发明名称
纸板割线开槽机

摘要
本发明涉及一种纸板割线开槽机，该纸板割线开槽机包括纸板传送装置和纸板开槽装置，包括纸板传送装置和纸板开槽装置，所述纸板开槽装置包括有开槽刀，所述纸板开槽装置设在纸板传送装置的纸板传送路径上，其特征在于所述纸板传送装置的传送路径上设有纸板割线装置，所述纸板割线装置包括对纸板进行割线的割线刀和带动割线刀上下动作的动力源组件。通过割线机构和开槽机构实现了纸板在一条生产线上进行割线和开槽，在通过纵向和横向的两次割线和开槽能够自动去除四个边角，并且所述第三传送机构为传动辊，大大缩小了机器的体积，减少对生产加工场地的占用。
1. 纸板割线开槽机，包括纸板传送装置（21, 22）和纸板平移装置（4），所述纸板平移装置（4）包括有开槽刀（42），所述纸板平移装置（4）设在纸板传送装置（21, 22）的纸板输送路径上，其特征在于所述纸板传送装置（21, 22）的传送路径上设有纸板割线装置（3），所述纸板割线装置（3）包括对纸板进行割线的割线刀（32）和带动割线刀（32）上下动作的动力源组件（33）。

2. 根据权利要求1所述的纸板割线开槽机，其特征在于所述纸板传送装置（21, 22）分为前部（21）和后部（22），所述割线装置（3）设置在前部（21）和后部（22）之间，所述割线刀（33）设于输送平台下方，所述割线刀（33）上方设有与割线刀工作相配合的压紧（34）。

3. 根据权利要求1所述的纸板割线开槽机，其特征在于所述割线装置（3）配装有感应纸板的光电传感器（31），所述光电传感器与控制器连接，所述控制器控制动力源组件（33）动作。

4. 根据权利要求3所述的纸板割线开槽机，其特征在于所述动力源组件（33）包括气缸（86），所述气缸（86）的活塞轴（87）与割线刀（32）的刀轴传动连接，所述气缸（86）带动割线刀（32）上下动作。

5. 根据权利要求3所述的纸板割线开槽机，其特征在于所述动力源组件（33）包括电磁铁（81）和摆臂（83），所述电磁铁（81）与摆臂（83）相对设置，所述摆臂（83）的一端设有铁块（82），另一端与割线刀（32）的刀轴传动连接，所述铁块（82）可被电磁铁（83）吸附摆动摆臂（83）通过摆臂轴（84）摆动，所述摆臂（83）上设有复位弹簧（85），所述摆臂（83）带动割线刀（32）上下动作。

6. 根据权利要求1所述的纸板割线开槽机，其特征在于所述动力源组件（33）包括电机（89）和由电机带动旋转的偏心轮（88），所述偏心轮（88）与割线刀（32）的刀轴传动连接，所述偏心轮（88）带动割线刀（32）上下动作。

7. 一种实现权利要求2所述的纸板割线开槽机的割线开槽方法，其特征在于：将纸板进行纵向割线和横向开槽，割线时割线刀（32）由动力源组件（33）带动上升则进行割线，当割线刀（32）由动力源组件（33）带动下降则不进行割线，割线时将纸板按料板的边割断，开槽按料板的边的延长线进行开槽，所述的线与开槽的在同一条线上，人工将已经完成纵向割线和开槽的纸板（62）横向放置重新放入进行横向割线和开槽，完成横向和横向割线开槽的纸板（63）呈“井”字型，纸板（63）的四个边角与料板的边被割断自动脱落，则为成品纸板（64），其中纸板可先割线后开槽或可先开槽后割线。

8. 一种实现权利要求7所述的纸板割线开槽机的割线方法，其特征在于割线刀（32）由电磁铁（81）和摆臂（83）带动上下运动，当光电传感器（31）感应到过来的纸板，将信号输送给控制器，控制器给电磁铁（81）通电，电磁铁（81）产生吸附力，将摆臂（83）上的铁块（82）吸附，摆臂（83）通过摆臂轴（84）向右转动，割线刀（32）随之一同上升对纸板进行切割，切割到一定的长度，控制器停止给电磁铁（81）通电，电磁铁（81）失去吸附力，摆臂（83）上的复位弹簧（85）带动摆臂（83）向左转动，割线刀（32）下降不进行切割动作，纸板传送一定距离后，控制器再次给电磁铁（81）通电，摆臂（83）向右摆动带动割线刀（32）上升对纸板另一端进行切割。

9. 一种实现权利要求7所述的纸板割线开槽机的割线方法，其特征在于割线刀（32）由气缸（86）带动上下运动，光电传感器（31）感应到纸板，将信号输送给控制器，控制器控制
气缸的活塞轴（87）上升，带动割线刀（32）上升对纸板进行切割，切割到一定的长度，控制器控制气缸的活塞轴（87）下降，带动割线刀（32）往下运动不进行切割动作，纸板传送一定距离后，控制器再次控制气缸的活塞轴（87）上升带动割线刀（32）上升，割线刀（32）对纸板的另一端进行切割。

10. 一种实现权利要求7所述的纸板割线开槽机的割线方法，其特征在于割线刀（32）由电机（89）和电机（89）带动旋转的偏心轮（88）带动上下动作，当纸板过来，偏心轮（88）正好转到最高点，割线刀（32）随之上升对纸板进行切割，切割的同时偏心轮（88）转动，割线刀（32）随之下降停止对纸板的切割，纸板传送一定距离，同时偏心轮（88）转过半圈，再次达到最高点，割线刀（32）随即继续对纸板的另一端进行切割。
纸板割线开槽机

技术领域
[0001] 本发明涉及一种对纸板进行加工的设备，特别涉及纸板割线开槽机。

背景技术
[0002] 在现有技术中，对纸板进行开槽的机器只能完成对纸板开槽，而无法对纸板边角进行去除，则需要人工将边角剪去，或者另设一台专门割线去角的机器，生产加工效率低，成本高。

发明内容
[0003] 为了解决上述技术问题，本发明采用如下技术方案实施：纸板割线开槽机，包括纸板传送装置和纸板开槽装置，所述纸板开槽装置包括有开槽刀，所述纸板开槽装置设在纸板传送装置的纸板输送路径上，其特征在于所述纸板传送装置的传送路径上设有纸板割线装置，所述纸板割线装置包括对纸板进行割线的割线刀和带动割线刀上下动作的动力源组件。
[0004] 所述纸板传送装置分为前部和后部，所述割线装置设置在前部和后部之间，所述割线刀设于输送平台下方，所述割线刀上方设有与割线刀工作相配合的压紧。
[0005] 所述割线装置配装有感应纸板的光电传感器，所述光电传感器与控制器连接，所述控制器控制动力源组件动作。
[0006] 所述动力源组件包括气缸，所述气缸的活塞轴与割线刀的刀轴传动连接，所述气缸带动割线刀上下动作。
[0007] 所述动力源组件包括电磁铁和摆臂，所述电磁铁与摆臂相对设置，所述摆臂的一端设有铁块，另一端与割线刀的刀轴传动连接，所述铁块可被电磁铁吸附带动摆臂通过摆臂轴摆动，所述摆臂上设有复位弹簧，所述摆臂带动割线刀上下动作。
[0008] 所述动力源组件包括电机和由电机带动旋转的偏心轮，所述偏心轮与割线刀的刀轴传动连接，所述偏心轮带动割线刀上下动作。
[0009] 将纸板进行纵向割线和纵向开槽，割线时割线刀由动力源组件带动靠近纸板则进行割线，当割线刀由动力源组件带动远离纸板则不进行割线，割完线的纸板纵向两侧均有一条间隔的割线，开完槽的纸板纵向两侧均有一条连续的凹槽，所割的线与所开的槽在同一直线上，人工将已完成纵向割线和开槽的纸板横向放置重新放入进行横向割线和开槽，完成纵向和横向割线的开槽的纸板呈“井”字型，纸板的四个边角因割断自动脱落，则为成品纸板，其中纸板可先割线后开槽或者可先开槽后割线。
[0010] 割线刀由电磁铁和摆臂带动上下运动，当光电传感器感应到过来的纸板，将信号输送给控制器，控制器给电磁铁通电，电磁铁产生吸附力，将摆臂上的铁块吸附，摆臂通过摆臂轴向右摆动，割线刀随之升高对纸板进行切割，切割到一定的长度，控制器停止给电磁铁通电，电磁铁失去吸附力，摆臂上的复位弹簧带动摆臂向左摆动，割线刀下降不进行切割动作，纸板传送一定距离后，控制器再次给电磁铁通电，摆臂向右摆动带动割线刀上升对纸
板另一端进行切割。

0011 割线刀由气缸带动上下运动，光电传感器感应到纸板，将信号送给控制器，控制器控制气缸的活塞轴上升，带动割线刀上升对纸板进行切割，切割到一定的长度，控制器控制气缸的活塞轴下降，带动割线刀往下运动不进行切割动作，纸板传送一定距离后，控制器再次控制气缸的活塞轴上升带动割线刀上升，割线刀对纸板的另一端进行切割。

0012 割线刀由电机和由电机带动旋转的偏心轮带动上下动作，当纸板过来，偏心轮正转到最高点，割线刀随之上升对纸板进行切割，切割的同时偏心轮转动，割线刀随之下降停止对纸板的切割，纸板传送一定距离，同时偏心轮转过半圈，再次达到最高点，割线刀随即可继续对纸板的另一端进行切割。

0013 本发明的有益效果为：通过割线机构和开槽机构实现了纸板在一条生产线上进行割线和开槽，在通过纵向和横向的两次割线和开槽能够自动去除四个边角，并且所述第三传送机构为传动辊，大大缩小了机器的体积，减少对生产加工场地的占用。

附图说明
0014 图 1 为本发明的结构示意图；
图 2 为本发明的左视图；
图 3 为本发明纸板纵向割完线的样式图；
图 4 为本发明纸板纵向割完线开完槽的样式图；
图 5 为本发明纸板纵向横向割完线开完槽的样式图；
图 6 为本发明纸板成品的样式图；
图 7 为本发明动力源组件包括电磁铁和横臂的结构示意图；
图 8 为本发明动力源组件包括气缸的结构示意图；
图 9 为本发明动力源组件包括电机和偏心轮的结构示意图。

具体实施方案
0015 如附图 1，该纸板割线和开槽机包括纸板入料装置 1、纸板传送装置 21、22、纸板割线装置 3、纸板开槽装置 4 和纸板出料装置 5，纸板 6 由纸板传送装置 21、22 的输送带进行传送给纸板有割线装置 3 进行割线或者纸板开槽装置 4 进行开槽，最后经出料装置 5 出料。如附图 3 所示，割完线的纸板纵向两侧均有一条间的割线，如附图 4 所示，割完线开完槽的纸板纵向两侧均有一条凹槽，要一次性加工出这样的纸板，割线装置需要设置左右两侧对称的割线刀，开槽装置需要设置左右两侧对称的开槽刀，两割线刀之间的距离与两开槽刀之间的距离相同，所割的线与所开的槽在同一直线上。如附图 5 所示，纸板上纵向横向均开有两条凹槽，如附图 6 所示成品纸板的四个边角脱落。

0016 该纸板割线开槽机的纸板传送装置 21、22 包括传送带和带动传送带传动的电机，纸板传送装置分为前部 21 和后部 22，前部 21 和后部 22 各自独立。工作线的前端设有纸板入料装置 1，纸板入料装置 1 包括安装于传送通道两侧的左右挡板 11 和安装于传送路径上的前挡板 12，左右挡板 11 的设置是为了作为一块纸板能够左右整齐地放置在传送带上，前挡板 12 的设置是为了只允许一张纸板通过。人工将一叠纸板放在入料装置 1 中，由传送装置的前部 21 传送带带动最底部那一张纸板传送出。
[0017] 纸板割线装置设置 3 在纸板传送装置前部 21 和后部 22 之间，割线装置 3 包括感应纸板的光电传感器 31、对纸板传送线 32 和带动割线刀 32 上下动作的动力源组件 33，光电传感器 31 与控制器连接，控制器控制动力源组件动作。割线刀 32 设有左右对称两步同步进行动作，割线刀 32 设于传送平台上，割线刀 32 正上方设有防止纸板在割线过程上翘的压板 34，于割线过程中，保证在割线的过程中割线刀能够将纸板割断，割线刀 32 与后部 22 之间设有传送正在割线的纸板的传动辊 35，用于辅助传送纸板。

[0018] 如图 7 所示，带动割线刀 32 上下动作的动力源组件 33 可以采用电磁铁 81 和摆臂 83，电磁铁 81 与摆臂 83 相对设置，摆臂 83 的一端设有铁块 82，另一端与割线刀 32 的刀轴 84 传动连接，铁块 82 可被电磁铁 81 吸附带动摆臂 83 通过摆臂轴 84 摆动，摆臂 83 上设有复位弹簧 85。工作时，光电传感器 31 感应到纸板，将信号输送给控制器，控制器给电磁铁 81 通电，电磁铁 81 产生吸附力，将摆臂 83 上的铁块 82 吸附，摆臂 83 通过摆臂轴 84 向右摆动，割线刀 32 随之升高对纸板进行切割，切割到一定的长度，控制器停止给电磁铁 81 通电，电磁铁 81 失去吸附力，摆臂 83 上的复位弹簧 85 带动摆臂 83 向左摆动，割线刀 32 下降不进行切割动作，纸板传送一定距离后，控制器再次给电磁铁 81 通电，摆臂 83 向右摆动，带动割线刀 32 上升对纸板另一端进行切割。

[0019] 如图 8 所示带动割线刀 32 上下动作的动力源组件 33 还可以采用气缸，气缸 86 的活塞轴 87 与割线刀 32 的刀轴传动连接，气缸 86 带动割线刀 32 上下动作。工作时，光电传感器 31 感应到纸板，将信号输送给控制器，控制器控制气缸的活塞轴 87 上升，带动割线刀 32 上升对纸板进行切割，切割到一定的长度，控制器控制气缸的活塞轴 87 下降，带动割线刀 32 往下运动不进行切割动作，纸板传送一定距离后，控制器再次控制气缸的活塞轴 87 上升带动割线刀 32 上升，割线刀 32 对纸板的另一端进行切割。

[0020] 如图 9 所示，带动割线刀 32 上下动作的动力源组件 33 还可以采用电机 89 和由电机 89 带动旋转的偏心轮 88，所述偏心轮 88 与割线刀 32 的刀轴传动连接，所述偏心轮 88 带动割线刀 32 上下动作。当纸板过来，偏心轮 88 正好转动到最高点，割线刀 32 随之上升对纸板进行切割，切割的同时偏心轮 88 转动，割线刀 32 随之下降停止对纸板的切割，纸板传送一定距离，同时偏心轮 88 转过半圈，再次达到最高点，割线刀 32 随即继续对纸板的另一端进行切割。

[0021] 纸板开槽装置 4 包括有开槽刀 42 及刀座 43，纸板传送装置还包括开槽传送机构 41，纸板开槽装置 4 的开槽刀 42 设于开槽传送机构 41 的传送路径上，所述开槽传送机构 41 包括传送带 44、送板辊 45 和带动传送带传动的驱动辊 46，送板辊 45 上方设有第一驱动辊，下方设有第二驱动辊，后方设有第三驱动辊，传送带 44 绕于该三个驱动辊，与送板辊 45 配合夹紧纸板，刀座 43 设在第三驱动辊下方，开槽刀 42 设在刀座上且设有左右对称的两把，同时对传送中的纸板进行左右两侧开槽，开槽刀 42 与送板辊 45 的距离小于一个纸板的厚度，但是保证不能将纸板穿透。当纸板进入纸板开槽装置 4 的开槽传送机构 41 的入口处，传送带 44 由驱动辊 46 带动与送板辊 45 配合夹紧纸板进行传送。传送到开槽刀 42，两把开槽刀 42 同时对纸板进行开槽。

[0022] 纸板出料装置 5 将已完成纵向割线和纵向开槽的纸板 62 传送出去。

[0023] 纸板割线装置可设于纸板开槽装置前方，也可设于纸板开槽装置后方。因此，该机器工作时，有两种方案。一种方案为：纸板传送装置的前部 21 将纸板 6 传送至纸板割线装
置3进行纵向割线，当割线刀32由动力源组件33带动上升则进行割线，当割线刀32由动力源组件33带动下降则不进行割线，切割完毕纸板传送装置的后部22将割完线的纸板61接出继而传送到纸板开槽装置4，纸板开槽装置4的开槽刀42对割完线的纸板61进行纵向开槽。开完槽后，纸板开槽装置4将割完线开完槽的纸板62送至纸板出料装置5，人工将已经完成纵向割线和开槽的纸板62横向放置重新放入纸板传送装置21，22，纸板传送装置21，22再次传送已完成纵向割线和开槽的纸板62进行横向割线和开槽。完成纵向和横向割线开槽的纸板63的四个边角自动脱落，则为成品纸板64。

[0024] 另一种方案为：直接将纸板放入纸板开槽装置4中先进行纵向开槽，开完槽后，纸板开槽装置4的传送带44将纸板传送至纸板传送装置的前部21，纸板传送装置的前部21将开完槽的纸板传送至纸板割线装置3进行纵向割线，当割线刀32由动力源组件33带动上升则进行割线，当割线刀32由动力源组件33带动下降则不进行割线，完成割线后，传动辊35将纸板送至纸板传送装置的后部22，后部22将纸板送至纸板出料装置5，人工将已经完成纵向开槽和割线的纸板62横向放置重新放入纸板开槽装置4进行横向开槽，紧接着传送出纸板割线装置3进行横向割线。完成纵向和横向开槽割线的纸板63的四个边角自动脱落，则为成品纸板64。

[0025] 纸板出料口下方设有出废料皮带7，完成纵向和横向割线开槽的纸板的四个边角自动脱落，出废料皮带7将废料传送出去。
图 2