

Feb. 23, 1960

S. KONGELBECK

2,925,966

FOLDING FIN OR WING FOR MISSILES

Filed Oct. 8, 1957

5 Sheets-Sheet 1

FIG. 1.

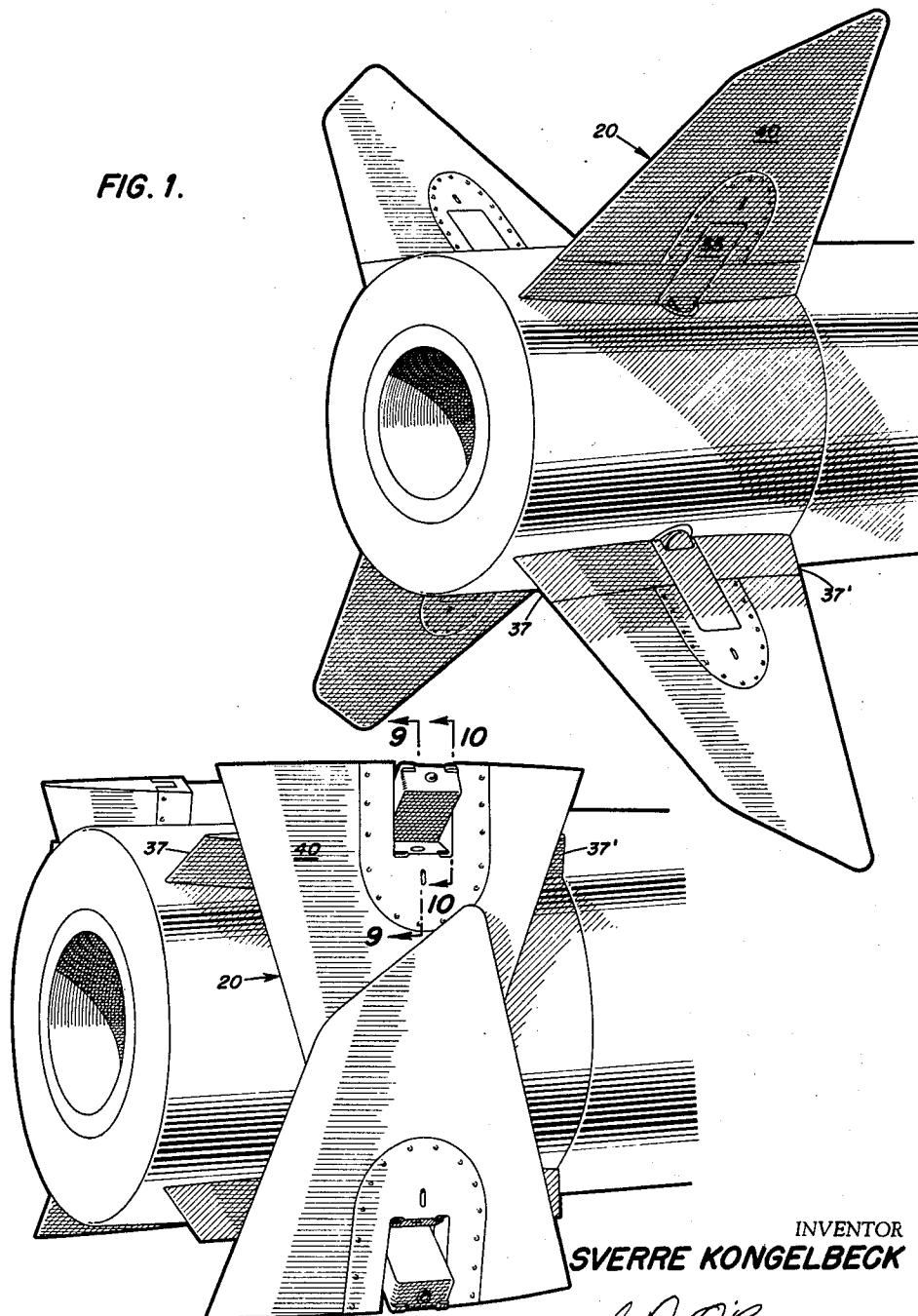


FIG. 2.

INVENTOR
SVERRE KONGELBECK

BY

J. D. O'Brien
Q. Baxter Arms
ATTORNEYS

Feb. 23, 1960

S. KONGELBECK

2,925,966

FOLDING FIN OR WING FOR MISSILES

Filed Oct. 8, 1957

5 Sheets-Sheet 2

FIG. 3.

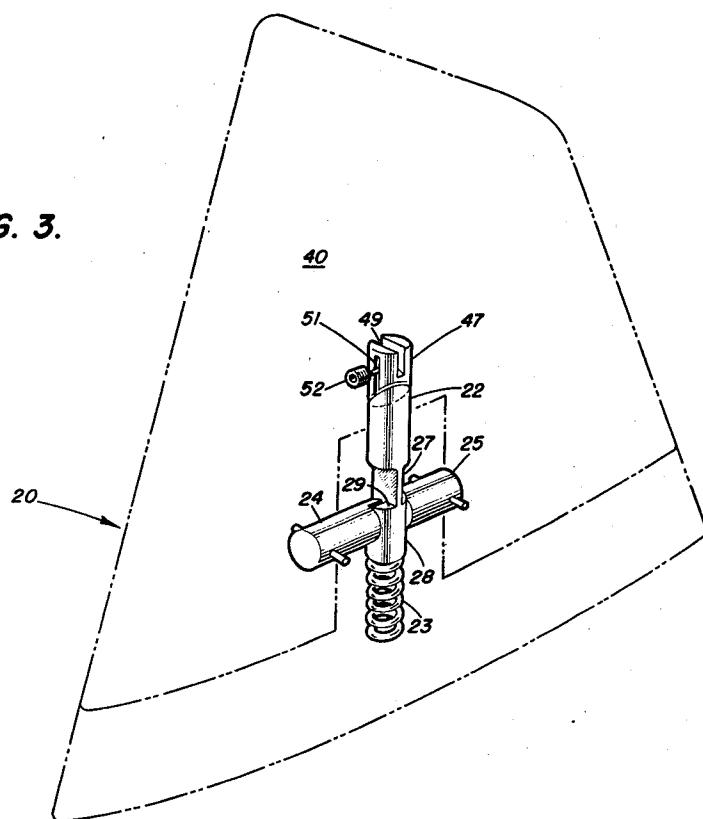
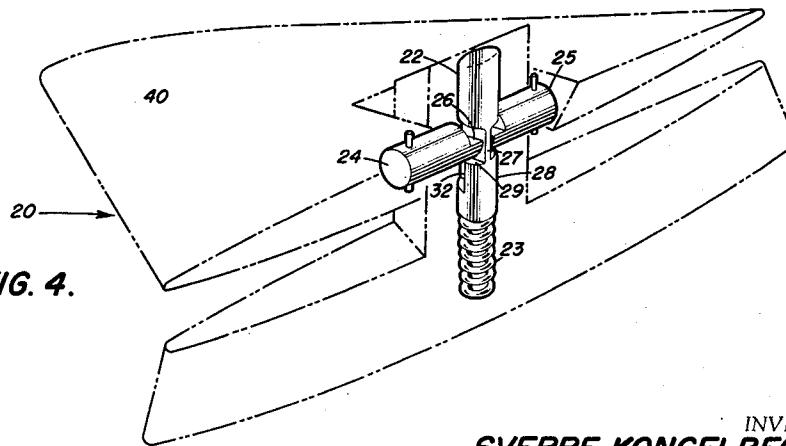



FIG. 4.

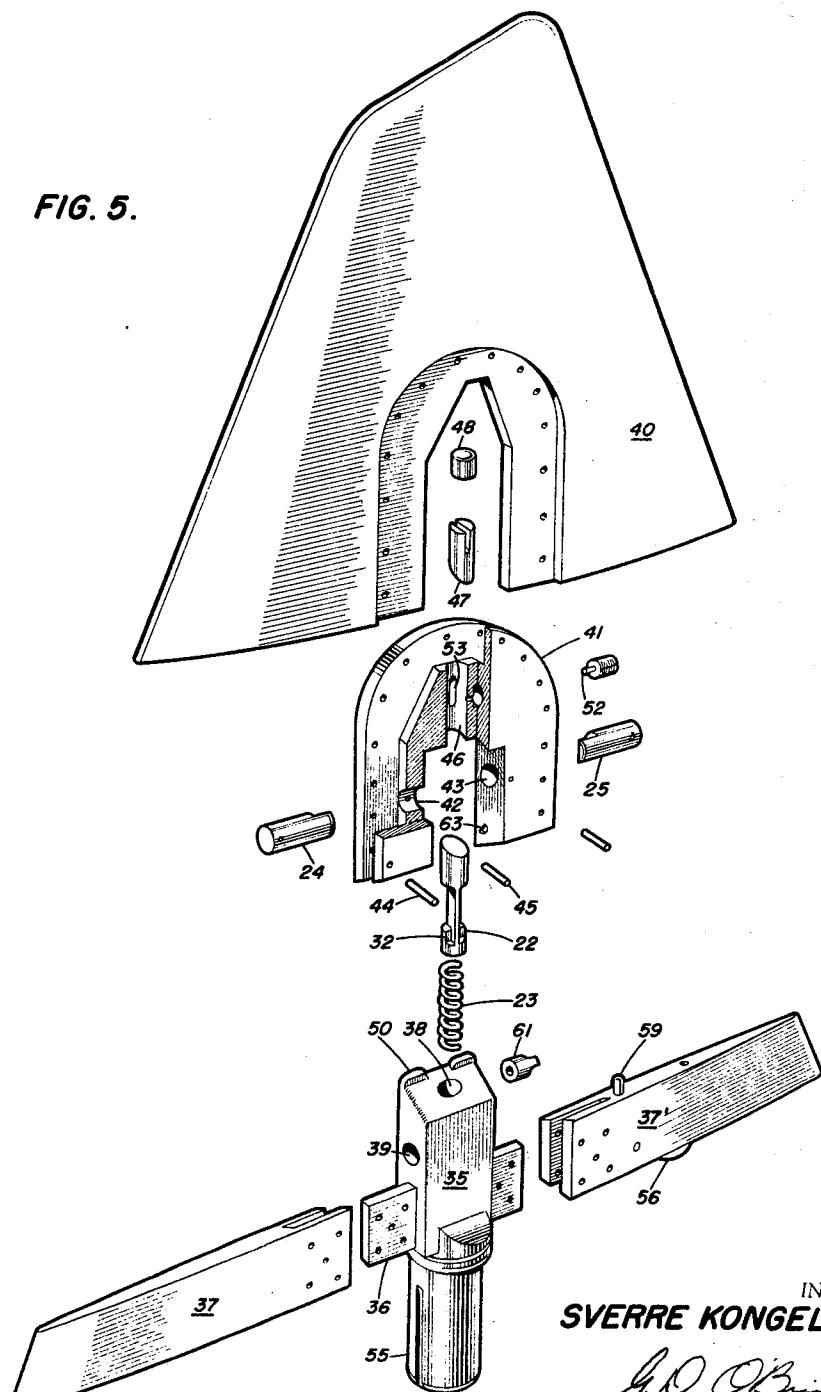
INVENTOR
SVERRE KONGELBECK

BY

A. D. O'Brien
P. Baxter Warren
ATTORNEYS

Feb. 23, 1960

S. KONGELBECK


2,925,966

FOLDING FIN OR WING FOR MISSILES

Filed Oct. 8, 1957

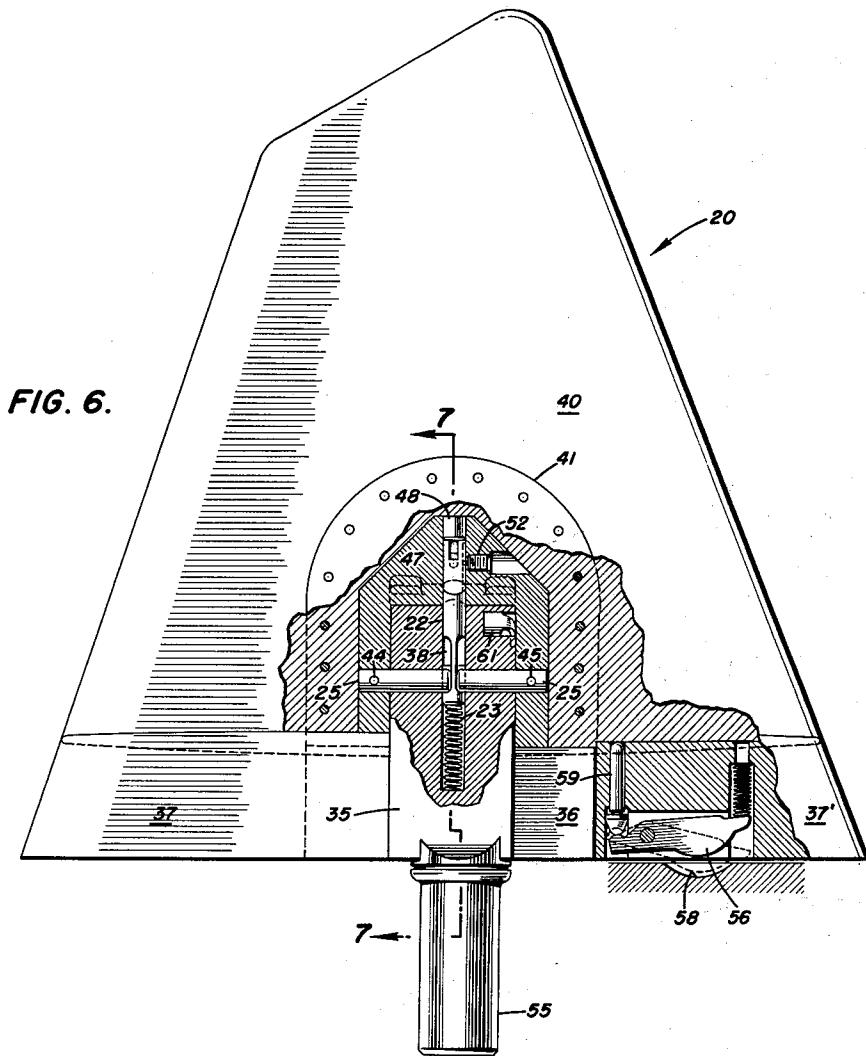
5 Sheets-Sheet 3

FIG. 5.

INVENTOR
SVERRE KONGELBECK

BY
A. D. O'Brien
R. Baxter Warren
ATTORNEYS

Feb. 23, 1960


S. KONGELBECK

2,925,966

FOLDING FIN OR WING FOR MISSILES

Filed Oct. 8, 1957

5 Sheets-Sheet 4

INVENTOR
SVERRE KONGELBECK

BY *H. D. O'Brien*
A. B. & D. Warner
ATTORNEYS

Feb. 23, 1960

S. KONGELBECK

2,925,966

FOLDING FIN OR WING FOR MISSILES

Filed Oct. 8, 1957

5 Sheets-Sheet 5

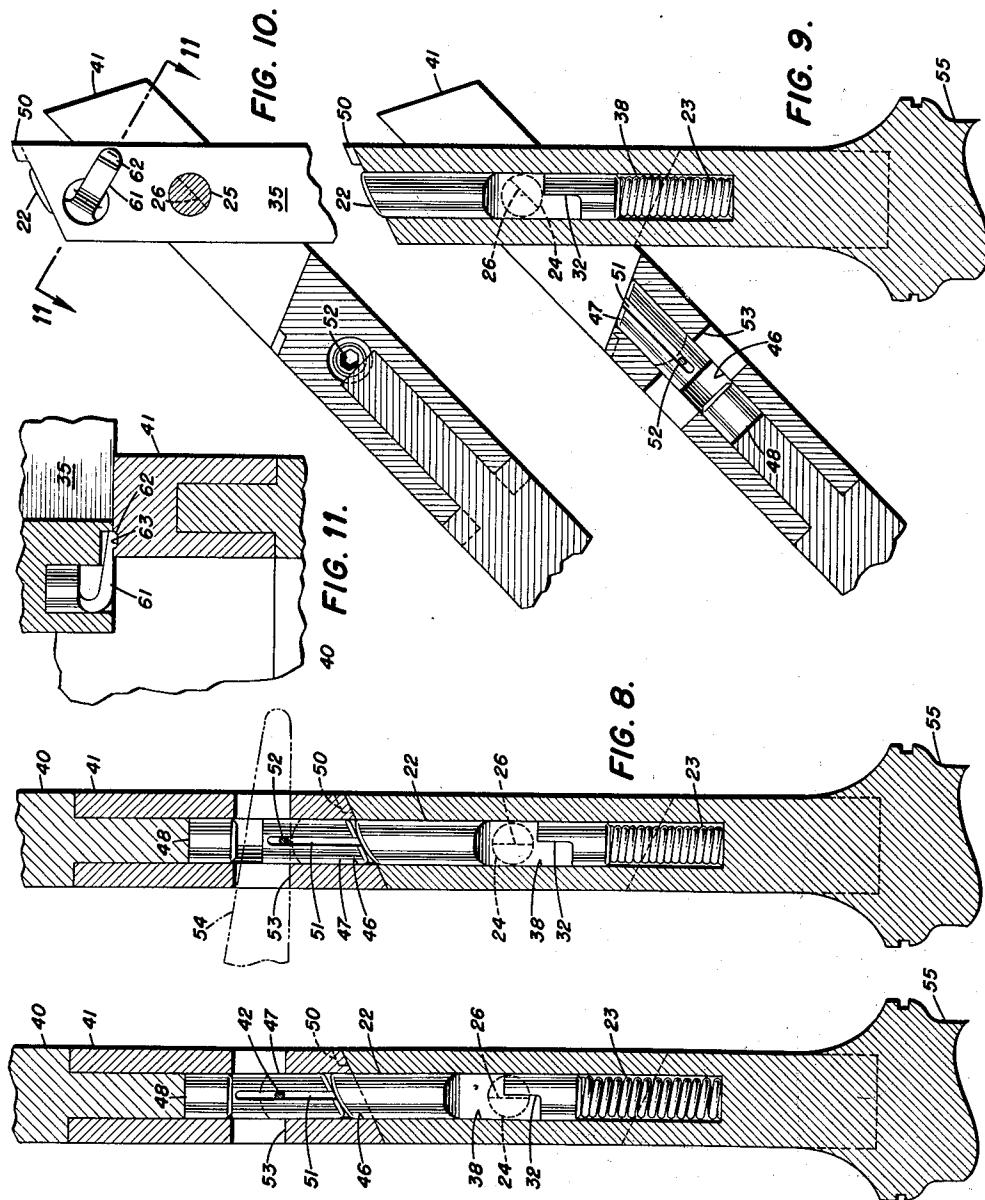


FIG. 7.

FIG. 10.

40 FIG. 11.

FIG. 8.

FIG. 9.

INVENTOR
SVERRE KONGELBECK

BY

A. O. O'Brien
D. B. and W. Morris
ATTORNEYS

1

2,925,966

FOLDING FIN OR WING FOR MISSILES

Sverre Kongelbeck, Silver Spring, Md., assignor to the United States of America as represented by the Secretary of the Navy

Application October 8, 1957, Serial No. 689,020

6 Claims. (Cl. 244—14)

The present invention relates to a latching mechanism. More particularly it relates to a latching mechanism especially suited to locking in a rigid operative position hinged rocket fins or guided missile wings.

Rockets, guided missiles and the like are customarily fitted with fins or wings for stabilizing and controlling their flight through the atmosphere. In stowing such vehicles it may very well be found that vehicles assembled with fins or wings require double or triple the amount of space necessary to house the vehicle bodies alone. In applications of limited space, for example, on shipboard, the past practice has been to stow vehicle bodies and fins separately and to provide an assembly area where the fins and bodies are assembled prior to launching. This practice, however, limits the number of vehicles in the ready-to-launch status, and thus seriously lengthens the firing cycle. It is further disadvantageous in that space is wasted and time and manpower are consumed in the assembly area.

The present invention contemplates the provision of a vehicle having its wings arranged to fold against its body and thus consume only slightly more stowage space than the body alone. It further contemplates a vehicle having folded wings which can be erected rapidly by hand or a mechanical device after the vehicle is in position upon a launcher, or mechanically, after the vehicle is in flight.

The provision of a locking mechanism for folding wings attached to a supersonic vehicle is complicated by the fact that supersonic airfoils are necessarily thin structures which are subjected to unusually high panel loads. A satisfactory locking mechanism must fulfill the requirements of strength, rigidity and reliability. At the same time, the locking mechanism must be so devised as to be capable of being completely contained within the airfoil since projecting hinges, latches, etc. spoil the flow over the airfoil surface and induce excessive amounts of drag.

Accordingly, it is the principal object of the present invention to provide a means for collapsing or folding aerodynamic surfaces.

Another object of the present invention is to provide a folded fin or wing having means for insuring rigid and accurately aligned surfaces upon erection thereof.

An additional object of the present invention is to provide a folding mechanism contained internally of a thin wing or similar aerodynamic surface so as to present no interfering structures to the airstream.

A further object of the present invention is to provide a mechanism for use with pivotally movable wings to prevent pivotal movement of the wings while in a folded condition.

Still another object of the present invention is to provide a wing or fin folding mechanism which permits easy and rapid erection of the folded structure and which is releasable from a locked erected condition by means of a special tool.

Other objects and many of the attendant advantages of this invention will be readily appreciated as the same becomes better understood by reference to the following

2

detailed description when considered in connection with the accompanying drawings, wherein:

Fig. 1 is a perspective of the rear portion of an aerial vehicle provided with pivotally moveable steering wings and illustrating the wings in an erected condition;

Fig. 2 is a perspective view of the vehicle illustrated in Fig. 1, illustrating the wings thereof folded transversely by means of the present invention;

Figs. 3 and 4 are perspectives, respectively, illustrating the locking mechanism of the present invention in a locked or erect condition and in an unlocked or folded condition, the wing surface containing the mechanism being shown in outline form;

Fig. 5 is an exploded perspective illustrating the assembly of the wing and the locking mechanism of the present invention;

Fig. 6 is a plan view of an erected wing with parts of the wing surface broken away to illustrate the mechanism for preventing pivotal movement of a folded wing;

Fig. 7 is a section taken along the line 7—7 of Fig. 6 and illustrating a locked mechanism of the invention;

Fig. 8 is a section similar to Fig. 7 except that the mechanism is shown being unlocked;

Fig. 9 is a section taken along the line 9—9 of Fig. 2;

Fig. 10 is a section taken along the line 10—10 of Fig. 2; and

Fig. 11 is a section taken along the line 11—11 of Fig. 10.

In Figs. 1 and 2, a guided missile or similar aerial vehicle is illustrated as being provided with four pivotally moveable steering wings 20. For the purpose of conserving stowage space, the wings 20 are arranged to be folded in opposite directions so as to provide the overlapped pattern shown in Fig. 2, or if desired, the folding direction may be the same for all wings without departing from the scope of the invention.

As seen in Figs. 3 and 4, the basic elements of the present invention include a bolt 22 loaded by a compression spring 23 so as to be forced outward along the wing axis. The wing 20 folds on cylindrical hinge pins 24 and 25 each of which are rabbed at their inner ends to provide axially extending flat surfaces 26. The upper center portion 27 of bolt 22 is milled flat across its entire width. The lower center portion 28 is milled flat only across half the diameter of bolt 22, thereby providing detent shoulders 29 and flat vertical clearance surfaces 32.

As will be readily understood, in the folded condition (Fig. 4), the detent shoulders 29 bear on the outer surfaces of pins 24 and 25 and hold the bolt 22 securely against the expansive force of spring 23. Upon rotation 50 of the wing 20 to an upright or erected condition (Fig. 3), the rounded surfaces of pins 24 and 25 run off the detent shoulders 29 permitting the clearance surfaces 32 to pass the surfaces 26 of said pins. The bolt 22 is then free to be driven upward by spring 23.

In Fig. 5 the details of construction of the present invention are illustrated. The wing 20 includes a hub 35 having transversely extending tongues 36 to which are secured root sections 37 and 37'. Hub 35 is provided with an axial bore 38 receiving bolt 22 and spring 23 and a transverse bore 39 for receiving hinge pins 24 and 25. The fin portion 40 of wing 20 is suitably recessed to receive a channeled insert member 41 which may be secured thereto by rivets. Hinge pins 24 and 25 are secured in apertures 42 and 43 provided in insert 41 by taper pins 44 and 45. A vertical bore 46 extends axially through insert 41 to receive the upper portion of bolt 22 which strikes therewith upon release of said bolt by rotation of hinge pins 24 and 25. Bolt 22 fits into bore 46 with a close sliding fit thereby insuring alignment of the erected fin surface 39 with root sections 37 and 37'.

As best seen in Fig. 9, the upper end of bolt 22 is domed and protrudes slightly above the surface of hub 35 when said bolt is held in a retracted position by hinge pins 24 and 25. The domed surface of bolt 22 prevents binding at hinge pins 24 and 25 during wing erection, as will shortly be described.

Again referring to Fig. 5, a bolt depressor 47 and a buffer 48 are carried in the upper portion of bore 46 and function, as hereinafter described, to release bolt 22 to allow the folding of an erected wing. To prevent over-travel of fin 40 in moving from a folded to an erected condition, the upper face of hub 35 is bevelled and provided with a pair of stop lugs 50. The surface of insert 41 engaging the bevelled surface of hub 35 is likewise bevelled and is provided with recesses for receiving lugs 50. The bevelled surface of insert 41 performs an important supplementary function in that as the fin 40 is moved from a folded to an erected position, the leading edge of said surface engages the domed upper end of bolt 22. Bolt 22 is thus slightly depressed relieving hinge pins 24 and 25 against binding at the bolt detent shoulders 29.

As best seen in Fig. 3, a slot 49 is cut in the upper end of bolt depressor 47. A groove 51, extending vertically along the outer surface of depressor 47, receives a guide pin 52 which serves to maintain slot 49 aligned with a slot 53 (Fig. 5) extending transversely through insert 41.

Figs. 7 and 8 illustrate the operation of the bolt depressor 47 in releasing the bolt 22 from a locked position. A tapered drift pin 54, shown in outline form, is inserted in slot 53 to force depressor 47 downward. The bolt 22 is thereby released from locking engagement with bore 46 and surfaces 26 and 32 are disengaged. The fin 40 is then freed to swing to the folded position illustrated in Figs. 2 and 9.

Referring to Fig. 6, a stub shaft 55, having a keyway therein, extends from hub 35 and is secured to a suitable servo-actuator (not shown) carried within the vehicle. Rotation of shaft 55 moves the wing 20 pivotally and thereby supplies control movements to the vehicle mounting the wing. To prevent pivotal movement of the wings in their folded condition a pivotally mounted latch bar 56 is mortised into the root section 37' of wing 20. A compression spring 57 biases latch bar 56 into a keyway 58 formed in the vehicle surface adjacent root section 37. Upon erection of the fin 40, a push rod 59, mounted to bear on the end of latch bar 56 opposite spring 57, is depressed to move the latch bar out of engagement with keyway 58. The erected wing 20 may then be freely pivoted upon shaft 55.

Referring to Figs. 5, 10 and 11, and particularly to Figs. 10 and 11, the fin 40 is maintained folded by a generally U-shaped spring detent 61. Detent 61 is recessed into the sidewall of hub 35 and carries an elevated portion 62 at its outer end. Upon folding the fin 40, the elevation 62 snaps into a socket-like depression 63 (Fig. 5) formed in insert 41. The wing 20 is thus maintained folded until sufficient erecting force is applied to fin 40 to cause the elevation 62 to recede from the socket 63.

While the invention has been illustrated and described with reference to a wing embodying but a single locking mechanism, wings having exceptionally long chord lengths can be provided with a plurality of locking mechanisms extending in serial fashion along the chord. The problem of properly aligning the bolts could be readily solved by the provision of floating center bolt receivers, as is well understood in the art.

Obviously many modifications and variations of the present invention are possible in the light of the above

teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.

What is claimed is:

- 5 1. A wing for an aerial vehicle, comprising a rotatable hub, a bolt slidably mounted in said hub so as to act along the axis of said hub, an aerodynamic surface, hinge means on said hub for mounting said surface to swing about an axis transverse to the axis of rotation of said hub, and means controllable by said hinge means for driving said bolt into engagement with said surface to lock said surface in a fixed position relative to said hub.
- 10 2. A wing as claimed in claim 1, with additionally means for latching said hub against rotation, and means for releasing said latch means upon engagement of said bolt.
- 15 3. A pivotally moveable control wing for an aerial vehicle, comprising an aerodynamic surface, said surface being divided into a root portion and a fin portion, said root portion including a shaft for pivotally mounting the wing on the vehicle, means including a hinge pin for joining said fin portion to said root portion, means in said root portion for locking said fin and root portions into an aligned wing structure, means in said root portion for latching said root portion against pivotal movement, and means for releasing said latching means upon the locking of said fin and root portions into an aligned wing structure.
- 20 30 4. A wing as claimed in claim 3, wherein said means for locking said fin and root portions into an aligned wing structure comprises the combination of a bolt having a detent surface engageable by said hinge pin and a spring for urging said bolt into engagement with said fin portion, the engagement of said bolt with said fin portion being restrained by the coaction of said detent surface and said hinge pin until said fin and root portions are moved into alignment.
- 25 40 5. A pivotally moveable control wing for an aerial vehicle, comprising, an aerodynamic surface, said surface being divided into a root portion and a fin portion, said root portion including a shaft for pivotally mounting the wing on the vehicle, a hinge pin for hinging said fin portion to said root portion, said hinge pin being rotatable with said fin portion and having a rabbeted end portion, a bolt slidably mounted in said root section for locking said fin section into alignment with said root section, said bolt being provided with a first flat surface running axially of said bolt and a second flat surface running transversely so as to intersect said first surface, said hinge pin and said bolt being arranged so that the end portion of said hinge pin rests upon said second flat surface of said bolt and restrains said bolt until said hinge pin is rotated to allow said rabbet to clear said first surface of said bolt, and a spring for urging said bolt into locking position.
- 30 45 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860

References Cited in the file of this patent

UNITED STATES PATENTS

17,407	Sibley	May 26, 1857
772,293	Reese	Oct. 11, 1904
1,879,840	Brandt	Sept. 27, 1932
2,594,533	Baker	Apr. 29, 1952