon la revendication 1, dans lequel la lactase stable à pH bas maintient son activité à une température de 10 °C et un pH de 6,0 à un niveau d'au moins 10 % par rapport à son activité à la température optimale de la lactase.
- 30 3. Procédé selon la revendication 1 ou 2, dans lequel la souche déficiente en lactose est capable de métaboliser un glucide sans lactose sélectionné parmi le groupe constitué de saccharose, de galactose et de glucose.
 - **4.** Procédé selon l'une quelconque des revendications précédentes, dans lequel un glucide sans lactose est ajouté à la base de lait au début de l'étape de fermentation.
 - **5.** Procédé selon la revendication 4, dans lequel le glucide sans lactose est ajouté à la base de lait en une quantité mesurée de manière à s'épuiser et donc entraîner l'arrêt de la croissance des bactéries lactiques et l'arrêt de la fermentation.
- **6.** Procédé selon l'une quelconque des revendications précédentes, dans lequel la lactase stable à pH bas est ajoutée à la base de lait au début de l'étape de fermentation.
 - 7. Procédé selon la revendication 6, dans lequel aucun glucide sans lactose n'est ajouté à l'étape de fermentation, et dans lequel au moins une souche d'acide lactique déficiente en lactose de la culture starter est capable de métaboliser un glucide sélectionné parmi le groupe constitué de glucose et de galactose.
 - **8.** Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la lactase stable à pH bas est ajoutée à la base de lait à la fin de l'étape de fermentation.
- 9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel la souche déficiente en lactose est sélectionnée parmi le groupe constitué de Streptococcus thermophilus déficient en lactose et de Lactobacillus delbrueckii sousespèce bulgaricus déficient en lactose.
 - 10. Procédé selon la revendication 9, dans lequel la souche déficiente en lactose est sélectionnée parmi le groupe constitué :
 - (a) d'une souche de Streptococcus thermophilus, laquelle souche est :

- (i) la souche déposée auprès de DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7B, D-38124 Braunschweig, le 12-06-2014 sous le n° d'entrée DSM 28952 ;
- (ii) ou une souche dérivée de DSM 28952, dans lequel la souche dérivée est en outre **caractérisée** comme ayant la capacité à générer des colonies blanches sur un milieu contenant du lactose et X-Gal;
- (b) d'une souche de Streptococcus thermophilus, laquelle souche est :

5

10

15

25

30

35

45

50

55

- (i) la souche déposée auprès de DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7B, D-38124 Braunschweig, le 12-06-2014 sous le n° d'entrée DSM 28953 ;
- (ii) ou une souche dérivée de DSM 28953, dans lequel la souche dérivée est en outre **caractérisée** comme ayant la capacité à générer des colonies blanches sur un milieu contenant du lactose et X-Gal ;
- (c) d'une souche de Streptococcus delbrueckii sous-espèce bulgaricus, laquelle souche est :
 - (i) la souche déposée auprès de DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7B, D-38124 Braunschweig, le 12-06-2014 sous le n° d'entrée DSM 28910 ;
 - (ii) ou une souche dérivée de DSM 28910, dans lequel la souche dérivée est en outre **caractérisée** comme ayant la capacité à générer des colonies blanches sur un milieu contenant du lactose et X-Gal.
- 20 11. Procédé selon la revendication 9 ou 10, dans lequel la culture starter contient à la fois au moins un Streptococcus thermophilus déficient en lactose et au moins un Lactobacillus delbrueckii sous-espèce bulgaricus déficient en lactose.
 - 12. Procédé selon l'une quelconque des revendications 9 à 11, dans lequel la culture starter contient à la fois au moins un *Streptococcus thermophilus* et au moins un *Lactobacillus delbrueckii* sous-espèce *bulgaricus*, et dans lequel toutes les souches de *Streptococcus thermophilus* et toutes les souches de *Lactobacillus delbrueckii* sous-espèce *bulgaricus* sont déficientes en lactose.
 - 13. Utilisation dans un procédé de production d'un produit laitier fermenté comprenant les étapes
 - 1) d'ajout d'une culture starter comprenant au moins une souche de bactéries lactiques à une base de lait,
 - 2) de fermentation du lait pendant un certain temps jusqu'à ce qu'un pH cible soit atteint,
 - 3) la culture starter comprenant au moins une souche déficiente en lactose, qui est capable de métaboliser un glucide sans lactose, et
 - 4) une lactase stable à pH bas ajoutée au procédé, au début, pendant ou à la fin de l'étape de fermentation, dans laquelle la lactase stable à pH bas maintient son activité à un pH de 5,0 et une température de 37 °C à un niveau d'au moins 5 % par rapport à son activité au pH optimal de la lactase.
- 14. Utilisation selon la revendication 13 pour augmenter la texture du produit laitier fermenté par rapport à l'utilisation de bactéries lactiques déficientes en lactose et sans lactase et par rapport à l'utilisation d'une lactase stable à pH bas et de bactéries lactiques positives pour le lactose.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2009071539 A **[0002] [0023]**
- WO 2013160413 A [0003]

EP 2957180 A1 [0004]

Non-patent literature cited in the description

- NEEDLEMAN; WUNSCH. J. Mol. Biol., 1970, vol. 48, 443-453 [0035]
- RICE et al. EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics, 2000, vol. 16, 276-277 [0035]
- WERNER, W. et al. Z. analyt. Chem., 1970, vol. 252, 224 [0112] [0126] [0133]
- T K GOULAS. Appl Microbiol Biotechnol, 2007, vol. 76, 1365-1372 [0215]
- TGOULAS. Appl Microbiol Biotechnol, 2009, vol. 82, 1079-1088 [0215]
- TGOULAS. Appl Microbiol Biotechnol, 2009, vol. 84, 899-907 [0215]