发明名称
单极、双极、混合 MIMO 天线

摘要
本发明涉及一种单极 MIMO 天线，所述单极 MIMO 天线由多个单极射频天线组成，每个单极射频天线包括金属片、馈线以及连接馈线和金属片的可变短接点，所述金属片上镀有金属微结构。本发明提供的单极 MIMO 天线，突破传统天线设计的框架，省去阻抗匹配网络的复杂设计，保证其小型化，使其能够应用于在尺寸小、传输效率高、天线间距等度的移动终端之中，并满足现代通信系统低功耗的系统设计要求。另外本发明还涉及一种双极 MIMO 天线及一种混合 MIMO 天线。
1. 一种单极 MIMO 天线，其特征在于，所述单极 MIMO 天线由多个单极射频天线组成，每个单极射频天线包括金属片、馈线以及连接馈线和金属片的可短接点，所述金属片上镂刻有金属微结构。

2. 根据权利要求 1 所述的单极 MIMO 天线，其特征在于，所述金属微结构包括互补式开口谐振环结构、互补式螺旋线结构、开口螺旋环结构、双开口螺旋环结构、互补式弯折线结构以及通过前面几种结构衍生、复合、组合或组阵得到的金属微结构。

3. 根据权利要求 2 所述的单极 MIMO 天线，其特征在于，所述单极 MIMO 天线中的每个单极射频天线金属微结构均相同，或者所述单极 MIMO 天线中至少有两个具有不同金属微结构的单极射频天线。

4. 根据权利要求 1 所述的单极 MIMO 天线，其特征在于，所述每个单极射频天线还包括用于放置所述金属片和馈线的介质。

5. 根据权利要求 4 所述的单极 MIMO 天线，其特征在于，所述介质为空气、陶瓷、环氧树脂基板或聚四氟乙烯基板。

6. 一种双极 MIMO 天线，其特征在于，所述双极 MIMO 射频天线由多个双极射频天线组成，每个双极射频天线包括两片平板状的相互平行的金属片、馈线以及接地线，所述两片金属片上均设置有可短接点，分别用于连接馈线和接地线，所述两片金属片上均镂刻有金属微结构。

7. 根据权利要求 6 所述的双极 MIMO 天线，其特征在于，所述金属微结构包括互补式开口谐振环结构、互补式螺旋线结构、开口螺旋环结构、双开口螺旋环结构、互补式弯折线结构以及通过前面几种结构衍生、复合、组合或组阵得到的金属微结构。

8. 根据权利要求 7 所述的双极 MIMO 天线，其特征在于，所述双极 MIMO 天线中的每个双极射频天线金属微结构均相同，或者所述双极 MIMO 天线中至少有两个具有不同金属微结构的双极射频天线。

9. 根据权利要求 6 所述的双极 MIMO 天线，其特征在于，所述两片金属片上均设有金属化通孔，所述两片金属片通过该金属化通孔短接。

10. 根据权利要求 6 所述的双极 MIMO 天线，其特征在于，所述的每个双极射频天线还包括设在两片金属片之间的实际填充介质，所述两片金属片分别位于该实际填充介质的上下两层。

11. 根据权利要求 10 所述的双极 MIMO 天线，其特征在于，所述实际填充介质为空气、陶瓷、环氧树脂基板或聚四氟乙烯基板。

12. 一种混合 MIMO 天线，其特征在于，所述混合 MIMO 天线包括至少一个单极射频天线和至少一个双极射频天线，其中，

每个单极射频天线包括金属片、馈线以及连接馈线和金属片的可短接点，所述金属片上镂刻有金属微结构；

每个双极射频天线包括两片平板状的相互平行的金属片、馈线以及接地线，所述两片金属片上均设置有可短接点，分别用于连接馈线和接地线，所述两片金属片上均镂刻有金属微结构。

13. 根据权利要求 12 所述的混合 MIMO 天线，其特征在于，所述金属微结构包括互补式开口谐振环结构、互补式螺旋线结构、开口螺旋环结构、双开口螺旋环结构、互补式弯折线结构。
结构以及通过前面几种结构衍生、复合、组合或组阵得到的金属微结构。

14. 根据权利要求13所述的混合MIMO天线，其特征在于，所述混合MIMO天线中的每个单极射频天线金属微结构均相同，或者所述混合MIMO天线中至少有两个不同金属微结构的单极射频天线；所述混合MIMO天线中的每个双极射频天线金属微结构均相同，或者所述混合MIMO天线中至少有两个具有不同金属微结构的双极射频天线。
单极、双极、混合 MIMO 天线

技术领域

【0001】本发明涉及无线通信领域，更具体地说，涉及一种单极 MIMO 天线、双极 MIMO 天线及混合 MIMO 天线。

背景技术

【0002】随着半导体工艺的高度发展，对当今的电子系统集成度提出了越来越高的要求，器件的小型化成为了整个产业非常关注的技术问题。然而，不同于 IC 芯片遵循“摩尔定律”的发展，作为电子系统的另外重要组成部分——射频模块，却面临着器件小型化的高难度技术挑战。射频模块主要包含了混频、功放、滤波、射频信号传输、匹配网络与天线等主要器件。其中，天线作为最终射频信号的辐射单元和接收器件，其工作特性将直接影响整个电子系统的工作性能。然而天线的尺寸、带宽、增益等重要指标却受到了基本物理原理的限制（固定尺寸下的增益极限、带宽上限等）。这些指标极限的基本原理使得天线的小型化技术难度远远超过了其它器件，而由于射频器件的电磁场分析的复杂性，逼近这些极限值都成为了巨大的技术挑战。

【0003】与此同时，由于多输入多输出 (MIMO) 系统可以在不需要增加带宽或总发送功率损耗的前提下大幅度增加系统的信息吞吐量及传输距离，使得 MIMO 技术近年来备受瞩目。除此之外，由于 MIMO 的核心思想是利用多根发送与多根接收天线所提供的空间自由度来提高频谱利用效率，因此如何在有限移动终端尺寸限制下，设计高隔离度与高辐射性能的 MIMO 天线成为阻碍第四代移动通信系统发展的重要技术瓶颈。传统的终端通信天线主要基于电单极子或偶极子的辐射原理进行设计，比如最常用的平面反射天线 (PIFA)。传统天线的辐射工作频率直接和天线的尺寸正相关，带宽和天线的面积正相关，使得天线的设计通常需要长波长的物理长度。这使得传统天线技术在移动终端尺寸受限的前提下难以实施。

【0004】除此之外，在一些更为复杂的电子系统设计中，天线需要协调工作，就需要在馈入天线前额外的阻抗匹配网络设计。但阻抗匹配网络额外的增加了电子系统的馈线设计，增大了射频系统的面积同时匹配网络还引入了不少的能量损耗，很难满足现代通信系统低功耗的系统设计要求。

发明内容

【0005】本发明要解决的技术问题在于，传统天线技术在移动终端尺寸受限的前提下难以实施，以及现有技术的上述很难满足现代通信系统低功耗的系统设计要求。本发明提供一种突破传统天线设计的框架，省去阻抗匹配网络的复杂设计，保证其小型化，使其能够应用在尺寸受限的移动终端之中，且天线辐射面积利用率高、抗干扰能力强的 MIMO 天线。

【0006】本发明解决上述技术问题所采用的第一个技术方案是：一种单极 MIMO 天线，所述单极 MIMO 天线由多个单极射频天线组成，每个单极射频天线包括金属片、馈线以及连接馈线和金属片的可短接点，所述金属片上镂刻有金属微结构。

【0007】进一步地，所述金属微结构包括互补式开口谐振环结构、互补式螺旋线结构、开口
螺旋环结构、双开口螺旋环结构、互补式弯折线结构以及通过前面几种结构衍生、复合、组合或阻阵得到的金属微结构。

[0008] 进一步地，所述单极 MIMO 天线中的每个单极射频天线金属微结构均相同，或者所述单极 MIMO 天线中至少有两个具有不同金属微结构的单极射频天线。

[0009] 进一步地，所述每个单极射频天线还包括用于放置所述金属片和馈线的介质。

[0010] 进一步地，所述介质为空气、陶瓷、环氧树脂基板或聚四氟乙烯基板。

[0011] 本发明解决上述技术问题所采用的第二个技术方案是：一种双极 MIMO 天线，所述双极 MIMO 射频天线由多个双极射频天线组成，每个双极射频天线包括两片平板状的相互平行的金属片、馈线以及接地线，所述两片金属片上均设置有可短接点，分别用于连接馈线和接地线，所述两片金属片上均镂刻有金属微结构。

[0012] 进一步地，所述金属微结构包括互补式开口谐振环结构、互补式螺旋线结构、开口螺旋环结构、双开口螺旋环结构、互补式弯折线结构以及通过前面几种结构衍生、复合、组合或阻阵得到的金属微结构。

[0013] 进一步地，所述双极 MIMO 天线中的每个双极射频天线金属微结构均相同，或者所述双极 MIMO 天线中至少有两个具有不同金属微结构的双极射频天线。

[0014] 进一步地，所述两片金属片上均设有金属化通孔，所述两片金属片通过该金属化通孔短接。

[0015] 进一步地，所述的每个双极射频天线还包括设在两片金属片之间的实际填充介质，所述两片金属片分别位于该实际填充介质的上下两层。

[0016] 进一步地，所述实际填充介质为空气、陶瓷、环氧树脂基板或聚四氟乙烯基板。

[0017] 本发明解决上述技术问题所采用的第三技术方案是：一种混合 MIMO 天线，所述混合 MIMO 天线包括至少一个单极射频天线和至少一个双极射频天线，其中，每个单极射频天线包括所述金属片、馈线以及连接馈线和金属片的可短接点，所述金属片上镂刻有金属微结构；每个双极射频天线包括两片平板状的相互平行的金属片、馈线以及接地线，所述两片金属片上均设置有可短接点，分别用于连接馈线和接地线，所述两片金属片上均镂刻有金属微结构。

[0018] 进一步地，所述金属微结构包括互补式开口谐振环结构、互补式螺旋线结构、开口螺旋环结构、双开口螺旋环结构、互补式弯折线结构以及通过前面几种结构衍生、复合、组合或阻阵得到的金属微结构。

[0019] 进一步地，所述混合 MIMO 天线中的每个单极射频天线金属微结构均相同，或者所述混合 MIMO 天线中至少有两个具有不同金属微结构的单极射频天线；所述混合 MIMO 天线中的每个双极射频天线金属微结构均相同，或者所述混合 MIMO 天线中至少有两个具有不同金属微结构的双极射频天线。

[0020] 上述三个方案具有相同的技术效果，即：通过设计天线的结构，省去阻抗匹配网络的复杂设计，保证天线的小型化，从而使其能够应用在尺寸小、受限的移动终端之中，并且整个 MIMO 天线中的每一小天线的隔离度提高，从而易于集成在一起。

附图说明

[0021] 下面将结合附图及实施例对本发明作进一步说明，附图中：
具体实施方式

[0033] 下面结合附图及具体实施例对本发明作进一步的描述：

[0034] 如图 1、图 3、图 5 所示，本发明提供了三种方式的 MIMO 天线，分别是单极 MIMO 天线、双极 MIMO 天线及混合 MIMO 天线。

[0035] 本发明中的单极 MIMO 天线由多个单极射频天线 10 组成，本发明中的双极 MIMO 天线由多个双极射频天线 20 组成，本发明中的混合 MIMO 天线由至少一个单极射频天线 10 和至少一个双极射频天线 20 混合组成。此处的 MIMO 即是指多输入多输出。即 MIMO 天线上的所有单个的天线同时发射，同时接收。

[0036] 下面分三个实施例来详细介绍本发明。

[0037] 实施例一

[0038] 如图 1 所示，在本实施例中，所述单极 MIMO 天线由多个单极射频天线组成，每个单极射频天线包括金属片 11 及馈线 12，所述馈线 12 采用耦合方式馈入所述金属片 11。其中组成单极 MIMO 天线的单极射频天线金属微结构可以相同，也可以不同。每个单极射频天线连接一个接收发射机，所有的接收发射机连接在一个基带信号处理器上。

[0039] 本发明中用于放置金属片和馈线的介质可以是空气、陶瓷或者介质基板；关于馈线的可短接点位置，馈线与金属微结构的可短接点位置可以位于金属微结构上的任意位置。对于本实施例中的单极 MIMO 天线，可通过调整馈线的馈入耦合方式、金属片拓扑微结构与尺寸大小、馈线引线长度、以及馈线与金属微结构的可短接点位置来进行工作频率的调谐。

[0040] 人工电磁材料是一种利用金属微结构进行加工制造的等效特种材料，其性能直接取决于其亚波长的金属微结构。在谐振频段，人工电磁材料常常体现出高度的色散特性，换言之，其阻抗、容感性、等效的介电常数和磁导率随着频率会发生剧烈的变化。因而可采用人工电磁材料对与金属片相接触介质的基本特性进行改造，使得金属片与相接触的介质等效地组成一个高度色散的特电电磁材料，从而实现辐射特性丰富的新型天线。

[0041] 本实施例利用人工电磁材料的特性，采用在金属片上镂刻金属微结构的方式，使得金属片及与金属片相接触的介质共同组成一个等效介电常数按照洛伦兹材料谐振模型色散的电磁材料，实现改变天线的辐射特性目的。
[0042] 本实施例中，关于天线的加工制造，只要满足本发明的设计原理，可以采用各种制造方式。最常用的方法是使用各类印刷电路板（PCB）的制造方法，金属化的通孔，双面覆铜的PCB制造均可满足本发明的加工要求。除此之外，还可以根据实际的需要采用其它加工手段，比如RFID（RFID是Radio Frequency Identification的缩写，即射频识别技术，俗称电子标签）中所使用的导电银浆或覆加工方式，各类可形变器件的柔性PCB加工。铁片天线的加工方式以及铁片与PCB组合的加工方式。其中，铁片与PCB组合加工方式是指利用PCB的精确加工来完成芯片微结构部分的加工，用铁片来完成其它辅助部分。

[0043] 其次，可短接点可以位于金属片上的任意位置。馈线馈入方式不改变本发明的工作原理，但会改变天线具体的辐射性能。

[0044] 同时，由于本发明的主要性能都集中在金属导结构和电路部分的设计，因此馈线的引线对天线的辐射频率影响相对较小。基于这个特点，射频芯片小天线可以被灵活地摆放在系统的任何位置，简化的安装测试的复杂度。

[0045] 图2a为在本发明的MIMO射频芯片天线中金属片1的上镂刻的互补式螺旋线金属导结构的单极射频天线，图2b为所述单极MIMO天线中安装图2a所示的单极射频天线时第一个天线工作频率的仿真测试图，同时天线二及天线三具有相同的工作频率；图2c为所述单极MIMO天线中安装图2a所示的单极射频天线时天线1与天线2间隔离度的仿真测试图，此图表示我们以天线1与天线2两者间互相进行接收、发送测试，如图2c中的S21参数表示天线1发射信号天线2进行接收，我们通过S21的仿真测试结果来衡量天线1与天线二者的间隔离度性能。同时对两个天线之间距离进行调整，得到了两个天线随着距离变化的隔离度模拟仿真示意图；图2d为所述单极MIMO天线中安装图2a所示的单极射频天线时天线1与天线3间隔离度的仿真模拟示意图，此图表示我们以天线1与天线3两者间互相进行接收、发送测试，如图2d中的S31参数表示天线1发射信号天线3进行接收，我们通过S31的仿真测试结果来衡量天线1与天线3两者的间隔离度性能，同时对两段天线之间距离进行调整，得到了两个天线随着距离变化的隔离度模拟仿真示意图；由图2b可以看出端口1的工作频率为2276.9MHz，当端口1为信号输入端，端口2为信号接收端，在工作频率均为2276.9MHz时，随着端口1和端口2所连接的天线的距离d的变化，端口2接收信号能力随的变化，d = 2mm时，db = -8.3231282 ; d = 4mm时，db = -9.3310982 ; d = 6mm时，db = -10.28451 ; d = 8mm时，db = -10.979197 ; d = 10mm时，db = -11.441247。当端口1为信号输入端，端口3为信号接收端，在工作频率为2276.9MHz时，随着端口1和端口3所连接的天线的距离d的变化，端口1接收信号能力随的变化，d = 2mm时，db = -12.838414 ; d = 4mm时，db = -15.564651 ; d = 6mm时，db = -16.675505 ; d = 8mm时，db = -17.222181 ; d = 10mm时，db = -17.561818，由此可以看出本发明的单极MIMO天线在有限的空间内，相邻两天线的干扰很小，且随着距离的增大，两个天线之间的干扰越小，仿真测试表明本专利发明的MIMO多天线技术具有很高的隔离度。

[0046] 实施例二

[0047] 如图3及图4a所示，在本实施例中，所述双极MIMO天线由多个双极射频天线20组成，每个双极射频天线20包括馈线101、接地线102、两片具有拓扑结构的金属片组成，两片金属片平行放置，馈线101馈入其中一个金属片，接地线102接另一金属片，且两金属片上可设有金属化通孔，用于实现金属片的短接。其中组成所述双极MIMO天线的双极射频天
线金属微结构可以相同，也可以不同。每个双极射频天线连接一个接收发射机，所有的接收发射机连接在一个基带信号处理器。

[0048] 其中，馈线和接地线一般视为射频芯片小天线的两个引脚，以标准 50 欧姆阻抗馈入，但馈线的馈入方式与接地线的接人方式可是是容性耦合也可以是感性耦合。上下两个金属片的拓扑结构与尺寸可以相同，也可以不同，从而进行混合结构设计，并不改变基本辐射原理。此时，两金属片之间的介质为实际填充介质（介质材料可以任意选择，一般可以是空气、陶瓷或者介质基板），上下两个金属片可通过金属化通孔进行短接，两个金属片短接时，该天线的辐射参数将会发生相应变化。另外馈线与接地线的可短接点位置可以是任意位置。

[0049] 对于本实施例中的 MIMO 射频芯片阵列天线，可通过调整馈线的馈入耦合方式、接地线的接地方式、上下两金属片的金属微结构与尺寸大小、上下两金属片的金属化孔位置，以及馈线与接地线的可短接位置进行调谐。

[0050] 在本实施例中，双极射频天线是利用人工电磁材料的特性，采用在上下金属片上镂刻金属微结构的方式，使得金属片之间等效填充一个介电常数按照洛仑兹材料谐振模型色散的电磁材料，实现改变天线的辐射特性的目的。

[0051] 本实施例中，关于天线的加工制造，只要满足本发明的设计原理，可以采用各种制造方式。最普通的方法是使用各类印刷电路板（PCB）的制造方法，金属化的通孔、双面覆铜的 PCB 制造均可满足本发明的加工要求。

[0052] 由于所述双极 MIMO 天线的主要性能都集中在金属微结构的设计，因此，馈线与接地线的引线对天线的辐射频率影响相对较小。基于这个特点，双极 MIMO 天线的安装测试复杂度大大降低。

[0053] 如图 4 所示，图 4a 为本发明的 MIMO 射频芯片阵列天线中金属片上镂刻有互补式螺旋线金属微结构的双极射频天线，图 4b 为所述双极 MIMO 天线中安装图 4a 所示的双极射频天线时第一个天线工作频率的仿真测试图，同时天线 5 及天线 6 具有相同的工作频率；图 4c 为所述双极 MIMO 天线中安装图 4a 所示的双极射频天线时天线 4 与天线 5 之间隔离度的仿真测试图，此图表示以天线 4 与天线 5 两者间进行收、发测试，如图 4c 中的参数表示天线 4 发射信号，天线 5 进行接收，通过图 4c 所示的仿真结构来衡量天线 4 与天线 5 两者的隔离度性能。同时对两个天线之间的距离进行调节，得到了两个天线随着距离变化的隔离度模拟仿真示意图，图 4d 为所述双极 MIMO 天线中安装图 4a 所示的双极射频天线时天线 4 与天线 6 之间隔离度的仿真模拟测试图，此图表示我们以天线 4 与天线 6 两者间相互进行收、发测试，如图 4d 中的参数表示天线 4 发射信号天线 6 进行接收，我们通过仿真测试结果来衡量天线 4 与天线 6 两者的隔离度性能。同时对天线之间距离进行调节，得到了两个天线随着距离变化的隔离度模拟仿真示意图。
dB = -10.146808; d = 6mm 时, dB = -11.338065; d = 8mm 时, dB = -12.128368; d = 10mm 时, dB = -12.679786, 由此可以看出本发明的双极 MIMO 天线在有限的空间内, 在此空间中的天线之间的干扰很小, 且随着距离 d 的增大, 两个天线之间的干扰越小, 仿真测试表明本发明的 MIMO 多天线技术具有很高的隔离度。

[0054] 实施例三

[0055] 如图 5 所示, 在本实施例中, 所述混合 MIMO 天线由多至少一个单极射频天线 10 和至少一个双极射频天线 20 组成, 组成混合 MIMO 天线的每个射频天线的金属微结构可以相同, 也可以不同, 每个射频天线连接一个接收发射机, 所有的接收发射机连接在一个基带信号处理器上。

[0056] 关于本实施例中的单极和双极射频天线的特性, 与实施例一和实施例二中的射频天线的特性一致, 在此不再重复。

[0057] 另外金属微结构的结构并不限于图 2a 与图 4a 所示, 还可为其它结构, 例如开口螺旋振环结构、互补式螺旋环结构、开口螺旋环结构、开口螺旋环结构、互补式弯折线结构以及通过前面几种结构衍生、融合、组合或组合得到的金属微结构。上述金属微结构为现有的微结构, 在公开号为 CN201490337 的中国专利中有详细记载, 此处不再描述。

[0058] 上面结合附图对本发明的实施例进行了描述, 但是本发明并不局限于上述的具体实施方式, 上述的具体实施方式仅仅是为了示意性的, 而不是限制性的, 本领域的普通技术人员在本发明的启示下, 在不脱离本发明宗旨和权利要求所保护的范围情况下, 还可做出很多形式, 这些均属于本发明的保护之内。
图 4c
图 4d
图 5