

Office de la Propriété Intellectuelle du Canada

Un organisme d'Industrie Canada Canadian Intellectual Property Office

An agency of Industry Canada CA 2782912 A1 2013/02/01

(21) 2 782 912

(12) DEMANDE DE BREVET CANADIEN CANADIAN PATENT APPLICATION

(13) **A1**

(22) Date de dépôt/Filing Date: 2012/07/11

(41) Mise à la disp. pub./Open to Public Insp.: 2013/02/01

(30) Priorité/Priority: 2011/08/01 (US13/136,414)

(51) Cl.Int./Int.Cl. *E04B 1/41* (2006.01)

(71) Demandeurs/Applicants: TINCHER, TERRY J., US; FOLEY, ROBERT P., US

(72) Inventeurs/Inventors: TINCHER, TERRY J., US; FOLEY, ROBERT P., US

(74) Agent: GOWLING LAFLEUR HENDERSON LLP

(54) Titre: SYSTEME D'ANCRAGE POUR FIXER UN PANNEAU MURAL EN BETON A UNE FONDATION EN BETON (54) Title: ANCHOR SYSTEM FOR SECURING A CONCRETE WALL PANEL TO A SUPPORTING CONCRETE FOUNDATION

(57) Abrégé/Abstract:

A cast concrete wall panel is secured to a concrete foundation by an anchor system which includes a steel base plate embedded adjacent the bottom surface of the wall panel and welded to a tapered channel projecting upwardly adjacent the inner surface of the wall panel to define a cavity. Reinforcing bars have bottom ends welded to the base plate and project upwardly into the concrete wall panel, and a hole is formed in the base plate at the bottom of the cavity. The hole receives a self-tapping concrete anchor bolt which is driven into a hole drilled within the foundation at an acute angle less than twelve degrees and preferably about six degrees from vertical. The channel has a removable cap to prevent concrete from entering the cavity during casting of the wall panel and to provide a decorative inside cover for the cavity after installing the anchor bolt.

ANCHOR SYSTEM FOR SECURING A CONCRETE WALL PANEL TO A SUPPORTING CONCRETE FOUNDATION

Abstract of the Disclosure

A cast concrete wall panel is secured to a concrete foundation by an anchor system which includes a steel base plate embedded adjacent the bottom surface of the wall panel and welded to a tapered channel projecting upwardly adjacent the inner surface of the wall panel to define a cavity. Reinforcing bars have bottom ends welded to the base plate and project upwardly into the concrete wall panel, and a hole is formed in the base plate at the bottom of the cavity. The hole receives a self-tapping concrete anchor bolt which is driven into a hole drilled within the foundation at an acute angle less than twelve degrees and preferably about six degrees from vertical. The channel has a removable cap to prevent concrete from entering the cavity during casting of the wall panel and to provide a decorative inside cover for the cavity after installing the anchor bolt.

1

ANCHOR SYSTEM FOR SECURING A CONCRETE WALL PANEL TO A SUPPORTING CONCRETE FOUNDATION

Background of the Invention

[0001] The present invention relates to a connector or anchor for connecting a cast concrete wall panel to a poured concrete foundation, for example, as disclosed in U.S. Patent No. 5,609,005, the disclosure of which is herein incorporated by reference. In this patent, a connector includes an inverted Vshaped angle member having an inclined surface supporting an inclined tubular member which extends to the outer surface of the wall panel. An anchor rod is inserted through a hole within the angle member and into an inclined hole drilled within the concrete foundation. The anchor rod is secured within the concrete foundation with an epoxy adhesive, and a nut is threaded onto the upper end portion of the anchor rod after the adhesive is cured. Commonly, each concrete wall panel is cast horizontally on a poured concrete floor after the concrete floor cures, and the cured wall panel is tilted upwardly to a vertical position and located where the anchor rods are inserted into the drilled holes within the concrete foundation. After the epoxy cures and the nut is threaded onto the upper end portion of the rod, the tubular member is commonly filled with grout, and earth may be filled in outside the wall panel to cover the grout on each connector.

[0002] It has been found desirable to connect the cast concrete wall panels to the supporting foundation with a connector or anchor system which permits anchoring the vertical wall panel to the foundation from the inside surface of the wall panel and working from the concrete floor which has been poured onto the foundation. Locating the anchor system for access from the inside surface of the wall panel also provides for convenient access to the anchor system from the concrete floor and for faster and safer installation as well as for convenient inspection of the anchor system. Inside installation of the anchor system also avoids exposure of the anchor system to corrosion from exterior weather conditions and eliminates exterior patching of the anchor system with mortar to limit weather exposure.

2

General Description of the Preferred Embodiments

The present invention is directed to an improved anchor system for securing a cast concrete wall panel to a supporting concrete foundation and which provides all of the desirable features and advantages mentioned above. In general, an anchor system constructed in accordance with the present invention includes a steel base plate which is positioned adjacent the bottom surface of the wall panel before the wall panel is cast, and a plurality of concrete reinforcing rods have lower ends welded to the base plate and project upwardly within the wall panel. A cavity forming member or tapered channel member has a lower end surface welded to the base plate and projects upwardly in flush relation with the inner surface of the wall panel. The channel member projects upwardly substantially above the floor surface and is slightly inclined on an acute angle less than twelve degrees and preferably about six degrees with respect to a vertical plane or the inner surface of the erected wall panel.

After the wall panel is lifted or tilted and erected to a vertical position and located outboard of the concrete floor, a hole is drilled into the concrete foundation on the acute angle and in alignment with a hole formed within the base plate at the bottom of the cavity defined by the channel member. A special self-tapping concrete anchor bolt is then extended through the hole in the base plate and threaded into the slightly inclined hole within the concrete foundation. The channel member provides for convenient access and alignment for drilling the inclined hole within the concrete foundation and for inserting the self-tapping concrete anchor bolt with a hand supported power operated impacting bolt driver. The base plate of the anchor system may be tilted by the slightly acute angle or the base plate at the acute angle.

[0005] Other features and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.

Brief Description of the Drawings

[0006] FIG. 1 is a perspective view of a wall panel anchor constructed in accordance with the invention;

[0007] FIG. 2 is a vertical section of the anchor taken generally on the line 2-2 of FIG. 1;

3

[0008] FIG. 3 is a vertical section of a concrete wall panel, concrete foundation and concrete floor showing the anchor system with the anchor of FIGS. 1 & 2 installed for connecting the concrete wall panel to the concrete foundation in accordance with the invention;

[0009] FIG. 4 is another vertical section similar to FIG. 3 and illustrating the attachment of a removable cap member onto a tapered channel member of the anchor shown in FIG. 1;

[0010] FIG. 5 is a top end view of the cap member;

[0011] FIG. 6 is an elevational rear view of the cap member; and

[0012] FIG. 7 is an enlarged horizontal section of the installed cap member, taken generally on the line 7-7 of FIG. 4.

Description of the Illustrated Embodiment

[0013] FIG.1 illustrates a fabricated steel wall panel anchor 20 which is constructed in accordance with the invention and used for securing a cast concrete wall panel 22 (FIG. 3) to a poured concrete footer or foundation 24 which may support a poured concrete floor 26. The wall anchor 20 includes a flat steel base plate 30 having a length of about 13 inches, a width of about 6 inches and a thickness of 3/4 inch. An elongated cavity defining member or tapered channel member 35 has an inner inclined wall 37 integrally connecting generally triangular opposite side walls 38. The bottom ends of the walls 37 and 38 are welded to the base plate 30 so that the member 35 forms a tapering cavity 40. The inner wall 37 of the cavity defining member or channel 35 is perpendicular to the base plate 30 which, as shown in FIGS. 2 and 3 extends at an acute angle A less than twelve degrees and preferably about six degrees. A pair of right angle brackets 43 have vertical flanges 44 welded to the ends of the slightly inclined base plate 30 and include base flanges 46 which also extend at the acute angle A with respect to the bottom surface of the base plate 30. The base flanges 46 have center holes 47.

project upwardly from the base plate 30 on opposite sides of the cavity defining member 35 and have lower end portions 52 perpendicular to the base plate 30 and welded to the base plate. The reinforcing bars 50 have a slightly curved portion or bend 54 above the lower end portions 52 so that each bar 50 has an upper portion

56 which extends vertically within the wall panel 22. The base plate 30 has a circular hole 58 of about 15/16 inch diameter within the bottom of the cavity 40.

In a conventional manner, the wall panel 22 is cast in a horizontal position, for example, as disclosed in above-mentioned Patent No. 5,609,005. When the forms for the edges of the wall panel are placed on the floor 26, the wall anchor members 20 are attached to a form, for example, by nails or fasteners extending through the holes 47 within the brackets 43. Each anchor 20 is positioned within the forms with the edge surfaces of the side flanges 38 of the channel 35 generally flush with the top surface of the edge forms so that the edges of the side flanges 38 will be generally flush with the inner surface of the wall panel after it has poured.

[0016] After the concrete in the wall panel 22 cures, the panel is lifted or tilted to a vertical position and positioned at the desired location on the foundation 24, as shown in FIG. 3. An inclined hole 60 is drilled within the concrete foundation 24 with a concrete drill having an axis inclined on the angle A. The wall panel 22 is then secured or anchored to the foundation 24, preferably, by a self-tapping steel anchor bolt 62 which has a shank portion 64 having a sharp helical thread 66 that penetrates the concrete in the foundation 24. The shank portion 64 is integrally connected to an enlarged hexagonal head portion 68 having an outwardly projecting integral flange 71 larger than the hole 58 within the base plate 30.

Company, Inc. who produces a ten inch long bolt having a 3/4 inch shank diameter and sold under the trademark SIMPSON Strong-Tie. The bolt 62 is threaded into the hole 60 by a power operated impacting socket wrench supported by an operator standing on the floor 26. After the bolt 62 is tightened, it is capable of withstanding a substantial tension force, for example, 10,000 pounds. It is also apparent from FIG. 3 that when the wall panel 22 is positioned on the foundation 24, the cavity 40 is open to the inside surface of the wall panel above the top surface of the floor 26.

[0018] To prevent concrete from entering the cavity 40 when the wall panel 22 is being cast horizontally, a removable cap member 75 may be attached or snap-fit onto the channel 35, as shown in FIG. 4. Preferably, the cap member 75 is formed from an extruded plastics material such as polyvinylchloride (PVC) and is similar in construction to the joint cover disclosed in U.S. Design Patent No. 445,921. The extruded cap member 75 includes an outer wall 78 having slightly

angled edge portions 79 and is integrally connected to parallel spaced ribs 82 each having laterally outwardly projecting inclined flexible fins 84. When the cap member 75 is pressed onto the channel member 35, the fins 84 frictionally engage the inner surfaces of the side walls 38 of the channel member to retain the cap member 75 where the edge portions 79 of the cap member flex and engage the outer edge surfaces of the channel side walls 38 and also the flush inside surface of the wall panel 22, as shown in FIG. 7.

[0019] As shown in FIG. 6, upper portions of the ribs 82 are cut away from the extrusion to form an upwardly projecting flange 87 of uniform thickness and which engages the inner surface of the wall panel 22. At the bottom of the extruded cap member 75, the ribs 82 may be cut away to form a downwardly projecting flange 88 which covers the inner edge surface of the base plate 30. After the bolt 60 is tightened and the cap member 75 is reattached to the channel member 35, the outer surface of the cap member wall 78 is substantially flush with the inner surface of the concrete wall 22 and provides a decorative cover for the channel member 35.

From the drawings and the above description, it is apparent that a wall [0020] anchor system constructed and installed in accordance with the invention provides desirable features and advantages. More specifically, the anchor system provides for connecting or securing the concrete wall panel 22 to the concrete foundation 24 from inside the wall panel while the installer may be working on the concrete floor 26. The use of the bolt 62 with the concrete cutting threads 66 also eliminates the use of securing an anchor rod or bolt to the concrete with epoxy and the time required for the epoxy to cure. In addition, the small acute angle A between a vertical plane and the axis of the hole 60 and bolt 62 enables the bolt to withstand a substantially high tension force for securing the wall panel 22 to the foundation 24. The inclined position of the cavity defining member or channel 35 further helps to provide quick alignment reference for drilling the hole 60. The removable cap member 75 also prevents concrete from flowing into the cavity 40 during casting of the wall panel and, in addition, provides a decorative cover for the anchor 20 after installation of the self-tapping bolt 62. The position of the wall anchor 20 being flush with the inner surface of the wall panel 22 also eliminates the exposure of the wall anchor and the bolt 62 to exterior weather conditions in order to avoid corrosion of the anchor 20 and bolt 62.

6

[0021] While the method and form of anchor system herein described constitutes a preferred embodiment of the invention, it is to be understood that the invention is not limited to the precise method and form anchor system described, and that changes may be made therein without departing from the scope and spirit of the invention as defined in the appended claims.

[0022] What is claimed is:

1. An anchor system securing a vertical concrete wall panel to a supporting concrete foundation, said system comprising

a base member positioned adjacent a horizontal bottom surface of said wall panel,

a cavity defining member having a lower end welded to the said base member and projecting upwardly from said base member to define a laterally open and vertically extending elongated cavity within a vertical surface of said wall panel,

at least one concrete reinforcing bar having a lower end portion welded to said base member and projecting upwardly within said concrete wall panel,

a hole within said base member at the bottom of said cavity,

an elongated anchor bolt extending through said hole within said base member and into an aligned hole within said concrete foundation, and

said hole within said foundation and said anchor bolt having an axis extending at an acute angle less than twelve degrees from a vertical reference plane.

- 2. An anchor system as defined in claim 1 wherein said anchor bolt comprises a self-tapping concrete bolt having a shank portion with a sharp helical thread penetrating said concrete foundation, and said shank portion is integral with a head portion larger than said shank portion and adapted to receive a socket wrench extending downwardly within said cavity.
- 3. An anchor system as defined in claim 1 wherein said cavity defining member extends upwardly by a distance greater than a length of said anchor bolt to facilitate drilling said hole within said concrete foundation.
- 4. An anchor system as defined in claim 1 wherein said elongated cavity defining member comprises a tapered channel member, and a removable cover member for said channel member.
- 5. An anchor system as defined in claim 1 wherein said base member comprises a flat base plate having a uniform thickness, and said hole within said base plate has an axis inclined at said acute angle from said reference plate.

- 6. An anchor system as defined in claim 5 wherein said flat base plate is positioned at said acute angle less than twelve degrees relative to a bottom surface of said wall panel.
- 7. An anchor system as defined in claim 6 wherein each of said reinforcing bars is bent and has a lower portion perpendicular to said base plate and a substantially vertical upper portion.
- 8. An anchor system as defined in claim 1 wherein said cavity defining member comprises a tapered channel member having longitudinally extending and parallel spaced side walls perpendicular to said base plate.
- 9. An anchor system as defined in claim 8 wherein said side walls of said channel member have vertical edge surfaces generally flush with an inner surface of said wall panel.
- 10. An anchor system securing a vertical concrete wall panel to a supporting concrete foundation, said system comprising
- a base member positioned adjacent a horizontal bottom surface of said wall panel,
- a tapered channel member having a lower end welded to the said base member and projecting upwardly from said base member to define a vertically extending elongated cavity open to an inner surface of said wall panel,
- at least one concrete reinforcing bar having a lower end portion welded to said base member and projecting upwardly within said concrete wall panel,
 - a hole within said base member at the bottom of said cavity,
- an elongated anchor bolt extending through said hole within said base member and into an aligned hole within said concrete foundation, and
- said hole within said foundation and said anchor bolt having an axis extending at an acute angle less than twelve degrees relative to said inner surface of said wall panel.

9

- 11. An anchor system as defined in claim 10 wherein said anchor bolt comprises a self-tapping concrete bolt having a shank portion with a sharp helical thread penetrating said concrete foundation, and said shank portion is integral with a head portion larger than said shank portion and adapted to receive a socket wrench extending downwardly within said cavity defined by said channel member.
- 12. An anchor system as defined in claim 10 wherein said channel member extends upwardly by a distance greater than a length of said anchor bolt to facilitate drilling said hole within said concrete foundation.
- 13. An anchor system as defined in claim 10 wherein said base member comprises a flat base plate having a uniform thickness, and said plate has a flat upper surface inclined at said acute angle and surrounding said hole within said base plate.
- 14. An anchor system as defined in claim 13 wherein said flat base plate is positioned at said acute angle of about six degrees relative to a bottom surface of said wall panel.
- 15. An anchor system as defined in claim 10 wherein said reinforcing bar has a bottom end surface welded to said base member.
- 16. An anchor system as defined in claim 10 wherein said channel member has longitudinally extending and parallel spaced side walls perpendicular to said base member.
- 17. An anchor system as defined in claim 10 wherein said channel member has side walls with vertical edge surfaces substantially flush with an inner surface of said wall panel.

18. An anchor system securing a vertical concrete wall panel to a supporting concrete foundation, said system comprising

a steel base plate positioned adjacent a horizontal bottom surface of said wall panel,

a tapered channel member having a lower end welded to the said base plate and projecting upwardly from said base member to define a vertically extending elongated cavity open to a surface of said wall panel,

at least one concrete reinforcing bar having a lower end portion welded to said base plate and projecting upwardly within said concrete wall panel,

a hole within said base member at the bottom of said cavity,

an elongated anchor bolt extending thought said hole within said base plate and into an aligned hole within said concrete foundation,

said anchor bolt being self-tapping and having a shank portion with a sharp helical thread penetrating said concrete foundation and a head portion larger than said shank portion for receiving a socket wrench extending downwardly within said cavity, and

said hole within said foundation and said anchor bolt having an axis extending at an acute angle less than twelve degrees relative to a vertical surface of said wall panel.

- 19. An anchor system as defined in claim 18 wherein said base plate has a flat upper surface inclined at said acute angle and surrounding said hole within said base plate.
- 20. An anchor system as defined in claim 18 wherein said acute angle is within six degrees.
- 21. An anchor system as defined in claim 18 and including a cap member removably attached to said channel member for covering said cavity during casting of said wall panel and after installing said anchor bolt.

Application numb	er / Numéro de demande: _	27	29/	2
Figures:				
Pages:	//2 - 2	/2	all pa	50

Unscannable items received with this application (Request original documents in File Prep. Section on the 10th floor)

Documents reçu avec cette demande ne pouvant être balayés (Commander les documents originaux dans la section de la préparation des dossiers au 10ième étage)