(54) 发明名称

一种利用微生物与电动修复结合去除土壤中砷的方法

(57) 摘要

本发明提供了一种利用微生物与电动修复结合去除土壤中砷的方法，其是在采用电动修复方法进行土壤中砷污染治理的过程中，将微生物（嗜酸氧化亚铁硫杆菌）引入正在修复的土壤中，阳极加入HNO₃和微生物的混合液，阴极加入HNO₃，由于微生物与砷的作用和电动修复过程中静电力的协同作用，使土壤中难于单独采用电动修复方法去除的砷得到有效去除。该技术的优点是利用微生物与土壤中砷的作用，使其变成离子态，用电动修复的方法将砷从土壤中去除，实现两种作用的协调，达到有效去除土壤中砷污染的目的，该方法操作简单，价格便宜，实施过程中不产生新的污染。
1. 一种利用微生物与电子修复结合除去土壤中砷的方法，其特征在于，在采用电子修复方法进行土壤中砷污染治理的过程中，将嗜酸硫杆菌引人正在电子修复的土壤中，由于微生物与砷的作用和电子修复过程中静电作用的协同作用，使土壤中难于单独采用电子修复方法去除的砷得到有效去除；

将嗜酸硫杆菌引人正在电子修复的土壤中的操作如下：

在电子修复区域距土壤表面30～50cm深处铺设防渗层，在土壤表面间隔0.2～0.3m距离设置宽0.03～0.05m，深0.2～0.5m，长0.3～1米的槽作为电极槽，相邻两个槽内按插入阴阳两级电极，阴阳极槽中加入0.005～0.05M HNO₃溶液使阳极槽中的pH为1.5～2.5，阴极槽中加入0.01～0.5M HNO₃溶液使阴极槽内pH为3.3～2，电子修复的电流密度在0.5～2mA/cm²，通电20～30天，通电过程中保持阴、阳两极槽中的pH值和溶液量稳定；

在上述通电的第5～10天和第15～20天，在阳极槽内接种嗜酸硫杆菌，每次投加0.3～0.7L菌液，接种菌液浓度为10⁸～10⁹个/ml，调整pH值到初始值；土壤中的砷在嗜酸硫杆菌和电动力的作用下，从土壤中分离，迁移到阴极，在阴极液中回收。

2. 如权利要求1所述的方法，其特征在于，所述方法包括如下步骤：

1) 微生物培养：嗜酸硫杆菌在pH为1.5～3的9K液体培养基中预先培养，菌浓适度10⁸～10⁹个/ml备用。

2) 对土壤进行电子修复，在电子修复区域距土壤表面30～50cm深处铺设防渗层，在土壤表面间隔0.2～0.3m距离设置宽0.03～0.05m，深0.2～0.5m，长0.3～1米的槽作为电极槽，相邻两个槽内按插入阴阳两级电极，阴阳极槽中加入0.005～0.05M HNO₃溶液使阳极槽中的pH为1.5～2.5，阴极槽中加入0.01～0.5M HNO₃溶液使阴极槽内pH为3.3～2，电子修复的电流密度在0.5～2mA/cm²，通电20～30天，通电过程中保持阴、阳两极槽中的pH值和溶液量稳定；

3) 在上述通电的第5～10天和第15～20天，在阳极槽内接种嗜酸硫杆菌，每次投加0.3～0.7L菌液，接种菌液浓度为10⁸～10⁹个/ml，调整pH值到初始值；土壤中的砷在嗜酸硫杆菌和电动力的作用下，从土壤中分离，迁移到阴极，在阴极液中回收。

3. 如权利要求1所述的方法，其特征在于，所述嗜酸硫杆菌为嗜酸氧化硫杆菌和/或嗜酸氧化亚铁硫杆菌。

4. 如权利要求1所述的方法，其特征在于，所述土壤中砷含量为100～200mg/kg，土壤的渗透性在200～600mm/h之间。

5. 如权利要求1～4中任一项所述的方法，其特征在于，该方法包括如下步骤：

1) 微生物培养：嗜酸硫杆菌在pH为1.5～3的9K液体培养基中培养，菌浓适度10⁸～10⁹个/ml时备用；该嗜酸硫杆菌为嗜酸氧化亚铁硫杆菌；

2) 对土壤进行电子修复，在电子修复区域距土壤表面30～50cm深处铺设防渗层，在土壤表面间隔0.2～0.3m距离设置宽0.03～0.05m，深0.2～0.5m，长0.3～1米的槽作为电极槽，相邻两个槽内按插入阴阳两级电极，阴阳极槽中加入0.005M HNO₃溶液使阳极槽中的pH为1.5～2.5，阴极槽中加入0.2M HNO₃溶液使阴极槽内pH为3.3～2，电子修复的电流密度在1mA/cm²，通电25天，通电过程中保持阴、阳两极槽中的pH值和溶液量稳定；

3) 在上述通电的第5天和第15天，在阳极槽中接种嗜酸氧化亚铁硫杆菌，每次投加0.3～0.7L菌液，菌液浓度为10⁸～10⁹个/ml；土壤中的砷在嗜酸氧化亚铁硫杆菌和电动力的作用下，从土壤中分离，迁移到阴极，在阴极液中回收。
用下，从土壤中分离，迁移到阴极，在阴极液中回收。
说明书

一种利用微生物与电动修复结合去除土壤中砷的方法

技术领域
【0001】本发明属于土壤电动修复技术领域，具体涉及一种利用微生物与电动修复结合去除土壤中砷的新方法。

背景技术
【0002】土壤是人类生产和生活中重要的自然资源，人类的衣食住行都离不开土壤。随着冶金、化工、矿业、电子业以及制造业的快速发展，土壤重金属污染问题日趋严重。土壤重金属污染致使人类生存环境质量恶化，导致各类污染事件频发，严重危害生态系统的良性循环和人类的生存健康，土壤重金属修复成为当今社会关注的热点。砷作为最具代表的有毒物而且难处理，在人类的历史上，比其它任何有毒元素或有毒化合物的影响更多。千百年来，人类的工作和生活中伴随着这种神秘的元素，有数万人因此死亡，数百万人因它而患绝症，因此，需要有一种高效、环保的技术使砷得到最大程度的富集或去除。目前，去除砷的方法有化学浸出、电动修复、生物浸出等。由于化学浸出易造成二次污染，电动修复不产生二次污染，但是对一些化合物形态（比如有机物和残渣态）溶解度低，生物浸出后的含砷溶液的迁移率低（特别是在致密的、低透渗的土壤中）都达不到理想的处理效果。

发明内容
【0003】本发明是针对目前低透渗的致密土壤中砷去除率低，砷在微生物和电动技术的联合作用下提高砷在低透渗的致密土壤中富集率或去除率的目的。
【0004】为实现上述发明目的，本发明采用以下技术方案：
【0005】一种利用微生物与电动修复结合去除土壤中砷的方法，该方法是在采用电动修复方法进行土壤中砷污染治理的过程中，将嗜酸硫杆菌引入正在电动修复的土壤中，由于微生物与砷的作用和电动修复过程中静电力的协同作用，使土壤中难以单独采用电动修复方法去除的砷得到有效去除。
【0006】如上所述的方法，优选地，所述方法包括如下步骤：
【0007】1) 微生物培养，嗜酸硫杆菌在pH为1.5～3的9K液体培养基中预先培养，菌浓度达10⁸～10⁹个/ml备用；
【0008】2) 对土壤进行电动修复，在电动修复区域于土壤表面30～50cm深处铺设防渗层，将在此区域的土壤表面间隔0.2～0.3m距离设置宽0.03～0.05米，深0.2～0.5米，长0.3～1米的槽作为电极槽，相邻两个槽内分别插入阴阳两极电极，阳极槽中加入0.005～0.05M INO₃溶液使阳极槽中的pH为1.5～2.5，阴极槽中加入0.01～0.5M INO₃溶液使阴极槽内pH为0.3～2.5；通电修复的电流密度在0.5～2mA/cm²，通电20～30天；通电过程中保持阴、阳两极槽中的pH值和溶液量稳定；
【0009】3) 在上述通电的第5～10天和第15～20天，在阳极槽内接种嗜酸硫杆菌，每次投加0.3～0.7L菌液，接种菌液浓度为10⁸～10⁹个/ml，调整pH值到初始值；土壤中的砷在嗜酸硫杆菌和电动力的作用下，从土壤中分离，迁移到阴极，在阴极液中回收。
说明书记

[0010] 如上所述的方法，优选地，所述嗜酸硫杆菌为嗜酸氧化亚铁硫杆菌和/或嗜酸氧化亚铁硫杆菌。

[0011] 如上所述的方法，优选地，所述土壤中砷含量为100～200mg/kg，土壤的渗透性在200～600mm/h之间。

[0012] 如上所述的方法，优选地，该方法包括如下步骤：

[0013] (1) 微生物培养：嗜酸氧化亚铁硫杆菌在pH为1.5～3的9K液体培养基中培养，菌浓度达10^{8}～10^{9}个/ml时备用。

[0014] (2) 对土壤进行电动修复，在电动修复区域距土壤表面30～50cm深处铺设防护层，在土壤表面间隔0.2～0.3m距离设置宽0.03～0.05m，深0.2～0.5m，长0.3～1m的槽作为电极槽，相邻两槽内分别插入阴阳两极电极，阴阳极槽中加入0.05M HNO_{3}溶液使阴阳极槽中pH为1.5～2.5，阴阳极槽中加入0.2M HNO_{3}溶液使阴阳极槽中pH为0.3～2，电动修复的电流密度在1mA/cm^{2}，通电25天；通电过程中保持阴、阳两极槽中的pH值和溶液量稳定。

[0015] (3) 在上述通电的第5天和第15天，在阴阳极槽中接种嗜酸氧化亚铁硫杆菌，每次投加0.3～0.7L菌液，接种菌液浓度为10^{8}～10^{9}个/ml，土壤中的砷在嗜酸氧化亚铁硫杆菌和电动力的作用下，从土壤中分离，迁移到阴极，在阳极液中回收。

[0016] 本发明主要利用微生物嗜酸硫杆菌的氧化还原态硫和亚铁离子的能力，能在土壤中氧化还原态硫生成硫酸、氧化亚铁离子生成铁离子，从而在土壤中形成溶砷剂所需的酸性环境和氧化环境，从而来的砷溶液在电动力学（主要是电迁移和电渗析）的作用下能从低渗透的、致密的土壤中迁移出来。通过优化后的工艺条件，能绿色而高效的将砷从土壤中去除。结合微生物与重金属作用和电动修复技术的微生物电磁联合技术在致密的、低渗透的土壤中具有高迁移率，达到对砷的高效富集或去除。

[0017] 本发明的有益效果在于以下几个方面：

[0018] (1) 本发明所用的微生物是常规微生物，容易获取。

[0019] (2) 微生物对砷的溶解而不对土壤造成二次污染。

[0020] (3) 电动化能及时有效地将微生物及其所需营养物质注入到土壤。

[0021] (4) 溶解后的砷在电动力的强化作用下能更好从土壤中迁移出来。

[0022] (5) 该联合技术能够弥补微生物溶解出的砷溶液在低渗透、致密土壤中的迁移动力不足的问题，又能够弥补电动修复对砷的溶解效率不高的问题，实现处理效率的最大化。

[0023] (7) 该方法操作简单，价格便宜，实施过程中不产生新的污染。

具体实施方式

[0024] 本发明采用电动修复方法进行土壤中砷污染治理的过程中，将微生物引入正在修复的土壤中，由于微生物与砷的作用和电动修复过程中静电力的协同作用，使土壤中难于单独采用电动修复方法去除的砷得到有效去除。其主要利用嗜酸硫杆菌的氧化还原态硫和亚铁离子的能力，从而为土壤溶解重金属砷提供一个酸性环境和氧化环境，金属溶出后在电动力学的作用下迁移，从而达到富集或去除重金属砷的目的。

[0025] 以下结合优选实施实例对本发明作进一步说明。

[0026] 实施例1实验室模拟土壤的生物电动修复除砷

[0027] (1) 采用的微生物为嗜酸氧化亚铁硫杆菌，该微生物从美国标准生物样品收集中心
说明 书

购买，保藏编号ATCC23270。

(2) 将嗜酸氧化亚铁硫杆菌接种于常规9K的培养基（pH=1.7）预先培养，得到含有菌浓度为10^8～10^9个/ml的嗜酸氧化亚铁硫杆菌的微生物溶液；

(3) 将预先培养的嗜酸氧化亚铁硫杆菌取10%（约10^6～10^7个/ml）接种到的装有9K液体培养基的中，在30℃下继续培养；

(4) 步骤(3)培养后的嗜酸氧化亚铁硫杆菌（约10^8～10^9个/ml）在25度下保存备用；

(5) 土样采用广西西部地区污染土壤，取20～40处距离土壤表面30～80cm的土壤混匀、捣碎、过10～20目筛后保存备用，该土壤中砷含量为187.1mg/kg，S含量10.2mg/kg，Fe含量21.6mg/kg。

(6) 将处理后的土壤放置在电动修复槽中进行电动修复。该电动修复装置中间是一个0.2×0.4m的长方形槽，用于盛放修复土壤，两端是两个0.2×0.2m的槽用于放置电极。电极槽与土壤槽之间用滤布隔开，阳极槽中加入0.02M HNO₃使pH为2.3；阴极槽中加入0.25M HNO₃使pH为0.6；电动修复的电流密度在0.5mA/cm²，通电20天；通电过程中保持阴、阳两极槽中的pH值和溶液量稳定。

(7) 第5天和第15天，在阳极液接种嗜酸氧化亚铁硫杆菌溶液，菌浓度为10^9/ml，接

(8) 土壤中的砷在嗜酸氧化亚铁硫杆菌和电动力的作用下，从土壤中分离，迁移到阴极。

(9) 结果：经修复后土壤中砷的含量为121.6mg/kg，去除率为35%。

(10) 对照试验

按照上述步骤(5)和(6)进行操作，单独电动修复，不进行步骤(7)，修复后土壤中

砷的含量为181.5mg/kg，去除率为3%。

(11) 实施例2对大地土壤的生物电动修复除砷

(12) 同上述实施例1进行菌种培养，使嗜酸氧化亚铁硫杆菌（约10^8～10^9个/ml）保存备用。

(13) 对广西西北部地区土壤进行电动修复，该土壤中砷含量为187.1mg/kg，S含量

10.2mg/kg，Fe含量21.6mg/kg，渗透率为450mm/h。在电动修复区域距土壤表面40cm深处铺

设防渗层，在土壤表面开设0.3m距离设置宽0.04m，深0.3m，长1m的槽作为电极槽，相邻

两个槽内分别插入阴阳两级电极，电极采用石墨电极，阳极槽中加入0.05M HNO₃溶液使阳

极槽中的pH为1.5，阴极槽中加入0.2M HNO₃溶液使阴极槽内pH为1.2，电动修复的电流密度

在1mA/cm²，通电25天；通电过程中保持阴、阳两极槽中的pH值和溶液量稳定。

(14) 第5天和第15天，在阳极槽中接种嗜酸氧化亚铁硫杆菌，每次投加

0.3L菌液，接种菌液浓度为10^8～10^9个/ml。

(15) 土壤中的砷在嗜酸氧化亚铁硫杆菌和电动力的作用下，从土壤中分离，迁移到

阴极，在阴极液中回收。

(16) 结果：经修复后两电极之间土壤中砷的含量为125.6mg/kg，砷去除率为

32.87%。