
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0379103 A1

Prophete et al.

US 20150379103A1

(43) Pub. Date: Dec. 31, 2015

(54)

(71)

(72)

(21)

(22)

(63)

SYSTEM, METHOD AND COMPUTER
PROGRAMI PRODUCT FOR PERFORMINGA
SYNCHRONIZATION OF DATA

Applicant: salesforce.com, inc., San Francisco, CA
(US)

Inventors: Didier Prophete, San Francisco, CA
(US); Ronald F. Fischer, San Francisco,
CA (US); Sönke Rohde, San Francisco,
CA (US)

Appl. No.: 14/788,538

Filed: Jun. 30, 2015

Related U.S. Application Data
Continuation of application No. 14/059,376, filed on
Oct. 21, 2013, now Pat. No. 9,100,240, which is a

524

,
Search System 640

Application Tenant Management System 816
Setup Process

Mechanism 638

Save
ROutines 636

PLSOOL
634

18

Environment
510

PrOCessor Memory
System 512A System 512B

Input Output
System 512C System 512D

(60)

(51)

(52)

(57)

continuation of application No. 13/117,034, filed on
May 26, 2011, now Pat. No. 8,595,382.
Provisional application No. 61/352.312, filed on Jun.
7, 2010.

Publication Classification

Int. C.
G06F 7/30 (2006.01)
U.S. C.
CPC G06F 17/30575 (2013.01)

ABSTRACT

In accordance with embodiments, there are provided mecha
nisms and methods for performing a synchronization of data.
These mechanisms and methods for performing a synchroni
Zation of data can enable a more efficient synchronization,
time and resource savings, an enhanced user experience, etc.

523
512

525 User Storage 514
Application MetaData 516

Process
602

512

Patent Application Publication Dec. 31, 2015 Sheet 1 of 6 US 2015/0379103 A1

IDENTIFYING ACLIENT AND SERVER OF THE
SYSTEM

DETERMINING THAT A USER HAS
SUCCESSFULLY LOGGED INTO AN
APPLICATION OF THE CLIENT

PERFORMING ASYNCHRONIZATION OF DATA
ASSOCIATED WITH THE APPLICATION BETWEEN

THE CLIENT AND THE SERVER

FIGURE 1

Patent Application Publication Dec. 31, 2015 Sheet 2 of 6 US 2015/0379103 A1

s 200
202

LOGIN
SUCCESSFUL

204
fetch metadata from
server (and save it to

local cache)

setup DMS

full sync

APPLICATION
READY

206

208

210

FIGURE 2

Patent Application Publication Dec. 31, 2015 Sheet 3 of 6 US 2015/0379103 A1

300

3O2
LOGIN

SUCCESSFUL

load metadata
from Cache

304

310

DMS Commit

?y - success fetch metadata from server 314
312 (but don't replace cached

version yet)

uncommited
eS y items?

O

Compare new
metadata

diffs no diffs

328 Ask if user 3.18

326
save metadata

wants to wipe
out DB now

320 - wipe out DB (using
th Racial no changes ADC changes?
- reinitialize DMS

4.
changes

Continue full incremental
full sync incremental sync incremental sync Sync

APPLICATION
READY

yes

330

322

FIGURE 3

Patent Application Publication Dec. 31, 2015 Sheet 4 of 6 US 2015/0379103 A1

400

402 S.
SYNC START

404
incremental sync

4

ADC changes?

fetch metadata from server
410 (but don't replace cached

Version)

changes

no changes

412

compare new
diffs metadata Alert End User

restart
incremental sync

SYNC END

FIGURE 4

no diffs

Continue full incremental 414
incremental sync Sync

Patent Application Publication Dec. 31, 2015 Sheet 5 of 6 US 2015/0379103 A1

Tenant System Program

Storage Storage
517 52

PrOCeSSOr
System Process Space

Application 520

NetWOrk System 516
Interface

8

Platform

Environment 510

FIGURE 5

Patent Application Publication Dec. 31, 2015 Sheet 6 of 6 US 2015/0379103 A1

523

Tenant Space 512
524

C C

E, 525 User Storage 514
Application MetaData 516

Application Tenant Management System 816
Setup PrOCeSS PrOCeSS

Mechanism 638 610 602
Save

ROutines 636

PL/SOOL
634

518

Environment
510

PrOCeSSOr Memory
System 512A System 512B

512

Input Output
System 512C System 512D

FIGURE 6

US 2015/0379 103 A1

SYSTEM, METHOD AND COMPUTER
PROGRAMI PRODUCT FOR PERFORMINGA

SYNCHRONIZATION OF DATA

CLAIM OF PRIORITY

0001. This application is a continuation of U.S. applica
tion Ser. No. 14/059,376, filed Oct. 21, 2013, which is a
continuation of U.S. application Ser. No. 13/117,034, filed
May 26, 2011, which claims the benefit of U.S. Provisional
Patent Application No. 61/352.312, filed Jun. 7, 2010, the
entire contents of which are incorporated herein by reference.

COPYRIGHT NOTICE

0002. A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile repro
duction by anyone of the patent document or the patent dis
closure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF THE INVENTION

0003. One or more implementations relate generally to
data storage, and more particularly to maintaining data con
sistency between entities.

BACKGROUND

0004. The subject matter discussed in the background sec
tion should not be assumed to be prior art merely as a result of
its mention in the background section. Similarly, a problem
mentioned in the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized in the prior art.
The Subject matter in the background section merely repre
sents different approaches, which in and of themselves may
also be inventions.
0005 Conventional systems may desire to store one or
more copies of data in a plurality of locations. For example,
identical data records may be stored both at a client of a
system as well as a server of the system, and may be periodi
cally synchronized (e.g., for purposes of maintaining updated
data, etc.). Unfortunately, traditional data synchronization
techniques have been associated with various limitations.
0006. Just by way of example, systems may perform gen
eral data synchronizations that may fail to account for one or
more specific circumstances associated with the client and/or
server. Additionally, the general data synchronizations may
perform unnecessary transfers of data, may transfer data at
inconvenient times, etc. Accordingly, it is desirable to Syn
chronize data between a client and a server in an optimized
fashion.

BRIEF SUMMARY

0007. In accordance with embodiments, there are pro
vided mechanisms and methods for performing a synchroni
Zation of data. These mechanisms and methods for perform
ing a synchronization of data can enable a more efficient
synchronization, time and resource savings, an enhanced user
experience, etc.
0008. In an embodiment and by way of example, a method
for performing a synchronization of data is provided. In one
embodiment, a client and a server of a system are identified.

Dec. 31, 2015

Additionally, it is determined that a user has successfully
logged into an application of the client. Further, a synchroni
Zation of data associated with the application is performed
between the client and the server.
0009 While one or more implementations and techniques
are described with reference to an embodiment in which
performing a synchronization of data is implemented in a
system having an application server providing a front end for
an on-demand database system capable of Supporting mul
tiple tenants, the one or more implementations and techniques
are not limited to multi-tenant databases nor deployment on
application servers. Embodiments may be practiced using
other database architectures, i.e., ORACLER, DB2(R) by IBM
and the like without departing from the scope of the embodi
ments claimed.
0010. Any of the above embodiments may be used alone
or together with one another in any combination. The one or
more implementations encompassed within this specification
may also include embodiments that are only partially men
tioned or alluded to or are not mentioned or alluded to at all in
this brief summary or in the abstract. Although various
embodiments may have been motivated by various deficien
cies with the prior art, which may be discussed or alluded to
in one or more places in the specification, the embodiments
do not necessarily address any of these deficiencies. In other
words, different embodiments may address different defi
ciencies that may be discussed in the specification. Some
embodiments may only partially address some deficiencies or
just one deficiency that may be discussed in the specification,
and some embodiments may not address any of these defi
ciencies.

BRIEF DESCRIPTION OF THE DRAWINGS

0011. In the following drawings like reference numbers
are used to refer to like elements. Although the following
figures depict various examples, the one or more implemen
tations are not limited to the examples depicted in the figures.
0012 FIG. 1 illustrates a method for performing a syn
chronization of data, in accordance with one embodiment;
0013 FIG. 2 illustrates a method for performing system
synchronization during an initial login, in accordance with
another embodiment;
0014 FIG. 3 illustrates a method for performing system
synchronization during a Subsequent login, in accordance
with another embodiment;
0015 FIG. 4 illustrates a method for performing system
synchronization while an application is running, in accor
dance with another embodiment;
0016 FIG. 5 illustrates a block diagram of an example of
an environment wherein an on- demand database system
might be used; and
0017 FIG. 6 illustrates a block diagram of an embodiment
of elements of FIG. 5 and various possible interconnections
between these elements.

DETAILED DESCRIPTION

General Overview

0018 Systems and methods are provided for performing a
synchronization of data.
0019. As used herein, the term multi-tenant database sys
tem refers to those systems in which various elements of
hardware and software of the database system may be shared

US 2015/0379 103 A1

by one or more customers. For example, a given application
server may simultaneously process requests for a great num
ber of customers, and a given database table may store rows
for a potentially much greater number of customers.
0020 Next, mechanisms and methods for performing a
synchronization of data will be described with reference to
example embodiments.
0021 FIG. 1 illustrates a method 100 for performing a
synchronization of data, in accordance with one embodiment.
As shown in operation 102, a client and a server of a system
are identified. In one embodiment, the client of the system
may include a desktop computer, a laptop computer, a hand
held device (e.g., a cell phone, personal digital assistant
(PDA), etc.), or any other device capable of performing com
putation. In another embodiment, the server of the system
may include a server computer, a cloud computing environ
ment, a multi-tenant on-demand database system, etc.
0022. Additionally, in one embodiment, the client may be
one of a plurality of clients of the system. In another embodi
ment, the server may be one of a plurality of servers of the
system. In yet another embodiment, the client and the server
of the system may communicate utilizing a network. In still
another embodiment, both the client and the server may store
copies of the same data. For example, a copy of data stored in
the server may also be stored in the client. In another example,
a copy of data stored in the client may also be stored in the
server. In another embodiment, the data may be associated
with an application of the client.
0023. Further, it should be noted that, as described above,
Such multi-tenant on-demand database system may include
any service that relies on a database system that is accessible
over a network, in which various elements of hardware and
software of the database system may be shared by one or more
customers (e.g. tenants). For instance, a given application
server may simultaneously process requests for a great num
ber of customers, and a given database table may store rows
for a potentially much greater number of customers. Various
examples of such a multi-tenant on-demand database system
will be set forth in the context of different embodiments that
will be described during reference to subsequent figures.
0024. Also, as shown in operation 104, it is determined
that a user has successfully logged into an application of the
client. In one embodiment, the application of the client may
include an application that is installed within the client. For
example, the application may include a messaging applica
tion, a personal information manager, etc. In another embodi
ment, the application may include data that is shared with the
server of the system. For example, the application may be
associated with a local copy of data stored within the server of
the system.
0025. In addition, in one embodiment, the user may log
into the client utilizing a graphical user interface (GUI). For
example, the user may input login information (e.g., a user
name, password, etc.) into the GUI using an input device
(e.g., a keyboard, mouse, etc.) and select an icon to confirm
that such input information is correct. In another embodi
ment, it may be determined that the user has successfully
logged into the application by comparing the input login with
login information stored at the client, at the server, etc. Fur
ther, in one embodiment, the user may include a customer of
a service that is provided by the system. For example, the user
may subscribe to one or more services provided by the server
of the system.

Dec. 31, 2015

0026. Further still, as shown in operation 106, a synchro
nization of data associated with the application is performed
between the client and the server. In one embodiment, the data
may include data stored at the client and/or server that is used
by the application. For example, the data may include object
data, detail data, metadata, etc. In another embodiment, the
synchronization may be performed in response to the deter
mination that the user has successfully logged into the appli
cation of the client. For example, the synchronization may be
performed immediately after the user Successfully logs into
the application.
0027. In yet another embodiment, performing the syn
chronization may include determining whether the user has
logged into the application for the first time. For example, if
it is determined that the user has logged into the application
for the first time, then one or more elements of metadata may
be retrieved from the server and stored at a local cache of the
client. In another example, a local database may be initialized
within the client once the elements of metadata are fetched
and cached at the client. In yet another example, a full Syn
chronization may occur between the client and the server
once the database is initialized.

0028. Also, in one embodiment, performing the synchro
nization may include determining whether the user has pre
viously logged into the application of the client. For example,
if it is determined that the user has previously logged into the
application, all uncommitted modifications of the data on the
client may be sent to the server. Additionally, in another
embodiment, performing the synchronization may include
retrieving metadata from the server to the client and compar
ing the metadata to metadata retrieved during an earlier login
(e.g., metadata retrieved in response to the first user login,
metadata retrieved in response to a login before the current
login, etc.).
0029. Further, another embodiment, performing the syn
chronization may include conditionally clearing a local data
base of the client in response to the determination that differ
ences exist between the retrieved metadata and the metadata
retrieved during an earlier login. For example, in response to
the determination that differences exist, the user may be asked
whether to clear the local client database and perform a full
synchronization between the client and server or to maintain
the local client database and perform an incremental synchro
nization between the client and the server.

0030. Further still, in one embodiment, performing the
synchronization may include determining whether any
dataset changes have occurred with respect to a user of the
system. In another embodiment, performing the synchroni
Zation may include performing an incremental synchroniza
tion between the client and the server if it is determined that
no dataset changes have occurred with respect to the user. In
yet another embodiment, performing the synchronization
may include performing a full incremental synchronization
between the client and the server if it is determined that
dataset changes have occurred with respect to the user.
0031. Also, in one embodiment, a runtime synchroniza
tion may be performed while the application is running on the
client. In another embodiment, the runtime synchronization
may be performed at a predetermined interval. In yet another
embodiment, the runtime synchronization may be performed
after the initial synchronization of data is performed respon
sive to the user logging onto the application. In still another
embodiment, the runtime synchronization may include deter

US 2015/0379 103 A1

mining whether any dataset changes have occurred with
respect to the user since the last synchronization.
0032. Additionally, in one embodiment, performing the
runtime synchronization may include retrieving metadata
from the server to the client and comparing the metadata to
metadata retrieved during an earlier login if dataset changes
have occurred with respect to the user since the last synchro
nization. In another embodiment, performing the runtime
synchronization may include alerting the user in response to
a determination that differences exist between the retrieved
metadata and the metadata retrieved during the earlier login.
0033. In this way, the synchronization of the client and
server may be integrated into a login process of the user to
ensure consistency between the client and server. Addition
ally, the system synchronization may be dynamically
adjusted based on the type of login that is being performed
(e.g., an initial login, a Subsequent login, etc.). Further, the
client and server may be additionally synchronized while the
application is running in order to ensure that data stored at
both the client and server is current for a predetermined time
period. Further still, the system may examine and/or deter
mine a magnitude of the differences between data at the client
and server in order to determine various consistency solu
tions.
0034 FIG. 2 illustrates a method 200 for performing sys
tem synchronization during an initial login, in accordance
with another embodiment. As an option, the method 200 may
be carried out in the context of the functionality of FIG.1. Of
course, however, the method 200 may be carried out in any
desired environment. The aforementioned definitions may
apply during the present description.
0035. As shown in operation 202, it is determined that an

initial login is successful. In one embodiment, the Successful
login may be performed by a user logging into an application
installed at a client of a system. For example, the user may
enter a user name and password into the application, which
are Subsequently verified by the application.
0036 Additionally, as shown in operation 204, metadata is
fetched from a server of the system and saved in a local cache
of the client. In one embodiment, the metadata may describe
one or more types of data stored at the server. For example, the
metadata may describe one or more objects stored within the
system (e.g., an account object, an opportunity object, a lead
object, etc.), one or more fields for an object (e.g., a name
field, an address field, a phone number field, etc.) In another
embodiment, the metadata may describe one or more types of
data associated with the application of the client. For
example, the metadata may describe one or more objects that
are used by an account of the user within the application.
0037. Further, as shown in operation 206, a data manage
ment service (DMS) is set up at the client. In one embodi
ment, setting up the DMS at the client may include creating a
local database at the client. For example, a local database may
be created at the client that includes tables for each object on
the server described by the metadata. Further still, as shown in
operation 208, a full synchronization is performed between
the client and server of the system. For example, all user data
on the server that is associated with the application of the
client may be copied and sent to the client, where it may be
stored in the local database of the client. In one embodiment,
the data sent during the synchronization may include data of
object types described by the fetched metadata.
0038 Also, as shown in operation 210, it is determined
that the application on the client is ready for use. In one

Dec. 31, 2015

embodiment, it may be determined that the application on the
client is ready once it is confirmed that the full synchroniza
tion has been Successfully performed. In this way, the appli
cation on the client of the system may initialize and populate
a local database of application data associated with the user
from data stored on the server.
0039 FIG. 3 illustrates a method 300 for performing sys
tem synchronization during a Subsequent login, in accor
dance with another embodiment. As an option, the method
300 may be carried out in the context of the functionality of
FIGS. 1-2. Of course, however, the method 300 may be car
ried out in any desired environment. The aforementioned
definitions may apply during the present description.
0040. As shown in operation 302, it is determined that a
Subsequent login is successful. In one embodiment, the Sub
sequent login may include any login after an initial login. For
example, the Subsequent login may occur an hour after an
initial login, a day after an initial login, a week after an initial
login, etc. Additionally, as shown in operation 304, metadata
is loaded locally from a client cache. In one embodiment, the
metadata may representall object types associated with a user
of an application on the client.
0041 Further, as shown in operation 306, the DMS is set
up at the client. In one embodiment, setting up the DMS at the
client may include setting up one or more data structures in
the memory of the client that reflect one or more attributes of
data stored in the client. In this way, an overview of the data
in the client database may be created.
0042. Further still, as shown in decision 308, it is deter
mined whether any uncommitted items exist at the client. In
one embodiment, it may be determined whether any modifi
cations have been made to data at the client that have not yet
been synchronized with the server. For example, a user may
have made changes to the data on the client while the client
was not connected to the server. In another example, the user
may have made changes to the data on the client and may have
not committed those changes, may have made the changes
locally, etc.
0043. If it is determined in decision 308 that one or more
uncommitted items exist at the client, then in operation 310
such items are committed (e.g., sent, etc.) from the DMS to
the server. If it is determined in decision 308 that no uncom
mitted items exist at the client, or if the committing of Such
items is confirmed in operation 312, then in operation 314 all
metadata associated with the application at the client is
fetched from the server to the client. In one embodiment, the
metadata may include all object types and field types associ
ated with the application that are currently stored at the server.
In this way, a Summary of data stored at the server may be
retrieved after it is confirmed that all local data has been sent
to the server.
0044 Additionally, in decision 316 it is determined
whether a difference exists between the metadata fetched
from the server and the metadata loaded from the client cache.
If in decision 316 it is determined that differences do exist,
then in decision318 it is determined whethera user desires to
immediately clear their client database. In one embodiment,
immediately clearing the client database (e.g., wiping the
database, etc.) may include removing all object types and
fields from the database of the client.

0045. If in decision 318 it is determined that the user
desires to immediately clear their client database, then in
operation 320 the client database is cleared using the meta
data stored in the client, the new metadata from the server is

US 2015/0379 103 A1

saved to the client, and the DMS in reinitialized. In one
embodiment, the DMS may be set up at the client using the
updated metadata retrieved from the server. Further, as shown
in operation 322, a full synchronization is performed. In this
way, the latest data on the server may be recreated at the
client. In one embodiment, one or more data conflicts may be
resolved during the synchronization. See, for example, U.S.
patent application Ser. No. 13/116,829, filed May 26, 2011,
which is hereby incorporated by reference in its entirety, and
which describes exemplary techniques for resolving data
conflicts.

0046. Further still, if in decision 318 it is determined that
the user does not desire to immediately clear their client
database, then in operation 324 an incremental synchroniza
tion is performed between the client and the server. In one
embodiment, the incremental synchronization may include
only sending changes made to data objects and fields
described by the metadata loaded from the client cache, and
not sending changes or additions to new data objects and
fields described by the metadata fetched from the server. In
another embodiment, a full synchronization may be per
formed by the user at a later date. In this way, the user may not
be forced to perform a full Synchronization at an inconvenient
time (e.g., during a trip, during a time of low connectivity,
before a meeting, etc.).
0047. Also, if in decision 316 it is determined that no
differences exist, then in operation 326 the metadata fetched
from the server is saved at the client. In this way, the client
may have an updated description of all data associated with
the application that is stored at the server. Additionally, as
shown in operation 328, an incremental synchronization is
performed between the client and server. In one embodiment,
the client may request all application data that has changed
since the last synchronization between the client and server.
0048. Additionally, in decision 330 it is determined
whether any dataset changes have occurred with respect to the
user of the application at the client. For example, a new
member may have joined a team where the user is a member,
and the new member's joining may increase the access of the
user to additional objects within the server (e.g., additional
account access, etc.). In another example, the user may
change districts and may need access to accounts for a new
district. In one embodiment, a flag may be created that notes
whether dataset changes have occurred or whether new meta
data exist at the server.

0049. If it is determined in decision 330 that dataset
changes have occurred, then in operation 332 a full incremen
tal synchronization is performed. In one embodiment, all data
associated with the application may be requested from the
server by the client, and the number of objects that need to be
sent may be recalculated, but no changes may be made to the
local database at the client.
0050. Further, if it is determined in decision 330 that
dataset changes have not occurred, then in operation 334 the
incremental synchronization performed in operation 328 is
continued. Also, as shown in operation 336, it is determined
that the application on the client is ready for use. In this way,
operations such as full synchronizations, incremental Syn
chronizations, and client database clearing may be performed
dynamically based on the state of the data within the system
as well as the status of the user of the application at the client.
0051 FIG. 4 illustrates a method 400 for performing sys
tem synchronization while an application is running, in accor
dance with another embodiment. As an option, the method

Dec. 31, 2015

400 may be carried out in the context of the functionality of
FIGS. 1-3. Of course, however, the method 400 may be car
ried out in any desired environment. The aforementioned
definitions may apply during the present description.
0052. As shown in operation 402, the synchronization is
started between a client and server of a system while an
application of the client is running. In one embodiment, a user
may have already logged into an application of the client
before the synchronization has started. In another embodi
ment, a previous synchronization may have been performed
upon the user Successfully logging into the application of the
client. In yet another embodiment, the synchronization may
be started according to a schedule. For example, a synchro
nization interval may be determined, and the synchronization
may start according to that interval.
0053 Additionally, as shown in operation 404, an incre
mental synchronization is performed. Further, as shown in
decision 406, it is determined whether any dataset changes
have occurred with respect to the user of the application at the
client. If it is determined in decision 406 that dataset changes
have not occurred, then in operation 408 the incremental
synchronization performed in operation 404 is continued. For
example, any objects or fields in the server that have changed
since the last synchronization may be updated at the client.
0054 If it is determined in decision 406 that dataset
changes have occurred, then in operation 410 metadata is
fetched from the server, but such fetched metadata does not
replace the metadata stored at the client. Additionally, as
shown in decision 412, it is determined whether a difference
exists between the metadata fetched from the server and the
metadata loaded from the client cache. If in decision 412 it is
determined that no differences exist, then in operation 414 a
full incremental synchronization is performed.
0055. Further, if in decision 412 it is determined that dif
ferences do exist, then in operation 416 the end user is alerted.
In one embodiment, a notice (e.g., a pop up window, message,
electronic mail message, etc.) may be provided to the user that
differences exist between the metadata at the server and cli
ent. For example, a pop-up window may be presented to the
user that may allow the user to restart the application on the
client or ignore the alert and continue using the application.
Additionally, as shown in operation 418, the incremental
synchronization is restarted.
0056 Further still, as shown in operation 420, the synchro
nization is completed. In one embodiment, the synchroniza
tion may be verified as having Successfully completed. In this
way, data may be synchronized between the client and server
of the system while the application is running on the client in
order to ensure that data on the client and server is kept
current. Additionally, the system may ensure that data
changes are detected and propagated at login and other key
events, conflicting data is resolved, and users are informed of
relevant events.

System Overview
0057 FIG. 5 illustrates a block diagram of an environment
510 wherein an on-demand database system might be used.
Environment 510 may include user systems 512, network
514, system 516, processor system 517, application platform
518, network interface 520, tenant data storage 522, system
data storage 524, program code 526, and process space 528.
In other embodiments, environment 510 may not have all of
the components listed and/or may have other elements instead
of, or in addition to, those listed above.

US 2015/0379 103 A1

0.058 Environment 510 is an environment in which an
on-demand database system exists. User system 512 may be
any machine or system that is used by a user to access a
database user System. For example, any of user systems 512
can be a handheld computing device, a mobile phone, a laptop
computer, a work station, and/or a network of computing
devices. As illustrated in FIG. 5 (and in more detail in FIG. 6)
user systems 512 might interact via a network 514 with an
on-demand database system, which is system 516.
0059 An on-demand database system, such as system
516, is a database system that is made available to outside
users that do not need to necessarily be concerned with build
ing and/or maintaining the database system, but instead may
be available for their use when the users need the database
system (e.g., on the demand of the users). Some on-demand
database systems may store information from one or more
tenants stored into tables of a common database image to
form a multi-tenant database system (MTS). Accordingly,
“on-demand database system 516 and “system 516” will be
used interchangeably herein. A database image may include
one or more database objects. A relational database manage
ment system (RDMS) or the equivalent may execute storage
and retrieval of information against the database object(s).
Application platform 518 may be a framework that allows the
applications of system 516 to run, such as the hardware and/or
Software, e.g., the operating system. In an embodiment, on
demand database system 516 may include an application
platform 518 that enables creation, managing and executing
one or more applications developed by the provider of the
on-demand database system, users accessing the on-demand
database system via user systems 512, or third party applica
tion developers accessing the on-demand database system via
user systems 512.
0060. The users of user systems 512 may differ in their
respective capacities, and the capacity of a particular user
system 512 might be entirely determined by permissions
(permission levels) for the current user. For example, where a
salesperson is using a particular user system 512 to interact
with system 516, that user system has the capacities allotted
to that salesperson. However, while an administrator is using
that user system to interact with system 516, that user system
has the capacities allotted to that administrator. In systems
with a hierarchical role model, users at one permission level
may have access to applications, data, and database informa
tion accessible by a lower permission level user, but may not
have access to certain applications, database information, and
data accessible by a user at a higher permission level. Thus,
different users will have different capabilities with regard to
accessing and modifying application and database informa
tion, depending on a user's security or permission level.
0061 Network 514 is any network or combination of net
works of devices that communicate with one another. For
example, network 514 can be any one or any combination of
a LAN (local area network), WAN (wide area network), tele
phone network, wireless network, point-to-point network,
star network, token ring network, hub network, or other
appropriate configuration. As the most common type of com
puter network in current use is a TCP/IP (Transfer Control
Protocol and Internet Protocol) network, such as the global
internetwork of networks often referred to as the “Internet'
with a capital “I” that network will be used in many of the
examples herein. However, it should be understood that the

Dec. 31, 2015

networks that the one or more implementations might use are
not so limited, although TCP/IP is a frequently implemented
protocol.
0062. User systems 512 might communicate with system
516 using TCP/IP and, at a higher network level, use other
common Internet protocols to communicate. Such as HTTP,
FTP, AFS, WAP, etc. In an example where HTTP is used, user
system 512 might include an HTTP client commonly referred
to as a “browser for sending and receiving HTTP messages
to and from an HTTP server at system 516. Such an HTTP
server might be implemented as the sole network interface
between system 516 and network 514, but other techniques
might be used as well or instead. In some implementations,
the interface between system 516 and network 514 includes
load sharing functionality, such as round-robin HTTP request
distributors to balance loads and distribute incoming HTTP
requests evenly over a plurality of servers. At least as for the
users that are accessing that server, each of the plurality of
servers has access to the MTS data; however, other alterna
tive configurations may be used instead.
0063. In one embodiment, system 516, shown in FIG. 5,
implements a web-based customer relationship management
(CRM) system. For example, in one embodiment, system 516
includes application servers configured to implement and
execute CRM software applications as well as provide related
data, code, forms, webpages and other information to and
from user systems 512 and to store to, and retrieve from, a
database system related data, objects, and Webpage content.
With a multi-tenant system, data for multiple tenants may be
stored in the same physical database object, however, tenant
data typically is arranged so that data of one tenant is kept
logically separate from that of other tenants so that one tenant
does not have access to another tenant's data, unless such data
is expressly shared. In certain embodiments, system 516
implements applications other than, or in addition to, a CRM
application. For example, system 516 may provide tenant
access to multiple hosted (standard and custom) applications,
including a CRM application. User (or third party developer)
applications, which may or may not include CRM, may be
supported by the application platform 518, which manages
creation, storage of the applications into one or more database
objects and executing of the applications in a virtual machine
in the process space of the system 516.
0064 One arrangement for elements of system 516 is
shown in FIG. 5, including a network interface 520, applica
tion platform 518, tenant data storage 522 for tenant data 523,
system data storage 524 for system data 525 accessible to
system 516 and possibly multiple tenants, program code 526
for implementing various functions of system 516, and a
process space 528 for executing MTS system processes and
tenant-specific processes, such as running applications as part
of an application hosting service. Additional processes that
may execute on system 516 include database indexing pro
CCSSCS.

0065. Several elements in the system shown in FIG. 5
include conventional, well-known elements that are
explained only briefly here. For example, each user system
512 could include a desktop personal computer, workstation,
laptop, PDA, cell phone, or any wireless access protocol
(WAP) enabled device or any other computing device capable
of interfacing directly or indirectly to the Internet or other
network connection. User system 512 typically runs an HTTP
client, e.g., a browsing program, Such as Microsoft's Internet
Explorer browser, Netscape's Navigator browser, Opera's

US 2015/0379 103 A1

browser, or a WAP-enabled browser in the case of a cell
phone, PDA or other wireless device, or the like, allowing a
user (e.g., Subscriber of the multi-tenant database system) of
user system 512 to access, process and view information,
pages and applications available to it from system 516 over
network 514. Each user system 512 also typically includes
one or more user interface devices, such as a keyboard, a
mouse, trackball, touchpad, touch screen, pen or the like, for
interacting with a graphical user interface (GUI) provided by
the browser on a display (e.g., a monitor Screen, LCD display,
etc.) in conjunction with pages, forms, applications and other
information provided by system 516 or other systems or
servers. For example, the user interface device can be used to
access data and applications hosted by system 516, and to
perform searches on Stored data, and otherwise allow a user to
interact with various GUI pages that may be presented to a
user. As discussed above, embodiments are Suitable for use
with the Internet, which refers to a specific global internet
work of networks. However, it should be understood that
other networks can be used instead of the Internet. Such as an
intranet, an extranet, a virtual private network (VPN), a non
TCP/IP based network, any LAN or WAN or the like.
0066. According to one embodiment, each user system
512 and all of its components are operator configurable using
applications, such as a browser, including computer code run
using a central processing unit Such as an Intel Pentium R
processor or the like. Similarly, system 516 (and additional
instances of an MTS, where more than one is present) and all
of their components might be operator configurable using
application(s) including computer code to run using a central
processing unit such as processor System 517, which may
include an Intel Pentium(R) processor or the like, and/or mul
tiple processor units. A computer program product embodi
ment includes a machine-readable storage medium (media)
having instructions stored thereon/in which can be used to
program a computer to perform any of the processes of the
embodiments described herein. Computer code for operating
and configuring system 516 to intercommunicate and to pro
cess webpages, applications and other data and media content
as described herein are preferably downloaded and stored on
a hard disk, but the entire program code, or portions thereof,
may also be stored in any other volatile or non-volatile
memory medium or device as is well known, such as a ROM
or RAM, or provided on any media capable of storing pro
gram code. Such as any type of rotating media including
floppy disks, optical discs, digital versatile disk (DVD), com
pact disk (CD), microdrive, and magneto-optical disks, and
magnetic or optical cards, nanoSystems (including molecular
memory ICs), or any type of media or device suitable for
storing instructions and/or data. Additionally, the entire pro
gram code, orportions thereof, may be transmitted and down
loaded from a software source over a transmission medium,
e.g., over the Internet, or from another server, as is well
known, or transmitted over any other conventional network
connection as is well known (e.g., extranet, VPN, LAN, etc.)
using any communication medium and protocols (e.g., TCP/
IP, HTTP, HTTPS, Ethernet, etc.) as are well known. It will
also be appreciated that computer code for implementing
embodiments can be implemented in any programming lan
guage that can be executed on a client system and/or server or
server system such as, for example, C, C++, HTML, any other
markup language, JavaTM, JavaScript, ActiveX, any other
Scripting language, such as VBScript, and many other pro

Dec. 31, 2015

gramming languages as are well known may be used. (JavaTM
is a trademark of Sun MicroSystems, Inc.).
0067. According to one embodiment, each system 516 is
configured to provide webpages, forms, applications, data
and media content to user (client) systems 512 to support the
access by user systems 512 as tenants of system 516. As such,
system 516 provides security mechanisms to keep each ten
ant's data separate unless the data is shared. If more than one
MTS is used, they may be located in close proximity to one
another (e.g., in a server farm located in a single building or
campus), or they may be distributed at locations remote from
one another (e.g., one or more servers located in city A and
one or more servers located in city B). As used herein, each
MTS could include one or more logically and/or physically
connected servers distributed locally or across one or more
geographic locations. Additionally, the term "server” is
meant to include a computer system, including processing
hardware and process space(s), and an associated Storage
system and database application (e.g., OODBMS or
RDBMS) as is well known in the art. It should also be under
stood that “server system’’ and “server are often used inter
changeably herein. Similarly, the database object described
herein can be implemented as single databases, a distributed
database, a collection of distributed databases, a database
with redundant online or offline backups or other redundan
cies, etc., and might include a distributed database or storage
network and associated processing intelligence.
0068 FIG. 6 also illustrates environment 510. However, in
FIG. 6 elements of system 516 and various interconnections
in an embodiment are further illustrated. FIG. 6 shows that
user system 512 may include processor system 512A.
memory system 512B, input system 512C, and output system
512D. FIG. 6 shows network514 and system 516. FIG. 6 also
shows that system 516 may include tenant data storage 522,
tenant data 523, system data storage 524, system data 525,
User Interface (UI) 630, Application Program Interface (API)
632, PL/SOOL 634, save routines 636, application setup
mechanism 638, applications servers 600-600 system pro
cess space 602, tenant process spaces 604, tenant manage
ment process space 610, tenant storage area 612, user storage
614, and application metadata 616. In other embodiments,
environment 510 may not have the same elements as those
listed above and/or may have other elements instead of, or in
addition to, those listed above.
0069. User system 512, network 514, system 516, tenant
data storage 522, and system data storage 524 were discussed
above in FIG. 5. Regarding user system 512, processor sys
tem 512A may be any combination of one or more processors.
Memory system 512B may be any combination of one or
more memory devices, short term, and/or long term memory.
Input system 512C may be any combination of input devices,
Such as one or more keyboards, mice, trackballs, Scanners,
cameras, and/or interfaces to networks. Output system 512D
may be any combination of output devices, such as one or
more monitors, printers, and/or interfaces to networks. As
shown by FIG. 6, system 516 may include a network interface
520 (of FIG. 5) implemented as a set of HTTP application
servers 600, an application platform 518, tenant data storage
522, and system data storage 524. Also shown is system
process space 602, including individual tenant process spaces
604 and a tenant management process space 610. Each appli
cation server 600 may be configured to tenant data storage
522 and the tenant data 523 therein, and system data storage
524 and the system data 525 therein to serve requests of user

US 2015/0379 103 A1

systems 512. The tenant data 523 might be divided into indi
vidual tenant storage areas 612, which can be eitheraphysical
arrangement and/or a logical arrangement of data. Within
each tenant storage area 612, user storage 614 and application
metadata 616 might be similarly allocated for each user. For
example, a copy of a user's most recently used (MRU) items
might be stored to user storage 614. Similarly, a copy of MRU
items for an entire organization that is a tenant might be stored
to tenant storage area 612. AUI 630 provides a user interface
and an API 632 provides an application programmer interface
to system 516 resident processes to users and/or developers at
user systems 512. The tenant data and the system data may be
stored in various databases, such as one or more OracleTM
databases.

0070 Application platform 518 includes an application
setup mechanism 638 that Supports application developers
creation and management of applications, which may be
saved as metadata into tenant data storage 522 by save rou
tines 636 for execution by subscribers as one or more tenant
process spaces 604 managed by tenant management process
610 for example. Invocations to Such applications may be
coded using PL/SOOL 634 that provides a programming
language style interface extension to API 632. A detailed
description of some PL/SOOL language embodiments is dis
cussed in commonly owned U.S. Pat. No. 7,730,478 entitled,
METHOD AND SYSTEM FOR ALLOWING ACCESS TO
DEVELOPED APPLICATIONS VIA A MULTI-TENANT
ON-DEMAND DATABASE SERVICE, by Craig Weissman,
filed Sep. 21, 2007, which is incorporated in its entirety herein
for all purposes. Invocations to applications may be detected
by one or more system processes, which manages retrieving
application metadata 616 for the subscriber making the invo
cation and executing the metadata as an application in a
virtual machine.

0071. Each application server 600 may be communicably
coupled to database systems, e.g., having access to system
data 525 and tenant data 523, via a different network connec
tion. For example, one application server 600, might be
coupled via the network514 (e.g., the Internet), another appli
cation server 600 might be coupled via a direct network
link, and another application server 600 might be coupled by
yet a different network connection. Transfer Control Protocol
and Internet Protocol (TCP/IP) are typical protocols for com
municating between application servers 600 and the database
system. However, it will be apparent to one skilled in the art
that other transport protocols may be used to optimize the
system depending on the network interconnect used.
0072. In certain embodiments, each application server 600

is configured to handle requests for any user associated with
any organization that is a tenant. Because it is desirable to be
able to add and remove application servers from the server
pool at any time for any reason, there is preferably no server
affinity for a user and/or organization to a specific application
server 600. In one embodiment, therefore, an interface system
implementing a load balancing function (e.g., an F5 Big-IP
load balancer) is communicably coupled between the appli
cation servers 600 and the user systems 512 to distribute
requests to the application servers 600. In one embodiment,
the load balancer uses a least connections algorithm to route
user requests to the application servers 600. Other examples
of load balancing algorithms, such as round robin and
observed response time, also can be used. For example, in
certain embodiments, three consecutive requests from the
same user could hit three different application servers 600,

Dec. 31, 2015

and three requests from different users could hit the same
application server 600. In this manner, system 516 is multi
tenant, wherein system 516 handles storage of, and access to,
different objects, data and applications across disparate users
and organizations.
0073. As an example of storage, one tenant might be a
company that employs a sales force where each salesperson
uses system 516 to manage their sales process. Thus, a user
might maintain contact data, leads data, customer follow-up
data, performance data, goals and progress data, etc., all
applicable to that user's personal sales process (e.g., intenant
data storage 522). In an example of a MTS arrangement, since
all of the data and the applications to access, view, modify,
report, transmit, calculate, etc., can be maintained and
accessed by a user System having nothing more than network
access, the user can manage his or her sales efforts and cycles
from any of many different user systems. For example, if a
salesperson is visiting a customer and the customer has Inter
net access in their lobby, the salesperson can obtain critical
updates as to that customer while waiting for the customer to
arrive in the lobby.
0074. While each user's data might be separate from other
users’ data regardless of the employers of each user, some
data might be organization-wide data shared or accessible by
a plurality of users or all of the users for a given organization
that is a tenant. Thus, there might be some data structures
managed by system 516 that are allocated at the tenant level
while other data structures might be managed at the user level.
Because an MTS might support multiple tenants including
possible competitors, the MTS should have security protocols
that keep data, applications, and application use separate.
Also, because many tenants may opt for access to an MTS
rather than maintain their own system, redundancy, up-time,
and backup are additional functions that may be implemented
in the MTS. In addition to user-specific data and tenant spe
cific data, System 516 might also maintain system level data
usable by multiple tenants or other data. Such system level
data might include industry reports, news, postings, and the
like that are sharable among tenants.
0075. In certain embodiments, user systems 512 (which
may be client systems) communicate with application servers
600 to request and update system-level and tenant-level data
from system 516 that may require sending one or more que
ries to tenant data storage 522 and/or system data storage 524.
System 516 (e.g., an application server 600 in system 516)
automatically generates one or more SQL statements (e.g.,
one or more SQL queries) that are designed to access the
desired information. System data storage 524 may generate
query plans to access the requested data from the database.
0076 Each database can generally be viewed as a collec
tion of objects, such as a set of logical tables, containing data
fitted into predefined categories. A “table' is one representa
tion of a data object, and may be used herein to simplify the
conceptual description of objects and custom objects. It
should be understood that “table' and “object may be used
interchangeably herein. Each table generally contains one or
more data categories logically arranged as columns or fields
in a viewable schema. Each row or record of a table contains
an instance of data for each category defined by the fields. For
example, a CRM database may include a table that describes
a customer with fields for basic contact information Such as
name, address, phone number, fax number, etc. Another table
might describe a purchase order, including fields for informa
tion Such as customer, product, sale price, date, etc. In some

US 2015/0379 103 A1

multi-tenant database systems, standard entity tables might
be provided for use by all tenants. For CRM database appli
cations, such standard entities might include tables for
Account, Contact, Lead, and Opportunity data, each contain
ing pre-defined fields. It should be understood that the word
“entity” may also be used interchangeably herein with
“object” and “table'.
0077. In some multi-tenant database systems, tenants may
be allowed to create and store custom objects, or they may be
allowed to customize standard entities or objects, for example
by creating custom fields for standard objects, including cus
tom index fields. U.S. patent application Ser. No. 10/817,161,
filed Apr. 2, 2004, entitled “Custom Entities and Fields in a
Multi-Tenant Database System, and which is hereby incor
porated herein by reference, teaches systems and methods for
creating custom objects as well as customizing standard
objects in a multi-tenant database system. In certain embodi
ments, for example, all custom entity data rows are stored in
a single multi-tenant physical table, which may contain mul
tiple logical tables per organization. It is transparent to cus
tomers that their multiple “tables' are in fact stored in one
large table or that their data may be stored in the same table as
the data of other customers.

0078 While one or more implementations have been
described by way of example and in terms of the specific
embodiments, it is to be understood that one or more imple
mentations are not limited to the disclosed embodiments. To
the contrary, it is intended to cover various modifications and
similar arrangements as would be apparent to those skilled in
the art. Therefore, the scope of the appended claims should be
accorded the broadest interpretation so as to encompass all
Such modifications and similar arrangements.

1. A computer program product, comprising a non-transi
tory computer usable medium having a computer readable
program code embodied therein, the computer readable pro
gram code adapted to be executed to implement a method for
performing a synchronization of data, the method compris
ing:

storing, by a system, account information for a user,
wherein the user is a subscriber to a service of the sys
tem;

after the user has successfully logged into an application
installed on a mobile device of the user and while the
application is running on the mobile device, performing,
by the system, a synchronization of data used by the
application installed on the mobile device:

wherein the synchronization includes, at least in part, send
ing to the mobile device from the system metadata
describing one or more objects that are used by the
application installed on the mobile device:

wherein the synchronization is performed, at least in part,
in response to a key event other than the userlogging into
the application.

2. The computer program product of claim 1, wherein
performing the synchronization includes determining
whether a user has previously logged in to the application.

3. The computer program product of claim 2, wherein if it
is determined that the user has previously logged into the
application, all uncommitted modifications of data on the
mobile device associated with the application are sent to the
system.

Dec. 31, 2015

4. The computer program product of claim 1, wherein
performing the synchronization includes determining
whether any dataset changes have occurred with respect to the
USC.

5. The computer program product of claim 4, wherein
performing the synchronization includes performing an
incremental synchronization between the mobile device and
the system if it is determined that no dataset changes have
occurred with respect to the user.

6. The computer program product of claim 4, wherein
performing the synchronization includes performing a full
incremental synchronization between the mobile device and
the system if it is determined that dataset changes have
occurred with respect to the user.

7. The computer program product of claim 1, wherein a
runtime synchronization is performed while the application is
running on the mobile device.

8. The computer program product of claim 7, wherein the
runtime synchronization is performed at a predetermined
interval.

9. A method, comprising:
storing, by a system, account information for a user,

wherein the user is a subscriber to a service of the sys
tem;

after the user has successfully logged into an application
installed on a mobile device of the user and while the
application is running on the mobile device, performing,
by the system, a synchronization of data used by the
application installed on the mobile device;

wherein the synchronization includes, at least in part, send
ing to the mobile device from the system metadata
describing one or more objects that are used by the
application installed on the mobile device;

wherein the synchronization is performed, at least in part,
in response to a key event other than the userlogging into
the application.

10. An apparatus, comprising:
at least one processor of a system for:

storing, by the system, account information for a user,
wherein the user is a subscriber to a service of the
system;

after the user has successfully logged into an application
installed on a mobile device of the user and while the
application is running on the mobile device, perform
ing, by the system, a synchronization of data used by
the application installed on the mobile device:

wherein the synchronization includes, at least in part,
sending to the mobile device from the system meta
data describing one or more objects that are used by
the application installed on the mobile device:

wherein the synchronization is performed, at least in
part, in response to a key event other than the user
logging into the application.

11. A method for transmitting code for use in a multi-tenant
database system on a transmission medium, the method com
prising:

transmitting code for storing, by a system, account infor
mation for a user, wherein the user is a Subscriber to a
service of the system;

transmitting code for, after the user has successfully logged
into an application installed on a mobile device of the
user and while the application is running on the mobile

US 2015/0379 103 A1 Dec. 31, 2015

device, performing, by the system, a synchronization of
data used by the application installed on the mobile
device;

wherein the synchronization includes, at least in part, send
ing to the mobile device from the system metadata
describing one or more objects that are used by the
application installed on the mobile device:

wherein the synchronization is performed, at least in part,
in response to a key event other than the userlogging into
the application.

