

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 January 2006 (12.01.2006)

PCT

(10) International Publication Number
WO 2006/004518 A1

(51) International Patent Classification⁷: **C12N 5/10**,
A61K 35/12, A61P 35/00, 31/00, C07K 14/55

(21) International Application Number:
PCT/SE2005/001049

(22) International Filing Date: 30 June 2005 (30.06.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/584,859 2 July 2004 (02.07.2004) US

(71) Applicant (for all designated States except US): **AVARIS AB** [SE/SE]; Fogdevreten 2B, S-171 77 Stockholm (SE).

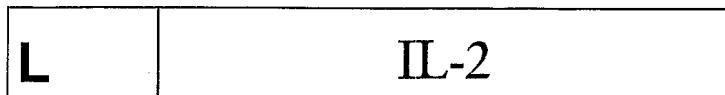
(72) Inventors; and

(75) Inventors/Applicants (for US only): **AINTS, Alar** [EE/SE]; Grev Turegatan 39, 3tr, S-114 38 Stockholm (SE). **KONSTANTINIDIS, Kyriakos** [GR/SE]; c/o Hematology Laboratory, KFS, Plan 5, Hälsovägen 7, S-141 57 Huddinge (SE). **DILBER, Sirac** [TR/SE]; Mangårdsvägen 17, 3tr, S-141 51 Huddinge (SE).

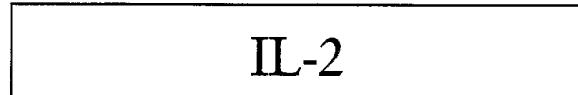
(74) Agent: **HOLMBERG, Martin, et al**; Bergenstrahle & Lindvall AB, Box 17704, S-118 93 Stockholm (SE).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

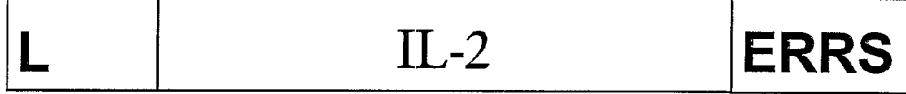
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).


Published:

— with international search report


For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHOD FOR THE GENETIC ACTIVATION OF CELLS AND USES OF SAID CELLS


a

b

c

(57) Abstract: Mammalian cells, normally dependent of IL-2, can be successfully transfected to express IL-2 in amounts sufficient to sustain growth without the external addition of IL-2. One cell line expressing IL-2 solely in the endoplasmatic reticulum without secretion, and one cell line capable of secretion of IL-2 have been developed and tested. Preliminary experiments using primary cells from human donors confirm the feasibility of the invention. The invention makes available gene-modified cells, methods for their production, as well as methods of the treatment of cancer and for immunostimulation.

Method for the genetic activation of cells and uses of said cells

The present invention relates to genetic engineering in general, the production of gene modified cells, and their use in immunostimulation and in cancer therapy in particular.

5 Background of the invention

Natural killer (NK) cells are cytotoxic lymphocytes of the innate immune system, clearly distinguishable from T and B lymphocytes [1]. They play an important role in innate immune reactions to many pathogenic microorganisms [2] [3]. In addition, they mediate strong anti-tumour responses as demonstrated in several experimental 10 models *in vitro* [4] and *in vivo* [5]. *In vivo*, they can control growth and metastatic spread [6]. NK cells may also contribute to the resistance to human malignancies, clearly demonstrated in settings of stem cell transplantation for the treatment of haematological malignancies. These observations have prompted several studies 15 aimed at enhancing human NK cell activity *in vivo* in cancer patients, e.g. by using specific cytokines or other stimuli to directly enhance NK cell activity *in vivo* [7].

Anti-tumour effects mediated by NK cells can be enhanced by cytokines, including interleukin 2 (IL-2), IL-12, IL-15, IL-18 and IL-21 [8-11] [12]. A number of attempts have been made to administer IL-2 systemically to cancer patients. These strategies have been met with mixed clinical results dependent on protocol, type and stage of cancer, 20 and other factors. Systemic IL-2 administration is however frequently associated by undesirable side effects [13-15], such as toxicity affecting the cardiovascular, gastrointestinal, respiratory and nervous systems. The latter includes difficulties in thinking, mood changes, loss of appetite and flu-like symptoms. In settings where IL-2 is given primarily to enhance NK activity, administration in a form that would 25 stimulate NK cells yet not give any unwanted side effects would be ideal. This has prompted investigations for alternative approaches for IL-2 delivery.

NK-92 is an *in vitro* propagated NK cell line with phenotypic and functional characteristics of primary human NK cells [16]. This cell line is strictly dependent on IL-2 for its growth and survival. This makes it a particularly useful model for studies of 30 IL-2 effects on NK stimulation. Several attempts have been made to transduce or by

other means introduce functional IL-2 genes to NK-92 cells. These studies have shown that IL-2 expressed by these means fulfil the purpose of stimulating NK-92 growth and survival.

The main aim underlying the present invention was to find alternatives to a systemic 5 IL-2 administration, as well as to eliminate the necessity of adding IL-2 for *ex vivo* culture of IL-2 dependent cells, such as T-cells and NK cells. One particular aim of the present inventors was to generate auto activated NK cells. Other aims and objectives, and the solutions offered by the invention, as well as the advantages associated therewith, will become evident to a skilled person from the study of the 10 description, non-limiting examples and claims.

Short summary of the invention

The present inventors have surprisingly found that mammalian cells, dependent on IL-2, can be successfully transduced to express IL-2, and in particular a non-secreted form of IL-2, in amounts sufficient to sustain growth without the external addition of 15 IL-2. In the present study, the present inventors have cloned and expressed three different forms of IL-2 in cultured mammalian cells. Expression of the constructs was verified by immunostaining of transduced Cos-7 cells. Biological activity of the modified proteins was assessed in NK-92 cells. Surprisingly, an endoplasmic reticulum (ER) retained form of IL-2 sufficed to promote growth and survival of NK-92 20 cells. Furthermore, such cells expressed retained cytotoxic potential. This study demonstrates that it is possible to express IL-2 in NK-92 cells in a way that prevents secretion of the cytokine and thus any possible unwanted side effects. The implications of the present findings are discussed.

The invention makes available gene-modified cells expressing IL-2, methods for their 25 production, as well as methods of treatment, such as immunostimulation or immunotherapy, as defined in the attached claims, incorporated herein by reference.

The invention is exemplified by the examples, showing that a genetically modified NK-92 cell line, NK92IL2ER, express IL-2 in a restricted area of the endoplasmic reticulum at levels sufficient for NK cell survival. Another genetically modified NK-92 30 cell line, NK92IL2WT, is capable of secreting IL-2 in amounts comparable to that of non-modified activated T-cells. Preliminary experiments performed during the priority

year indicate that the results are transferable to human primary cells from healthy donors.

Brief description of the drawings

The invention will be described in closer detail in the following description, examples, 5 and attached drawings, in which

Figure 1 shows a schematic representation of plasmids expressing modified forms of IL-2. L: leader; IL-2: interleukin 2; ERSS: endoplasmic reticulum retention signal.

Figure 2 is a bar diagram, showing the proliferation of IL-2 transduced and parental 10 NK-92 cells in a short-term six-day culture. NK-92 cells were cultured with an initial concentration of 25000 cells/ml in a 90% CellGro®, 10% FBS and 500IU/ml IL-2. At day 0, the cells were washed thoroughly with PBS to remove any traces of IL-2 from previous culturing stages. Non-modified NK-92 cells die in the absence on IL-2, while gene-modified cells proliferate comparably to the cells in the presence of added IL-2.

Figure 3 is a bar-diagram showing the results of co-cultivation of NK-92 GFP with 15 NK-92 IL-2-modified expressing cells in 1:1 ratio. 25000 IL-2 expressing NK-92 cells were mixed with an equal number of NK-92 cells expressing GFP. Both cell populations were thoroughly washed twice with PBS in order to exclude any traces of external IL-2 from previous culturing. The proportion of GFP positive and negative 20 cells was quantified after 48 hours by FACS analysis. NK-92 GFP cells die in the culture with NK-92IL2ER, which proves the absence of secretion of IL-2 from these cells.

Figure 4 is a bar-diagram illustrating of the gene-modified NK-92 production of IL-2 25 *in vitro*. Cells were cultured for 6 days, with a starting concentration of 25000 cells/ml. Supernatants were harvested 48 hours after medium change. The levels of IL-2 in the supernatants were measured using enzyme linked immunoabsorbent assay (ELISA) as described in the Materials and Methods section. The results show that the IL-2 production and secretion of NK92IL2WT is comparable to that of T-cells, whereas the IL-2 levels in the supernatant of NK92IL2ER cells are comparable to medium only (control).

Figure 5 shows the cytotoxicity of the parental and gene-modified cells against K-562 cells in a 4-h ^{51}Cr release assay. The gene-modified cells retain their cytotoxic potential comparable to the non-modified cells.

Description

5 Before the present invention is described, it is to be understood that the terminology employed herein is used for the purpose of describing particular embodiments only and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims and equivalents thereof.

10 The terms "treatment", "therapy", "therapeutic use", "medicament", and "medical use" encompass both human and animal or veterinary applications.

The term "functionally equivalent" defines a protein or nucleotide sequence, having a different amino acid or base sequence, compared to the sequences disclosed herein, but exhibiting the same function in vitro and in vivo. An example of a functional equivalent is a modified or synthetic gene, encoding the expression of a protein

15 identical or highly homologous to that encoded by the wildtype gene.

"Transfection" means gene transfer by physical or chemical means. "Transduction" means gene transfer by viral vectors. "Stable genetic modification" implies inheritability of the genetic modification, usually (but not necessarily) achieved by integration of the transferred DNA into one of the cell's chromosomes. "Transient

20 genetic modification" implies loss of the genetic material in the time course of weeks or months.

According to an embodiment, the present invention makes available a method of producing an IL-2 expressing mammalian cell, comprising the steps of

- selection or construction of an IL-2 gene,
- 25 - preparation of a retroviral vector carrying said IL-2 gene,
- collection of cells from a donor,
- genetic modification of said cells, and

- optionally, selection of transfected cells.

Said IL-2 gene is preferably a gene encoding the protein of SEQ. ID. NO. 11 or functional equivalents thereof. Said IL-2 gene is more preferably a gene encoding the protein of SEQ. ID. NO. 13 or functional equivalents thereof. Most preferably, said 5 gene is chosen among SEQ. ID. NO. 8, SEQ. ID. NO. 10, or functional equivalents thereof.

According to one embodiment, the mammalian cells are chosen among natural killer (NK) cells, and T-cells, preferably natural killer (NK) cells.

According to another embodiment, said modified IL-2 gene is modified to direct the 10 expression of IL-2 to the endoplasmatic reticulum of said cell.

The invention further makes available a transgenic mammalian cell capable of producing IL-2, produced by the method outlined above and specified in closer detail in the examples.

The invention concerns in particular mammalian cells, which in their non-transfected 15 state are dependent of IL-2 for their growth, and unable to produce any significant amounts thereof, wherein said transgenic cells produce IL-2 in an amount sufficient to sustain growth without the need of external IL-2.

According to a preferred embodiment, IL-2 expression is restricted to the endoplasmatic reticulum of said cells. It is important to note, that simply preventing 20 IL-2 secretion, for example, by removing the secretion signal, (construct 2, figure 1) is not sufficient to provide autocrine growth stimulation to gene-modified cells.

The invention also makes available methods of therapy, including palliative, curative and prophylactic treatment. According to one embodiment, the invention relates to a method in the treatment of cancer, comprising the administration to said patients a 25 therapeutically efficient and physiologically acceptable amount of transgenic cells as defined above. The cancer can be any form of cancer, including but not limited to cancer of the colon, prostate, breast, kidneys, liver, stomach, lungs, brain, and skin (melanoma), including leukaemia and lymphoma. Presently, the effects of IL-2 administration have been shown mainly on metastatic renal cancer and metastatic 30 melanoma.

The invention also makes available a method of immunostimulation using gene modified cells, expressing substantially physiological levels of IL-2, wherein an IL-2 expressing mammalian cell is produced through a method, comprising the steps of:

selection or construction of an IL-2 gene; preparation of a retroviral vector carrying said IL-2 gene; collection of cells from a donor or patient; genetic modification of said cells; optionally, selection of gene-modified cells, and administration of said modified cells to a patient in need thereof.

As above, said IL-2 gene is preferably a gene encoding the protein of SEQ. ID. NO. 11 or functional equivalents thereof. Said IL-2 gene is more preferably a gene

encoding the protein of SEQ. ID. NO. 13 or functional equivalents thereof. Most preferably, said gene is chosen among SEQ. ID. NO. 8, SEQ. ID. NO. 10, or functional equivalents thereof.

The invention also makes available a method for stimulating the immune system of a patient, comprising the administration to said patients a therapeutically efficient and

physiologically acceptable amount of transgenic cells as defined above. It is contemplated that said immunostimulation or immunotherapy would constitute a step in the treatment of cancer, or treatment or prevention of an infection. As defined above, the cancer can be any form of cancer, including but not limited to cancer of the colon, prostate, breast, kidneys, liver, stomach, lungs, brain, and skin

(melanoma), including leukaemia and lymphoma

In the above methods, said cells are preferably taken from the patient, gene-modified, and returned to said same patient. However, it is also contemplated that said cells are taken from a donor, gene-modified, and administered to said patient.

Said use of transgenic cells may constitute an adjunct or supplementary therapy,

performed before, after or substantially simultaneously with another therapy. In the treatment of cancer, said transgenic cells can be administered before, after or substantially simultaneously with cytotoxic drugs, radiation therapy, surgical intervention, or a combination thereof. It is however also contemplated that said use of transgenic cells would constitute the primary therapy in the treatment of cancer.

The invention also encompasses the use of said cells for the manufacture of pharmaceutical compositions or medicaments, for use in the treatment of cancer, or

treatment or prevention of an infection. The type of cancer may be any type of cancer, but is preferably one of the cancer types defined above.

The work of the present inventors demonstrates the feasibility of conferring a strictly autocrine signalling mode to a naturally systemically acting cytokine, IL-2, by adding an ER retention signal to the cytokine's coding sequence. The retrovirally gene-modified NK-92 natural killer cell lines continue to proliferate in the absence of exogenously added IL-2. Previous studies [26,27] have reported NK-92 gene modifications by stable transfection. TR-IL-2-NK-92 cells produce 5.5ng/10⁶/24hours, NK-92MI produce 1260pg/ml/48hours/10⁶ and NK-92CI 15pg/ml/48hours/10⁶.

5 Several of these cell lines produce significantly higher level of IL-2 compared to primary cells, which can be explained by multicopy plasmid integration during transfection and can be considered potentially harmful. The inventive NK-92IL2WT produces 18,3 pg/ml/48hours/10⁶, which is comparable to activated primary human T-cells (40 pg/ml/ 48hours/10⁶).

10 15 The secretion of the ER-targeted construct was comparable to background, yet the cells proliferated well. This surprising finding can be explained by binding of the ER-retained IL-2 to its receptor in the ER *en route* to the cell membrane. Also, signalling from receptor-ligand complexes directly from ER is possible. Similar modes of signalling have been described for GM-CSF [29] and IL-3 [30].

20 25 30 Systemic administration of IL-2 to patients to support the transferred immune effector cells is accompanied by strong side effects. Delivery of NK cells capable of supporting their own proliferation as the IL2ER-cells, providing stimulation to the surrounding immune cells via cytokines such as TNF-a and IFN-g naturally produced by activated NK cells, and additional local secretion of IL-2 (IL2WT cells) without the side-effects of systemic injections can be advantageous in cancer immunotherapy for a direct antitumor effect, as well as in other applications, where immunostimulation is desired.

A transgenic IL-2 producing cell has a surprising advantage in that it is likely to become resistant to the defence mechanisms of tumour cells, usually silencing NK cells. The IL-2 production resulting from the gene transfer gives the cell auto-stimulating properties.

In an embodiment, where the transgenic IL-2 producing NK cell also secretes IL-2, it will stimulate surrounding, non-transfected cells, and provide a localised stimulating effect on the immune system via secreted IL-2 at physiological levels, which has previously not been achieved with other methods.

5 In conclusion, the present inventors have made available gene-modified cells for cancer immune therapy, capable of direct antitumor effect in the absence of systemic support in the form of IL-2 injections, also capable of localised immune stimulation via localised secretion of cytokines naturally produced by NK cells, or additional IL-2. The inventors have shown the ability of ER-retained IL-2 to provide autocrine growth

10 10 stimulation to the gene-modified cells, without secretion of the cytokine to extracellular compartment.

Another advantage of the invention is that time consuming and costly *ex vivo* culturing steps can be avoided. The time savings alone are considerable, but also the fact that *ex vivo* handling of cells that are to be administered to a patient is strictly regulated, makes this an important improvement.

Further, the administration of IL-2 in order to support cell growth, whether *ex vivo* or *in vivo*, is no longer necessary. In the *in vivo* application, the side effects of systemic IL-2 administration are avoided.

Other problems of the prior art, overcome by the inventive methods and modified 20 cells, as well as the advantages associated therewith, will be evident to a skilled person upon closer study of the present description, examples, figures and attached sequence listing.

Examples

Materials and Methods

25 **Cell lines**

The cell line Phoenix GP was used for retrovirus production (with permission from Dr. Garry P. Nolan, Ph.D., Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California). Cos-7 (DSMZ, Braunschweig, Germany), a cell line derived from African green monkey was used for immunostaining. Both cell

lines were cultured in Dulbecco's modified Eagle's medium (DMEM - Invitrogen Corporation, Paisley, Scotland) with Glutamax, sodium pyruvate, 4500mg/l glucose and pyridoxine, supplemented with 10% fetal bovine serum (FBS – Invitrogen).

NK-92 cell line was purchased from LGC Promochem/ATCC (Boras, Sweden). NK-5 92 cells were maintained in stem cell medium (CellGro®) supplemented with 10% FBS and 500IU/ml IL-2 (Proleukin®, Chiron, CA, USA). CellGro® SCGM is a GMP (good manufacturing practice) quality serum-free medium for culture of hematopoietic stem and progenitor cells (CellGenix, Freiburg, Germany). Proleukin® is a GMP quality interleukin-2 and was aliquoted and stored at -20°C at 10⁶IU/ml stock 10 concentration.

K-562 (LGC Promochem/ATCC, Boras, Sweden), a human myeloid leukaemia cell line, was used as a target for natural killer cells. K-562 cells were cultured in RPMI 1640 medium (Invitrogen), supplemented with 10% FBS.

All cell lines were incubated at 37°C, 5% CO₂ and 95% humidity and were 15 subcultured every 2-3 days. All culture mediums were stored at +4°C and FBS was heat inactivated at 56°C for 1 hour and stored at -20°C. Aliquots of cells from early passage were frozen in 10% dimethyl sulfoxide (DMSO – Sigma-Aldrich, St.Louis, MO, USA) / 90% FBS and stored at -150°C for later reconstitution. Phosphate-Buffered Saline (PBS) without calcium, magnesium and sodium bicarbonate, was 20 purchased from Invitrogen and stored at 4°C.

All cell populations were observed using an inverted microscope (Olympus CK40) with a UV module (Olympus U-RFLT50) at regular intervals and were monitored regularly for cell viability with trypan blue exclusion and for mycoplasma contamination. For data acquisition and analysis, a FACSCalibur was used along 25 with Cell Quest™ 3.3 Analysis Software (Becton Dickinson, CA, USA). In each sample, at least 10000 cells were acquired in the analysis region of viable cells, defined by side and forward scatter.

Plasmids

The pORF-hIL2 plasmid, containing the IL-2 cDNA template was purchased from 30 InvivoGen (San Diego, CA, USA). The required IL-2 primers were designed using

- 10 -

Oligo 6.6 software (Molecular Biology Insights Inc, CO, USA) and they were ordered from DNA Technology ApS, Århus, Denmark. The IL-2 variants were cloned by PCR using the following primers:

SEQ. ID. NO. 1: wild-type IL-2 [TTA CAA TTG ATC ACC GGC GAA GGA GG]

5 (forward), and

SEQ. ID. NO. 2: [TTA ATC GAT GTA TCT TAT CAT GTC G] (reverse);

SEQ. ID. NO. 3: cytoplasmic (leaderless) IL-2 [ACC GCC ATG GCA CCT ACT TCA AGT TCT ACA AA] (forward), and

SEQ. ID. NO. 4: [TTA ATC GAT GTA TCT TAT CAT GTC G] (reverse); and

10 **SEQ. ID. NO. 5:** endoplasmic reticulum IL-2 [TTA CAA TTG ATC ACC GGC GAA GGA GG] (forward), and

SEQ. ID. NO. 6: [TCA CAG TTC GTC CTT CTC GCT GCC AGT CAG TGT TGA GAT GAT GCT TT] (reverse, including endoplasmic reticulum retention signal).

15 The PCR products were cloned into pCR®4BluntTOPO® vector (Invitrogen). The TOPO® cloning and transformation steps were performed according to manufacturer's instructions. Clones were analysed using restriction analysis and cycle sequencing and subcloned with EcoRI into pSF91-MCSg.

pSF91-MCSg was derived from the mouse leukaemia virus-based retroviral vector pSF91-GFP-gPRE, a kind gift from Prof. Christopher Baum (Hanover Medical School, Hanover, Germany). To facilitate further construction, the NotI-HindIII fragment (containing GFP and gPRE) was replaced by a synthetic oligonucleotide cloning site (SEQ. ID. NO. 7),

20 containing restriction sites for EcoRI, NotI, BamHI, HindIII, NruI, Sall and MfeI. Thereafter, gPRE element, as an EcoRI fragment was reinserted into MfeI site to 25 make pSF91-MCSg. For eGFP vector construction, the eGFP gene from pEGFP-N3 (Clontech, Palo Alto, CA) was released with HindIII-NotI (filled in) and inserted into pSF91-MCSg between HindIII-Sall (filled in), and the resulting plasmid was called pSF91-GN3g. All constructs were confirmed by restriction mapping and partial

sequencing. Finally three constructs were prepared; a first sequence (SEQ. ID. NO. 8) expressing wild type IL-2 (secreted),

As comparison, a second sequence (SEQ.ID. NO. 9) targeted to the cytoplasm was constructed.

5 Finally, a third sequence, targeted to the endoplasmic reticulum (SEQ. ID. NO. 10) was constructed.

For a schematic illustration of the plasmids, see Figure 1.

The corresponding amino acid sequences are also given in the attached sequence listing:

10 SEQ.ID. NO. 11: IL-2 wild type

SEQ.ID. NO. 12: Leaderless IL-2

SEQ.ID. NO. 13: IL-2 ER

Plasmid DNA was purified using QIAprep 8 Turbo Miniprep, QIAprep 8 Miniprep and Qiagen® Plasmid Maxi (Qiagen Inc., CA, USA) and in some cases the Genelute HP

15 Plasmid Midiprep Kit (Sigma-Aldrich). All the above kits were used according to manufacturer's instructions.

Transfection and Transduction

Phoenix GP cells and Cos-7 cells were transiently transfected with 3 µg and 2µg of vector construct plasmid, respectively, and 1 µg pMD-G (encoding vesicular

20 stomatitis virus envelope glycoprotein, kindly provided by Dr. D. Trono, Dept. of Genetics and Microbiology, University of Geneva, Geneva, Switzerland) per 35 mm cell culture well. The transfection of PhoenixGP leaded to collection of virus supernatant for transduction experiments and the transfected Cos-7 cells were used for immunostaining purposes. For transfections, Fugene 6 reagent (Roche Boehringer Mannheim, Germany) was used according to manufacturer's instructions. Briefly, DNA plasmid vectors and Fugene reagent were mixed at 1/2 mass/volume ratio in 100 µl volume of cell culture medium and added to cells after 15 minutes. For positive control, a GFP containing plasmid (pSF91-GN3g) in a retroviral backbone

- 12 -

was used. Supernatant was collected 24 and 48 hours after transfection, filtered through 0.45 µm Millex-GP syringe-top filter (Millipore Corporation, Bedford, MA) and used immediately for transduction. The efficiency of transfection, in positive controls, was always higher than 50%.

5 The vector-containing supernatant was used to transduce NK-92 cells, and the cells were centrifuged at 1000xg for 1hour in the presence of 300µl of IL-2 supernatant and 4µg/ml hexadimethridine bromide (Polybrene®, Sigma-Aldrich).

Proliferation

10 The biological activity of the expressed interleukin-2 was determined by a cell proliferation assay, using the IL-2 dependent cell line NK-92. The cell growth was quantified by counting cells in a Bürcher chamber with Trypan Blue viability stain, and with the cell proliferation reagent WST-1 (Roche Boehringer Mannheim) according to manufacturer's recommendations.

15 *Quantitative analysis of secreted interleukin-2 in supernatants of IL-2 transduced NK-92 cells*

For the quantitative determination of human interleukin-2, the OptEIA™ Human IL-2 ELISA Kit II (BD Biosciences Pharmingen, San Diego, CA, USA) was used according to manufacturer's instructions.

Immunostaining

20 IL-2 modified Cos-7 cells were washed with PBS and fixed with 4% paraformaldehyde for 15 minutes at room temperature (RT). After fixing, cells were rinsed with PBS and incubated with NP40 (Vysis Inc, Illinois, USA) –1% in PBS- for 10minutes at RT. Then cells were PBS washed three times and blocked with blocking buffer for 30 minutes, containing 0.1% Tween 20 (Sigma-Aldrich), 0.1% BSA-c (Aurion, Netherlands) and 5% goat serum (DAKO A/S, Glostrup, Denmark) in PBS. Cells were washed three times for 4 minutes with PBS/0.1 %Tween 20 and incubated for 45min with 5µg/ml primary purified rat anti-human IL-2 antibody (BD Biosciences Pharmingen) diluted into blocking buffer. Cells were then again washed four times for 5 minutes with PBS/0.1% Tween 20 and incubated for 1hour with

5 μ g/ml secondary Oregon green 488nm goat anti-rat IgG antibody in blocking buffer. Finally cells were rinsed with PBS/Tween 20 and counterstained with Hoechst stain (Molecular Probes BV, Leiden, Netherlands) at 1:4000 dilution in PBS for 5 minutes at room temperature followed by one PBS wash. Cells were visualised by

5 fluorescence microscopy with a Leica DMRXA microscope (Leica Microsystems, GmbH, Wetzlar, Germany) equipped with a CCD camera (model S/N 370 KL 0565, Cooke Corporation, NY, USA). Filter sets for DAPI/Hoechst, FITC, Cy3 and Cy5 were obtained from Chroma technology (Brattleboro, VT, USA). The images were acquired using the Slidebook 2.1.5 software (Intelligent Imaging Innovations Inc, Denver, CO, 10 USA) and Adobe Photoshop 5.0 (Adobe Systems, Seattle, WA, USA)

In order to verify that the locus of IL-2 expression is indeed in the endoplasmic reticulum, a second immunostaining was performed. After transduction, NK-92 cells were stained with ER-Tracker™Blue-White DPX (Molecular Probes, Eugene, USA) according to manufacturer's instructions. ER-Tracker stains specifically the

15 endoplasmic reticulum. After washing with PBS, cells were fixed with 2% paraformaldehyde, permeabilised with NP40 and stained with IL-2 antibodies as described above.

Co-cultivation of NK-92 cells expressing different forms of IL-2 with GFP modified NK-92 cells

20 NK-92 cells modified to express green fluorescent protein (GFP) were mixed, into 1:1 ratio with IL-2 modified NK-92 cells. Co-cultivation experiments were carried out in six-well plates as follows: 25000 IL-2 expressing NK-92 cells were mixed with an equal number of NK-92 cells expressing GFP. Both cell populations were thoroughly washed twice with PBS in order to exclude any traces of external IL-2 from previous 25 culturing. The proportion of GFP positive and negative cells was quantified after 48 hours by FACS analysis.

Cytotoxicity assay

30 The cytotoxic function was measured in a standard 4h ^{51}Cr -release assay in triplicates. Briefly, 1x10⁶ K562 cells were labelled with 100 μ l ^{51}Cr and were incubated for one hour at 37°C. Effector cells were counted using trypan blue exclusion dye and mixed with target cells to obtain an effector:target ratio of 10:1,3:1,1:1 and 0.3:1.

CellGro medium was used as negative control and for positive control cells were incubated with 1% of Triton X. After incubating into a V-bottom shape 96-well plate for 4 hours at 37°C, 70µl of supernatant were aspirated from each well and counted using a Packard Cobra Auto-Gamma 5000 Series Counting system (Meriden, CT, USA). The percentage of the spontaneous release was calculated from the following formula: %⁵¹Cr release = (sample-spontaneous) / (max release – spontaneous) x 100.

During the priority year, further experiments were performed, using primary cells from healthy donors.

Primary donor cell culture

Buffy-coat cells were obtained from healthy blood-bank donors at Karolinska University Hospital, Huddinge, Stockholm, Sweden and cultures were initiated on the same day (day 0). PBMCs were isolated by gradient centrifugation, using Lymphoprep (Nyegaard, Oslo, Norway). After washing twice with phosphate-buffered saline (PBS) (Gibco), cell viability was assessed by trypan blue dye exclusion, and the cells were plated onto six-well dishes (Falcon by Becton Dickinson, Le Pont de Claix, France) at 0,25 X 10⁶ cells/ml. CellGro SCGM medium (CellGenix, Freiburg, Germany) was used in all the cultures with the addition of 5% human serum (BioWhittaker, Cambrex Bio Science, Walkersville, MD, USA), 500 IU/ml Interleukin-2 (IL-2) (Peprotech, NJ, USA), and 10 ng/ml anti-CD3 antibody, OKT-3 (Ortho Biotech Inc. Raritan, NJ, USA). On day 5, OKT-3 was washed out, and cells were thereafter cultured in CellGro medium supplemented with 500 IU/ml IL-2 and 5% human serum without OKT-3. Then, fresh medium was added to cultures every 1-2 days until day 21. Absolute cell counts (ACC) of cell subsets were obtained by multiplying percentage of cell subsets with the total cell number of the culture at the same time point.

Retroviral transduction of NK cells

The stably transduced retrovirus producer cell lines, producing SF91g-IL2wt, SF91g-IL2-L, SF91g-IL2ER and SF91g-GN3 (GFP control) retroviral vectors were grown in

- 15 -

DMEM supplemented with 10% FCS. When the cells were subconfluent, new fresh medium was added for 24 hours. Finally the supernatant was collected, filtered through a 0.45 μ m filter (Millipore, Billerica, MA, USA), and frozen at -70 °C. The supernatant collected and harvested had a titer of 0,5x10⁶ virus particles per ml

5 measured on HeLa cells. Viral particles produced from this producer cell line contain a GALV (Gibbon Ape Leukemia Virus) envelope. All transductions were carried out by replacing the media with the retrovirus containing supernatant at a multiplicity of infection (MOI) of 3, in the presence of 8 μ g/ml polybrene (Sigma) and 500 U/ml IL-2 by centrifugation at 1.000 g at room temperature for two hours. After centrifugation,

10 the supernatant was replaced with the NK-cell medium (CellGro medium with 500 U/ml IL-2 and 5% human serum) and cells were expanded until day 21. As a control, PBMCs of the same donor were grown and mock infected under similar conditions as transduced cells.

15 Results

Effects on cell proliferation from expression of IL-2 in NK-92 cells

Three constructs for the expression of IL-2 were evaluated; one expressing wild type IL-2, one targeting IL-2 to the cytoplasm and one targeting IL-2 to the endoplasmic reticulum (Figure 1). The cytoplasmic construct was biologically inactive (data not 20 shown).

After transduction, the cells were cultured 4 days in the presence of IL-2 in order to allow for gene expression and then extensively washed in PBS and kept either with or without IL-2 supplement in the culture conditions. Two IL-2 transduced cell lines, developed by the inventors; the NK92IL2WT and the NK92IL2ER were selected for 25 this study. As shown in Figure 2, non-transduced NK-92 control cells died in the culture 6 days after IL-2 removal. In contrast, NK92IL2WT and NK92IL2ER exhibited a similar growth curve as NK-92 cells supplemented with external IL-2 (Figures 2).

The growth characteristics of NK92IL2WT and NK92IL2ER have been stable after continuous culture for almost a year.

30 *Localised and restricted IL-2 expression in the endoplasmic reticulum*

The functionality of the vector for localised expression in the endoplasmatic reticulum was first analysed through transient transfection into Cos-7 cells. The Cos-7 cells were chosen for the monitoring of transduced protein expression because of its clear morphology during microscopic imaging. Indirect immunofluorescence of IL-2ER

5 transduced Cos-7 cells using a monoclonal rat anti-human IL-2 antibody showed bright green staining compatible with endoplasmic reticulum localisation. (Data not shown).

Expression of IL-2 in the endoplasmatic reticulum does not generate bystander growth support to neighbouring cells

10 Next, the present inventors wanted to investigate whether small amounts of IL-2 leak into the surrounding culture medium from the transduced cells and if this would be sufficient for growth support of the parental NK-92 cells. For this, equal numbers of NK-92 IL-2 modified and GFP-modified NK-92 cell lines were co-cultured and evaluated for growth. After 48hours of culturing the percentage of NK-92 GFP cells

15 was severely reduced (45%) when mixed with NK92IL2ER. In contrast, when mixed with NK92IL2WT cells a growth support was observed (Figure 3). After two days of culturing, the proportion of both populations still remains close to the initial 50%, indicating that NK92IL2WT secrete IL-2 to the supernatant, supporting the survival of NK92GFP.

20 The amount of IL-2 in the supernatant was quantified by enzyme-linked immunosorption assay. The IL-2 level detected in the supernatant from NK92IL2ER cells was 3,2 pg/ml/10⁶cells/48 h (Figure 4). This is comparable to background (CellGro® medium with FCS). The IL-2 concentration in supernatants from NK92IL2WT was 18,3 pg/ml/10⁶cells/48h and a control supernatant from T cells activated with anti-CD3 antibody showed 40,3 pg/ml/10⁶cells/48 h. Preliminary laboratory data indicates that 30ng/ml (500IU/ml) of IL-2 leads to optimal growth in non-modified NK-92 cells (data not shown).

The genetically IL-2 modified NK-92 cell populations show similar cytotoxic effects compared to the parental NK-92 cell line

30 The NK92IL2WT and NK92IL2ER lines could lyse 51 Cr-labelled K562-cells at a level comparable to the parental NK-92 cells. (Figure 5). A 1:1 effector: target ratio yielded

- 17 -

a median cytotoxic activity of 59.2% (NK92IL2WT) and 46.4% (NK92IL2ER), compared to 59% for the NK-92 cells.

The preliminary experiments carried out during the priority year on primary NK cells expanded from donor PBMCs demonstrated the ability of the transferred IL2wt 5 (SEQ.ID. NO. 8) and IL2ER (SEQ.ID. NO. 10) genes to support the growth of primary human NK cells in the absence of exogenously added IL-2.

Although the invention has been described with regard to its preferred embodiments, which constitute the best mode presently known to the inventors, it should be understood that various changes and modifications as would be obvious to one 10 having the ordinary skill in this art may be made without departing from the scope of the invention which is set forth in the claims appended hereto.

- 18 -

SEQUENCE LISTING

<110> AVARIS AB

AINTS, Alar

5 KONSTANTINIDIS, Kyriakos

DILBER, Sirac

<120> Method for the genetic activation of cells and uses of said cells

<130> MH 54665

<150> US 60/584,859

10 <151> 2004-07-02

<160> 13

<170> PatentIn version 3.1

<300>

<301> Kyriakos V. Konstantinidis et al.

15 <302> Targeting IL-2 to the endoplasmic reticulum confines autocrine growth stimulation to NK-92 cells

<303> Experimental Hematology

<304> 33

<305> 11

20 <306> 159-164

<307> 2004-11-03

<308> 0301-472X/05

<309> 2004-11-03

25 <210> 1

<211> 26

<212> DNA

<213> Homo sapiens

<400> 1

30 ttacaattga tcaccggcga aggagg

26

<210> 2

<211> 25

<212> DNA

- 19 -

<213> Homo sapiens
<400> 2
ttaatcgatg tatcttatca tgtcg 25

5 <210> 3
<211> 32
<212> DNA
<213> Homo sapiens
<400> 3

10 accgccatgg cacctacttc aagttctaca aa 32

<210> 4
<211> 25
<212> DNA

15 <213> Homo sapiens
<400> 4
ttaatcgatg tatcttatca tgtcg 25

<210> 5
20 <211> 26
<212> DNA
<213> Homo sapiens
<400> 5
ttacaattga tcaccggcga aggagg 26

25 <210> 6
<211> 47
<212> DNA
<213> Homo sapiens

30 <400> 6
tcacagttcg tccttctcgc tgccagtcag tggatgtc atgcttt 47

<210> 7

<211> 53

<212> DNA

<213> Artificial

5 <400> 7

ggccgaattc gcggccgcag gatcctcgcg aaagcttgc gaccaattga gct 53

<210> 8

<211> 525

10 <212> DNA

<213> Homo sapiens

<400> 8

tacaattgtat caccggcgaa ggagggccac catgtacagg atgcaactcc tgtcttgcatt 60

tgcactaagt cttgcacttg tcacaaacag tgcacctact tcaagttcta caaagaaaaac 120

15 acagctacaa ctggaggcatt tactgctgga tttacagatg attttgaatg gaattaataa 180

ttacaagaat cccaaactca ccaggatgct cacatthaag ttttacatgc ccaagaaggc 240

cacagaactg aaacatcttc agtgtctaga agaagaactc aaacctctgg aggaagtgct 300

aaatttagct caaagcaaaa actttcactt aagaccagg gacttaatca gcaatatcaa 360

cgtaatagtt ctggaactaa agggatctga aacaacattc atgtgtgaat atgctgatga 420

20 gacagcaacc attttagaaat ttctgaacag atggattacc ttttgtcaaa gcatcatctc 480

aacactgact tgagctagct cgacatgata agatacatcg attaa 525

<210> 9

<211> 443

25 <212> DNA

<213> Artificial

<400> 9

accgccatgg cacctacttc aagtctaca aagaaaaacac agctacaact ggagcattta 60

ctgctggatt tacagatgat tttgaatgga attaataatt acaagaatcc caaactcacc 120

30 aggatgctca catttaagtt ttacatgccc aagaaggcca cagaactgaa acatcttcag 180

tgtctagaag aagaactcaa acctctggag gaagtgcataa atttagctca aagcaaaaac 240

tttcacttaa gaccaggga cttaatcagc aatatcaacg taatagttct ggaactaaag 300

ggatctgaaa caacattcat gtgtgaatat gctgatgaga cagcaaccat tgtagaattt 360
ctgaacagat ggattacctt ttgtcaaagc atcatctcaa cactgacttg agctagctcg 420
acatgataag atacatcgat taa 443

5 <210> 10
<211> 515
<212> DNA
<213> Artificial
<400> 10

10 ttacaattga tcaccggcga aggagggcca ccatgtacag gatgcaactc ctgtcttgca 60
ttgcactaag tcttgcactt gtcacaaaca gtgcacccac ttcaagttct acaaagaaaa 120
cacagctaca actggagcat ttactgctgg atttacagat gatttgaat ggaattaata 180
attacaagaa tcccaaactc accaggatgc tcacattaa gtttacatg cccaagaagg 240
ccacagaact gaaacatctt cagtgcttag aagaagaact caaacctctg gaggaaagtgc 300

15 taaatttagc tcaaagcaaa aactttcact taagaccagg ggacttaatc agcaatata 360
acgtaatagt tcttgcacta aaggatctg aaacaacatt catgtgtgaa tatgctgatg 420
agacagcaac cattgttagaa ttcttgcacta gatggattac cttttgtcaa agcatcatct 480
caacactgac tggcagcggag aaggacgaac tgtga 515

20 <210> 11
<211> 153
<212> PRT
<213> Homo sapiens
<400> 11

25 Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ser Leu Ala Leu
1 5 10 15
Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Thr Gln Leu
20 25 30
Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile
30 35 40 45
Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe

- 22 -

50 55 60
Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu
65 70 75 80
Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys
5 85 90 95
Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile
100 105 110
Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala
115 120 125
10 Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe
130 135 140
Cys Gln Ser Ile Ile Ser Thr Leu Thr
145 150

15 <210> 12
<211> 134
<212> PRT
<213> Artificial
<400> 12
20 Met Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu
1 5 10 15
His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr
20 25 30
Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro
25 35 40 45
Lys Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Leu
50 55 60
Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His
65 70 75 80
30 Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu

85 90 95

Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr

100 105 110

Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Cys Gln Ser

5 115 120 125

Ile Ile Ser Thr Leu Thr

130

<210> 13

10 <211> 160

<212> PRT

<213> Artificial

<400> 13

Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ser Leu Ala Leu

15 1 5 10 15

Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu

20 25 30

Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile

35 40 45

20 Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe

50 55 60

Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu

65 70 75 80

Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys

25 85 90 95

Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile

100 105 110

Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala

115 120 125

30 Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe

- 24 -

130 135 140

Cys Gln Ser Ile Ile Ser Thr Leu Thr Gly Ser Glu Lys Asp Glu Leu

145 150 155 160

5

References

1. Trinchieri G Biology of natural killer cells. *Adv Immunol.* 1989; 47:187-376
2. Unanue ER Studies in listeriosis show the strong symbiosis between the innate cellular system and the T-cell response. *Immunol Rev.* 1997; 158:11-25
- 5 3. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP Natural killer cells in antiviral defense: function and regulation by innate cytokines. *Annu Rev Immunol.* 1999; 17:189-220
4. Orange JS, Fassett MS, Koopman LA, Boyson JE, Strominger JL Viral evasion of natural killer cells. *Nat Immunol.* 2002; 3:1006-1012
- 10 5. Wu J, Lanier LL Natural killer cells and cancer. *Adv Cancer Res.* 2003; 90:127-156
6. Kiessling R, Klein E, Wigzell H "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. *Eur J Immunol.* 1975; 5:112-117
- 15 7. Seaman WE, Slesinger M, Eriksson E, Koo GC Depletion of natural killer cells in mice by monoclonal antibody to NK-1.1. Reduction in host defense against malignancy without loss of cellular or humoral immunity. *J Immunol.* 1987; 138:4539-4544
8. Kim S, Iizuka K, Aguila HL, Weissman IL, Yokoyama WM In vivo natural killer cell activities revealed by natural killer cell-deficient mice. *Proc Natl Acad Sci U S A.* 2000; 97:2731-2736
- 20 9. Lowdell MW Natural killer cells in haematopoietic stem cell transplantation. *Transfus Med.* 2003; 13:399-404
10. Parham P, McQueen KL Alloreactive killer cells: hindrance and help for haematopoietic transplants. *Nat Rev Immunol.* 2003; 3:108-122

11. Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. *Blood*. 1999; 94:333-339
12. Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. *Blood*. 5 2002; 100:1935-1947
13. Velardi A, Ruggeri L, Moretta A, Moretta L. NK cells: a lesson from mismatched hematopoietic transplantation. *Trends Immunol*. 2002; 23:438-444
14. Guven H, Gilljam M, Chambers BJ, et al. Expansion of natural killer (NK) and natural killer-like T (NKT)-cell populations derived from patients with B-chronic 10 lymphocytic leukemia (B-CLL): a potential source for cellular immunotherapy. *Leukemia*. 2003; 17:1973-1980
15. Lauwerys BR, Garot N, Renaud JC, Houssiau FA. Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. *J Immunol*. 2000; 165:1847-1853
- 15 16. Parrish-Novak J, Dillon SR, Nelson A, et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. *Nature*. 2000; 408:57-63
17. Strengell M, Matikainen S, Siren J, et al. IL-21 in synergy with IL-15 or IL-18 enhances IFN-gamma production in human NK and T cells. *J Immunol*. 2003; 20 170:5464-5469
18. Liu CC, Perussia B, Young JD. The emerging role of IL-15 in NK-cell development. *Immunol Today*. 2000; 21:113-116
19. Rosenberg SA, Lotze MT, Muul LM, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant 25 interleukin-2 to patients with metastatic cancer. *N Engl J Med*. 1985; 313:1485-1492

- 27 -

20. Stein RC, Malkovska V, Morgan S, *et al.* The clinical effects of prolonged treatment of patients with advanced cancer with low-dose subcutaneous interleukin-2. *Br J Cancer.* 1991; 63:275-278
21. Atkins MB, Lotze MT, Dutcher JP, *et al.* High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. *J Clin Oncol.* 1999; 17:2105-2116
22. Chada S, Ramesh R, Mhashilkar AM Cytokine- and chemokine-based gene therapy for cancer. *Curr Opin Mol Ther.* 2003; 5:463-474
23. Panelli MC, White R, Foster M, *et al.* Forecasting the cytokine storm following systemic interleukin (IL)-2 administration. *J Transl Med.* 2004; 2:17
24. Maas RA, Dullens HF, Den Otter W Interleukin-2 in cancer treatment: disappointing or (still) promising? A review. *Cancer Immunol Immunother.* 1993; 36:141-148
25. Weisdorf DJ, Anderson PM, Blazar BR, *et al.* Interleukin 2 immediately after autologous bone marrow transplantation for acute lymphoblastic leukemia--a phase I study. *Transplantation.* 1993; 55:61-66
26. Ochoa JB, Curti B, Peitzman AB, *et al.* Increased circulating nitrogen oxides after human tumor immunotherapy: correlation with toxic hemodynamic changes. *J Natl Cancer Inst.* 1992; 84:864-867
27. Glauser FL, DeBlois G, Bechard D, *et al.* Cardiopulmonary toxicity of adoptive immunotherapy. *Am J Med Sci.* 1988; 296:406-412
28. Ardizzone A, Bonavia M, Viale M, *et al.* Biologic and clinical effects of continuous infusion interleukin-2 in patients with non-small cell lung cancer. *Cancer.* 1994; 73:1353-1360

29. Miller JS, Tessmer-Tuck J, Blake N, *et al.* Endogenous IL-2 production by natural killer cells maintains cytotoxic and proliferative capacity following retroviral-mediated gene transfer. *Exp Hematol.* 1997; 25:1140-1148

30. Gong JH, Maki G, Klingemann HG Characterization of a human cell line (NK-92) 5 with phenotypical and functional characteristics of activated natural killer cells. *Leukemia.* 1994; 8:652-658

31. Nagashima S, Mailliard R, Kashii Y, *et al.* Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization *in vitro* and *in vivo*. *Blood.* 1998; 91:3850-3861

10 32. Tam YK, Maki G, Miyagawa B, *et al.* Characterization of genetically altered, interleukin 2-independent natural killer cell lines suitable for adoptive cellular immunotherapy. *Hum Gene Ther.* 1999; 10:1359-1373

33. Malek TR, Bayer AL Tolerance, not immunity, crucially depends on IL-2. *Nat Rev Immunol.* 2004; 4:665-674

15 34. Laker C, Stocking C, Bergholz U, *et al.* Autocrine stimulation after transfer of the granulocyte/macrophage colony-stimulating factor gene and autonomous growth are distinct but interdependent steps in the oncogenic pathway. *Proc Natl Acad Sci U S A.* 1987; 84:8458-8462

35. Browder TM, Abrams JS, Wong PM, Nienhuis AW Mechanism of autocrine 20 stimulation in hematopoietic cells producing interleukin-3 after retrovirus-mediated gene transfer. *Mol Cell Biol.* 1989; 9:204-213

Claims

1. A method of immunotherapy using gene modified cells, expressing substantially physiological levels of IL-2, wherein an IL-2 expressing mammalian cell is produced through a method, comprising the steps of

5 - selection or construction of an IL-2 gene,
 - preparation of a retroviral vector carrying said IL-2 gene,
 - collection of cells from a donor or patient,
 - genetic modification of cells,
 - optionally, selection of gene-modified cells, and

10 wherein said cells are administered to a patient in need thereof.

2. The method according to claim 1, wherein said IL-2 gene is a gene encoding the protein of SEQ. ID. NO. 11 or functional equivalents thereof.

3. The method according to claim 1, wherein said IL-2 gene is a gene encoding the protein of SEQ. ID. NO. 13 or functional equivalents thereof.

15 4. The method according to claim 1, wherein said IL-2 gene is a gene chosen among SEQ. ID. NO. 8, SEQ. ID. NO. 10, and functional equivalents thereof.

5. The method according to any one of claims 1 - 4, wherein said mammalian cells are chosen among natural killer (NK) cells, and T-cells.

20 6. The method according to claim 5, wherein said mammalian cells are natural killer (NK) cells.

7. The method according to claim 1, wherein said IL-2 gene is modified to direct the expression of IL-2 to the endoplasmatic reticulum of said cell.

8. A method of producing a gene modified cell expressing substantially physiological levels of IL-2, comprising the steps of

25 - selection or construction of an IL-2 gene,

- 30 -

- preparation of a retroviral vector carrying said IL-2 gene,

- collection of cells from a donor or patient,

- genetic modification of cells,

- optionally, selection of the gene modified cells.

5 9. The method according to claim 8, wherein said IL-2 gene is a gene encoding the protein of SEQ. ID. NO. 11 or functional equivalents thereof.

10. The method according to claim 8, wherein said IL-2 gene is a gene encoding the protein of SEQ. ID. NO. 13 or functional equivalents thereof.

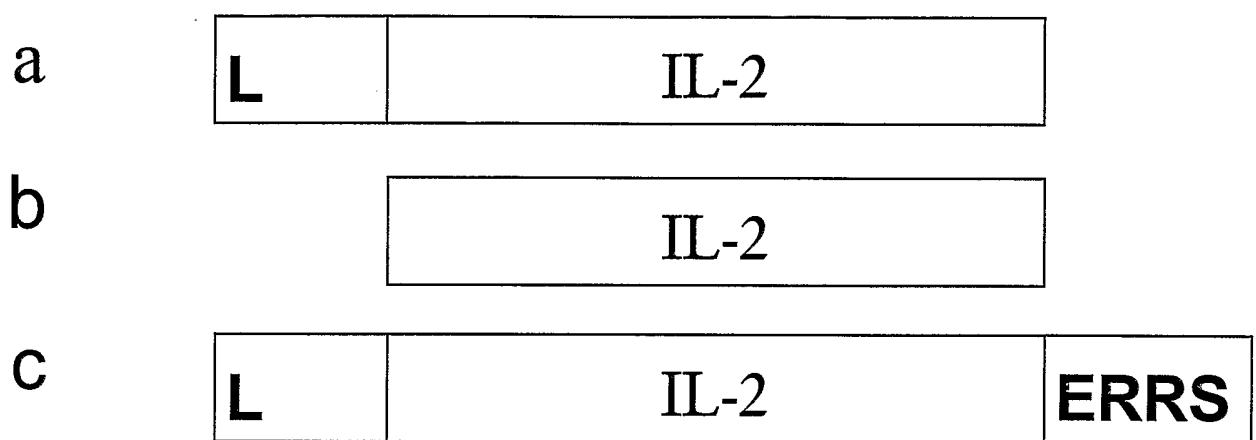
10 11. The method according to claim 8, wherein said IL-2 gene is a gene chosen among SEQ. ID. NO. 8, SEQ. ID. NO. 10, and functional equivalents thereof.

12. A transgenic mammalian cell capable of producing IL-2, obtainable by the method according to any one of claims 8 – 11.

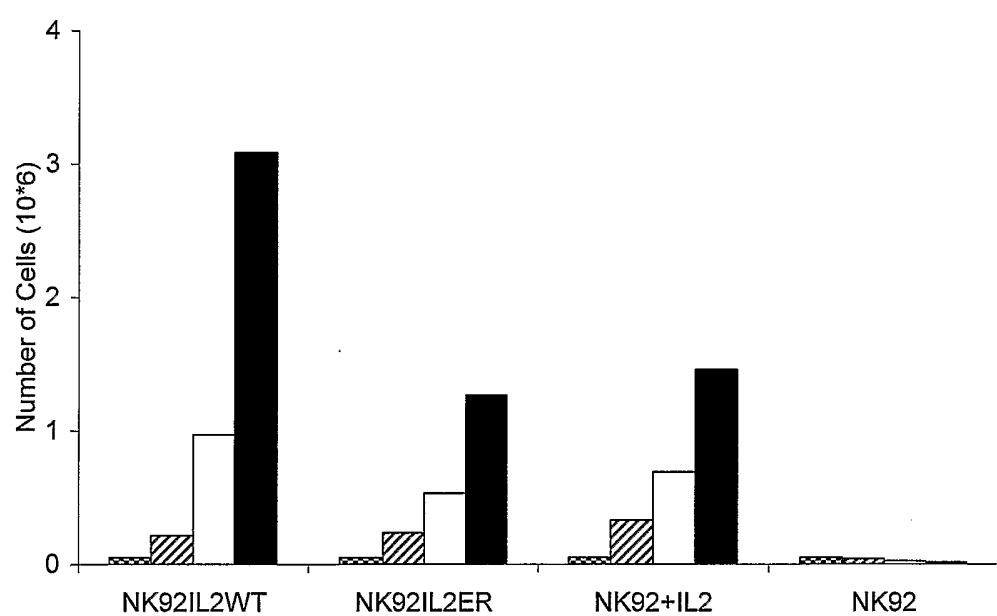
15 13. A transgenic mammalian cell obtainable by the method according to any one of claims 8 – 11, which cell in non-modified state is dependent of IL-2 for its growth, and unable to produce any significant amounts thereof, wherein said transgenic cell produces IL-2 in an amount sufficient to sustain growth without the need of external IL-2.

14. The transgenic mammalian cell according to claim 13, wherein IL-2 is expressed and retained in the endoplasmatic reticulum of said cell.

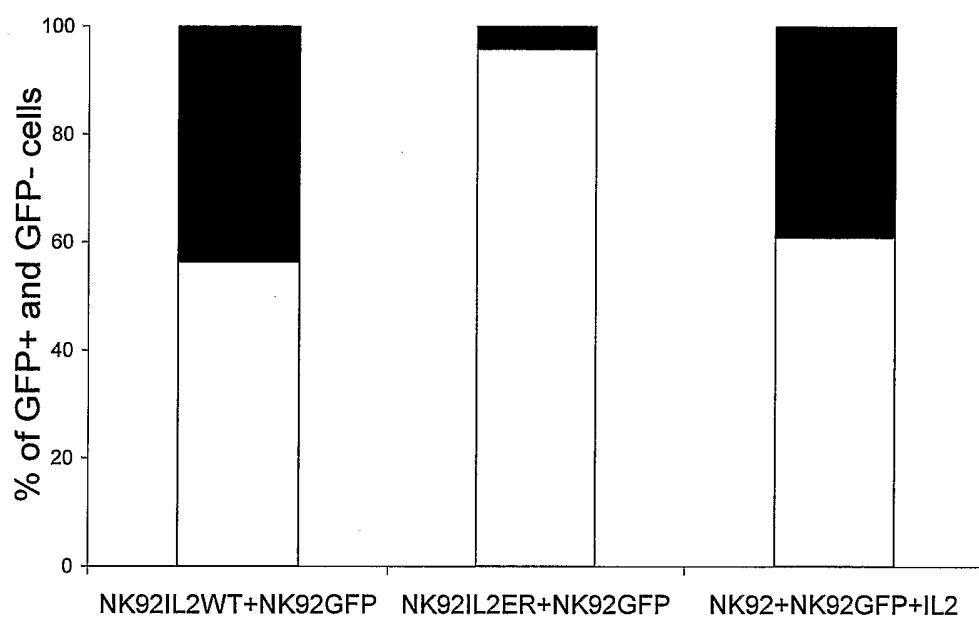
20 15. A method in the treatment of cancer, comprising the administration to said patients a therapeutically efficient and physiologically acceptable amount of transgenic cells according to any one of claims –12 - 14.

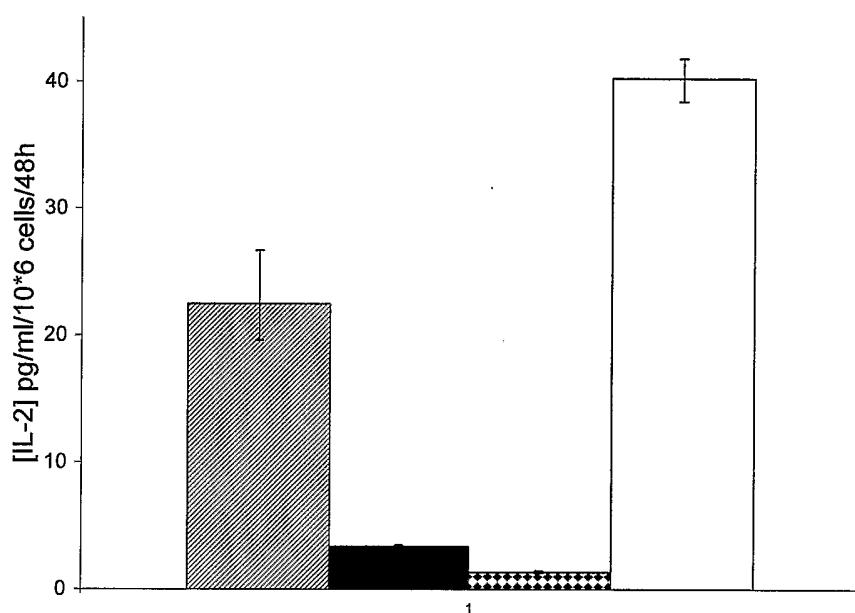

16. The method according to any one of claims 1 – 7 or 15, wherein said cells are taken from the patient, transfected, and returned to said same patient.

25 17. The method according to any one of claims 1 - 7 or 15, wherein said cells are taken from a donor, transfected, and administered to said patient.


- 31 -

18. The method according to any one of claims 1 – 7 or 15, wherein said use of transgenic cells constitutes an adjunct or supplementary therapy, performed before, after or substantially simultaneously with another therapy.
19. The method according to any one of claims 1 – 7 or 15, wherein said use of 5 transgenic cells constitutes the primary therapy in the treatment of cancer.
20. The method according to any one of claims 1 - 7, wherein said immunostimulation constitutes a step in the treatment or prevention of infection.




Fig.1

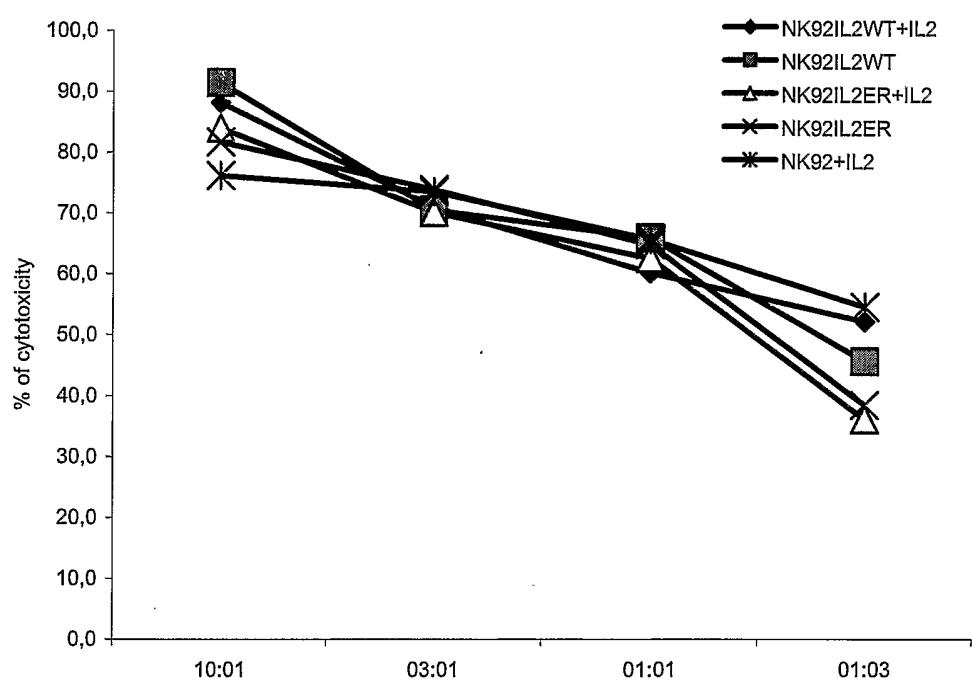

Fig.2

Fig.3

Fig.4

Fig.5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 2005/001049

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: C12N 5/10, A61K 35/12, A61P 35/00, A61P 31/00 // C07K 14/55
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-INTERNAL, WPI DATA, PAJ, BIOSIS, MEDLINE, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 03044183 A1 (MEDIGENES), 30 May 2003 (30.05.2003), page 1, line 5 - line 15; page 4, line 18 - line 19; page 4, line 22 - page 5, line 5, page 5, line 14-line 21; page 10, line 4 - line 13; examples; abstract --	1-2,4-9, 11-13,15-20
X	WO 9849268 A1 (KLINGEMANN, HANS), 5 November 1998 (05.11.1998), page 4, line 26 - page 7, line 13, abstract, example 16 --	1-2,4-9, 11-13,15-20
A	WO 9613599 A1 (WELS, WINFRIED), 9 May 1996 (09.05.1996), page 7, paragraph 2; page 11, paragraph 2; page 14, paragraph 2; page 15 paragraph 3; page 17, paragraph 2; page 20, paragraph 4 --	13-14

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A"	document defining the general state of the art which is not considered to be of particular relevance
"E"	earlier application or patent but published on or after the international filing date
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	document referring to an oral disclosure, use, exhibition or other means
"P"	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y"	document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&"	document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
5 October 2005	10-10-2005
Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Facsimile No. +46 8 666 02 86	Authorized officer Terese Sandström/Els Telephone No. +46 8 782 25 00

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 2005/001049

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	L. GLAUSER et al, "Review: Cardiopulmonary Toxicity of Adoptive Immunotherapy", Am J Med Sci, 1988, volume 296, no. 5, pages 406-412 --	1-20
P,X	KYRIAKOS V. KONSTANTINIDIS et al, "Targeting IL-2 to the endoplasmic reticulum confines autocrine growth stimulation to NK-92 cells", Experimental Hematology, 2005, volume 33, page 159 - page 164 --	1-20
P,A	WO 2005011730 A1 (QUEEN MARY & WESTFIELD COLLEGE), 10 February 2005 (10.02.2005), page 24, line 1 - line 11; page 24, line 24 - page 25, line 2 -- -----	13-14

INTERNATIONAL SEARCH REPORT

International application No.
PCT/SE2005/001049

Box No. I . Nucleotide and/or amino acid sequence(s) (Continuation of item1.b of the first sheet)

1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application and necessary to the claimed invention, the international search was carried out on the basis of:
 - a. type of material
 - a sequence listing
 - table(s) related to the sequence listing
 - b. format of material
 - on paper
 - in electronic form
 - c. time of filing/furnishing
 - contained in the international application as filed
 - filed together with the international application in electronic form
 - furnished subsequently to this Authority for the purposes of search
2. In addition, in the case that more than one version or copy of a sequence listing and/or table relating thereto has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished.
3. Additional comments:

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/SE2005/001049**Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 1-11, 15-20

because they relate to subject matter not required to be searched by this Authority, namely:

Claims 1-11 and 15-20 relate to a method of treatment of the human or animal body by surgery or by therapy, as well as diagnostic methods /Rule 39.1(iv). .../...

2. Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/SE2005/001049

Box II

Nevertheless, a search has been executed for these claims.

The search for claims 1-7 and parts of claims 16-20 has been based on the technical content, i.e. the method for producing the IL-2 producing mammalian cell.

Claims 8-11 have been searched as if all steps were carried out in vitro, i.e. the claims have been searched as if the method lacked the step comprising "collection of cells from a donor or patient".

The search for claim 15 and parts of claims 16-20 has been based on the alleged effect of the transgenic cells.

INTERNATIONAL SEARCH REPORT

Information on patent family members

31/08/2005

International application No.

PCT/SE 2005/001049

WO	03044183	A1	30/05/2003	AU	2002366044 A	00/00/0000
				CN	1628167 A	15/06/2005
				EP	1461422 A	29/09/2004
				JP	2005509434 T	14/04/2005
				US	20050095230 A	05/05/2005
-----	-----	-----	-----	-----	-----	-----
WO	9849268	A1	05/11/1998	AU	7267398 A	24/11/1998
				EP	1007630 A	14/06/2000
				US	20020068044 A	06/06/2002
				US	20040018182 A	29/01/2004
				US	20040018183 A	29/01/2004
				US	20040022773 A	05/02/2004
				US	20040052770 A	18/03/2004
-----	-----	-----	-----	-----	-----	-----
WO	9613599	A1	09/05/1996	AT	202145 T	15/06/2001
				AU	695196 B	06/08/1998
				AU	3926895 A	23/05/1996
				CA	2204020 A	09/05/1996
				DE	69521331 D,T	20/09/2001
				EP	0789776 A,B	20/08/1997
				JP	9511916 T	02/12/1997
				NZ	295673 A	29/03/1999
				US	6498233 B	24/12/2002
-----	-----	-----	-----	-----	-----	-----
WO	2005011730	A1	10/02/2005	GB	0318096 D	00/00/0000