I*I Innovation, Sciences et Innovation, Science and CA 2719615 C 2019/04/09

Développement economique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (11)(21) 2 7 1 9 6 1 5
(12 BREVET CANADIEN
CANADIAN PATENT
13) C
(22) Date de depot/Filing Date: 2010/11/02 (51) Cl.Int./Int.Cl. GO6F 9/448 (2018.01)
(41) Mise a la disp. pub./Open to Public Insp.: 2011/05/04 (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2019/04/09 wACOB (YAAKOV), JEFFREY ALLAN (ALON), IL,

BOUKAYA, MICHAEL, IL

(73) Proprietaire/Owner:
CEVAD.S.P.LTD. IL

(74) Agent: FASKEN MARTINEAU DUMOULIN LLP

(30) Priornte/Priority: 2009/11/04 (US12/611,937)

54) Titre : SYSTEME ET METHODE D'UTILISATION DE TAMPON PREDICTIF DES ERREURS DE BRANCHEMENT
54) Title: SYSTEM AND METHOD FOR USING A BRANCH MIS-PREDICTION BUFFER

100
PROCESSOR 1 i) /
vy PROGRAM CONTROL UNIT
3™ MEMORY] "
| MEMC | INTERRUPT| & M 17
R 13 UNIT 16
"~ a ;
PROGRAM el K} FETCH BRANCH 14
10 ~1 GCACHE » UNIT » MECHANISM
“ KK |
: l DECODE INSTRUCTIONBUS | |
uNT ['
| 4
REGISTER | DATABUS | Il ; DATA
| 9 Fe [I E MEMORY
— ! L SR
| LOAD/STORE EXECUTION 2
7 UNIT UNIT
(-J
| 11

(57) Abréegée/Abstract:

A system and method Is provided for executing a conditional branch instruction. The system and method may Iinclude a branch
predictor to predict one or more instructions that depend on the conditional branch instruction and a branch mis-prediction buffer
to store correct instructions that were not predicted by the branch predictor during a branch mis-prediction.

50 rue Victoria e Place du Portage1l e Gatineau, (Québec) K1AOC9 e www.opic.ic.gc.ca i+

50 Victoria Street e Place du Portage 1 ¢ Gatineau, Quebec K1AO0C9 e www.cipo.ic.gc.ca C anada

CA 02719615 2010-11-02

ABSTRACT

[0099] A system and method is provided for executing a conditional branch

instruction. The system and method may include a branch predictor to predict one

or more instructions that depend on the conditional branch instruction and a branch

mis-prediction buffer to store correct instructions that were not predicted by the

branch predictor during a branch mis-prediction.

24

CA 02719615 2010-11-02

SYSTEM AND METHOD FOR USING A BRANCH MIS-PREDICTION BUFFER

BACKGROUND
[001] Embodiments of the invention relate to methods and systems for predicting
outcomes of branch instructions. In particular, embodiments of present invention relate to

storing instructions from branch mis-predictions for use during subsequent branch mis-

predictions.
[002] A program may include a branch instruction at which, based on a branch condition,

a process may proceed in one of multiple possible ways. For example, in a sequence of

instructions, 1, 2, 3, 4, 5, where 5 1s a branch instruction, instruction 5 may command the

process to proceed sequentially to instructions 6, 7, 8, ... or to jump ahead to instructions

100, 101, 102, ...
[003] To avoid time delays, instructions are typically fetched from program memory ahead

of time so that they are ready for use when they are needed in the processor pipeline.

However, at a branch, the next instruction may be unknown until the branch instruction is

executed. Therefore, subsequent instructions can not be fetched beforehand, thereby causing

a time delay 1n the process pipeline.

[004] To reduce such time delays, a branch predictor may be used to predict the outcome
of a conditional branch. The predicted instructions at the branch are preemptively retrieved
from program memory and temporarily stored in a program cache for easy access. A branch
predictor may be static, using only the branch instructions themselves to determine the
branch outcome or dynamic, also using historical statistics of the branch to determine the
branch outcome.

[005] However, branch predictors may perform poorly for some algorithms, e.g.,
predicting correctly at approximately 50% of branches and predicting incorrectly at
approximately 50% of branches. Furthermore, some algorithms cannot benefit from
dynamic branch prediction, e.g., when there is no correlation between a current branch
decision and preceding branch decisions.

|006] When a branch prediction is correct, the predicted instructions are immediately
retrieved from the program cache. When the branch prediction is incorrect, the retrieved

instructions are discarded and the processor must again retrieve the correct instructions from

CA 02719615 2010-11-02

program memory using additional computational cycles. The additional computational
cycles used to retrieve the correct instructions from program memory after a branch mis-

prediction may be referred to as a branch mis-prediction penalty.

BRIEF DESCRIPTION OF THE DRAWINGS
[007] The subject matter regarded as the invention 1s particularly pointed out and distinctly
claimed in the concluding portion of the specification. The invention, however, both as to
organization and method of operation, together with objects, features, and advantages
thereot, may best be understood by reference to the following detailed description when read
with the accompanying drawings. Specific embodiments of the present invention will be
described with reterence to the following drawings, wherein:
[008] Fig. 1 1s a schematic illustration of a system for in accordance with
embodiments of the invention;:
1009] Figs. 2 — 4 are tables showing processor operations initiated by a branch instruction
1in accordance with embodiments of the invention; and
[0010] Fig. S is a flowchart of a method in accordance with embodiments of the invention.
[0011] It will be appreciated that for simplicity and clarity of illustration, elements shown in

the figures have not necessarily been drawn to scale. For example, the dimensions of some

of the elements may be exaggerated relative to other elements for clarity. Further, where

considered appropriate, reference numerals may be repeated among the figures to indicate

corresponding or analogous elements.

DETAILED DESCRIPTION OF THE INVENTION

[0012] In the following description, various aspects of the present invention will be
described. For purposes of explanation, specific configurations and details are set forth in
order to provide a thorough understanding of the present invention. However, it will also be
apparent to one skilled in the art that the present invention may be practiced without the

specific details presented herein. Furthermore, well known features may be omitted or

simplified in order not to obscure the present invention.

[0013] Unless specifically stated otherwise, as apparent from the following

discussions, it 1s appreciated that throughout the specification discussions utilizing

CA 02719615 2010-11-02

terms such as "processing,” "computing,” "calculating," "determining,” or the like,

refer to the action and/or processes of a computer or computing system, or similar

electronic computing device, that manipulates and/or transforms data represented as
physical, such as electronic, quantities within the computing system's registers
and/or memories into other data similarly represented as physical quantities within

the computing system's memories, registers or other such information storage,
puting sy

transmission or display devices.

[0014] A branch instruction may refer to an instruction at which a process may proceed in
one of multiple possible ways. Branch instructions may be conditional or unconditional. An
unconditional branch instruction may be one in which the outcome is predetermined and
subsequent 1nstructions are known prior to processing the branch instruction. For example,
an unconditional branch instruction may be to repeat an instruction loop a predetermined
number of times and then jump to a latter instruction. A conditional branch instructions may
be one in which the outcome is dependent on a condition. The condition is typically
unknown before subsequent instructions are to be fetched. For example, in one scenario, the
condition may only be known when the branch instruction is decoded.

10015] When a branch instruction is encountered in a program, a processor may retrieve one
or more 1nstructions from a program memory that are predicted to follow the branch
instruction. To retrieve instructions from the program memory, the processor may fetch the
instructions, store them in a program cache, queue and dispatch the instructions. Then, to
read the instructions, the processor may access a tag array, perform a tag compare, and

access the program cache. This senes of operations is typically extensive and power

consuming. In conventional systems, when the branch prediction is incorrect and the wrong
predicted instructions have been retrieved from the program memory, these instructions are
discarded and the processor accesses the program memory again, repeating the extensive
process to retrieve the correct instructions. Each time the branch prediction is incorrect, the

processor may suffer a significant time delay and computational penalty, i.e., a mis-
prediction penalty, in order to fetch the correct instruction from program memory.

[0016] In an embodiment of the invention, a system and method are provided for executing
a conditional branch instruction. A branch predictor may predict one or more instructions.

The predicted instructions may depend on the conditional branch instruction. A branch mis-

CA 02719615 2010-11-02

prediction buffer may store correct instructions that were not predicted by the branch
predictor during a branch mis-prediction.

[0017] In an embodiment of the invention, a system and method are provided for executing
a conditional branch instruction. One or more correct instructions may be retrieved
from a branch mis-prediction buffer during a branch mis-prediction. The branch
mis-prediction buffer may store previously used instructions that were not predicted
during a previous branch mis-prediction.

[0018] In an embodiment of the invention, a system and method are provided for storing
instructions i1n a branch mis-prediction buffer. One or more predicted instructions
that depend on a conditional branch instruction may be retrieved from program
memory. A processor may determine that the one or more predicted instructions are
Incorrect. One or more correct instructions may be retrieved from program memory.
T'he one or more correct instructions may be stored in the branch mis-prediction
buffer.

[0019] Embodiments of the invention may include a local cache, e.g., a branch mis-
prediction buffer (BMB), to store mis-predicted instructions. A mis-predicted instruction
may refer to an instruction that, once the branch condition is known, is determined to be the
correct 1nstruction(s) succeeding the branch instruction, but which was not predicted by the
branch predictor. During a mis-prediction, if the correct instruction is stored in the BMB,
the mstruction may be quickly retrieved from the BMB and not from program memory,
resulting in a zero mis-prediction penalty. However, if the correct instruction is not stored in

the BMB, the correct instruction may be retrieved from program memory and a mis-predict

penalty may be incurred. However, according to embodiments of the invention, instead of
discarding the mis-predicted instructions and wasting the computational effort used to fetch

them, the mis-predicted 1nstructions may be stored in the BMB for use during subsequent
branches that may result in mis-predictions.

[0020] Retference 1s made to Fig. 1, which is a schematic illustration of a system according
to embodiments of the invention. The system may include a device 100 having a processor

1, a data memory unit 2, a program memory unit 3, and a program cache 10.

[0021] Device 100 may include a computer device, cellular device, or any other digital

device such as a cellular telephone, personal digital assistant (PDA), video game console,

CA 02719615 2010-11-02

etc. Device 100 may include any device capable of executing a series of instructions to run
a computer program.

[0022]) Processor 1 may include a central processing unit (CPU), a digital signal processor
(DSP), a microprocessor, a controller, a chip, a microchip, a field-programmable gate array
(FPGA), an application-specific integrated circuit (ASIC) or any other integrated circuit
(IC), or any other suitable multi-purpose or specific processor or controller.

[0023] Processor 1 may be coupled to data memory unit 2 via a data bus 4 and to program
memory unit 3 via a program memory bus 3.

[0024] Program memory unit 3 typically stores a set of instructions and rules for running a
computer program while data memory unit 2 typically stores data generated while operating
the program instructions such as pre-generated (i.e. static) data and/or scratch pad (i.e.
dynamic) data; however, other arrangements for storing instructions and data in a memory
or memories may be used.

[0025] Program cache 10 may provide temporary storage for program instructions retrieved
from program memory unit 3 so that the instructions are more accessible for use by program
control unit 8. Program memory unit 3 may be a long term memory unit, while program
cache 10 may be a short term memory unit. Data memory unit 2, program memory unit 3
and program cache 10 may include, for example, random access memory (RAM), dynamic
RAM (DRAM), tlash. memory, cache memory, volatile memory, non-volatile memory or
other suitable memory units or storage units. Data memory unit 2, program memory unit 3,
and program cache 10 may be implemented as separate or integrated memory units. Data

memory unit 2, program cache 10 and/or program memory unit 3 may be integrated (“on-

chip”) or may be separate (1.e., “off-chip”). In one embodiment in which there is a multi-
level memory or a memory hierarchy, program memory unit 3 may be off-chip and the
program cache 10 and/or Data memory unit 2 may be on-chip, e.g., an L-1 cache (e.g.,
which may run at a different rate than the processor clock rate) or an L-2 cache (e.g., which

1s relatively more integrated than the L-1 cache and typically runs at the processor clock
rate). Other or additional memory architectures may be used.
[0026] Processor 1 may include a program control unit 8. Program control unit 8 may

request, retrieve, and dispatch instructions from program memory unit 3 and may be

responsible, in general, for the program pipeline flow. Program control unit 8 may include a

CA 02719615 2010-11-02

data memory controller (not shown) coupled to data memory bus 4, and a program memory

controller (not shown) coupled to program memory bus 5 to retrieve data from data memory
unit 2 and program memory unit 3, respectively.

[0027] Program control unit 8 may include a fetch unit 12, an interrupt unit 13, and a branch
mechanism 14. Fetch unit 12 may retrieve or fetch program instructions from program
memory unit 3 and save the instructions to program cache 10 until they are requested for use
by program control unit 8. Fetch unit 12 may be used to fetch instructions to a local queue

prior to dispatching the instructions. Branch mechanism 14 may detect branch instructions,

predict the outcome of branch instructions, and based on the predicted outcome of branch
instructions request subsequent instructions from program memory unit 3 via fetch umt 12.
Interrupt unit 13 may interrupt a current process, €.g., to initiate another higher priority
process.

[0028] Processor 1 may include a decode unit 6, a load/store unit 7, one or more register
files 9, and an execution unit 11. Once instructions are dispatched by program control unit
8, decode unit 6 may decode the instructions. Processor 1 may use register files 9 to

implement tags to efficiently access decoded instruction, e.g., in the same computational

cycle as they are requested. Execution unit 11 may execute the instructions. Load/store unit
7 may perform load and store operations from/to data memory unit 2.
[0029] Processor 1 may execute, for example, the following sequential pipeline stages for
each instruction:

o JF1 - program memory address (operated by program control unit 8)

e [F2 —program memory fetch (operated by fetch unit 12)

¢ D1 —instruction dispatch (operated by program control unit 8)

e D2 —instruction decode (operated by decode unit 6)

e D3to D4 —register file read (using register files 9)

e FEIl to E4 — execute, data memory access, and register file write-back (operated by

execution unit 11, load/store unit 7, and register files 9).
[0030] Other or additional pipeline stages and operating device components may be used.
[0031] In a process comprising sequential instructions, instructions to be processed in future

are known beforehand and fetch unit 12 may preemptively retrieve instructions so that each

instruction 1s fetched before the processor 1s ready to dispatch the instruction. The fetched

CA 02719615 2010-11-02

instructions are temporarily stored in program cache memory 10, and/or a local queue which
1s significantly faster to access than program memory 3.

[0032] However, instructions succeeding a conditional branch instruction may depend on a
branch condition that 1s not yet known at the time the instructions are to be fetched. For
example, the branch instruction may proceed to any of multiple different instructions or
process paths depending on the outcome of the branch condition.

(0033] Branch mechanism 14 may identify whether or not an instruction is a branch
instruction, for example, at the decode stage (D2) of processing the instruction. When an
Instruction 1s a branch instruction, if the correct one of multiple possible subsequent
instructions 1s not known at the time when the instruction is to be retrieved, branch
mechanism 14 may predict which instruction most likely succeeds the branch instruction. A
branch target buffer (BTB) 16 may store data used to make the predictions. BTB 16 may be
a buffer or temporary memory unit, which may be separate from, integrated with or part of
program cache 10.

[0034] If the predicted branch instruction matches the actual branch instruction, the

predicted mnstruction may be used and the branch mis-prediction penalty is zero.

[0035] However, 1f the predicted branch instruction does not match the actual branch
Instruction, the actual branch instruction may be fetched from program memory 3.
Accordingly, each time branch mechanism 14 mis-predicts a branch outcome, the process
may suffer a time delay and computational penalty of fetching the correct instruction from
program memory 3, for example, 3 cycles (IF1 to D1). This time delay or number of cycles
may vary for different processor 1 pipelines.

[0036] According to embodiments of the invention, once the correct instructions are
retrieved from program memory 3 and used, instead of discarding the instructions and
wasting the computational effort used to fetch them, the correct, though mis-predicted,
branch instructions may be written, saved, and/or stored for later use in a branch mis-
prediction buffer (BMB) 17. BMB 17 may accumulate correct branch instructions that were
not predicted. Although the program incurs a one-time mis-prediction penalty to initially
retrieve these instructions from program memory 3, by saving them for use during

subsequent mis-predictions, the mis-prediction penalty for retrieving the same instructions

may be avolded thereafter.

CA 02719615 2010-11-02

[0037] During the operation of the series of program instructions, in a first scenario, branch
mechanism 14 predicts the correct instruction succeeding a branch instruction and the
correct subsequent instructions has already been retrieved from program memory 3. The
correct subsequent instruction may then be used. In this case, there is no mis-prediction and
the mis-predict penalty 1s zero.

[0038] In a second scenario, branch mechanism 14 makes a mis-prediction and predicts the
wrong instruction succeeding a branch instruction. Once the instruction succeeding a
branch instruction is known, processor 1 may attempt to retrieve the instruction from BMB
17. Processor 1 may check if BMB 17 contains the mis-predicted instruction simultaneous
to program control unit 8 fetching a new instruction from the program memory sub-system.
Only later when the branch instruction is known does processor 1 select between the
predicted and mis-predicted instruction. If the correct instruction was a mis-predicted
instruction in a previous program branch, the instruction should already be stored in BMB
17. Accordingly, instead of retrieving the correct instructions from program memory 3,
processor 1 may retrieve the correct instruction from BMB 17. Therefore, even for a branch
mis-prediction, if the correct branch instruction was previously a correct mis-predicted
instruction. the mis-predict penalty for retrieving instructions from program memory 3 may
be zero. In contrast with the other methods, in which the mis-predict penalty 1s zero for
correct predictions and non-zero (e.g., 3 computational cycles) for mis-predictions,
according to embodiments of the invention, the mis-predict penalty 1s zero for both correct
as well as incorrect branch predictions.

[0039] BMB 17 may store instructions that have been dispatched (at the D1 pipeline stage).

Alternatively, instructions in BMB 17 may be stored in other stages of a pipeline process
(e.g., IF2 or D2). BMB 17 may be relatively more accessible than program cache 10
because BMB 17 is typically smaller than program cache 10. BMB 17 may be physically
integrated with branch mechanism 14.

[0040] Reference is made to Figs. 2 - 4, which are tables showing processor operations

initiated by a branch instruction according to embodiments of the invention.

[0041] In Figs. 2 - 4, each row in the tables shows the processor pipeline stages for a single
instruction. The instructions (listed in column 1) are ordered in sequential rows in the order

in which they may be processed, i.e., in the order in which the instructions first enter the

CA 02719615 2010-11-02

processor pipeline (in operation IF1). Each sequential column shows the operations
executed on the instructions that occur in each sequential computational cycle. That is, once
an instructions 1n each row first enter the processor pipeline, 1n each sequential column, the
processor executes sequential operations on the instruction, e.g., program memory address
(IF1), fetching (IF2), dispatching (D1), decoding (D2), register file read (D3 to D4), execute,
data memory access, and register file write-back (E1 to E4). Other or additional operations
may be used.

10042] In Fig. 2, a branch predictor mis-predicts that branch instruction Branch A,B will
branch to instruction A instead of the correct instruction B. That 1s, the branch condition of
a conditional instruction Branch A,B does not match the static prediction for that condition.
However, 1n the figure, the mis-predicted correct branch instruction B 1s stored in the BMB
and therefore, there 1s no penalty for the branch mis-prediction.

[0043] The upper-right cell (row 1, column 1) in the table shows an instruction labeled
“Branch A,B.” The instruction Branch A,B may be an instruction in a sequence of
instructions of a program. Instruction Branch A,B may be stored at a first address, e.g.,
denoted arbitrarily to be 101. Instruction Branch A,B may be a branch instruction, for
example, providing instructions to proceed next to either instruction A or instruction B, but
this 1s not known until the instruction is decoded (in operation D2). The next instruction
following Branch A,B (e.g., after the three delay slots) may be determined by comparing the
predicted and mis-predicted instructions and is typically only known after Branch A,B has
completed pipeline stage E1. The example in the figure does not depend on a static

prediction. As such, either of address A or B may be the next sequential address. Instruction

A may be stored at a second address, e.g., denoted arbitrarily to be 201, and instruction B
may be stored at a third address, e.g., denoted arbitrarily to be 301.

[0044] During the program process, instruction Branch A,B may enter the processor
pipeline, e.g., in pipeline stage IF1 (row 1, column 4). In pipeline stage IF1, a processor
may access a program memory address to locate instruction Branch A,B stored at address
101 1n a program memory.

[0045] Instruction Branch A,B may proceed to the next sequential stages IF2 (row 1,
column 5), D1 (row 1, column 6), and then D2 (row 1, column 7). In pipeline stage D2, a

processor may decode instruction Branch A,B to detect that Branch A,B is a branch

CA 02719615 2010-11-02

instruction. To detect a branch instruction in operation D2, e.g., 3 computational cycles may
be used (IF1-D1). Delay slots (e.g., three slots, dsi, ds2, and ds3) may be used to delay the
pipeline cycle until instruction Branch A,B 1s decoded.

[0046] A branch mechanism may determine that instruction Branch A,B 1s a branch
instruction in operation D2 (row 1, column 7). A branch predictor predicts the branch to
proceed to instruction A at address 201. Accordingly, instruction A may enter the processor
pipeline, e.g., in pipeline stage IF1 (row 5, column 8) and may be tetched from program
memory in the next pipeline stage IF2 (row 5, column 9).

[0047] While instruction A is accessed from program memory (row 5, column 8), the BMB
may be simultaneously searched for non-predicted instruction B at address 301, e.g., by
checking for a BMB cache tag matching the instruction B cache tag (row 15, column 8). In
this scenario, address 301 (where instruction B resides) is found in the cache tag, and the tag
compare asserts the hit flag (row 16, column 8). In one embodiment, the cache tag may be
implemented in registers (e.g., not RAM) causing the hit flag to be available in the same
computational cycle (corresponding to column 8). Since there 1s a hit 1n the cache (row 16,
column 8), the BMB may proceed to extract instruction B data.

[0048] In the following computational cycle (corresponding to column 9), the cache
address, corresponding to the tag where instruction B found a match, may be applied to the
BMB. In the next cycle, instruction B may be retrieved from the BMB (row 19, column
10). Instructions may be stored in the BMB after they have been dispatched (in D1 pipeline
stage for a previous branch instruction). Accordingly, after instruction B 1s read from the
BMB (row 19, column 10), it may proceed to the decode stage D2 of the pipeline (row 14,
column 11).

[0049] While instruction B is being retrieved from the BMB, the processor may continue to
process instruction A and the instructions succeeding A, 1e., A+1l, A+2, ... u.hder the
assumption that the branch prediction 1s correct. If the branch prediction is correct then

instruction B retrieved from the BMB is not used. Predicted instructions A, A+1, A+2, ...
are typically processed at least until the branch condition 1s known.
[0050] While instruction Branch A,B completes the E1 pipeline stage (row 1, column 10),

the branch condition may be known and therefore, the actual branch direction 1s known.

The condition result, in this case, indicates that the predicted branch instruction A is wrong

10

CA 02719615 2010-11-02

and therefore the process should proceed with instruction B instead. As a result, in the
decode stage D2 of the next cycle (row 5, column 11), the processor replaces the input of
instruction A with the correct branch instruction B from the BMB (row 14, column 11).
[0051] In the following two cycles, instructions B+1 and B+2 are read from the BMB (row
19, columns 11 and 12) and are used to replace instructions A+1 and A+2, respectively, in
the decoding stage (row 14, columns 12 and 13). Instructions A, A+1, A+2 are replaced by
B, B+1, B+2, respectively, in each sequential decode stage D2 (row 5, column 11), (row 6,
column 12), and (row 7, column 13), indicated by D2 -> D2. Since the predicted instruction
A (from program memory) and the non-predicted instruction B (from BMB) are both
available and dispatched in the same computational cycle (corresponding to column 10),
replacing predicted instruction A with non-predicted instruction B in a branch mis-
prediction occurs without any computational penalty or time delay for the mis-prediction.
[0052] In Fig. 3, the operations occur when, similarly to Fig. 2, a branch predictor mis-
predicts that the branch instruction Branch A,B will branch to instruction A instead of the
correct instruction B. However, in contrast to Fig. 2, the correct branch instruction B is not
stored in the BMB. In this scenario, instruction B may be added to the BMB, and in this
way, the BMB may be filled with instructions for use during subsequent mis-predictions.
[0053] Branch mechanism may determine that instruction Branch A,B is a branch
Instruction in operation D2 (row 1, column 7). A branch predictor predicts the branch to
proceed to instruction A at address 201. Accordingly, instruction A may enter the processor
pipeline, e.g., in pipeline stage IF1 (row 5, column 8) and may be fetched from program
memory in the next pipeline stage IF2 (row 5, column 9).

0054} While 1nstruction A is fetched from program memory (row 5, column 8), the BMB
may be simultaneously searched for non-predicted instruction B at address 301, e.g., by
checking for a BMB cache tag matching the instruction B cache tag (row 17, column 8). In
this scenario, in contrast with Fig. 2, address 301 (where instruction B resides) is not found
in the cache tag, and the tag compare may assert a miss flag (row 18, column 8). In one
embodiment, the cache tag may be implemented in registers (e.g., not RAM) causing the
miss flag to be available in the same computational cycle (corresponding to column 8).
Since there 1s a miss in the cache (row 18, column 8), the BMB typically does not access the

tag or the BMB data, e.g., to keep power dissipation at a minimum.

11

CA 02719615 2010-11-02

[0055] The processor may continue to fetch and dispatch instruction A and the instructions

succeeding A, i.e., A+1, A+2, ... under the assumption that the branch prediction 1s correct.
If the branch prediction is correct, then the BMB cache miss (row 16, column 8) 1s
inconsequential and there is no computational penalty for the cache miss.

[0056] When instruction Branch A,B completes the E1 pipeline stage (row 1, column 10),
the branch condition may be known and therefore, the actual branch direction may be
known. The condition result, in this case, may indicate that the predicted branch instruction

A is wrong and therefore the process may “kill” instruction A and the mstructions

succeeding A, i.e., A+1, A+2, ... (column 10, rows 5, 6, and 7, respectively) before they are

decoded in the D2 decoding stage.
[0057] As a result, the input of the decode stage D2 should be the correct branch instruction

B from the BMB. However, since instruction B was not found in the BMB, there 1s no input

for the decode stage D2 until instruction B is obtained, e.g., for 3 computational cycles (row

16, columns 8, 9, and 10).
[0058] The processor may fetch the instruction B from program memory (row 8, column
11). Address 301 of instruction B may be written as a tag in the BMB (row 17, column 13)

in preparation for instructions B, B+1, B+2 to be stored in the BMB (row 19, columns 13,
14, 15, respectively).

[0059] Each of instructions B, B+1, B+2 may be fetched (rows 8, 9, 10, respectively,
columns 12, 13, 14, respectively) and dispatched. The dispatched instruction packets B,

B+1, B+2 may be written to the BMB at a BMB address (row 20, columns 13, 14, 15,
respectively), e.g., placed in the BMB based on, for example, a least recently used (LRU)

replacement policy. The same dispatched instruction packets B, B+1, B+2 may
simultaneously enter the dispatch pipeline stage D1 (rows 8, 9, 10, respectively, columns 13,
14, 15, respectively). In the following computational cycle, the processor may decode the
dispatched instruction packets B, B+1, B+2 in the D2 stage (rows 8, 9, 10, respectively,
columns 14, 135, 16, respectively).

[0060] Accordingly, during a branch mis-prediction, the branch instructions that were not
predicted may be stored in the BMB, e.g., if they have not already been stored. In this way,

the processor may fill the BMB with correct branch instructions, which were erroneously

12

CA 02719615 2010-11-02

not predicted. Once stored in the BMB, these branch instructions may be used during future
branch mis-predictions, as described in reference to Fig. 2.

[0061] Since the correct branch instruction B was not retrieved from program memory (i.e.,
only the incorrect predicted instruction A was retrieved) nor was the instruction available in
the BMB (it was never the branch in a previous mis-prediction), the processor may retrieve
instruction B from program memory sub-system (row 8, columns 11, 12, and 13).
Retrieving instruction B from program memory sub-system may use additional, e.g., three,

computational cycles and thus, the program process may incur a mis-prediction penalty.

[0062] In embodiments described above, the dispatched instructions A and B may be
available 1n the same cycle, e.g., in Fig. 2, (row 5, column 10) and (row 19, column 10),
respectively, simultaneously ready to be decoded depending on the outcome of the
conditional branch instruction Branch A,B. However, in an alternative embodiment,
Instructions A and B may be dispatched in different cycles or may be processed depending
on mis-predict history, penalties, or other criteria.

[0063] Although in the embodiments described above, processor 1 stores instructions in the
BMB after they have been dispatched (in D1 pipeline stage), in an alternate embodiment,
processor 1 may store instructions at any other or additional stage of a pipeline process.
[0064] In the embodiments above, during a branch mis-prediction, the BMB stores the
correct un-predicted branch instruction. Alternatively, or additionally, during a correct
branch prediction, the BMB or a separate memory unit may store the correct predicted
branch instruction.

[0065] Furthermore, the BMB or a separate memory unit may store statistical data
corresponding to each instruction entry in the BMB. The statistical data may include, for
example, usage history data such as the computational cycle in which the instruction is used
(e.g., for ordering the instructions based on which instruction was least or most recently
used), the rate or number of times the instruction was mis-predicted (e.g., for determining
whether or not to store the instruction in the BMB or for ordering the instructions in the
BMRB based on a total or average usage of the instruction), the size of the instruction (e.g.,

for ordering the instructions based on the size of the instruction), etc.

10066] In one embodiment of the invention, BMB 17 may store mis-predictions for

branches that have a mis-prediction rate that is greater than a predetermined threshold. The

13

CA 02719615 2010-11-02

threshold may be automatically predetermined to satisfy computational -etficiency
parameters of a computing platform, e.g., based on the success or usage history of
instructions stored in BMB 17 for each branch or process versus the memory and
computational costs of storing instructions in BMB 17. Alternatively, the predetermined
threshold may be manually or semi-automatically set by a programmer e.g., to be greater
than 30-50%. If the mis-prediction rate is sufficiently small or less than a predetermined
threshold for a specific branch or process, the processor may not store mis-predicted
instructions for that branch or process. For example, if an average reduction in the branch
mis-prediction penalty for the branch or process is, e.g., less than a specified number of
cycles, mis-predicted instructions may not be stored in BMB 17.

[0067] In one embodiment of the invention, branch mechanism 14 may predict instructions
partially or completely based on which instructions supplement the instructions already
stored in BMB 17 instead of instructions that are statistically most likely to occur. For
example, branch mechanism 14 may search BMB 17, look for any of the potential unknown
branch instructions stored and if any is already stored in BMB 17, the branch prediction unit
may predict, or be statistically more likely to predict, the instruction not stored in BMB 17.
In this way, processor 1 will retrieve instructions from program memory 3 such that the

instructions are new or not redundant to those already stored in BMB 17.

[0068] When a program is initiated and there have been no mis-predictions, BMB 17 may
be empty. As a program 1is run, for each (or alternatively, for only some) branch mis-
predictions, the mis-predicted instruction may be added to fill BMB 17. BMB 17 may have

a fixed or maximum size, e.g., determined by a programmer, or a variable size, e.g.,

determined automatically based on BMB 17 usage history. The smaller the size of BMB 17,
the more etficient its usage. However, the larger the size of BMB 17, the greater the number
of instructions that may be stored.

[0069] During a mis-prediction, conventional processors fetch the correct mis-predicted
instructions from a program memory. The processors then store the instructions 1n a
program cache where they are queued and dispatched. In order to access the instructions,
the processor accesses a tag array, performs a tag compare, and accesses the program cache
to read the instructions. This process consumes a relatively large amount of processor

power. In particular, for example, when large data packets are used, such as “very long

14

CA 02719615 2010-11-02

instruction word” (VLIW) packets, a VLIW processor retrieves and stored the VLIW
packets 1n a queue or butters the packets so that they may be issued. After being issued, the
VLIW packet are dispatched to the execution units, and only after being dispatched may
they be decoded and executed. In conventional systems, this extensive series of operations
1s executed each and every time there is a branch mis-prediction. According to
embodiments of the inventions, even when there is a branch mis-prediction, if the correct
mstruction was previously mis-predicted, the correct instruction is already stored in BMB
17. Therefore, the correct instruction may be quickly retrieved from BMB 17 and the
atorementioned extensive series of operations may be eliminated, e.g., wholly or at least
partially.

(0070] F1g. 4 includes four figures, Figs. 4A-i, 4A-ii, 4B-I, and 4B-ii, which are to be
viewed together and arranged in four quadrants, Fig. 4A-i in the upper right quadrant, Fig.
4A-i1 1n the lower right quadrant, Fig. 4B-i in the upper left quadrant, and Fig. 4B-ii in the
lower left quadrant.

(0071} Fig. 4 shows processor operations initiated by a loop instruction according to
embodiments of the invention. A loop instruction (e.g., brloop write) (row 1, column 1)
1s a special type of branch instruction in which one of the possible branch paths is to
repeat a previous instruction, thereby causing a loop or sequence of repeating
instructions. In this embodiment, the branch loop instruction is conditional although an
unconditional branch loop instruction may also be used.

[0072] Embodiments of the invention include a system and method for using BMB
17 as a loop butfer. BMB 17 may be dedicated to storing loop instructions so that they
may be accessed locally rather than from program memory 3. Since loop instructions may
be used more often than other non-repeating instructions that are not part of a loop sequence,
storing the loop instructions locally in BMB 17 rather than in program memory 3 may
reduce power consumption used to access program memory 3 and queue and align/dispatch
the instructions more so than for other non-repeating instructions.

[0073] The branch loop instruction, “brloop write,” (row 1, column 1) indicates the
number, n, of nstruction packets (e.g., n=6) in an instruction loop. The instruction “nop”
indicates no-operation due to latency in the processor pipeline. Processor 1 may use

instructions (e.g., chip_select and write_enable instructions) to write the first, n-l,

15

CA 02719615 2010-11-02

instruction packets of the instruction loop to BMB 17. BMB 17 may include a dedicated
register (e.g., brloop last ir r) to which the last, n, instruction packet in the loop 1s written.
While the last instruction packet in the loop is being written to the dedicated register, it is
know that there are no more instructions in the loop, and the first instruction packet in the
loop may be automatically and simultaneously retrieved from BMB 17.

[0074] To write instructions to BMB 17, when the number-of-packets is decoded (row 1,
column 6), processor 1 may update one or more registers in BMB 17 to allow that number
(e.g., n=6) of instruction packets to be written to respective entries of BMB 17 (row 30,
columns 7-12). Using the tag address instruction (row 27), the BMB 17 tag array may be
updated, while the BMB 17 cache array may be updated using the cache index instruction
(row 30). Each BMB 17 entry may hold one or more (e.g., four) instruction packets. For
example, the first BMB 17 entry may be filled with the first four instruction packets in the
loop Al - A4 (row 30, columns 7-10). A corresponding tag address may be written to BMB
17 (row 27, column 7) for each BMB 17 entry. If the instruction loop includes more than
four instructions, then processor 1 may update BMB 17 registers to find the next BMB 17
entry to be filled with the next (up to) four instruction packets A5 (row 30, column 11), and
accordingly write the corresponding tag address (row 28, column 11). Processor 1 continues
this process until all but the last instruction A6 is written to BMB 17 (row 30, column 11).
Processor 1 may perform a tag compare for every fourth instruction to find the address of
the next BMB 17 entry (row 28, column 12) to retrieve instructions from BMB 17 (row 31,
columns 13, 14, ...).

[0075] In some embodiments of the invention, instructions are written to BMB 17 in an

order based on a least recently used (LRU) algorithm. BMB 17 may include registers and
corresponding entries that are ordered based on a LRU algorithm.

[0076] The branch loop (brloop) instruction A4 (row 6, column 1) (with two delay slots A5
and A6 —rows 7 and 8, column 1) may be predicted taken or not-taken The predicted-taken
address 102 may be written to a “not predicted branch target address” or “PTADDR R”
register (row 43, column 12) and used to search the tag array of BMB 17 (row 26, column
12). When the branch loop instruction A4 is taken, loop instructions may be accessed from
BMB 17 instead of from program memory 3 to reduce power consumption. The not-taken

address 108 is typically only used at the end of the last loop iteration or on an exit condition

16

CA 02719615 2010-11-02

where the branch is predicted incorrectly. The last loop of the iteration (row 25, column 26)
may be where there is an exit condition or where branch is predicted incorrectly.

[0077] Interrupt unit 13 may interrupt a current process (not shown), e.g., to initiate another
process, often damaging partially processed branch instruction data. Interrupt unit 13 may be
disabled while processor 1 writes loop instructions to BMB 17. Interrupt unit 13 may also
be disabled while processor 1 reads instructions from BMB 17. In one exception, interrupts
may be allowed while reading the last instruction packet, e.g., in each iteration of an
instruction loop. If such an interruption is accepted then, 1f a branch instruction 1s taken then
the return register may be written with the program address in the PTADDR_R register (row
43, columns 12, 18, 24), and if the branch is not-taken then the return register may be
written with the program address from the program counter or “pseq_pc”. BMB 17 may be
locked, to allow a programmer to control replacement of BMB 17 entries.

[0078] The status of the loop buffer may be tracked by indicators, flags, or other markers.
A “buf valid” flag may be set when all of the instructions in the loop are written and/or
available in BMB 17. The buf valid flag may be cleared when any of the loop instructions
are replaced in BMB 17. A “buf active” flag may be set when processor 1 accesses
instructions from BMB 17. The buf active flag may be set after encountering a
brloop write instruction and loop instructions are written to BMB 17. The but active flag

may be cleared when a branch is taken or when a call or interruption 1s encountered.

[0079] The status of the loop buffer may be indicated by difterent flag combinations. For

example, buf valid and buf active may indicate each of the following four different states:

¢ When buf valid is cleared and buf active 1s cleared then the program counter
may access instructions outside of the range of BMB 17. In this situation the

instructions may be fetched from program memory 3.

e When buf valid is cleared and buf active 1s set then the instructions may be
fetched from program memory 3 and written to BMB 17.

e When buf valid 1s set and buf active is set then the instructions may be fetched
directly from BMB 17.

e The buf valid 1s set and buf active 1s cleared when an interrupt or a taken branch
has caused the program counter to jump to program addresses outside of the range
of BMB 17. In this situation the instructions are fetched from program memory 3.
On return from the sub-routine or interruption, buf active may be set (or

17

CA 02719615 2010-11-02

alternatively, buf active may only be set once a brloop write instruction is
encountered).
[0080] Fig. 4 shows an example of a process having a loop with six instruction packets Al -
A6 (rows 3-8, column 1). In this example, branch instruction of the loop (brloop write) is
conditional. However, it will be appreciated by those skilled in the art that embodiments of

the invention similarly apply to branch loop instructions that are unconditional, 1.e., always

taken.

[0081] Fig. 4 shows a process of writing to BMB 17 (row 30), reading from BMB 17 during
the 1terations of the loop (row 31), and exiting from the loop (either due to the loop counter
being negative or due to the branch condition being false). The loop exit may be seen in row
25, column 26 where the decoder input 1s operating on “next instruction” (NI) at address

108, which 1s not a loop instruction and in row 29, column 26, where BMB 17 is no longer

being accessed for loop instructions.

[0082] During the first iteration of the loop, the instructions are executed and
simultaneously written to BMB 17. During subsequent iterations the instructions are
accessed from BMB 17, while program memory 3, queue, and dispatcher are idle. At the
end of the last iteration, program memory 3, queue, and dispatcher begin operating on the

next sequentially instruction packet that comes after the loop, e.g., address 108, 109, 110, ...

[0083] BMB 17 may include a bufter, cache or other memory structure that stores mis-
predicted or loop instructions in a separate cache for access during subsequent mis-
predictions or iterations of the loop. BMB 17 typically does not rely on the history of branch
outcomes to make future predictions, thereby overcoming the limitations of both static and
dynamic branch prediction techniques. In alternate embodiments, BMB 17 may wholly or
partially take into account branch prediction histories to make future predictions.

[0084] BMB 17 typically does not rely on software directives. However, in some
embodiments, software directives may be used to pre-load instructions into BMB 17. BMB
17 may be fully or partially transparent to a programmer. BMB 17 may use a fully or
partially associative cache to store instructions at the branch target address. These
Instructions may be automatically retrieved during an instruction loop or when a branch

predictor predicts incorrectly (e.g., achieving zero overhead during branch mis-predictions).

18

CA 02719615 2010-11-02

[0085] Reference is made to Fig. 5, which i1s a flowchart of a method according to
embodiments of the invention.

[0086] In operation 500, a processor may decode a conditional branch instruction.

[0087] In operation 510, a branch prediction unit may predict the subsequent instruction(s)
following the branch.

[0088] In operation 520, a fetching unit may retrieve the predicted instruction(s) from
program memory.

[0089] In operation 525, the processor may retrieve a non-predicted instruction from the
branch mis-prediction buffer (BMB), e.g., by checking for a BMB cache tag matching the
instruction cache tag. Operations 520 and 525 may be run substantially simultaneously, e.g.,
in the same clock cycle.

[0090] In operation 530, the processor may execute the branch instructions and
determine the actual subsequent instruction(s) following the branch.

[0091] In operation 540, the processor may compare the actual subsequent 1nstruction(s)
following the branch with the predicted instruction(s) retrieved from program memory. It
the actual instruction(s) match the predicted instruction(s), a process may proceed to
operation 550. If the actual instruction(s) do not match the predicted instruction(s), a process
may proceed to operation 560.

[0092] In operation 550, the processor may decode the predicted instruction(s) retrieved
from program memory.

[0093] In operation 560, the processor may decode the non-predicted instruction(s)
retrieved from the BMB.

[0094] If the non-predicted instruction was not found in the BMB and theretore, not

retrieved in the BMB 1n operation 525, and the actual instruction(s) determined in operation

530 do not match the predicted instruction(s) retrieved from program memory in operation
520, a process may proceed to operation 570.

[0095] In operation 570, the processor may retrieve the non-predicted instructions from
program memory, decode the instructions and write the instruction to the BMB.

[0096] Other operations or series of operations may be used.

[0097] Embodiments of the invention may include an article such as a computer or

processor readable medium, or a computer or processor storage medium, such as for

19

CA 02719615 2015-10-29

example a memory, a disk drive, or a USB flash memory, encoding, including or storing
instructions which when executed by a processor or controller, carry out methods disclosed

herein.

20

CLAIMNS:

1. A system for executing conditional branch instructions, the system comprising:

a branch mis-prediction buffer;

a processor to execute sequential pipeline stages of instructions;

a branch predictor to predict one or more predicted instructions that
depend on a conditional branch instruction during execution of the sequential
pipeline stages;

a program memory; and

a fetch umt to retrieve the one or more predicted instructions from the
program memory during execution of the sequential pipeline stages;

wherein the processor 1s further to:

determine actual branch direction of the branch instruction;

1t the one or more predicted instructions are correct, decode the
one or more predicted instructions; and

1f the one or more predicted instructions are not correct, search the
branch mis-prediction buffer for decoded non-predicted instructions that
were not predicted by the branch predictor; and

if the decoded non-predicted instructions are found in the branch
mis-prediction buffer, retrieve the decoded non-predicted instructions
from the branch mis-prediction buffer and execute the decoded non-

predicted instructions retrieved from the branch mis-prediction butter;

wherein, 1f the one or more predicted instructions are not correct and the

decoded non-predicted instructions are not found in the branch mis-prediction

buffer:
the fetch unit to retrieve one or more non-predicted instructions
from the program memory,

the processor to dispatch and decode the one or more non-

predicted 1nstructions, and

21

CA 2719615 2018-03-06

the branch mis-prediction buffer to store the one or more decoded
non-predicted instructions retrieved from the program memory for use 1n

subsequent conditional branch instructions.

2. The system of claim 1, wherein the branch mis-prediction buffer stores instructions

using a least recently used (LRU) algorithm.

3. The system of claim 1, wherein the branch mis-prediction buffer stores all

instructions of a loop.

4. A method for executing a conditional branch instruction, the branch instruction
is associated with one or more predicted instructions that are predicted to follow
the conditional branch instruction and one or more non-predicted instructions,
the method comprising:

retrieving the one or more predicted instructions from a program
memory;
1f a current branch mis-prediction occurs:
scarching the branch mis-prediction buffer for decoded non-
predicted instructions that were not predicted by the branch predictor;
and
if the decoded non-predicted instructions are found in the branch

mis-prediction buffer, retrieving the decoded non-predicted instructions
from the branch mis-prediction buffer and executing the decoded non-

predicted instructions retrieved from the branch mis-prediction buffer.

5. The method of claim 4, further comprising:
retrieving one or more new non-predicted instructions from the program
memory when another branch mis-prediction occurs and the one or more non-

predicted instructions are not stored 1n the branch mis-prediction buffer.

22

CA 2719615 2018-03-06

6. The method of claim 5, further comprising dispatching, decoding and storing the
one or more new non-predicted instructions retrieved from the program memory In

the branch mis-prediction buifer.

7. I'he method of claim 4, wherein the one or more non-predicted instructions are

executed after the conditional branch instruction i1s executed.

8. The method of claim 4, wherein the branch mis-prediction buffer stores instructions

using a least recently used (LRU) algorithm.

9. The method of claim 4, comprising storing all instructions of a loop in the branch
mis-prediction buffer and retrieving the loop instructions from the branch mis-

prediction buffer when the branch instruction is a loop instruction.

10. A method for storing instructions in a branch mis-prediction buffer, the
method comprising:
retrieving from a program memory one or more first predicted
instructions that depend on a conditional branch instruction;
“determining that a current branch mis-prediction has occurred and
that the first one or more predicted instructions are incorrect;
retrieving a correct one or more non-predicted instructions from the
program memory;
temporarily storing the correct one or more non-predicted
instructions in a program cache for use in the current branch mis-prediction;
decoding the correct one or more non-predicted instructions from the
program cache following the conditional branch instruction;
storing the decoded correct one or more non-predicted instructions in

the branch mis-prediction buffer for use in subsequent branch mis-

predictions; and

23

CA 2719615 2018-03-06

In a subsequent branch mis-prediction:

retrieving from the program memory one or more predicted
instructions that depend on a subsequent conditional branch
instruction; and

determining actual branch direction of the subsequent
conditional branch instruction;

if the one or more predicted instructions are correct, decoding
the one or more predicted instructions; and

if the one or more predicted instructions are not correct,
searching the branch mis-prediction buffer for decoded non-predicted
instructions that were not predicted by the branch predictor; and

1f the decoded non-predicted instructions associated with the
subsequent conditional branch instruction are found in the branch
mis-prediction buffer, retrieving the decoded non-predicted
instructions from the branch mis-prediction buffer and executing the
decoded non-predicted instructions associated with the subsequent
conditional branch instruction retrieved from the branch mis-

prediction buffer.

[1. The method of claim 10, comprising storing all instructions of a loop in the branch

mis-prediction buffer and retrieving the loop instructions when the loop is taken.

12. The method of claim 10, wherein the branch mis-prediction buffer stores

instructions using a least recently used (LRU) algorithm.

[3. The system of claim 1, comprising:

a branch mechanism to determine that an instruction is a conditional branch

Instruction.

24

CA 2719615 2018-03-06

14. The system of claim 1, wherein the one or more predicted instructions retrieved from
the program memory and the decoded non-predicted instructions retrieved from the
branch mis-prediction buffer are both available to the processor in a same

computational cycle.

15. The method of claim 10, wherein the one or more second predicted instructions
retrieved from the program memory and the decoded non-predicted instructions
retrieved from the branch mis-prediction buffer are both available to a processor in a

same computational cycle.

16. The system of claim 1, wherein the one or more predicted instructions may be any

one of multiple different instructions.

235

CA 2719615 2018-03-06

CA 02719615 2010-11-02

1/8

4
el

11

1IN

NOILNOIX

AHOWIIN
v1lvd

001

LINM

Jd01S/AV0T

SNg vivd E.m. 181934

¢

1

SNE NOILONG1SNI

L)

WSINVHOIN Cl

diNG

HONVAd

d.d

311

LINf

400040

1dNdE3LNI

LINN TOYLNOD WYHO0Nd

1 40SS3004d

1 Ol

JHOVO 0l
NYHO0dd
S
 —
AJOWZN 9
NYHO0dd

CA 02719615 2010-11-02

2/8

pd

¢

=
=

LC

¢ 9Old
23 13
el Z3

v3 €3

E

0z 6l

vQ
13
23
€3
v3

8}

e
1€
=
¢3
%=
3

L)

G+d

¢d
ed
28
=
¢3
=

1=

gl

p+g €+8 ¢+8 l+d 8§
90 G0E 0t ¢tOC <J0C

1d
¢
<
146
=
¢
=
1=

Sl

¢+d
Jjsui

1+ g
nsul

nsul
XXX XXX XXX

¢ctd }+4 d

XapUl Xapul Xapu

c¢dl 14l

L1 ¢4l LAl

¢ 14 <Zdi L4l

cd ¢degG LG 24l L4l

y@ €0 cd<cd 1d c4dl

13 @ €4 a<<a LA

¢3 14 vad €d <¢d

ed ¢3 13 v €d

b3 €3 ¢3 13 vd
yp3 €3 ¢33 1

L€ ¢k b 0l

£Sp - ¢SP
L0¢ v0l

=1
¢4l
L (
¢
£Q
148

b

1IH
g be)

L SP HONVHE

e0l ¢0l

L4l
¢dl | b4l
1d ¢4l
¢d id
cd ¢d

8 L

L0}

%=
cdl L4l
Ld ¢4

=]

BJep peal ayoed {i

2)ep Q)M 8Yded g|

Xopul ayoed /|
Ssiw/y bey 9l
ssalppe be) Gl

Indul 48pooaq)

30¢
GOE

70t
€0t

¢0¢
10E

70l
A
¢Ol
10}

9

C

(ebesigjod €l
¢l

A

g0¢ G+9 0Ol
G0 P+d 6
b0 €+8 8
€0 ¢tV .
20 MY 9
0 vV &
POL €SP ¥
€0} ¢sp ¢
¢oL LSPp ¢
0L gV |

HONVHY

!

CA 02719615 2010-11-02

3/8

¢+d
70e

|

¢4l
1€
¢d
e
1€

=

9l

XXX

¢+d
Jjsul

¢+d

Xopui

L +d
c0t

2|
¢4l
1€
¢d
cd

%
=

Sl

XXX

| +d
nsul

l+4
Xapul

d

¢0t

Bl

¢4l

1¢
¢

¢
=
1=

vl

g Jjsut

d

Xapul

q bej
P3|
10€

Ll
¢4l
L

=
¢4
%=
1=

ch

PRl PaIIA

e0¢ ¢0C
L4l

¢4l LA
v(c(
= v
= =
%= ¢4
4 b

cSP
10C

PajiM
1t

P3lilA
¢l

P
138

¢d
e
vd
=

0}

¢SP
vOl

|
¢4l
14
¢d
A€
46

SSIIA
q bey

L SP
e0l

L4
¢4l
L
¢
£(

HONV&E

¢0}

%=
¢4l
1
¢Q

¢ Ol

101

| i
¢al

90t
G0E
13813
e0t
¢l

L0

PIlIPA
Palln
PoIIIA

v0}
0l
¢0}
L0l

3

]ep peal ayoed
BIED S]LIM BRI
Xapul 8Yoe?d
ssiwly bey
ssaippe bey
Indut Japods(
(ebes 1 g)od
90¢ G+
G0E ¥+d
y0€ €+d
¢0e ¢td
¢0t L+8

L0€ d
e0c ¢tV
20z MY

L0 Y
y01 &SP
0L ¢SP
¢0l | SP

L0V
d vV HONVYHG
C ’

4
0¢
ol
8l
L}
9l
Gl

4"
el
¢l
’
0l

4/8

60} 601 L+IN 22
Vv Ol 30} 30} N 12
- /07 0¢
901 61
G0} - Loneiay 3}
b0l L)
c0l 9}
20} G}
T T , /01 vl
901 9
b7 vopesay %
01 L]
Bl 01 L+IN 0}
20<-za ¢4l | i 201 IN 6
ca <@ 13 I E] 10} /01 ZSPOVY 3
13 ¢Q 4e \a 24 L4l 901 90} LSp:GY
23 |3 ¢ 4e e Z4l =l GOl GO} LY Zoiuidoopq py 9
3 23 k= cq 4t Ne | 4| 0} 701 ey G
v 3 23 13 cd 4¢ e 24 4] c0l c0l AR
= 3 23 = cQ At e Z4l 4] 20} 20} A
3 c3 23 k= cq 4t g Zdl 4l 101 L0} dou ¢
b3 3 23 13 ¢q 4t Ke 24l Aﬁngo@onv@o V a@%;o&v__ﬁé doopq |
) ! 4] 0} 5 3 / g G b ¢ % |

CA 2719615 2018-03-06

CA 02719615 2010-11-02

5/8

/0L 90L S0b ¥OL €0L 2oL L0L 00!
¢0L /0L 90L SOL ¥OL €0L ZOL LO0L 0Ol |
201
¢0L 20l
0}
c0L 20l
paii 200 90b GOV ¥OL €0b 20L L0L Q01
801 80L 201 90} SO0L ¥0L €0L 2Ol L0l 00}
80, 80L /0l 90, G0L 0L €0L 20l 0L 00l
| | | | | | | | |
plleAul pljeAul
PlleAul pileAul
pileAul pljeAu]
A A
QY GY A cY AY A"
exspul Nx%c_a%%m_émx%s pXepul gxopul gZxepul |xapul
LIH
e} 8)1IM pbe) a)lm
|y bey gy Dey |V DE]
A oY QY Al cY A LV dou aum dooyq

L0} 90} GOl POl c0} 4 10l 00}

V¥ Old

Okl

q 0dedead

N0 adzod

o 0dedlad aneg
odgplpd quiq

o ¥aavid

od basd quig

g 0d2alad
ddgp)pd

I dw| odgzpypd

od boesd

Ul spa
pifeA”zpd
pifeA | pd

PileA” Z4|d

piieA |y

ysn|jd

Blep peal ayoed
Blep a}lIm ayoed
Xapul 8yoed
SSIWIY‘8iedwlod be)
elep ajum be)
ssalppe be)

INdu| Jopoos(]
(abr1s | ()od

0L1 ¢+IN

Ly
I

G
4%
eV
cy
Ly
OV
6
3¢t
A
ot
GE
e

et
Ce

LE
0t
6¢
3¢
LC
9¢
G¢
104
£C

6/8

=

£t

ct

%=
1=

23

=
=
%=

0t

=
¢

3=
&=

6C

¢ca za a z4dl
13 ¢ 2Z0 1@
¢c3 13 €0 2a
¢3 23 13 €0 @
Y3 ¢3 23 13 €Qd zZa
Y3 ¢33 23 13 ¢a
b3 €3 73 13
y3 €3 Z3
b3 €3
=
-d7 Ol
8¢ 12 9 S¢ v @ ¢€¢

¢Q
¢
=

¢
%=

v

¢C

¢Q

e(
=

¢
£

1=

24

¢4l
1Q
¢Q
3 AT
5= B A
¢ b4 ed
ed Zz3 13
vd €3 Z3
2= BN O
=
0¢ 6L 8l

¢
e
=

¢
%=

v

L}

¢C
24
0¢
o}
3l
L}
9l
Gl
145
el
¢l
¢Q L
cd ¢d«-2G0}
b4 €0 6
= L4 8
ed 73 !
pd €3 9
b4 G
14
£
¢
|
9l Gl

CA 2719615 2018-03-06

CA 02719615 2010-11-02
7/8

0Ll 60 80, 0L 90 SOL 0L €0L 2Ob 0L 90b GOL vOL €0L 20V It
0L, 80} 80, 20L Q0L SOL ¥0L €0L 20 Z0L 90 SOL ¥0b €0} 9F

. J0b 90L SOL ¥0L €0L Z0L 0L 90L GOL ¥OL €0} S¥
=dv Ola Z0L 0L Q0L SOL ¥Ob €0b ZOL Z0L 90 SOL ¥O ¥
201 20} ey

g0) 0L 90, SOL PO, €0b 80L Z0L 90L SOL ¥OL ¥

0L, 60} 80L PO POl POl Pl PONM POl POl POl Pol PaliM Peliy L

0L, 60, 80L 80L 80L 80, 80L 0L 80L 80L 80L 80L 80l OF

6S

0L, 60, 80, 80, 80L 80L 80L 80l 80L 80L 80l 80L 80l 8¢

P _ _ _ | F F | L 1§

o¢

DEAUl PIEAU! DIEAU! PIEAU] PIeAUl PIEAUI PIBAUL PIEAUl PIEAUI PIBAUI GE

DIEAU PIEAUl PIEAUI PIEAUI DPIEAU DIEAU| PIEAUl DeAUl PIEAUL PIEAUL {E

DAl DIEAUI PIEAUI PBAUI PIEAUL DlAUl DIEAU DJEAUl PIBAUI DIBAU €€

Z8

V Y SY W gV IS

NOW Y W W Y 08

o pepl pepepu pep gepu pep e LI gepur prepur 67

LIH 1IH 1IH ~ 1IH 3¢

/7

LY Oe) Gy bey Ly Dej Gy bej 0z

Z4#N JHN IN 0 9V SY Y &Y ¥ IV 9Y SV $Y &Y 2V SC

0Ll 60L 80l bz

b3 €3 ¢33 13 ¢€d ¢d Lg cdl = L4l el

CA 02719615 2010-11-02

8/8

FIG. S

NDECODE BRANCH INSTRUCTION R 20

PREDICT SUBSEQUENT INSTRUCTION(S) 210

520 525
RETRIEVE PREDICTED 1 [perpiEvE NON-PREDICTED |NO
INSTRUCTION(S) FROM | 1 N s TRUCTION(S) FROM BMB

PROGRAM MEMORY
530
DETERMINE ACTUAL SUBSEQUENT INSTRUCTION(S)

540

DO ACTUAL AND PREDICTED INSTRUCTIONS MATCH? HNO

550 YES NO 560

DECODE PREDICTED DECODE NON-PREDICTED
INSTRUCTION(S) FROM BMB

INSTRUCTION(S) FROM
PROGRAM MEMORY

RETRIEVE PREDICTED INSTRUCTION(S) FROM
PROGRAM MEMORY AND WRITE INSTRUCTION TO BMB

570

100

DATA
MEMORY

PROCESSOR 1 >
_[Frocran PROGRAM CONTROL UN]
3 | MEMORY INTERRUPT 1
,
5\-/ 5
— l l :
PROGRAM FETCH |, BRANCH | 14
10 CACHE UNT 1o MECHANISM [
F¥
[DECODE | INSTRUCTION BUS
e"{_ UNT [
4
REGISTER | DATABUS | !
9™ AL T I) K
¥ ¥ ¥
_|LoADISTORE| | EXECUTION
7 UNIT UNIT

>
2

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - abstract drawing

