一种废弃活性炭的配煤炼焦及其炼焦方法

本发明公开了一种废弃活性炭的配煤炼焦，是由原料煤、废活性炭和促进剂按比例100：0.5-2；0.5-1的重量比制成的。本发明使用了废活性炭，实现了资源的有效利用，克服了废活性炭的无序排期，同时，废活性炭中的不挥发的碳及灰分等经过热解炉的炼焦形成焦炭，减少原料煤的使用量，并充分回收废活性炭中吸附的苯类物质，无环境污染，具有极大的经济和社会效益。本发明的促进剂可促进废活性炭与原料煤炼焦形成焦炭，所制备的焦炭中固定碳含量提高至88.1%以上，焦炭质量大幅度提高。
1. 一种掺废弃活性炭的配煤炼焦，其特征在于，是由原料煤、废弃活性炭和促进剂按照100:0.5-2:0.5-1的重量比配制得的；

所述原料煤是由以下重量百分比的原料组成的：1/3焦炭45-50%、贫瘦煤20-21%、主焦
炭16%、肥煤14-18%。

2. 根据权利要求1所述的配煤炼焦，其特征在于，所述废弃活性炭为吸附苯类物质至饱和状态的活性炭，含水率为15-25%，苯类物质含量为20-40wt%。

3. 根据权利要求1所述的配煤炼焦，其特征在于，所述促进剂为硅微粉和硅藻土按照1:0.6-1的重量比配制的。

4. 根据权利要求2所述的配煤炼焦，其特征在于，所述苯类物质为苯、甲苯和二甲苯中
的一种。

5. 一种权利要求1-4中任一项所述掺废弃活性炭的配煤炼焦的炼焦方法，其特征在于，
是由以下步骤制得的：

1) 将废弃活性炭和1/3焦炭掺混，得新1/3焦炭；

2) 将促进剂和贫瘦煤掺混均匀，得新贫瘦煤；

3) 将新1/3焦炭、新贫瘦煤、主焦煤和肥煤至煤仓经配煤后送至粉碎机粉碎，粉碎粒级
小于3mm，且2mm以下粒度的煤占60%以上，得煤料。

4) 将煤料送至焦炉炉中炼焦，温度为1250-1300℃，结焦时间为20-25h，炼焦过程中产
生的焦煤气经氨水喷洒冷却，焦油及氨水等液态物质与煤气分离，静置分离后得粗焦油；剩
余的焦煤气进入洗苯塔，经贫油洗油的喷淋被洗油吸收，蒸馏后得粗苯类物质；炼焦完成后
冷却出焦，得焦炭。

6. 根据权利要求5所述的炼焦方法，其特征在于，所述焦炭的强度指标：固定碳含量为
88.1%以上，灰分为12.4-13.1%，硫分为0.76-0.78%，抗磨指标M25为90.8-91.1%，抗碎强度
M10为4.7-5.5%，反应性CRI为32.5-34.5%，反应后强度CSR为55.4-57.5%。

7. 根据权利要求5所述的炼焦方法，其特征在于，所述氨水温度为77-80℃，所述氨水
压力＞0.2MPa；所述贫油温度为27-30℃。
一种掺废弃活性炭的配煤炼焦及其炼焦方法

技术领域
[0001] 本发明涉及炼焦技术领域，具体涉及一种掺废弃活性炭的配煤炼焦及其炼焦方法。

背景技术
[0002] 活性炭是一种多孔吸附材料，广泛应用于化工、环保、航天等许多领域，由于其比表面积大及丰富的空隙结构，可吸附苯、甲苯、二甲苯，用于废水过滤等。但是，活性炭经脱色或吸附饱和后，其内部的空隙结构被吸附质堵塞，从而丧失吸附能力，每年产生上亿吨的废弃活性炭被丢弃后，对造成资源浪费又产生二次污染。
[0003] 对于废弃活性炭的处置方面，有部分企业由于没有利用和处置装置，所产生的废弃活性炭只能暂存在场内，随意堆放，易于污染，没有采用相应的安全处置措施，对周围地下、地表水、大气等造成严重污染。部分废弃活性炭回收利用项目，也由于综合利用规模小、技术落后、化工和环保知识缺乏，在加工过程中存在对空气、水体、土壤环境的二次污染。
[0004] 现有的废弃活性炭再生的方法有：生物再生法热再生法、化学再生法、超声波再生法、湿式氧化再生法、超临界流体萃取技术法及光催化再生法等，但由于废弃活性炭的结构、孔径、吸附物质等的不同，导致废弃活性炭回收再生方法的适应性较差，再生过程释放的挥发物质也容易导致大气污染。

发明内容
[0005] 本发明针对现有技术的不足，提供了一种降低配煤成本，有效保障质量的低成本的掺废弃活性炭的配煤炼焦。
[0006] 本发明还提供了该称废弃活性炭的配煤炼焦的炼焦方法。
[0007] 本发明的目的通过如下技术方案实现的：
一种掺废弃活性炭的配煤炼焦，是由原料煤、废弃活性炭和促进剂按照100:0.5~2:0.5~1的重量比制得的；
所述原料煤是由以下重量百分比的原料组成的：1/3焦煤45~50%、贫瘦煤20~21%、主焦煤16%、肥煤14~18%。
[0008] 所述的，废弃活性炭为吸附苯类物质至饱和状态的活性炭，含水率为5~25%，苯类物质含量为20~40wt%。
[0009] 所述的，促进剂为硅微粉和硅藻土按照1:0.6~1的重量比制得的。
[0010] 所述的，苯类物质为苯、甲苯和二甲苯中的一种。
[0011] 一种掺废弃活性炭的配煤炼焦的炼焦方法，是由以下步骤制得的；
1) 将废弃活性炭和1/3焦煤掺混，得新1/3焦煤；
2) 将促进剂和贫瘦煤掺混均匀，得新贫瘦煤；
3) 将新1/3焦煤、新贫瘦煤、主焦煤和肥煤至煤仓经配煤后送至粉碎机粉碎，粉碎粒级
小于3mm,且2mm以下粒度的煤占60%以上,得燃料

4) 将燃料送至焦炭炉中炼焦,温度为1250-1300℃,结焦时间为20-25h,炼焦过程中产生的荒煤气经氨水喷洒冷却,焦油及氨水等液态物质与煤气分离,静置分离后得粗焦油;剩余的荒煤气进入洗苯塔,经贫油洗油的喷洒被洗油吸收,蒸汽后得粗苯类物质;炼焦完成后冷却出炉,得焦炭。

[0012] 所述的,焦炭的强度指标:固定碳含量为88.1%以上,灰分为12.4-13.1%,硫分为0.76-0.78%,磨损率M25为90.8-91.1%,抗碎强度M10为4.7-5.5%,反应性CRI为32.5-34.5%,反应后强度CSR为55.4-57.5%。

[0013] 所述的,氨水温度为77-80℃,所述氨水压力≥0.2MPa;所述贫油温度为27-30℃。

[0014] 本发明的有益效果:

1. 本发明使用了废弃物活性炭,实现了资源的有效利用,克服了废弃物活性炭的堆放,填埋等对环境造成的污染,及再生不正当造成的废弃物活性炭吸附的有毒挥发性物质的无序排放;同时,废弃物活性炭中的不挥发的炭及灰分等经过煤焦炉中炼焦形成焦炭,减少了原料煤的使用量;并充分回收废弃物活性炭中吸附的苯类物质,无环境污染,具有极大的经济和社会效益。

[0015] 2. 本发明的促进剂可促进废弃物活性炭与原料煤炼焦形成焦炭,所制备的焦炭中固定碳含量提高至88.1%以上,焦炭质量大幅提高。

具体实施方式

[0016] 下面结合具体实施例对本发明做进一步的说明。

[0017] 实施例1

一种掺废弃物活性炭的配煤炼焦,是由原料煤、废弃物活性炭和促进剂按照90:0.5:1的重量比配制得的:

所述原料煤是由以下重量百分比的原料组成的:1/3焦炭50%,高硫煤20%,主焦煤16%,肥煤14%。

[0018] 所述的,废弃物活性炭为吸附苯类物质至饱和状态的活性炭,含水率为15%,苯类物质含量为40wt%。

[0019] 所述的,促进剂为硅藻土和硅藻土按照1:0.6的重量比配制得的。

[0020] 所述的,苯类物质为苯。

[0021] 一种掺废弃物活性炭的配煤炼焦的炼焦方法,是由以下步骤制得的:

1) 将废弃物活性炭和1/3焦炭均匀散,得新1/3焦炭;
2) 将促进剂和高硫煤均匀混合,得新高硫煤;
3) 将新1/3焦炭、新高硫煤、主焦煤和肥煤至煤仓配煤后送至粉碎机粉碎,粉碎粒级小于3mm,且2mm以下粒度的煤占60%以上,得燃料;
4) 将燃料送至焦炭炉中炼焦,温度为1250-1300℃,结焦时间为20-25h,炼焦过程中产生的荒煤气经氨水喷洒冷却,焦油及氨水等液态物质与煤气分离,静置分离后得粗焦油;剩余的荒煤气进入洗苯塔,经贫油洗油的喷洒被洗油吸收,蒸汽后得粗苯类物质;炼焦完成后冷却出炉,得焦炭。

[0022] 所述的,焦炭的强度指标:固定碳含量为88.23%,灰分为13.1%,硫分为0.76%,磨损率M25为91.1%,抗碎强度M10为4.75%,反应性CRI为33.1%,反应后强度CSR为55.4%。
所述的，氨水温度为77~80℃,所述氨水压力>0.2MPa;所述贫油温度为27~30℃。

实施例2

一种掺废弃活性炭的配煤炼焦，是由原料料、废弃活性炭和促进剂按照100:1:0.8的重量比例制得的；

所述原料料是由以下重量百分比的原料组成的：1/3焦煤48%、贫瘦煤20%、主焦煤16%、

肥煤16%。

所述的，废弃活性炭为吸附苯类物质至饱和状态的活性炭，含水率为20%，苯类物质含量为30wt%。

所述的，促进剂为硅微粉和硅藻土按照1:0.8的重量比例制得的。

所述的，苯类物质为甲苯。

一种掺废弃活性炭的配煤炼焦的炼焦方法，是由以下步骤制得的；

1) 将废弃活性炭和1/3焦煤掺混，得新1/3焦煤；
2) 将促进剂和贫瘦煤掺混均匀，得新贫瘦煤；
3) 将新1/3焦煤、新贫瘦煤、主焦煤和肥煤至煤仓经配煤后送至粉碎机粉碎，粉碎粒级

小于3mm，且2mm以下粒度的煤占60%以上，得煤料；
4) 将煤料送至煤焦炉中炼焦，温度为1250~1300℃，结焦时间为20~25h，炼焦过程中产生的

荒煤气经氨水喷酒冷却，焦油及氨水等液态物质与煤气分离，静置分离后得粗焦油；剩余

的荒煤气进入洗苯塔，经贫油洗油的喷酒被洗油吸收，蒸馏后得粗苯类物质；炼焦完成后

冷却焦炭，得焦炭。

所述的，焦炭的强度指标：固定碳含量为89.10%，灰分为12.44%，硫分为0.78%，抗

磨指标M25为90.86%，抗碎强度M10为5.50%，反应性CRI为34.5%，反应后强度CSR为

55.82%。

实施例3

一种掺废弃活性炭的配煤炼焦，是由原料料、废弃活性炭和促进剂按照100:2:0.5的重量比例制得的；

所述原料料是由以下重量百分比的原料组成的：1/3焦煤45%、贫瘦煤21%、主焦煤16%、

肥煤18%。

所述的，废弃活性炭为吸附苯类物质至饱和状态的活性炭，含水率为25%，苯类物质

含量为20wt%。

所述的，促进剂为硅微粉和硅藻土按照1:1的重量比例制得的。

所述的，苯类物质为二甲苯。

一种掺废弃活性炭的配煤炼焦的炼焦方法，是由以下步骤制得的；

1) 将废弃活性炭和1/3焦煤掺混，得新1/3焦煤；
2) 将促进剂和贫瘦煤掺混均匀，得新贫瘦煤；
3) 将新1/3焦煤、新贫瘦煤、主焦煤和肥煤至煤仓经配煤后送至粉碎机粉碎，粉碎粒级

小于3mm，且2mm以下粒度的煤占60%以上，得煤料；
4) 将煤料送至煤焦炉中炼焦，温度为1250~1300℃，结焦时间为20~25h，炼焦过程中产生的

荒煤气经氨水喷酒冷却，焦油及氨水等液态物质与煤气分离，静置分离后得粗焦油；剩余

的荒煤气进入洗苯塔，经贫油洗油的喷酒被洗油吸收，蒸馏后得粗苯类物质；炼焦完成后
冷却出焦，得焦炭。

【0036】所述的，焦炭的强度指标：固定碳含量为88.14%，灰分为12.88%，硫分为0.78%，抗磨指标M25为90.88%，抗碎强度M10为4.96%，反应性CRI为32.5%，反应后强度CSR为57.5%。

【0037】所述的，氨水温度为77-80℃，所述氨水压力＞0.2MPa；所述贫油温度为27-30℃。