PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/32995
GOG6F 17/30 Al)

(43) International Publication Date: 1 July 1999 (01.07.99)

(21) International Application Number: PCT/US98/18691 | (81) Designated States: JP, European patent (AT, BE, CH, CY, DE,

(22) International Filing Date: 8 September 1998 (08.09.98)

(30) Priority Data:

08/997,066 23 December 1997 (23.12.97) US

(71) Applicant: MICROSOFT CORPORATION [US/US]; One
Microsoft Way, Redmond, WA 98052-6399 (US).

(72) Inventors: CABRERA, Luis, Felipe; 2009 Killarney Way
S.E., Bellevue, WA 98004 (US). STEINER, Stefan, R.;
4220-249th Court S.E., Issaquah, WA 98029 (US).

(74) Agents: NYDEGGER, Rick, D. et al.; Workmany, Nydegger
& Seeley, 1000 Eagle Gate Tower, 60 East South Temple,
Salk Lake City, UT 84111 (US).

DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.

(54) Title:

50

DATA PRODUCER

OATA FILE 1

USING SPARSE FILE TECHNOLOGY TO STAGE DATA THAT WILL THEN BE STORED IN REMOTE STORAGE

DATA
BLOCKS

ARCHIVE
SYSTEM

”55 48
‘pﬂh&\ Ln
i

DAT STAGING SPARSE FILE

8 REHOTE

STORAGE
CONMUNICATION

DATA
INFRASTRUCTURE BLOCKS

8 DATA -
8LOCKS

2T pewote

STORAGE

(57) Abstract

DATA j!
BLOCKS

The present invention relates to systems and methods for archiving or backing up data. The systems and methods use a staging area
to temporarily store data prior to transfer to backup or archive storage. Data is copied from local storage (64) to the staging area (76) and
stored there temporarily until it is transferred to backup or archive storage (66). The staging area (76) preferably uses sparse file technology
which stores a mixture of zero data and non-zero data in a storage space substantially equal to the storage space required to only store
the non-zero data. Once data is transferred from the staging area (76) to remote storage (62), the storage space allocated in the staging
area (76) may be deallocated in order to minimize the amount of storage space required for the staging area (76). In addition, the local
storage space (64) may also be deallocated, if appropriate. Using sparse file technology as the staging area (76) results in minimal storage
requirements and minimal overhead for managing the storage space of the staging area (76).

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG

BR
BY
CA
CF
CG
CH
CI

CM
CN
Cu
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™D
TG
TJ
™
TR
TT
UA
uG
Us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 99/32995 PCT/US98/18691

1

USING SPARSE FILE TECHNOLOGY TO STAGE
DATA THAT WILL THEN BE STORED IN REMOTE STORAGE

BACKGROUND OF THE INVENTION

The Field of the Invention

This invention relates to systems and methods for transferring or archiving data
from a local storage area to a remote storage area. More specifically, the present
invention relates to systems and methods for temporarily storing or staging data prior to

its transfer to remote storage.

The Prior State of the Art

Although computers were once an obscure oddity relegated to the backrooms of
scientific and technical endeavors, computers have now entered mainstream society and
have become an integral part of everyday life. An ever increasing amount of data is
stored, managed, and manipulated by computers. The importance of the data stored on
computers ranges from trivial to critical. In order to help protect important information,
many systems and schemes have been devised that “backup” or “archive” information
on various storage media. By maintaining multiple copies of important information,
should one copy of the information become damaged or otherwise unavailable, the
information can be retrieved from the backup storage media.

Although the functions of backup or archiving or often used synonymously,
backup systems typically attempt to maintain multiple copies of important information
so that should one copy of the information become damaged or unavailable the
information may be retrieved from the other copy. Archive systems, on the other hand,
typically attempt to maintain a complete history of the changes made to a particular
entity, such as a particular file or storage device. Backup systems and archival systems,
however, have much in common and many of the principles discussed or applied to one
system are equally applicable to the other. For example, both systems typically copy data
from a local storage medium to a backup or archival storage medium, sometimes located
at a remote location. The process of transferring data from a local storage medium to a

backup or remote storage medium is much the same in either case.

10

15

20

25

30

WO 99/32995 PCT/US98/18691

2

Copying data from a local storage medium to a backup storage medium either for
backup or archival purposes, is not an instantaneous process. The time it takes to transfer
data from a local storage medium to a backup storage medium may be significant,
depending upon the access time of the local and backup storage mediums and the amount
of data to be transferred between the two storage mediums. Because the process is not
instantaneous, several problems can arise. For example, if a particular file or volume is
to be backed up, it is usually important not allow the contents of the file or volume to
change during the backup procedure so that a logically consistent backup copy is created.
A logically consistent copy is a copy that has no internal inconsistencies. For example,
suppose that a backup or archive was to be made to a database of financial transactions.
Suppose also that an individual wished to transfer money from one account to another
account while the backup was proceeding. If both the transaction debiting one account
and the transaction crediting the other account are not backed up in the same backup
copy, an internal inconsistency results.

To avoid such logical inconsistencies, several approaches may be used. One
approach is to restrict or prevent access to a particular file during the archive or backup
procedure. Such an approach works well in situations where it is feasible to cut off
access to the file. In certain circumstances, however, such an approach is not feasible.
Certain computer systems are used in operations where they must be on line twenty-four
hours a day, seven days a week. In these environments, creating backup or archive copies
of information stored thereon can be challenging. One approach to allowing access to
files while archive or backup copies are created is to duplicate the information that will
be backed up or achieved and “stage” the information in a temporary storage area. The
information may then be copied from the staging area and sent to backup or archive
storage.

Unfortunately, copying information to a staging area creates some problems. For
example, storage space must be set aside to store the staged data. As multiple copies of
the data are created, the storage requirements necessary to create a successful backup or
archive copy increase. It is, therefore, important to manage the staging storage space in
a way which minimizes the excess storage space required to create or maintain backup

or archive copies.

10

15

20

30

WO 99/32995 PCT/US98/18691

3

What is needed, therefore, is a staging mechanism which minimizes the storage
space required to stage data prior to transfer to backup or archive storage. The staging
mechanism should allow for a variable amount of storage space since the amount of data
that needs to be staged may increase or decrease depending on widely varying factors.
Furthermore, the management of storage in the staging area should take little or no
intervention by the backup or archive system in order to minimize the administrative
burden on the system.

Another problem sometimes encountered by backup or archive systems relates
to the type of backup or archive media used. Certain forms of backup or archive media
are most efficiently used when the backup or archive media is written as a collection of
data of a defined size. For example, in certain systems it may be desirable to utilize
optical disks as archive or backup storage. In many instances, it is more efficient to
collect sufficient information to completely fill an optical disk before the data is backed
up or archived. In such a situation, it is often desirable to move data that will be backed
up or archived to a staging area until the staging area contains sufficient data to
completely fill the backup media.

Staging areas used in this manner require the ability to place data into the staging
area at sequential instances in time. It is often desirable in such instances to allocate the
storage space required as data is identified that should be added to the backup or archive.
Thus, it would be desirable to have a staging area that allows for a variable amount of
storage space where the storage space can be dynamically allocated as data is produced.
Again, it would be highly desirable to provide such a capability with little or no overhead

on the backup or archive system.

SUMMARY OF THE INVENTION

The foregoing problems in the prior state of the art have been successfully
overcome by the present invention which relates to systems and methods for archiving
or backing up data using staging mechanisms which minimize the amount of storage
space required for staging data while, simultaneously, minimizing the administrative
burden on archive or backup systems. In order to minimize both the storage space and

the administrative burden, the present invention uses sparse file technology to stage data

10

15

20

25

30

WO 99/32995 PCT/US98/18691

4

prior to transfer to a remote storage medium. Within the context of this invention,
backup or archive storage will be referred to as remote storage. The remote designation
is intended to delineate storage separate and apart from the local storage volumes
typically utilized by a computer system. Remote storage does not, necessarily, mean that
the storage is located remotely from the archive system. Archive or backup storage may
comprise any storage medium suitable for such a purpose. The location of such a storage
medium may be local to the backup or archive system or may be remote from the backup
or archive system.

Sparse file technology is a technology designed to efficiently store sparse data.
Sparse data is data having certain portions of the data which contain useful or non-zero
data and other portions of the data which contain zero data. Such a situation is often
encountered, for example, in a sparsely populated matrix or spreadsheet where certain
entries are non-zero but a large portion of the matrix or spreadsheet contains zero data.
Sparse file technology is designed to store such information in a format that allows the
zero data to be removed prior to storage on the local storage medium but recreated as the
data is retrieved. Although any sparse file technology may be utilized by the present
invention, one embodiment uses the sparse file capability of Windows NT to create
staging areas with desirable properties.

Using the sparse file technology of Windows NT provides staging areas that can
expand and contract according to the staging storage needs. When non-zero data is stored
in a sparse file, storage space is automatically allocated sufficient to store the non-zero
data. When zero data is stored in a sparse file or when data already stored in the sparse
file is replaced with zero data, the zero data is removed and any storage space that has
been zeroed is deallocated. Thus, the sparse file technology allows a mixture of zero data
and non-zero data to be stored in a space substantially equal to the storage space required
to store the non-zero data. Because storage space is automatically allocated and
deallocated as necessary, staging areas using sparse file technology allow data to be
appended or removed from the staging area with virtually no overhead to the backup or
archive service.

A method using the present invention to backup or archive data begins when

sufficient data exists on local storage that should be transferred to the staging area. For

10

15

20

25

30

WO 99/32995 PCT/US98/18691

5

example, if a data producer is producing data and storing it on local storage, when a
defined amount of data has been stored locally or when a particular time has elapsed, the
data may be copied or moved from local storage to a staging area employing sparse file
technology. Data moved to the area is stored in a sparse file which eliminates any zero
portion as it is stored in the sparse file. The amount of data in the staging area may be
monitored in order to identify when a backup or archive session should be initiated. In
the alternative, the time since last backup or archive may be monitored and a session
initiated when a particular time has elapsed. If additional data becomes available in local
storage prior to the time that an archive or backup session is initiated, such data can be
appended to the data already stored in the staging area. Once a backup or archive session
is initiated, and data is moved from the staging area to remote storage, then there is no
need to maintain the staging area copy of the data that has been backed up or archived.
The storage space allocated to store the transferred data in the staging area may be safely
released and deallocated. When sparse file technology is used, this may be accomplished
by simply zeroing the data that has been backed up or archived. The sparse file
technology will then deallocate and remove the zeroed data from local storage. In certain
situations, it may also be possible to deallocate and remove storage space from the local
storage area used by the data producer once the data has been copied to the staging area
or after the data has been transferred to backup or archival storage.

Additional advantages of the invention will be set forth in the description which
follows, and in part will be obvious from the description, or may be learned by the
practice of the invention. The advantages of the invention may be realized and obtained
by means of the instruments and combinations particularly pointed out in the appended
claims. These and other features of the present invention will become more fully
apparent from the following description and appended claims, or may be learned by the

practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the manner in which the above-recited and other advantages of the
invention are obtained, a more particular description of the invention briefly described

above will be rendered by reference to specific embodiments thereof which are illustrated

10

15

20

25

30

WO 99/32995 PCT/US98/18691

6

in the appended drawings. Understanding that these drawings depict only typical
embodiments of the invention and are not therefore to be considered limiting of its scope,
the invention will be described and explained with additional specificity and detail
through the use of the accompanying drawings in which:

Figure 1 is an example system that provides a suitable operating environment for
the present invention;

Figure 2 is a high-level diagram of one embodiment of the present invention;

Figure 3 is a diagram illustrating a file structure suitable for use with the present
invention;

Figure 4 is a diagram illustrating one example of sparse file technology;

Figure 5 is a flow diagram according to the present invention; and

Figure 6 is another embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention is described below by using diagrams to illustrate either the
structure or processing of embodiments used to implement the system and method of the
present invention. Using the diagrams in this manner to present the invention should not
be construed as limiting of its scope. The present invention contemplates both methods
and systems for the hierarchical storage of data. The embodiments of the present
invention may comprise a special purpose or general purpose computer comprising
various computer hardware, as discussed in greater detail below.

Embodiments within the scope of the present invention also include computer
readable media having executable instructions or data fields stored thereon. Such
computer readable media can be any available media which can be accessed by a general
purpose or special purpose computer. By way of example, and not limitation, such
computer readable media can comprise RAM, ROM, EEPROM, CD-ROM or other
optical disk storage, magnetic disk storage or other magnetic storage devices, or any other
medium which can be used to store the desired executable instructions or data fields and
which can accessed by a general purpose or special purpose computer. Combinations of
the above should also be included within the scope of computer readable media.

Executable instructions comprise, for example, instructions and data which cause a

10

15

20

25

30

WO 99/32995 PCT/US98/18691

7

general purpose computer, special purpose computer, or special purpose processing
device to perform a certain function or group of functions.

Figure 1 and the following discussion are intended to provide a brief, general
description of a suitable computing environment in which the invention may be
implemented. Although not required, the invention will be described in the general
context of computer-executable instructions, such as program modules, being executed
by a personal computer. Generally, program modules include routines, programs,
objects, components, data structures, etc. that perform particular tasks or implement
particular abstract data types. Moreover, those skilled in the art will appreciate that the
invention may be practiced with other computer system configurations, including hand-
held devices, multi-processor systems, microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe computers, and the like. The
invention may also be practiced in distributed computing environments where tasks are
performed by remote processing devices that are linked through a communications
network. In a distributed computing environment, program modules may be located in
both local and remote memory storage devices.

With reference to Figure 1, an exemplary system for implementing the invention
includes a general purpose computing device in the form of a conventional computer 20,
including a processing unit 21, a system memory 22, and a system bus 23 that couples
various system components including the system memory to the processing unit 21. The
system bus 23 may be any of several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory includes read only memory (ROM) 24 and random
access memory (RAM) 25. A basic input/output system (BIOS) 26, containing the basic
routines that help to transfer information between elements within the computer 20, such
as during start-up, may be stored in ROM 24. The computer 20 may also include a
magnetic hard disk drive 27 for reading from and writing to a magnetic hard disk, not
shown, a magnetic disk drive 28 for reading from or writing to a removable magnetic
disk 29, and an optical disk drive 30 for reading from or writing to removable optical disk
31 such as a CD-ROM or other optical media. The magnetic hard disk drive 27,

magnetic disk drive 28, and optical disk drive 30 are connected to the system bus 23 by

10

15

20

25

30

WO 99/32995 PCT/US98/18691

8

a hard disk drive interface 32, a magnetic disk drive-interface 33, and an optical drive
interface 34, respectively. The drives and their associated computer-readablé media
provide nonvolatile storage of computer readable instructions, data structures, program
modules and other data for the computer 20. Although the exemplary environment
described herein employs a magnetic hard disk 27, a removable magnetic disk 29 and a
removable optical disk 31, it should be appreciated by those skilled in the art that other
types of computer readable media which can store data that is accessible by a computer,
such as magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges,
random access memories (RAMs), read only memories (ROM), and the like, may also
be used in the exemplary operating environment.

A number of program modules may be stored on the hard disk, magnetic disk 29,
optical disk 31, ROM 24 or RAM 25, including an operating system 35, one or more
application programs 36, other program modules 37, and program data 38. A user may
enter commands and information into the computer 20 through input devices such as a
keyboard 40 and pointing device 42. Other input devices (not shown) may include a
microphone, joy stick, game pad, satellite dish, scanner, or the like. These and other
input devices are often connected to the processing unit 21 through a serial port interface
46 that is coupled to system bus 23, but may be connected by other interfaces, such as a
parallel port, game port or a universal serial bus (USB). A monitor 47 or other type of
display device is also connected to system bus 23 via an interface, such as video adapter
48. In addition to the monitor, personal computers typically include other peripheral
output devices (not shown), such as speakers and printers.

The computer 20 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 49. Remote
computer 49 may be another personal computer, a server, a router, a network PC, a peer
device or other common network node, and typically includes many or all of the elements
described above relative to the computer 20, although only a memory storage device 50
has been illustrated in Figure 1. The logical connections depicted in Figure 1 include a
local area network (LAN) 51 and a wide area network (WAN) 52 that are presented here
by way of example and not limitation. Such networking environments are commonplace

in offices enterprise-wide computer networks, intranets and the Internet.

10

15

20

25

30

WO 99/32995 PCT/US98/18691

9

When used in a LAN networking environment, the computer 20 is connected to
the local network 51 through a network interface or adapter 53. When used in a WAN
networking environment, the computer 20 typically includes a modem 54 or other means
for establishing communications over the wide area network 52, such as the Internet. The
modem 54, which may be internal or external, is connected to the system bus 23 via the
serial port interface 46. In a networked environment, program modules depicted relative
to the computer 20, or portions thereof, may be stored in the remote memory storage
device. It will be appreciated that the network connections shown are exemplary and
other means of establishing a communications link between the computers may be used.

Examples of the present invention discussed herein typically utilize an archive
service. It should be understood that the present invention may be applied to backup as
well as archive systems. Thus, examples detailing archive systems or services are
exemplary examples and should not be construed as limiting the scope of the present
invention. Similarly, the storage where backup or archive copies are stored is referred
to in the following examples as remote storage. This designation is given to indicate that
the storage is separate and apart from the local storage typically used by a computer
system. The remote designation is not necessarily used to identify the location of the
backup or archive storage. For example, backup or archive storage which is directly
attached to a particular computer system will also be referred to as remote storage even
though the storage is not located at a remote location. Thus, the term remote storage is
intended to be interpreted broadly and should include all backup and archive storage,
both local and remote, that is separate from the local storage, such as a local hard disk,
used to store data that will be backed up or archived to the backup or archive storage.

Referring now to Figure 2, a high-level diagram of one embodiment of the present
invention is illustrated. In Figure 2, one or more data producers, such as data
producer 60, creates data that is to be backed up or archived to a backup or archive
storage device, such as remote storage 62. The data produced by data producer 60 is
stored in a local storage medium, such as the hard disk for the local computer system.
In Figure 2, data producer 60 is illustrated as storing data in data file 64. Data file 64

represents a local storage area used by data producer 60 to store data it produces. Such

10

15

20

25

30

WO 99/32995 PCT/US98/18691

10

data does not, necessarily, need to be stored in a data file in the traditional sense.
However, such will most often be the case.

When a first event occurs, indicating that data local storage area should be
transferred to a staging area, archive system 66 will move an appropriate amount of data
from the local storage area, such as data file 64, to a staging storage area which is adapted
for temporarily storing the data. Thus, embodiments within the present invention may
comprise means for moving data from a local storage area used for data storage by a data
producing service to a staging storage area used for temporarily staging the data. Any
mechanism that performs this function may be utilized such as, for example, reading the
data from the appropriate location and then storing a copy of the data in the staging
storage area. Other mechanisms may also be utilized such as direct memory transfer and
so forth. In Figure 2, the means for moving data is illustrated by arrows 68, 70, and 72.
These arrows illustrate blocks of data, such as data blocks 74 being moved from the local
storage area to the staging storage area.

As previously discussed, it is desirable for the staging storage area to store data
in an efficient manner so as to eliminate all unnecessary storage space. In one
embodiment, the present invention uses means for storing sparse data comprising a
mixture of zero data and non-zero data in a storage space less than or substantially equal
to the storage space required to store the non-zero data. In other words, such a means
can, as a minimum, substantially eliminate storage space equal to the space required to
store zero data. This may be performed by substantially eliminating storage space
required to store zero data as explained below or in any other way. Such a means may
go further and compress the non-zero data in order to reduce the storage space required
to store the non-zero data. However, such is not necessary for all embodiments of the
present invention. It is, however, desirable that storage space equal to the storage space
that would be required to store zero data to be substantially eliminated. By way of
example, and not limitation, in Figure 2 such means for storing is illustrated by data
staging sparse file 76. Any type of technology may be utilized to implement sparse
file 76. A suitable technology in Windows NT is discussed in greater detail below. All

that is required is that sparse file 76 be able to store data comprising a mixture of

10

15

20

25

30

WO 99/32995 PCT/US98/18691

11

non-zero data and zero data in a storage space substantially equally to the storage space
required to store only the non-zero data.

When a second pre-determined event occurs, archive system 66 will transfer all
or part of the data in sparse file 76 to remote storage 62. Thus, embodiments within the
scope of the present invention may comprise means for transferring data from the staging
storage area to a remote storage medium. By way of example, and not limitation, in
Figure 2 such means is illustrated by arrows 78, 80, and 82 which illustrate data being
moved from sparse file 76 and delivered to remote storage communication
infrastructure 84. Such a means may be implemented by any mechanism capable of
retrieving data from sparse file 76 and either directly delivering the data to remote
storage 62 or to an intermediate system or subsystem which will, in turn, deliver the
appropriate data to remote storage.

In Figure 2, the mechanism used by archive system 66 to deliver data to remote
storage 62 is remote storage communication infrastructure 84. In some embodiments of
the present invention, remote storage 62 may be directly attached to the computer system
where archive system 66 resides. In such a situation, remote storage communication
infrastructure 84 may be nothing more than the drivers and associated hardware devices
used to store data on, or retrieve data from, remote storage 62. In other embodiments,
however, remote storage 62 may be located at locations separate from the computer
system where archive system 66 resides. In such embodiments, remote storage
communication infrastructure 84 may represent various drivers, interface cards, networks,
computer systems, subsystems, and the like necessary to allow archive system 66 to
transfer data to remote storage 62. All that is required is the ability for archive system 66
to transfer information to remote storage 62, wherever remote storage 62 may be located.

After data, such as data blocks 86, has been transferred from sparse file 76 to
remote storage 62, there is no need to maintain the data in sparse file 76. Thus, the data
may be deleted from sparse file 76 and the storage previously taken up by the data
deallocated in order to reduce the overall data storage requirements for sparse file 76.
Thus, embodiments within the scope of this invention may comprise means for
deallocating storage space in a staging storage area when data is transferred from the

staging storage area to remote storage. By way of example, and not limitation, in

10

15

20

25

30

WO 99/32995 PCT/US98/18691

12

Figure 2 such means is illustrated by arrow 88. The exact mechanism used to implement
the means for deallocating storage will depend upon the technology used to implement
sparse file 76 and portions of archive system 66. As discussed in greater detail below,
if sparse file 76 automatically deallocates storage space when data stored in sparse file 76
is zero, then the means for deallocating may comprise a means for zeroing data in sparse
file 76.

As previously explained, embodiments within the scope of this invention may
comprise means for storing sparse data comprising a mixture of zero data and non-zero
data in a storage space substantially equal to the storage space required to store the
non-zero data. Such means may be any mechanism capable of performing this function.
By way of example, such means has been previously described as comprising a sparse
file. Any sparse file technology may be used to implement an appropriate means for
storing. In one embodiment, however, the present invention utilizes the sparse file
mechanism of the NT file system (NTFS). The Windows NT file system is described in
Inside the Windows NT File System, by Helen Custer, published by Microsoft Press and
incorporated herein by reference. Some of the more important features of the NTFS will
be described below in order to illustrate the various components of the NTFS that are
useful in the present invention. Such a discussion is given by way of example, and not
limitation, as any other sparse file technology may also be used for the staging area of the
present invention.

Referring now to Figure 3, a diagram illustrating the various attributes of a
Windows NTFS file is presented. In Figure 3, the attributes that make up a file may be
divided into two fundamental groups. The first group contains system attributes and the
second group contains user attributes. In general, system attributes are used to store
information needed or required by the system to perform its various functions. Such
system attributes generally allow a robust file system to be implemented. The exact
number and type of system attributes is generally dependent wholly upon the particular
operating system or particular file system utilized. User attributes, on the other hand, are
used to store user controlled data. That is not to say that users may not gain access, under
certain circumstances, to one or more system attributes. User attributes, however, define

storage locations where a user or client program may store data of interest to the program.

10

15

20

25

30

WO 99/32995 PCT/US98/18691
13

In Figure 3, the system attributes comprise standard information attribute 90, attribute
list 92, name attribute 94, security descriptor 96, and other system attributes 98. User
attributes include data attribute 100 and other user attributes 102.

Standard information attribute 90 represents the standard “MS-DOS” attributes
such as read-only, system, hidden, and so forth. Attribute list 92 is an attribute used by
NTFS to identify the locations of additional attributes that make up the file, should the
file take up more than one storage record in the master file table. The master file table
is the location where all resident attributes of a file or directory are stored. Name
attribute 94 is the name of the file. A file may have multiple name attributes in NTES,
for example, a long file name, a short MS-DOS file name, and so forth. Security
descriptor attribute 96 contains the data structure used by Windows NT to specify who
owns the file and who can access it. Other system attributes 98 represents other system
attributes that may be part of the NTFS file. These attributes are described in greater
detail in Inside the Windows NT File System, previously incorporated by reference. An
NTFS file typically has one or more data attributes illustrated in Figure 3 as data
attribute 100. Most traditional file systems only support a single data attribute. A data
attribute is basically a location where user controlled data can be stored. For example,
the document of a word processing document is typically stored in the data attribute of
a file. In the NTFS file system, a file can have multiple data attributes. One data
attribute is referred to as the “unnamed” data attribute while other attributes are named
data attributes, each having an associated name. Each of the data attributes represents a
storage location where different types of user controlled data may be stored.

In addition to one or more data attributes, a file may also have other user defined
attributes as illustrated by other attributes 102. Such attributes represent any other
attributes that are defined by a user and that are stored with the file. Such user attributes
may be defined and created and used for any purpose desired by the user.

Although the above discussion has gone into some detail with regards to a
particular type of file, such should be construed as exemplary only and not as limiting the
scope of this invention. The present invention will work with any type of file or other

entity.

10

15

20

25

30

WO 99/32995 PCT/US98/18691

14

Referring next to Figure 4, one example of a sparse file storage mechanism is
presented. The example illustrates the mechanism used by NTFS to store sparse files.
More information may be found in Chapter 6 of Inside the Windows NT File System,
previously incorporated by reference. In Figure 4, a data file, shown generally as 104,
has a mixture of non-zero data 106 (illustrated by the non-shaded blocks) and zero
data 108 (illustrated by the shaded blocks). In NTFS a file stores data in a sequence of
allocation units called clusters. NTFS uses virtual cluster numbers (VCNSs), from zero
through m, to enumerate the clusters of a file. Data file 104 has fifteen clusters
numbered 0-14. In Figure 4, the virtual cluster numbers of data file 104 are illustrated
generally as 110. Each VCN maps to a corresponding logical cluster number (LCN),
which identifies the disk location of the cluster. Data file 104 of Figure 4 has three
groups of clusters (disk allocations) numbered 1372-1375, 1553-1557, and 1810-1815.
In Figure 4, the logical cluster numbers are illustrated generally as 112.

In the NTFS, the data attribute of a file contains information that maps VCNis to
LCNs. The data attribute of data file 104 is illustrated in Figure 4 as 114. Note that the
data attribute contains one entry for each of the disk allocations for the file.

In the above discussion, the term cluster is used to refer to a collection of sectors
on a disk that define the minimum allocation unit. The NTFS defines mechanisms for
determining how many sectors make up a cluster. More information on how clusters and
sectors relate can be found in Inside the Windows NT File System, previously
incorporated by reference. For the purposes of the present invention, the correspondence
between clusters and sectors is irrelevant. The scheme illustrated in Figure 4 will work
irrespective of the number of sectors that make up a cluster.

As illustrated in Figure 4, data file 104 contains several areas where the data is
zero. These areas are VCN 2-8 and VCN 11-13. Since these clusters contain zeroes,
there is no need to store the zero data on the disk as long as the location of the zero data
can be reconstructed when an entity reads the data from the disk. In other words, the only
clusters that need be physically stored on the disk are clusters VCN 0-1, VCN 9-10, and
VCN 14. This is illustrated in Figure 4 generally as 116 where VCN 0 and 1 are stored
in LCN 1137 and LCN 1138, respectively, and VCNs 9, 10, and 14 are stored in
LCNs 1411, 1412, and 1413, respectively.

10

15

20

25

30

WO 99/32995 PCT/US98/18691

15

By making appropriate entries into the data attribute, the location of the zero
clusters can be reconstructed when the data is read. An example data attribute is
illustrated generally as 118. As an example for how the data attribute allow
reconstruction of the location of zero clusters, examine entry 120. Entry 120 indicates
that VCN 0 starts at LCN 1137 and has a consecutive cluster count of 2. Thus, VCN 0
and 1 will be read starting at LCN 1137. Note, however, that entry 122 starts with
VCN 9. Thus, VCN 2-8 must be zero clusters and, when a read request is received, these
clusters can be reconstructed by inserting an appropriate number of zero clusters after
VCN 0 and 1. More information on how NTFS uses sparse file technology to compress
and eliminate zero clusters can be found in Chapter 6 of Inside the ‘Windows NT File
System, previously incorporated by reference.

Referring now to Figure 5, a flow diagram illustrating the steps one embodiment
may utilize to backup or archive data stored locally to remote storage is presented. In
Figure 5, the method begins with decision block 124 which identifies whether sufficient
data resides in local storage for staging to a staging area. If sufficient data does not reside
in local storage for staging, the system waits for a given period of time illustrated in
Figure 5 by time delay 126, and then rechecks the amount of data in local storage. Note
that decision block 124 and time delay 126 illustrate a mechanism whereby a system
periodically checks to see if sufficient data resides in local storage to be staged to the
staging file. Rather than staging data to a staging area when a given amount of local
storage is utilized, other embodiments of the system may stage whatever data is available
on a periodic basis without regard to the amount of data in local storage. In other words,
the triggering event for staging data to the staging area would be the expiration of an
elapsed time rather than the accumulation of an amount of data.

Returning now to Figure 5, once the triggering event has occurred, whether that
be the accumulation of a given amount of data, the expiration of a given time delay, the
receipt of a command to stage data, or any other triggering event, execution proceeds to
step 128 where data is copied from local storage to the staging file. This step may take
one of several forms. For example, if the data is to reside both locally and remotely,
step 128 may be a simple copy to duplicate the appropriate data so that the data resides

both in local storage and in the staging file. If, however, data is to be moved from local

10

15

20

25

30

WO 99/32995 PCT/US98/18691

16

storage to remote storage, then step 128 may move the data from local storage to the
staging area so the data resides only in the staging area and not in the local storage area.
Note, however, that even if the data was to be moved from local storage to remote
storage, it may be desirable to simply copy the data at this point so that the data resides
both in local storage and in the staging file and then after the data has been successfully
placed on remote storage delete or eliminate the data from local storage. This is
explained in greater detail in conjunction with step 136 below.

After the data has been copied to the staging file in step 128, the system then
awaits for a second triggering event. In various embodiments, this triggering event may
be one of several things. For example, an embodiment may use a command received
from an outside source as the triggering event. In another embodiment, the triggering
event may comprise the expiration of a fixed time. In yet another embodiment, the
triggering event may comprise the presence of a certain amount of data in the staging file.
In the embodiment illustrated in Figure 5, the triggering event is the expiration of a time
delay. Thus, decision block 130 determines whether it is time to establish a remote
storage connection. If not, then execution proceeds to decision block 138 where a
determination is made as to whether more data should be appended to the staging file.
This determination may be made based on any triggering event, as previously explained
in conjunction with decision block 124 and decision block 130. If more data that should
be appended to the staging file exists, then the data is appended in step 140. In either
case, execution proceeds back to decision block 130 in order to wait for the occurrence
of the second triggering event that will initiate connection to remote storage.

As previously explained, remote storage does not necessarily mean that the
backup or archive storage is located at a remote location. The designation means that the
backup or archive storage is separate from the local storage area. On the other hand, the
remote storage may indeed be located at a remote location. Thus, depending on the type
of storage used as the remote storage, establishing a connection to the remote storage may
simply be writing to a disk or other storage device attached to the computer where the
backup or archive service is located, or may be much more complicated and involved

establishing connections over networks, dial-up connections, connections through other

10

15

20

25

30

WO 99/32995 PCT/US98/18691

17

computer systems, and so forth. The mechanism used will depend on the type of remote
storage used.

When the second triggering event occurs and it is time to establish a connection
to remote storage, step 132 then indicates that the data should be transferred from the
staging file to remote storage. The exact mechanism used to transfer the data will depend
upon the type of remote storage used. As previously discussed, this may be nothing more
than writing data to a local disk or other storage device or this may require transferring
data over various networks or via various computer systems or other intermediate devices
to remote storage.

After the data has been transferred to remote storage, there is no need to maintain
the data in the staging file. Thus, step 134 indicates that the data storage used to store the
transferred data in the staging file should be deallocated. This will reduce the amount of
storage used by the staging file. If sparse file technology, such as that illustrated in
Figure 4, is used as the staging file, then deallocating the storage space may be nothing
more than replacing the transferred data with zeroes. The mechanism used for sparse file
technology will then eliminate the zero clusters and will not store them on whatever
storage medium is used for the staging file. If other technologies are used to stage the
data, then other mechanisms may be necessary to deallocate the storage in the staging
file. It is preferable, however, that the deallocation procedure incur minimal overhead
for the backup or archive system.

Step 136 of Figure 5 indicates that local storage may then be deallocated if
applicable. If the intent is to maintain copies of the data both locally and remotely, then
obviously it would not be desirable to deallocate the local storage when data had been
copied to remote storage. If, on the other hand, it was desirable to maintain the data
remotely and not locally, then once the data has been moved to remote storage, it may
safely be deleted from local storage. As previously discussed, it may also be possible to
perform this step after step 128. Whether the step is performed after step 128 or in the
present location as illustrated in Figure 5 will depend upon various design choices made
when implementing a particular system.

Referring next to Figure 6, a particular example of a situation where the data

should be maintained remotely but not locally is presented. This example occurs in the

10

15

20

25

30

WO 99/32995 PCT/US98/18691

18

context of a log file. Log files are used in various situations where it is desirable to track
a sequence of events or changes as they occur. As an example, NTFS uses a log file to
track changes made to a disk volume in order to allow recovery of the volume should
errors occur. In Figure 6, the log file service or producer of the log file is illustrated
as 142. The log file service creates a log file shown generally as 144. Because a log file
captures a stream or sequence of events or changes, log files may be implemented in an
append-only type file where new entries are appended to the end of a file as the events
or changes occur. Depending upon the type of events logged and the frequency with
which these events occur, a log file may grow quite large. In addition, it is often not
necessary to maintain the complete log file in local storage. It is generally sufficient to
maintain a short portion or archive history of the log file with access to any records in the
log file if needed. This situation makes a log file an ideal candidate for an archiving
service which takes log entries that meet a certain criteria and archives them remote to
storage and removes them from local storage.

In Figure 6, the log file is illustrated as having three portions. New log
records 146 contains the new records being placed in the log file. Active history
records 148 contains that portion of the log file which should be maintained on local
storage in order to have immediate access to the records contained therein. Old history
records 150 contains those records which have met the archive criteria and can be safely
archived on remote storage and removed from local storage.

Generally, an embodiment of the present system will utilize various triggering
events to indicate that certain actions should be performed. For example, one
embodiment of the present system may check every so often to identify whether any
records in the log file fall into the old history records category and may be migrated
safely to archive storage. As another alternative, perhaps the archive system monitors
how many records fall into the old history category and when a sufficient number have
accumulated, then the archive system begins the migration process. As yet another
example, perhaps the archive system is responsive to outside requests to begin archive
operations. Other triggering events may also be utilized. Embodiments that use such
triggering events may comprise means for monitoring when a pre-determined event

occurs. Based on these pre-determined events occurring, the archive system may take

10

15

20

25

30

WO 99/32995 PCT/US98/18691

19

various actions. In Figure 6 such means for monitoring when a pre-determined event
occurs is illustrated, for example, by event monitor 152. Event monitor 152 may be
implemented in a wide variety of ways. In modern operating systems, for example, many
programs, services, or processes, are event driven. This means that the service, program,
or process will take certain actions when certain events occur. Thus, services, programs,
processes, and the like built on this model may contain built-in mechanisms for
monitoring when various events occur. These mechanisms may be modified
appropriately to watch for desired triggering events and to initiate appropriate action
when the events occur. As another alternative, the means for monitoring may go out and
actively check to see whether certain events have occurred. In the embodiment illustrated
in Figure 6, event monitor 152 may trigger movement of old history records 150 into a
staging area, such as staging area 154.

Since old history records 150 are to be moved from log file 144 to staging
area 154, embodiments within the scope of this invention may comprise means for
moving data from a local storage area used for data storage by a data producing service
to a staging area. By way of example, and not limitation, in Figure 6 such means for
moving data comprises data movement block 156. In Figure 6, data movement block 156
is responsible for copying old history records 150 to staging area 154. Any mechanism
which allows old history records 150 to be copied to staging area 154 may be utilized for
data movement block 156. Although it is anticipated that data movement block 156 will
simply copy old history records 150 to staging area 154, as previously explained in
conjunction with Figure 5 it may also be possible to move old history records 150 to
staging area 154 so that they are eliminated from log file 144 as they are moved.

The embodiment in Figure 6 uses staging area 154 to stage data prior to transfer
to remote storage, such as remote storage 158. It is anticipated that old history
records 150 will comprise a mixture of zero data and non-zero data. Embodiments in the
present invention may, therefore, comprise means for storing sparse data comprising a
mixture of zero data and non-zero data in a storage space substantially equal to the
storage space required to store the non-zero data. In other words, embodiments may
comprise a mechanism for storing data in a storage space substantially equal to the

storage space required to store only the non-zero data. In Figure 6 such a means is

10

15

20

25

30

WO 99/32995 PCT/US98/18691

20

illustrated, by way of example, by staging area 154. As previously discussed, such a
means may be implemented by using sparse file storage technology, such as the sparse
file technology explained in conjunction with Figure 4. Other mechanisms may also be
used such as various data compression mechanisms and the like. The overall goal is to
reduce the storage space required for staging and, to a lesser extent, reduce the overhead
associated with managing the storage space of the staging area.

Once data has been moved into staging area 154, when a second triggering event
occurs, the data is transferred from staging area 154 to remote storage 158. The
triggering event may again be monitored by a means for monitoring when a
pre-determined event occurs, such as event monitor 152. In Figure 6, the means for
transferring data from a staging area to remote storage is illustrated by remote archive
block 160. Archive block 160 may be any mechanism which extracts appropriate
information from staging area 154 and transfers the information via an appropriate
mechanism to remote storage 158. Recall that remote storage 158 may comprise a wide
variety of storage mechanisms, such as a disk or other storage device directly attached
to the computer where the archive system resides, a remote storage device accessed via
anetwork or dial-up connection, or a remote storage device accessed via an intermediary
computer or other intermediary device. In Figure 6, the process of extracting the
appropriate information from staging area 154 and transferring it to remote storage 158
is illustrated by archive records 162 being transferred to remote storage 158 via remote
storage communication infrastructure 164. Remote storage communication
infrastructure 164 may comprise any mechanism necessary to communicate and transfer
information to remote storage 158.

Once data has been éafely transferred to remote storage 158, the data may be
safely removed from the log file and/or the staging area. Embodiments within the scope
of this invention may therefore comprise means for deallocating storage space in a local
storage area and/or means for deallocating storage space in a staging area. In Figure 6,
such means is illustrated by way of example by storage deallocation block 166. In
Figure 6, an embodiment is presented that deals with a log file. In such a situation, it is
probably not necessary to maintain the old history records in the log file. Thus, the

means for deallocating may include both means for deallocating local storage and means

10

15

20

WO 99/32995 PCT/US98/18691

21

for deallocating staging area storage. Note that the means for deallocating each of these
individual storage types may be very different. How the storage is deallocated will be
dependent upon the particular storage mechanism used for the staging area and local
storage. If, for example, staging area 154 is implemented using the sparse file technology
previously explained, the archive records that have been transferred to remote storage 158
may be deallocated simply be zeroing them in the sparse file used for staging area 154.
Then, as previously explained in conjunction with Figure 4, the nature of the sparse file
will result in the zeroed sectors being physically deallocated from the file. Similar
mechanisms may be used for log file 144, although it is not necessary to use the same
sparse file technology.

In summary, the present invention provides systems and methods for backing up
or archiving data to remote storage in such a manner that the staging storage area uses a
minimal amount of storage space and is managed with little or no overhead to the backup
or archive system.

The present invention may be embodied in other specific forms without departing
from its spirit or essential characteristics. The described embodiments are to be
considered in all respects only as illustrative and not restrictive. The scope of the
invention is, therefore, indicated by the appended claims rather than by the foregoing
description. All changes which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What is claimed is:

10

15

20

25

30

WO 99/32995 PCT/US98/18691

22

1. A method of archiving data generated by a data producing service in a
computer system, the method comprising the steps of:
storing data produced by said data producing service in a local storage
area until a first predetermined event occurs;
copying at least a portion of the data stored in said local storage area to
a sparse file when said first predetermined even occurs; and
transferring at least a portion of the data in said sparse file to a remote
storage area when a second predetermined event occurs.

2. A method of archiving data as recited in claim 1 wherein said first
predetermined event occurs when said local storage area contains a predetermined
amount of data.

3. A method of archiving data as recited in claim 1 wherein said first
predetermined event occurs when a predetermined time has elapsed.

4. A method of archiving data as recited in claim 1 wherein said first
predetermined event comprises a direction from an outside source to archive data.

5. A method of archiving data as recited in claim 1 wherein said second
predetermined event occurs when said sparse file contains a predetermined amount of
data.

6. A method of archiving data as recited in claim 1 wherein said second
predetermined event occurs when a predetermined time has elapsed.

7. A method of archiving data as recited in claim 1 wherein said second
predetermined event comprises a direction from an outside source to initiate transfer of
data to said remote storage area.

8. A method of archiving data as recited in claim 1 further comprising the
step of deallocating local storage space after one of either said copying step or said
transferring step.

9. A method of archiving data as recited in claim 1 further comprising the
step of deallocating space in said sparse file substantially equal to said portion of data
transferred to said remote storage area.

10. A method of archiving data generated by a data producing service in a

computer system, the method comprising the steps of:

10

15

20

25

WO 99/32995 PCT/US98/18691

23

storing data in a local storage area used by said data producing service
until a first predetermined event occurs;

copying at least a portion of the data stored in said local storage area when
said first predetermined even occurs to a staging storage area adapted for
temporarily storing data;

transferring at least a portion of the data in said staging storage area to a

remote storage area when a second predetermined event occurs; and

deallocating an amount of storage in said staging storage area
substantially equal to the amount of data that was transferred from said staging
storage area to said remote storage area such that the storage space occupied by
said staging storage area is reduced by the amount of deallocated storage.

11. A method of archiving data as recited in claim 11 wherein said staging
storage area comprises a sparse file that substantially eliminates any storage space for
nonzero data.

12. A method of archiving data as recited in claim 12 wherein said first
predetermined event occurs when said local storage area contains a predetermined
amount of data.

13. A method of archiving data as recited in claim 13 wherein said second
predetermined event occurs when a predetermined time has elapsed.

14. A method of archiving data as recited in claim 12 wherein said first
predetermined event occurs when a predetermined time has elapsed.

15. A method of archiving data as recited in claim 15 wherein said second
predetermined event occurs when a predetermined amount of data has accumulated in
said sparse file.

16. A method of archiving data generated by a data producing service in a
computer system, the method comprising the steps of:

storing data in a local storage area of first storage medium used by the
data producing service until either a first predetermined time has elapsed or until

said local storage area contains a predetermined amount of data;

WO 99/32995 PCT/US98/18691
24

copying at least a portion of the data stored in said local storage area to
a staging storage area adapted for temporarily storing data on said first storage
medium;

transferring at least a portion of the data in said staging storage area to a
remote storage area on a second storage medium when either a second

predetermined time has elapsed or until said staging storage area contains a

predetermined amount of data; and

deallocating an amount of storage in said staging storage area
substantially equal to the amount of data that was transferred from said staging
storage area to said remote storage area such that the storage space occupied by
said staging storage area on said first storage medium is reduced by the amount
of deallocated storage.

17. A method of archiving data as recited in claim 17 wherein said staging
storage area comprises a sparse file that substantially eliminates any storage space for
nonzero data.

18. A computer readable medium having computer executable instructions
comprising:

means for storing sparse data comprising a mixture of zero data and
nonzero data in a storage space substantially equal to the storage space required
to store said nonzero data;

means for moving data from a local storage area used for data storage by
a data producing service to said means for storing sparse data;

means for monitoring when a predetermined event occurs and for
initiating movement of data by said means for moving data; and

means for transferring data from said means for storing to a remote
storage medium.

19. A computer readable medium as recited in claim 19 wherein said means
for storing sparse data comprises a sparse file that substantially eliminates any storage
space for said zero data.

20. A computer readable medium as recited in claim 19 further comprising

means for deallocating storage space in said means for storing sparse data when said data

10

15

20

25

30

WO 99/32995 PCT/US98/18691

25

is transferred from said means for storing sparse data to said remote storage medium
thereby decreasing the storage space required to store the data remaining in said means
for storing sparse data.

21. A computer readable medium as recited in claim 19 further comprising
means for deallocating storage space in said local storage area thereby decreasing the
storage space used to store the data produced by said data producing service.

22. A computer readable medium having computer executable instructions
comprising:

means for storing sparse data comprising a mixture of zero data and
nonzero data in a storage space substantially equal to the storage space required
to store said nonzero data;

means for moving data from a local storage area used for data storage by
a data producing service to said means for storing sparse data;

means for monitoring when a predetermined event occurs and for
initiating movement of data by said means for moving data;

means for transferring data from said means for storing to a remote
storage medium; and

means for deallocating storage space in said means for storing when data
is moved from said means for storing to said remote storage medium thereby
decreasing the storage space required to store the data remaining in said means
for storing.

23. A computer readable medium as recited in claim 23 wherein said means
for storing sparse data comprises a sparse file that substantially eliminates any storage
space for said zero data.

24. A computer readable medium as recited in claim 24 further comprising
means for deallocating storage space in said local storage area thereby decreasing the
storage space used to store the data produced by said data producing service.

25. A computer readable medium having computer executable instructions
comprising:

means for storing sparse data comprising a mixture of zero data and

nonzero data in a storage space substantially equal to the storage space required

10

15

WO 99/32995

26

to store said nonzero data, said means for storing physically allocating storage
space on a storage medium for said nonzero data and said means for storing
substantially eliminating storage space on said storage medium required to store
said zero data;

means for moving data from a local storage area used for data storage by
a data producing service to said means for storing sparse data;

means for monitoring when a predetermined event occurs and for
initiating movement of data by said means for moving data;

means for transferring data from said means for storing to a remote
storage medium, and

means for deallocating storage space in said means for storing when data
is moved from said means for storing to said remote storage medium thereby
decreasing the storage space required to store the data remaining in said means

for storing.

PCT/US98/18691

PCT/US98/18691

WO 99/32995

Ly

SWY¥90ud %€ yiva € s3naom |96 sWyyoo¥d | SE W3LSAS
03 NOILYIIddY —9¢ " KYHO04d | WYYOO0¥d ¥IHLO| NOILYOITddY | 9NILYH3dO
43LNdN0D | —gp oz<o$mx P
3L0W3Y 0
Z\
Nm//_
YYOMLIN e
vagy 30m _
| Y190 |
b~ ! 30v343UNt | [30vauaiN | | sowan | | 3ovduaing Wy¥90dd _
| PN g AN 340 3140 |
FONLEN ¥3HY 14001 WI¥3S VIO | (w0 oinovm| [¥sia a¥vH |
: J / J 1€ $31Na0N !
| d i v b ﬁ & Aﬂ WYH90¥d ¥3HIO | | |
— |
b 914 |) S WILHS B syaoowd | ||
| £ P % NOILYOIddY | | |
|
| —
| = " onaiso ||
“ g | z i |
4OLINOW LIND w7 (Wvy) ||
" INISS30044 azzzzssoooooood |
| % o8 |
—— |
|
_ b7 (woy) |1
m — NN\ |||||||||||||||| |
_ 0 ASON3N WALSAS | |
|

PCT/US98/18691

WO 99/32995

¢ 914
99 98
TIRRY)
$32018 $¥3018
viva y1va
08 8
" ; “ R W3LSAS
3714 3SY¥YdS ONIOYLS YivQ m)4% JATHOYY
o L M P
10
J 3!
’ X n
§32018
viva
0L

il
Eg

J9VH0LS
110W3Y 2

$%0018
WY | g

3NLONYLS YU
NOLLYOINHND?
394018
N g

89
Pl

i 3713 Y1Y0

430N004d V1va

e

S N

09

WO 99/32995 PCT/US98/18691

90— STANDARD INFORMATION
92— ATTRIBUTE LIST

94— NAME

96— SECURITY DESCRIPTOR
98— OTHER SYSTEM ATTRIBUTES
100— DATA

10— OTHER USER ATTRIBUTES

FIG. 3

PCT/US98/18691

WO 99/32995

7 Ol

F T W
Z o 5 -
l L8} 0 ,WN:
02
S¥3LsNTd | NOT NOA
10 ON_ | ONILYVLS | ONILYVLS
JLNGTSLIY VIV
h B SW0h TW0L Lo 841 L8H
TR PN
[|
9 08 i
o
g 2951 y
y o 0
bigh 618b 248k [hi8h 0M8L /7 1SSH 9SSh SSSI #SSH €8Sb sueh pueh feieh zu8h
S¥ILsNTD | NOT NOA LA ST e A T
10 'ON | ONILYYLS | ONILYVLS , |
JLNGTILLY VIVC AN s/: AN Q/N/m/m 7 m/w/v 0
iy 904 805 “ 801 “80} “90} 90 304 804 801 “ 801 “ 0} 801 804 “ 90}

0t

9

/E:

904

WO 99/32995

PCT/US98/18691
516
(- sr)
> 126
Y U /
TIME DELAY

SUFFICIENT
DATA IN LOCAL
STORAGE FOR
STAEING

YES

128
/

COPY DATA FROM LOCAL
STORAGE TO STAGING FILE

Y

138

TIME TO
ESTABLISH
REMOTE STORAGE
CONNECTION

MORE
DATA TO
APPEND TO
STAGIN}G FILE

VES /132 VES /140
TRANSFER DATA FROM STAGING APPEND DATA TO
FILE T0 REMOTE STORAGE STORAGE FILE
| 1%

DEALLOCATE STAGING ~
FILE STORAGE

: 136
Y //
DEALLOCATE LOCAL
STORAGE IF APPLICABLE

FIG. 5

PCT/US98/18691

WO 99/32995

L

v3dY ONIQYLS

9 914

39Y4018
R Sq40038 | ¢,
ST4003Y | AYOLSIH €10
INHOYY o~
S04003 o VOO0 | 3iva0nvag
INHEY | — 79, \\
99}
$04003 INHOYY INZH3ON | $04003Y
NHOWY N\ 310K3Y o _OLSIH 070
JNLINYLSYUN] . w0,/ w1/
NOILYJINNWIOD 904093y
1IL0S §OLINOM $04003y | Sqyoo3y | A¥OLSIH 010
vol INIA3 9 —T 901 MIN | AYOLSIH JAILOY) Ji
]
Ne\ 3714 901 wz\

3;\«

/

301AY3S
3114 901

Ni\

INTERNATIONAL SEARCH REPORT International application No.
PCT/US98/18691

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOG6F 17/30 ;
US CL :707/204

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 707/204; 707/200-203, 205-206; 711/161,162

Documentation searched other than minimum documentation to the extent that such documents are included inthe fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
APS, Proquest IEEE CD-ROM

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 5,564,037 A (LAM) 08 October 1996, Fig. 1, element 10; col. | 1-25
4, lines 40-42, col. 5, lines 50-58, col. 6, lines 6, 10-12, 25-31

X US 5,617,566 A (MALCOLM) 01 April 1997, col. 3; col. 5 line 28 | 1-25
through col. 6, line 62

D Further documents are listed in the continuation of Box C. D See patent family annex.

Special categories of cited documents: T later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

A" document defining the general state of the art which is not considersd the principle or theory underlying the invention
to be of particular relevance
R . . .
: : : . X" document of particular relevance; the claimed invention cannot be
"E" document published on or aft . >, .]
E earlier ment publi v after the international filing date considered novel or cannot be considered to involve an inventive step
"L" document which may throw doubts on priority claun(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other
special reason (as specified) "y document of particular relev{ance;.me claimed invention cannot be
considered to involve an inventive step when the document is
"0 document referrning to an oral disclosure. use. exhibition or other combined with one or more other such documents, such combination

means being obvious to a person skilled in the art

“pr document published prior to the international {iling date but later than n g« docwnent member of the same patent family
the priority date clauned
Date of the actual completion of the international search Date of mailing of the international search report
12 NOVEMBER 1998 08 APR 1999
Name and mailing address ot the ISA/US Authorized officer

Commissioner of Patents and Trademarks
Box PCT

-
Washington, D.C. 20231 THOMAS G. BLACK /
Facsimile No. (703) 305-3230 Telephone No. (703) 305-9707

Form PCT/ISA/210 (second sheet)(July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

