METHOD FOR THE DIAGNOSIS AND TREATMENT OF CARDIOVASCULAR DISEASES

The present invention refers to a method for the in vitro or in vivo diagnosis of cardiovascular diseases, in particular high blood pressure, stenosis, vessel occlusion and/or other thrombotic events, wherein the nucleotide at position 950 of a nucleic acid coding for the human ARK2 protein or the amino acid at position 298 of the human ARK2 protein of a sample of a person is determined as well as to the use of ARK2 for the development and/or production of a medicament for treating a cardiovascular disease.
Method for the Diagnosis and Treatment of Cardiovascular Diseases

The present invention refers to a method for the \textit{in vitro} or \textit{in vivo} diagnosis of cardiovascular diseases, in particular high blood pressure, stenosis, vessel occlusion and/or other thrombotic events, wherein the nucleotide at position 950 of a nucleic acid coding for the human ARK2 protein or the amino acid at position 298 of the human ARK2 protein of a sample of a person is determined as well as to the use of ARK2 for the development and/or production of a medicament for treating a cardiovascular disease.

The aurora kinases are an oncogenic family of mitotic serine/threonine kinases that are overexpressed in a number of solid tumors (Vankayalapati, H. et al. (2003) Molecular Cancer Therapeutics, 2, 283-294). Originally, a spontaneous chromosomal segregation defect mutant of \textit{Drosophila} was identified and designated aurora (Shindo, M. et al. (1998), \textbf{244}, 285-292). The human aurora 1 kinase is also known as AUR1, ARK2, Alk2, AIM-1 and STK12. Herein the term ARK2 is used. ARK2 shall play a role in mitosis, specifically it accumulates in the midbodies during mitosis (Shindo, M. et al. (1998), supra). ARK2 deficient cells have also been shown to exhibit cytokinesis defects (Descamps & Prigent (2001), Sci. STKE, \textbf{173}, 1). The gene of ARK2 is located on chromosome 17p13.1.

In order to better understand a potential involvement of ARK2 in the occurrence and progression of human diseases, genotype-phenotype association analyses have been carried out with a well characterized patient group with respect to a C→T variation at position 950 of the ARK2 reference sequence published under the reference number NM_004217. Said variation leads to an amino acid change from threonine to methionine (Thr→Met) at the corresponding position 298 in the ARK2 protein. Different genetic variants of the ARK2 gene are already known as SNPs (single nucleotide polymorphisms) and published under

Surprisingly it has been found that in particular the variation at position 950 from cytosine to thymidine in a nucleic acid coding for the human ARK2 protein or the corresponding variation of the ARK2 protein at position 298 from threonine to methionine correlates with the occurrence of cardiovascular diseases.

Therefore, a subject matter of the present invention relates to an \textit{in vitro} or \textit{in vivo} diagnosis of cardiovascular diseases, wherein the nucleotide at position 950 of a nucleic acid coding for the human ARK2 protein or the amino acid at position 289 of the human ARK2 protein of a sample of a person or patient is determined.

In a preferred embodiment of the present invention the cardiovascular disease is high blood pressure, stenosis, vessel occlusion and/or other thrombotic events.

In particular, if the nucleotide at position 950 is determined as thymidine in the chromosomal DNA or uracile in the mRNA or the amino acid at position 298 is determined as methionine there exists a higher risk of high blood pressure and/or stenosis.

According to the present invention, the term “ARK2-C950C” refers to the group of persons which have cytidine on both alleles of the gene coding for ARK2 at position 950 of the reference sequence NM_004217 which leads to the amino acid threonine at position 298 of the corresponding protein. These persons are homozygous with respect to this ARK2 variant. Consequently, the term “ARK2-C950T” refers to the group of persons who have cytidine on one allele of the gene coding for ARK2 which leads to threonine at position 298 of the corresponding protein and thymidine on the other allele of the gene coding for ARK2 which leads to methionine at position 298 of the corresponding protein. These persons are heterozygous with respect to this ARK2 variant. According to the present invention, the term “ARK2-T950T” refers to the group of persons which have thymidine on both alleles of the gene coding for ARK2 at position 950 of the reference sequence NM_004217 which leads to the amino acid methionine at position 298 of the corresponding protein. These persons are homozygous with respect to this ARK2 variant.
The nucleic acid sequence of the reference sequence coding for the human ARK2 protein preferably has the nucleic acid sequence of SEQ ID NO: 1 and the amino acid sequence of the human ARK2 protein preferably has the amino acid sequence of SEQ ID NO: 3. However, the present invention encompasses also other variants of human ARK2 and the non-human homologs thereof, as for example other mammalian ARK2 homologs or the ARK2 homologs from Drosophila, Caenorhabditis elegans, mouse or rat, provided that there is a nucleotide exchange from cytidine to thymidine at the position corresponding to position 950 of said reference sequence and/or an amino acid exchange from threonine to methionine at the position corresponding to position 298 of said reference sequence and further provided that the corresponding protein has a serine threonine kinase activity. Said enzyme activity can be measured by kinase assays known to a person skilled in the art and/or as described in the present specification.

Generally, the specific nucleotide at position 950 can be determined by a nucleic acid sequencing method, a mass spectrometric analysis of the nucleic acid, a hybridisation method and/or an amplification method. Examples of a nucleic acid sequencing method are pyrosequencing and/or sequencing with the help of radioactive and/or fluorescence labelled nucleotides. Examples of the hybridisation method are Southern blot analysis, Northern blot analysis and/or a hybridisation method on a DNA-microarray. Examples of an amplification method are a TaqMan analysis, a differential RNA display analysis and/or a representational difference analysis (Shi M. M. (2002) Am J Pharmacogenomics., 2(3), 197-205; Kozian & Kirschbaum (1999) Trends Biotechnol., 17(2), 73-8.)

Furthermore, the amino acid sequence at position 298 can be determined by a method measuring the amount of the specific protein and/or a method measuring the activity of the specific protein. Examples of a method for measuring the amount of the specific protein are a Western blot analysis and/or an ELISA. Examples for measuring the activity of the specific protein are an in vitro test assay and/or an in vitro whole cell test
assay with human cells, animal cells, bacterial cells or yeast cells, all known to a person skilled in the art and/or described in the present application.

Examples of a sample for the detection of the respective variant are a cell, a tissue or a body fluid, in particular in cellular components of the blood, endothelial cells or smooth muscle cells. Preferably the sample is pre-treated by conventional methods known to a person skilled in the art in order to isolate and/or purify the nucleic acids or chromosomal DNA, or the proteins of the sample for the further analysis.

In an optional further step the risk of a person to suffer from a cardiovascular disease can be determined as shown in the examples.

In another optional further step an appropriate pharmaceutical is selected or the dosage of a pharmaceutical is determined.

In general, the found genetic variation in the ARK2 gene can be used in accordance with the present invention as a genetic marker for the risk assessment, the genetic characterization or classification of a person and/or the prophylactic treatment of a cardiovascular disease (also known as "coronary heart disease"), in particular of high blood pressure, stenosis, vessel occlusion and/or other thrombotic events.

Furthermore, the genetic variation can be used in accordance with the present invention as a genetic marker for the adaptation of the dosage or generally of increasing the effectiveness of an effective therapeutic agent for the treatment of a person or patient (hereinafter also referred to as "individual") and/or for the identification of individuals being under or selected to be under clinical trial studies with an increased risk for cardiovascular disease, in particular of high blood pressure and/or stenosis. The genetic variation can also be used in accordance with the present invention for the evaluation of the tolerance, safety and efficacy of a pharmaceutically active substance for a specific individual or for identifying the individual suitable for a particular treatment of said diseases.
The present invention can also be used to identify risk factors for said diseases for each individual to be treated or advised.

In general, suitable individuals are (i) individuals who do not exhibit the symptoms of a cardiovascular disease, (ii) individuals in whom the risk of developing a cardiovascular disease has already been detected but who do not yet exhibit the symptoms of the disease, and (iii) individuals who have previously been diagnosed as suffering from a cardiovascular disease.

A preferred method for the diagnosis of a cardiovascular disease in accordance with the present invention contains the following steps:
(a) optionally obtaining a sample, in particular a cell, tissue, body fluid, a cellular component of the blood, endothelial cells or smooth muscle cells, from a person or patient that should be investigated;
(b) isolating a nucleic acid probe, in particular a DNA probe from the sample;
(c) amplifying the specific region encompassing position 950 of the ARK2 gene with the help of primers, in particular the primers as specified in the Examples;
(d) sequencing the amplified region;
(e) analysing the sequenced region; and
(f) assessing the risk for a cardiovascular disease, in particular for high blood pressure, stenosis, vessel occlusion and/or other thrombotic events.

An alternative method for the diagnosis of a cardiovascular disease in accordance with the present invention contains the following steps:
(a) optionally obtaining a sample, in particular a cell, tissue, body fluid, a cellular component of the blood, endothelial cells or smooth muscle cells, from a person or patient that should be investigated;
(b) isolating the ARK2 protein from the sample;
(c) determining the amino acid at position 298 of the ARK2 protein; and
(d) assessing the risk for a cardiovascular disease, in particular for high blood pressure, stenosis, vessel occlusion and/or other thrombotic events.
The present invention generally refers also to a method for determining the risk of a person to suffer from a cardiovascular disease, wherein the method comprises the steps of
(a) determining the genotype of the ARK2 gene of a person *in vitro or in vivo*, and
(b) converting the data obtained in (a) in order to give a prognosis for said person's risk of developing a cardiovascular disease,
whereas the detection of an ARK2 Met298Met variation is an indicator for an increased risk for developing a cardiovascular disease, in particular high blood pressure, stenosis, vessel occlusion and/or other thrombotic events.

Another embodiment of the present invention generally refers to a method for selecting a pharmaceutically active compound or determining the dosage of a pharmaceutically active compound for a person suffering from a cardiovascular disease, in particular high blood pressure, stenosis, vessel occlusion and/or other thrombotic events, or for determining the effectiveness of a therapeutic treatment of a cardiovascular disease, in particular high blood pressure, stenosis, vessel occlusion and/or other thrombotic events,
wherein the method comprises the steps of
(a) determining the genotype of the ARK2 gene of a person *in vitro*, and
(b) selecting a pharmaceutically active compound or determining the dosage of a pharmaceutically active compound for said person or determining the effectiveness of a therapeutic treatment,
whereas the pharmaceutically active compound is selected and/or the dosage of a pharmaceutically active compound and/or the effectiveness of a therapeutic treatment is determined for a person having an ARK2 Met298Met variation.

Still another embodiment of the present invention generally refers to a method for identifying a person having an increased risk for a cardiovascular disease, wherein the method comprises the steps of
(a) determining the genotype of the ARK2 gene of a person *in vitro or in vivo*, and
(b) converting the data obtained in (a) in order to identify the person.
whereas the detection of an ARK2 Met298Met variation is an indicator for an increased risk for developing a cardiovascular disease, in particular high blood pressure, stenosis, vessel occlusion and/or other thrombotic events.

The determination of the genotype of the ARK2 gene can be carried out by any method known to a person skilled in the art, in particular by any method described herein.

In addition, ARK2 and/or the ARK2 variants as described herein can be used in accordance with the present invention for the production of a medicament for treating a cardiovascular disease. Therefore, an additional embodiment of the present invention refers to the use of an ARK2 protein containing an amino acid sequence according to SEQ ID NO: 3 or of an ARK2 variant at the amino acid position 298 and/or the corresponding nucleic acid sequence coding for the ARK2 protein or variant thereof for the production of a medicament for treating a cardiovascular disease, in particular high blood pressure, stenosis, vessel occlusion and/or other thrombotic events. In particular, the variant is a Met298Met variant of the ARK2 protein according to SEQ ID NO: 7 or a T950T variant of the ARK2 nucleic acid according to SEQ ID NO: 6. In particular, kinase assays known to those of skill in the art and/or as described herein can be used to identify modulators, e.g. activators or inhibitors, of the ARK2 protein and/or the ARK2 variant, in particular the ARK2-Met298Met variant.

Consequently, ARK2 and/or the ARK2 variants described herein can also be used in accordance with the present invention as part of a high throughput-screening assay for the detection and evaluation of pharmaceutically active compounds for the treatment of said diseases. Therefore, an additional embodiment of the present invention refers to a method of screening a pharmaceutically active agent for the treatment of a cardiovascular disease, wherein the method comprises the steps of:
(a) providing an ARK2 protein containing an amino acid sequence according to SEQ ID NO: 3 or an ARK2 variant at the amino acid position 298 and/or the corresponding nucleic acid coding for the ARK2 protein or variant thereof,
(b) providing a test compound,
(c) measuring or detecting the influence of the test compound on the ARK2 protein or ARK2 variant or on the corresponding nucleic acid, and
(d) isolating a compound suitable for the treatment of a cardiovascular disease, in particular high blood pressure, stenosis, vessel occlusion and/or other thrombotic events.

In particular, the variant is a Met298Met variant of the ARK2 protein according to SEQ ID NO: 7 or a T950T variant of the ARK2 nucleic acid according to SEQ ID NO: 6. In general, the ARK2 protein, the ARK2 variant or the nucleic acid coding for the ARK2 protein or variant is provided e.g. in an assay system and brought directly or indirectly into contact with a test compound, in particular a biochemical or chemical test compound, e.g. in the form of a chemical compound library. Then, the influence of the test compound on the ARK2 protein or the nucleic acid coding for the ARK2 protein is measured or detected. Thereafter, suitable modulators, e.g. activators or inhibitors, can be analyzed and/or isolated. For the screening of chemical compound libraries, the use of high-throughput assays are preferred which are known to the skilled person or which are commercially available.

In general, the influence of the test compound on the ARK2 protein or the ARK2 variant or the nucleic acid coding for the ARK2 protein or the variant may be any physical, chemical or phenotypic effect of the compound upon the protein or nucleic acid or upon a cell comprising the protein or nucleic acid, thereby identifying a compound that modulates the protein or nucleic acid. In the present case it is preferable to measure or detect the influence of the test compound on the kinase activity of the ARK2 protein or the ARK2 variant as described herein.

The general concept of a kinase assay is that the kinase to be analysed, here the ARK2 serine/threonine kinase, is brought into contact with a suitable substrate or peptide containing a serine or threonine residue which can be phosphorylated by the kinase in the presence of preferably ATP in a suitable buffer. Preferably the substrate is a dye-labelled substrate, e.g. a fluorescent dye-labelled peptide, e.g. a fluorescein-labelled peptide. Serine/Threonine kinase assays are commercially available, e.g. the
HitHunter™ Serine/Threonine Kinase Assay from Applied Biosystems, Inc., California, USA or the IQ™ Serine/Threonine Kinase Assay from Pierce Biotechnology, Inc., Illinois, USA. Other kinase assays are further described in detail below.

According to the present invention the term "chemical compound library" refers to a plurality of chemical compounds that have been assembled from any of multiple sources, including chemically synthesized molecules and natural products, or that have been generated by combinatorial chemistry techniques.

In general, the influence of the test compound on ARK2, the ARK2 variant or the nucleic acid coding for ARK2 protein or variant is measured or detected in a heterogeneous or homogeneous assay. As used herein, a heterogeneous assay is an assay which includes one or more washing steps, whereas in a homogeneous assay such washing steps are not necessary. The reagents and compounds are only mixed and measured.

Suitable functional assays may be based on the gene expression of ARK2 or its serine/threonine kinase activity. In general, commercially available kinase assays systems quantitatively detect the amount of phosphate incorporated in a substrate.

Heterogeneous assays are, for example, ELISA, DELFIA, SPA and flashplate assays.

ELISA (enzyme linked immuno sorbent assay)-based assays are offered by various companies. The assays employ random peptides that can be phosphorylated by a kinase, such as ARK2. Kinase-containing samples are usually diluted into a reaction buffer containing e.g. ATP and requisite cations and then added to plate wells. Reactions are stopped by simply removing the mixtures. Thereafter, the plates are washed. The reaction is initiated e.g. by the addition of a biotinylated substrate to the kinase. After the reaction, a specific antibody is added. The samples are usually transferred to pre-blocked protein-G plates and after washing e.g. streptavidin-HRP is added. Thereafter, unbound streptavidin-HRP (horseradish peroxidase) is removed,
the peroxidase colour reaction is initiated by addition of the peroxidase substrate and the optical density is measured in a suitable densitometer.

DELFIA (dissociation enhanced lanthanide fluoro immuno assay)-based assays are solid phase assay. The antibody is usually labelled with Europium or another lanthanide and the Europium fluorescence is detected after having washed away unbound Europium-labelled antibodies.

SPA (scintillation proximity assay) and the flashplate assay usually exploit biotin/avidin interactions for capturing radiolabelled substrates. Generally the reaction mixture includes the kinase, a biotinylated peptide substrate and γ-[P³³⁵]ATP. After the reaction, the biotinylated peptides are captured by streptavidin. In the SPA detection, streptavidin is bound on scintillant containing beads whereas in the flashplate detection, streptavidin is bound to the interior of the well of scintillant containing microplates. Once immobilized, the radiolabelled substrate is close enough to the scintillant to stimulate the emission of light.

Alternative homogeneous assays are, for example, TR-FRET, FP, ALPHA and gene assays.

TR-FRET (time-resolved fluorescence resonance energy transfer)-based assays are assays which usually exploit the fluorescence resonance energy transfer between Europium and APC, a modified allophycocyanin or other dyes with overlapping spectra such as Cy3/Cy5 or Cy5/Cy7 (Schobel, U. et al. (1999) Bioconjugate Chem. 10, 1107-1114). After excitation e.g. of Europium with light at 337 nm, the molecule fluoresces at 620 nm. But if this fluorophore is close enough to APC, the Europium will transfer its excitation energy to APC, which fluoresces at 665 nm. The kinase substrate is usually a biotin-labelled substrate. After the kinase reaction, Europium-labelled-(P)-specific antibodies are added along with streptavidin-APC. The phosphorylated peptides bring the Europium-labelled antibody and the streptavidin-APC into close contact. The close proximity of the APC to the Europium fluorophore will cause a quenching of the Europium fluorescence at benefit of the APC fluorescence (FRET).
Fluorescence polarisation (FP)-based assays are assays which use polarized light to excite fluorescent substrate peptides in solution. These fluorescent peptides are free in solution and tumble, causing the emitted light to become depolarised. When the substrate peptide binds to a larger molecule, however, such as (P)-Tyr, its tumbling rates are greatly decreased, and the emitted light remains highly polarized. For a kinase assay there are generally two options:
(a) A fluorescent phosphopeptide tracer is bound to a (P)-specific antibody. Phosphorylated products will compete the fluorescent phosphopeptide from the antibody resulting in a change of the polarisation from high to low.
(b) A phosphorylated substrate peptide binds to the phosphospecific antibody resulting in a change of polarisation from low to high.

ALPHA (amplified luminescent proximity homogenous)-based assays, are assays which rely on the transfer of singlet oxygen between donor and acceptor beads brought into proximity by a phosphorylated peptide. Upon excitation at 680 nm, photosensitisers in donor beads convert ambient oxygen to singlet-state oxygen, which diffuses up to a distance of 200 nm. Chemiluminescent groups in the acceptor beads transfer energy to fluorescent acceptors within the bead, which then emits light at approximately 600 nm.

EFC (enzyme fragment complementation)-based assays or equivalent assays can be used in particular for high-throughput screening of compounds. The EFC assay is based on an engineered β-galactosidase enzyme that consists of two fragments - the enzyme acceptor (EA) and the enzyme donor (ED). When the fragments are separated, there is no β-galactosidase activity, but when the fragments are together they associate (complement) to form active enzyme. The EFC assay utilizes an ED-analyte conjugate in which the analyte may be recognized by a specific binding protein, such as an antibody or receptor. In the absence of the specific binding protein, the ED-analyte conjugate is capable of complementing EA to form active β-galactosidase, producing a positive luminescent signal. If the ED-analyte conjugate is bound by a specific binding protein, complementation with EA is prevented, and there is no signal. If free analyte is provided (in a sample), it will compete with the ED-
analyte conjugate for binding to the specific binding protein. Free analyte will release ED-analyte conjugate for complementation with EA, producing a signal dependent upon the amount of free analyte present in the sample.

Another example of a gene assay is a functional assay wherein the activity of the kinase is converted into a functional cellular response such as growth, growth arrest, differentiation or apoptosis. For this type of screening yeast is a particularly suitable model system. For example in an ARK2-yeast functional assay, when cultured on glucose containing medium, the e.g. ARK2-yeast cells grow like normal yeast cells. When, however being exposed to galactose, the intracellular expression of ARK2 is induced causing the yeast cell to die. Compounds that inhibit ARK2 activity prevent the cell death in this case.

Another assay is based on solid phase-bound polypeptides such as ARK2 and the interference with the compounds to be tested. Thus, a test compound contains a detectable marker, for example, the compound can be radioactively labelled, fluorescence-labelled or luminescence-labelled as already explained above. Furthermore, compounds can be coupled to proteins which permit indirect detection, for example by means of enzymatic catalysis employing a peroxidase assay which uses a chromogenic substrate or by means of binding a detectable antibody. Another possibility is that of investigating the solid phase-bound protein complexes by means of mass spectrometry (SELDI). Changes in the conformation of e.g. ARK2 or the ARK2 variants described herein as the result of interaction with a test substance can be detected, for example, by the change in the fluorescence of an endogenous tryptophan residue in the polypeptide.

The solid phase-bound polypeptides can also be part of an array. Methods for preparing such arrays using solid phase chemistry and photolabile protecting groups are disclosed, for example, in US 5,744,305. These arrays can also be brought into contact with test compound or compound libraries and tested for interaction, for
example binding or changing conformation. Suitable formats of the arrays are currently in the 96-, 384- or 1,536 formats for both the primary and secondary screens.

In another embodiment of the present invention, the method is carried out using whole cells. Usually cells growing at the bottom of multiwell plates are fixed and permeabilized, blocked and incubated with e.g. a primary (P)-specific antibody against the substrate of interest. Then, e.g. Europium labelled or HRP conjugated secondary antibodies in conjunction with specific chemiluminescent or colorimetric substances, e.g. as described above, are utilized to generate the signal. In combination with the use of a microscope not only the amount of (P)-specific antibodies can be quantified on the single cell level, but also phosphorylation-induced translocations of a substrate or morphological changes of the cells.

Advantageously the method of the present invention is carried out in a robotics system e.g. including robotic plating and a robotic liquid transfer system, e.g. using microfluidics, i.e. channelled structured.

In another embodiment of the present invention, the method is carried out in form of a high-throughput screening system. In such a system advantageously the screening method is automated and miniaturized, in particular it uses miniaturized wells and microfluidics controlled by a roboter.

In view of the above subject matter the present invention refers also to a method for producing a medicament for the treatment of a cardiovascular disease, in particular high blood pressure, stenosis, vessel occlusion and/or other thrombotic events, wherein the method comprises the steps of:
(a) carrying out the screening method as explained above, and
(b) formulating the isolated compound with one or more pharmaceutically acceptable carriers or auxiliary substances.

According to step (b) of the above method the detected test compound is usually formulated with one or more pharmaceutically acceptable additives or auxiliary substances, such as physiological buffer solution, e.g. sodium chloride solution,
demineralized water, stabilizers, e-aminocaproic acid or pepstatin A or sequestering agents such as EDTA, gel formulations, such as white vaseline, low-viscosity paraffin and/or yellow wax, etc. depending on the kind of administration.

Suitable further additives are, for example, detergents, such as, for example, Triton X-100 or sodium deoxycholate, but also polyols, such as, for example, polyethylene glycol or glycerol, sugars, such as, for example, sucrose or glucose, zwitterionic compounds, such as, for example, amino acids such as glycine or in particular taurine or betaine and/or a protein, such as, for example, bovine or human serum albumin.

Detergents, polyols and/or zwitterionic compounds are preferred.

The physiological buffer solution preferably has a pH of approx. 6.0-8.0, especially a pH of approx. 6.8-7.8, in particular a pH of approx. 7.4, and/or an osmolarity of approx. 200-400 milliosmol/liter, preferably of approx. 290-310 milliosmol/liter. The pH of the medicament is in general adjusted using a suitable organic or inorganic buffer, such as, for example, preferably using a phosphate buffer, tris buffer (tris(hydroxymethyl)aminomethane), HEPES buffer ([4-(2-hydroxyethyl)piperazino]-ethanesulphonic acid) or MOPS buffer (3-morpholino-1-propanesulphonic acid). The choice of the respective buffer in general depends on the desired buffer molarity.

Phosphate buffer is suitable, for example, for injection and infusion solutions.

The medicament can be administered in a conventional manner, e.g. by means of oral dosage forms, such as, for example, tablets or capsules, by means of the mucous membranes, for example the nose or the oral cavity, in the form of dispositories implanted under the skin, by means of injections, infusions or gels which contain the medicaments according to the invention. Furthermore, the treatment can be carried out by means of a transdermal therapeutic system (TTS), which makes possible a temporally controlled release of the medicaments. TTS are known for example, from EP 0 944 398 A1, EP 0 916 336 A1, EP 0 889 723 A1 or EP 0 852 493 A1.

Injection solutions are in general used if only relatively small amounts of a solution or suspension, for example about 1 to about 20 ml, are to be administered to the body.
Infusion solutions are in general used if a larger amount of a solution or suspension, for example one or more litres, are to be administered. Since, in contrast to the infusion solution, only a few millilitres are administered in the case of injection solutions, small differences from the pH and from the osmotic pressure of the blood or the tissue fluid in the injection do not make themselves noticeable or only make themselves noticeable to an insignificant extent with respect to pain sensation. Dilution of the formulation according to the invention before use is therefore in general not necessary. In the case of the administration of relatively large amounts, however, the formulation according to the invention should be diluted briefly before administration to such an extent that an at least approximately isotonic solution is obtained. An example of an isotonic solution is a 0.9% strength sodium chloride solution. In the case of infusion, the dilution can be carried out, for example, using sterile water while the administration can be carried out, for example, via a so-called bypass.

More preferred steps are individually or collectively specified in the Examples and are incorporated hereby by reference to each step.

The following Figures, Tables, Sequences and Examples shall explain the present invention without limiting the scope of the invention.

DESCRIPTION OF THE FIGURES

Figure 1A shows the nucleic acid sequence of the human ARK2 gene with the NCBI number NM_004217.

Figure 1B shows part of the chromosomal nucleic acid sequence of ARK2 with the number AC135178. The primers used for amplification of the genetic section with the genetic variation C→T corresponding to position 950 of reference sequence NM_004217 are marked in bold face and underlined (ARK2-298R=CCTGCAGGTGGACCTAAAGTTC;
ARK2-298F=GCCTGAGCAGTTTGAGATGAG).

Figure 2 shows the amino acid sequence of the human ARK2 derived from the nucleic acid sequence with the NCBI number NM_004217. The amino acid position 298 in the ARK2 protein is in bold face and underlined.

Figure 3 shows the nucleic acid sequence of the human ARK2 gene T950T variant.

Figure 4 shows the amino acid sequence of the human ARK2 Met298Met variant.
DESCRIPTION OF THE SEQUENCES

SEQ ID NO: 1 shows the nucleic acid sequence of the human ARK2 protein with the NCBI number NM_004217.

SEQ ID NO: 2 shows part of the chromosomal nucleic acid sequence of ARK2 with the number AC135178.

SEQ ID NO: 3 shows the amino acid sequence of the human ARK2 derived from the nucleic acid sequence with the NCBI number NM_004217.

SEQ ID NO: 4 shows the first primer sequence ARK2-298R.

SEQ ID NO: 5 shows the second primer sequence ARK2-298F of the complementary sequence.

SEQ ID NO: 6 shows the nucleic acid sequence of the human ARK2 gene T950T variant.

SEQ ID NO: 7 shows the amino acid sequence of the human ARK2 Met298Met variant.

EXAMPLES

SNP DETECTION BY 5'-NUCLEASE ASSAYS (TAQMAN™)

Oligonucleotides (Primers) for Amplification:

The following primers were used for the detection of the nucleotide exchange from C to T at position 950 in the ARK2 sequence with the reference number NM_004217:
Primer 1: 5’-GCCTGAGCAGTTGTGGAGATGAG-3’ (nucleotides 179605-179584 of the reference sequence AC135178; Fig. 1B; SEQ ID NO: 5);

Primer 2: 5’-CCTGCAGGTGGACCTAAGTTC-3’ (complementary sequence of bases 179532-179553 of the reference sequence AC135178; Fig. 1B; SEQ ID NO: 4).

PCR Protocol for Amplification:

The reagents used were from Applied Biosystems (Foster City, USA). The PCR reaction was carried out in a Primus 96 plus thermal cycler (MWG Biotech AG, Germany) in a total volume of 5 µl with 2.5 µl SuperHot-Master-Mix (Bioron GmbH, Germany), 0.125 µl Assay-by-Design-Mix (Applied Biosystems, Austria), 0.375 µl H₂O and 2 µl DNA. The reaction mixtures were overlaid by 15 µl mineral oil.

Amplification Program of the PCR reactions:

94°C for 1 min x 1 cycle
92°C for 15 sec x 45 cycles
60°C for 1 min x 1 cycle;

Analysis of the PCR Products

The fluorescence was detected in a VICTOR Fluorescence Plate Reader (HVD Life Sciences, Austria) with an excitation/emission filter of 485 nm/520 nm for FAM-marked probes (298Thr allele; ARK2-298M1 (Thr) FAM-TCCCGTGGGCACG) and 530 nm/572 nm for VIC-marked probes (298Met allele; ARK2-298V1 (Met) VIC-CTCCCATGGGCACG). The data were exported in a MS-Excel format and analysed with scatter plots.

RESULTS
Characteristics of the Group of Persons

Table 1 shows the characteristics of the group of persons studied.

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>2074</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>603</td>
<td>29,07</td>
</tr>
<tr>
<td>Male</td>
<td>1471</td>
<td>70,93</td>
</tr>
<tr>
<td>Age</td>
<td>61.8 (+/- 10.5)</td>
<td></td>
</tr>
<tr>
<td>BMI (Body Mass Index)</td>
<td>29.1 (+/- 4.4)</td>
<td></td>
</tr>
<tr>
<td>Blood Pressure</td>
<td>1214</td>
<td>58.7</td>
</tr>
<tr>
<td>Smoker</td>
<td>1372</td>
<td>66.41</td>
</tr>
<tr>
<td>Type II Diabetes</td>
<td>361</td>
<td>17.46</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>830</td>
<td>40.59</td>
</tr>
<tr>
<td>Stroke</td>
<td>145</td>
<td>7.01</td>
</tr>
</tbody>
</table>

Frequency and Distribution of the Variants of the ARK2 Gene

Table 2 shows the frequency and distribution of the genetic variants of the ARK2 gene at position 950 of the reference sequence NM_004217 in the patient group studied.

<table>
<thead>
<tr>
<th>Variant</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARK2-T950T (ARK2 Met298Met)</td>
<td>21</td>
<td>1.46</td>
</tr>
<tr>
<td>ARK2-C950T (ARK2 Thr298Met)</td>
<td>290</td>
<td>20.18</td>
</tr>
<tr>
<td>ARK2-C950C (ARK2 Thr298Thr)</td>
<td>1126</td>
<td>78.36</td>
</tr>
</tbody>
</table>

Influence of the Variant Thr298Met of ARK2
Table 3 shows the influence of the variant Thr298Met of ARK2 on the occurrence of high blood pressure, coronary heart diseases (with a stenosis of >20%), the incidence of more than one myocardial infarction and stroke/TIA/PRIND (TIA = transitoric ischemic attack; PRIND = prolonged reversible ischemic neurological deficit) in the patient group studied. P-values less than 0.05 are considered to be statistically relevant.

Table 3

<table>
<thead>
<tr>
<th></th>
<th>ARK2-T950T Met298Met</th>
<th>ARK2-C950T Thr298Met</th>
<th>ARK2-C950C Thr298Thr</th>
<th>p value</th>
<th>P value adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>High blood pressure</td>
<td>16 (76.19%)</td>
<td>184 (63.45%)</td>
<td>618 (54.88%)</td>
<td>0.0063</td>
<td></td>
</tr>
<tr>
<td>Coronary heart diseases</td>
<td>17 (85.00%)</td>
<td>238 (82.93%)</td>
<td>859 (77.81%)</td>
<td></td>
<td>0.0286</td>
</tr>
<tr>
<td>> 1 Myocardial infarction</td>
<td>3 (14.29%)</td>
<td>28 (9.66%)</td>
<td>66 (5.86%)</td>
<td>0.0464</td>
<td></td>
</tr>
<tr>
<td>Stroke/TIA/PRIND</td>
<td>6 (28.57%)</td>
<td>17 (5.86%)</td>
<td>83 (7.37%)</td>
<td>0.0006</td>
<td></td>
</tr>
</tbody>
</table>

Results:

The patients with ARK2-T950T showed a statistically higher incidence for high blood pressure and coronary heart diseases, the incidence of more than one myocardial infarction and stroke/TIA/PRIND compared to patients with different ARK2 genotype at this position 950.

Conclusion:

The statistically significant associations between the genetic variants of the gene coding for ARK2 and/or the protein ARK2 shown above are a clear indication for the
involvement of said genetic variants in the occurrence of cardiovascular diseases, in particular high blood pressure, stenosis, vessel occlusion and/or thrombotic events. Consequently, said genetic variants are biological markers for e.g. the prognosis of cardiovascular diseases, in particular high blood pressure, stenosis, vessel occlusion and/or thrombotic events). Further embodiments of the invention based on the present finding are described in further details in the present specification.

Figure 1A

1 ggccgggaga gtagcagtgcc tttggaacct ac gctctctct cc ccttttcttc ttaagatg
61 gcccagaagag aagactctcta ccccttgccc cacgaccgcac aacgctgcttgc atctggtcttg
121 agccacctgc cccagcgaggt tctccggaaa gacgctctga cccctcagtgc atctggtctctc
181 atgaccgcgct ccatactcag ccccttgccct gcccctttggc aagaggtgag cggaaatagc
241 aagccctacaac cggacactatt aacggaagct tttcacaattg atgcacttggta gattggcggt
301 cctctggtgct cccacagtgc tggcaagactg taacctcggtc cggccgtcct tggcaagatgctt
361 atctggtgccc ttctgcatcct cggagaatct cagataagaga aagagggcag ggacgtcatcag
421 ctgacgcgacag agatcgaataact cagccggccat cgtgcacact ccaactactg gctgctcttac
481 aacttttatgctcaagggag gaggatctca ttgattctag actatgtgcct cccggggtgccag
541 ctctacaaaggg aagccgagga aagcgcgtcct ctttgagatg gacgacacac cagacaggtgc
601 gaggagttgg cagatctggct aatgtagtgc catggaagag aagttggtct cagacacattaca
661 aagggagaga atctggtggtg gaggtcaaggg aagttggtct cagacacattaca
721 tctctctgag cgcctcctcg cggagggag acaatgtgtcg gcacctcctc gctacagctgctc
781 ccagagatgtg ctgatggctc ctttgagatgtg cagagtacatc cagagagagggtc
841 cttttcgtatg gctgctgtgtt cggcgagggg ccttttcgaggt gcctctccag ctcgctggttgac
901 atctggaagtc gttatgttgca gggagaccaac ccttcctggag gtacatctgag caacagagtgc
961 gacgctcctt ccaactgtgc aaggggcaac ccttcctggag gtacatctgag caacagagtgc
1021 tctcctccac gtcgctgtgg cgtgccttggc cggagtctgtc gcgtctccagt ccgccggtcatc
1081 tctctctggt caggtggtt ggtggtgttg gttggtgttg gttggtgttg gttggtgttg
1141 atataaaggg aagggggtgct ccaactgtgt ctcccttacttg tttttacttg cctccttttgct
1201 ttagaggtgct ccaggtgtt ccctgttggct ttttctacttg tcctccttttgcctttgct

Figure 1B

179461 TCCAAAACAGA ATGGGTAGTC AAGGAAGATG TAGCCAGGGT GAAACTAATG CAGCCCTTCC
179521 ATCTCTTCTAC AACTGCTACT GGACCTAAAG TGCCCGCGCTT CCGTGCCCAT GGGAGCCCAG
179581 GACCCCTACTCT CATGGGACTG CGGAGCATAAC CCGCTGGGAC GCTGGCCCTT GGGCCAGTCC
179641 TCAGCCCACT CCTCTGGGTCC GGGCCACTCT CCGAGGGGTC TGCCCTCCCT TGGCCCTTCA
SEQ ID NO: 1

1 ggccgggaga gtgcaggtgc cttgaccccc agctctctct cccctttctc tctataaggag
gcagtcgtgc cttgaccccc agctctctct cccctttctc tctataaggag
gcagtcgtgc cttgaccccc agctctctct cccctttctc tctataaggag
gccagaaac ggctgtcttc aaggggctt tggagccag cggccgctgg

SEQ ID NO: 2

179461 TCCACACATA ATGTTAGTGC AAGGAAAGAT TAGCCAGGGT GAAACTAATG CAGCCTTCC
179521 ATCTCTTAC ACCGCGATT GACCTAAAG TCCCGGCTT CGTGCCCAT GGAGGCCAG
179581 GACCCAGTCT CCAAACCTGC CAGGCCAACC CCCGGGACAC GCGCTGCCC GCACGCCAGT
179641 TCGACCCACC CTGGGTCCTG GGCCAACTCT CGAGGAGTGC TGGCTTCCTC TGCCCTTCAA

SEQ ID NO: 3

MAQKENSYPWYGRQTAPSGLSTLPQVRKPEVTPSALVLMRSRNVQPTAAGPKVMENSSGT
PDILIHTFIDDFEIRGRPLKGKFNGYLAEREKSHKSVALKVFLKSQ1EKEilibrium
QALILHPNILLRYNFDRLIRLILEYAPREQELYKEQKSCFDEQRTATIMEELAALMYCH
GKKVIHRDIPKLLELGLKELKIADFWSHVAPSLHRKRCGLDTLDYLPPREAMENRMHNEKVD
LCIGVFLCYELLVGNPPFESASHNEYRIRKVLKLFPPASVPTGAQDLISKLRRHNPSSLPLAQ
VSAHPWRANSRRVLPSPALSQVA

SEQ ID NO: 4

1 CCTGCAAGTTGGACCTAAAGTTC
SEQ ID NO: 5

1 GCCTGAGCAGTTTGGAGATGAG

SEQ ID NO: 6

1 ggcggcggaga gtacgcgcag tgtgcctgcctt ccctgcttcctt cccctttttctt tcattaagagtg
61 gccgacaaggg aagaaactttta cccctgtcgcctt gacgctgcatc gacgctgcctt aatcctctctt
121 acacgacccgt gcctgctgctc gccgtgctgctc gcctgctgcctt gacgctgcaagct gcctgctgctc
181 atgagcgcctgc ccaagctgctgc ggcctgcctgc ggcctgcctgc ggcctgcctgc ggcctgcctgc
241 aagctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc
301 acctgctgccgc ccctgctgcctt aatcctctctt gacgctgcaagct gcctgctgctc gcctgctgctc
361 atgagcgcctgc ccaagctgctgc ggcctgcctgc ggcctgcctgc ggcctgcctgc ggcctgcctgc
421 cctgctgccgc ccctgctgcctt aatcctctctt gacgctgcaagct gcctgctgctc gcctgctgctc
481 acacgacccgt gcctgctgctc gccgtgctgctc gcctgctgcctt gacgctgcaagct gcctgctgctc
541 cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc
601 aagctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc
661 acacgacccgt gcctgctgctc gccgtgctgctc gcctgctgcctt gacgctgcaagct gcctgctgctc
721 cctgctgccgc ccctgctgcctt aatcctctctt gacgctgcaagct gcctgctgctc gcctgctgctc
781 acacgacccgt gcctgctgctc gccgtgctgctc gcctgctgcctt gacgctgcaagct gcctgctgctc
841 cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc
901 aagctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc
961 cctgctgccgc ccctgctgcctt aatcctctctt gacgctgcaagct gcctgctgctc gcctgctgctc
1021 cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc
1081 cctgctgccgc ccctgctgcctt aatcctctctt gacgctgcaagct gcctgctgctc gcctgctgctc
1141 cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc
1201 cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc cccctgcctgc

SEQ ID NO: 7

MAQKENSYPWYPYQRTPASGLSTLPRQRLKEPVTPSALVLMRSNVQPITAAPGQKVMENSSGT
PDILTRHTIDDFIEGRPLGKGFNYLAREKKSFIYALKVLPJQSIEKVEQHQLREIEI
QAHLLHPNIRYNYFDRRRIYLYEYAPRUELYEKLFQKSCFEDQRTATIMEELADALMYCH
GKKVIHRIKFNLLMGLKELKIADFGSWVHAPSLRRTMCGLTLDLYPEMEIGRMHNEKVDL
WCIGVLCYELLVGNPPFESASHNYRYRIVKVDLPFASVPMQAQLDLSKLLRHNPSERLPLAQ
VSAHPWVRANSRRVLPPSALQVSVA
Claims

1. A method for the in vitro diagnosis of cardiovascular diseases, wherein the nucleotide at position 950 of a nucleic acid coding for the human ARK2 protein or the amino acid at position 298 of the human ARK2 protein of a sample of a person is determined.

2. The method of claim 1, wherein the cardiovascular disease is high blood pressure, stenosis, vessel occlusion and/or thrombotic events.

3. The method according to claim 1 or 2, wherein the nucleotide at position 950 is determined as thymidine in the chromosomal DNA or uracile in the mRNA or the amino acid at position 298 is determined as methionine.

4. The method according to any of the claims 1-3, wherein the nucleic acid coding for the human ARK2 protein has the nucleotide sequence of SEQ ID NO: 6.

5. The method according to any of the claims 1-3, wherein the human ARK2 protein has the amino acid sequence of SEQ ID NO: 7.

6. The method according to any of the claims 1-4, wherein the nucleotide at position 950 is determined by a method selected from the group consisting of a nucleic acid sequencing method, a mass spectrometric analysis of the nucleic acid, a hybridisation method and/or an amplification method.

7. The method of claim 6, wherein the nucleic acid sequencing method is selected from the group selected from pyrosequencing and/or sequencing with the help of radioactive and/or fluorescence labelled nucleotides.

8. The method of claim 6, wherein the hybridisation method is selected from the group consisting of Southern blot analysis, Northern blot analysis and/or a hybridisation method on a DNA-microarray.
9. The method of claim 6, wherein the amplification method is selected from the group consisting of a TaqMan analysis, a differential RNA display analysis and/or a representational difference analysis.

10. The method according to any of the claims 1-3 and 5, wherein the amino acid sequence at position 298 is determined by a method selected from the group consisting of a method measuring the amount of the specific protein and/or a method measuring the activity of the specific protein, preferably the serine/threonine kinase activity.

11. The method according to claim 10, wherein the amount of the specific protein is measured by a method selected from the group consisting of a western blot analysis and/or an ELISA.

12. The method according to claim 10, wherein the activity of the specific protein is measured by an in vitro test assay and/or an in vitro whole cell test assay with human cells, animal cells, bacterial cells or yeast cells.

13. The method according to any of the claims 1-12, wherein the sample is selected from the group consisting of a cell, a tissue and/or a body fluid.

14. The method according to any of the claims 1-13, wherein in a further step the risk of a person to suffer from a cardiovascular disease is determined.

15. The method according to any of the claims 1-13, wherein in a further step an appropriate pharmaceutical is selected or the dosage of a pharmaceutical is determined.

16. The method according to any of the claims 1-15 comprising the following steps:
 (a) optionally obtaining a sample from a person that should be investigated;
 (b) isolating a nucleic acid probe, in particular a DNA probe from the sample;
(c) amplifying the specific region encompassing position 950 of the ARK2 gene with the help of primers;
(d) sequencing the amplified region;
(e) analysing the sequenced region; and
(f) assessing the risk for a cardiovascular disease, in particular for high blood pressure, stenosis, vessel occlusion and/or thrombotic events.

17. The method according to claim 16, wherein the primers are selected from SEQ ID NO: 4 and/or SEQ ID NO: 5.

18. The method according to any of the claims 1-4, 6-9 or 13-15 comprising the following steps:
(a) optionally obtaining a sample, in particular a cell, tissue, body fluid, a cellular component of the blood, endothelial cells or smooth muscle cells, from a person or patient that should be investigated;
(b) isolating the ARK2 protein from the sample;
(c) determining the amino acid at position 298 of the ARK2 protein; and
(d) assessing the risk for a cardiovascular disease, in particular for high blood pressure, stenosis, vessel occlusion and/or thrombotic events.

19. A method for determining the risk of a person to suffer from a cardiovascular disease, wherein the method comprises the steps of
(a) determining the genotype of the ARK2 gene of a person in vitro, and
(b) converting the data obtained in (a) in order to give a prognosis for said person's risk of developing a cardiovascular disease,
whereas the detection of an ARK2 Met298Met variation is an indicator for an increased risk for developing a cardiovascular disease, in particular high blood pressure, stenosis, vessel occlusion and/or thrombotic events.

20. A method for selecting a pharmaceutically active compound or determining the dosage of a pharmaceutically active compound for a person suffering from a cardiovascular disease, in particular high blood pressure, stenosis, vessel
occlusion and/or thrombotic events, or for determining the effectiveness of a therapeutic treatment of a cardiovascular disease, in particular high blood pressure, stenosis, vessel occlusion and/or thrombotic events, wherein the method comprises the steps of

(a) determining the genotype of the ARK2 gene of a person in vitro, and

(b) selecting a pharmaceutically active compound or determining the dosage of a pharmaceutically active compound for said person or determining the effectiveness of a therapeutic treatment,

whereas the pharmaceutically active compound is selected and/or the dosage of a pharmaceutically active compound and/or the effectiveness of a therapeutic treatment is determined for a person having an ARK2 Met298Met variation.

21. A method for identifying a person having an increased risk for a cardiovascular disease, wherein the method comprises the steps of

(a) determining the genotype of the ARK2 gene of a person in vitro, and

(b) converting the data obtained in (a) in order to identify the person,

whereas the detection of an ARK2 Met298Met variation is an indicator for an increased risk for developing a cardiovascular disease, in particular high blood pressure, stenosis, vessel occlusion and/or thrombotic events.

22. Use of an ARK2 protein containing an amino acid sequence according to SEQ ID NO: 3 or of an ARK2 variant at the amino acid position 298 and/or the corresponding nucleic acid sequence coding for the ARK2 protein or variant thereof for the production of a medicament for treating a cardiovascular disease, in particular high blood pressure, stenosis, vessel occlusion and/or other thrombotic events.

23. The use according to claim 22, wherein the variant is a Met298Met variant of the ARK2 protein according to SEQ ID NO: 7 or a T950T variant of the ARK2 nucleic acid according to SEQ ID NO: 6.
24. A method of screening a pharmaceutically active agent for the treatment of a cardiovascular disease, wherein the method comprises the steps of:
 (a) providing an ARK2 protein containing an amino acid sequence according to SEQ ID NO: 7, an ARK2 variant at the amino acid position 298 and/or the corresponding nucleic acid coding for the ARK2 protein or variant thereof,
 (b) providing a test compound,
 (c) measuring or detecting the influence of the test compound on the ARK2 protein or ARK2 variant or on the corresponding nucleic acid, and
 (d) isolating a compound suitable for the treatment of a cardiovascular disease, in particular high blood pressure, stenosis, vessel occlusion and/or other thrombotic events.

25. The method according to claim 24, wherein the variant is a Met298Met variant of the ARK2 protein according to SEQ ID NO: 7 or a T950T variant of the ARK2 nucleic acid according to SEQ ID NO: 6.

26. The method according to claim 24 or 25, wherein the test compound is provided in the form of a chemical compound library.

27. The method according to any of the claims 24-26, wherein the influence of the test compound on the ARK2 protein or ARK2 variant or on the corresponding nucleic acid is measured or detected in a heterogeneous or homogeneous assay.

28. The method according to claim 27, wherein the heterogeneous assay is an ELISA (enzyme linked immuno sorbent assay), a DELFIA (dissociation enhanced lanthanide fluoro immuno assay), an SPA (scintillation proximity assay) or a flashplate assay.

29. The method according to claim 27, wherein the homogeneous assay is a TR-FRET (time-resolved fluorescence resonance energy transfer) assay, a FP (fluorescence polarisation) assay, an ALPHA (amplified luminescent proximity homogenous assay), an EFC (enzyme fragment complementation) assay or a gene assay.
30. The method according to any of the claims 24-29, wherein the method is carried out on an array.

31. The method according to any of the claims 24-30, wherein the method is carried out using whole cells.

32. The method according to any of the claims 24-31, wherein the method is carried out in a robotics system.

33. The method according to any of the claims 24-32, wherein the method is carried out using microfluidics.

34. The method according to any of the claims 24-33, wherein the method is a method of high-through put screening.

35. A method for producing a medicament for the treatment of a cardiovascular disease, in particular high blood pressure, stenosis, vessel occlusion and/or other thrombotic events, wherein the method comprises the steps of:
(a) carrying out the method according to any of the claims 24-34, and
(b) formulating the isolated compound with one or more pharmaceutically acceptable carriers or auxiliary substances.

36. A method according to any of the claims 1-35 or any subject matter as described in the specification including the examples.
A. CLASSIFICATION OF SUBJECT MATTER

INV. C1201/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, EMBASE, Sequence Search

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 01/88188 A (NIHON UNIVERSITY, SCHOOL JURIDICAL PERSON; ISHIKAWA, KOICHI; ASAI, SAT) 22 November 2001 (2001-11-22) page 18 page 30; table 1</td>
<td>1-19, 21-35</td>
</tr>
</tbody>
</table>

Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principles or theory underlying the invention

document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search: 30 January 2007

Date of mailing of the international search report: 15/02/2007

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2 NL-3330 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax. (+31-70) 340-3016

Authorized officer:
Franz, Cerstin
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DATABASE DBSNP [Online] ncbi; C950T SNP ARK2 29 August 2001 (2001-08-29), "refSNP ID: rs2241909" XP002372732 retrieved from NCBI Database accession no. RS2241909 the whole document</td>
<td>1-19, 21-35</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [X] Claims Nos.: 20
 because they relate to subject matter not required to be searched by this Authority, namely:
 Rule 39.1(iv) PCT - Method for treatment of the human or animal body by therapy

2. [] Claims Nos.:
 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. [] Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple Inventions in this International application, as follows:

1. [] As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. [] As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. [] As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest:
[] The additional search fees were accompanied by the applicant's protest.
[] No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2004)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2003211525 A1</td>
<td>13-11-2003</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>