US009940462B2

a2 United States Patent

Nelson

US 9,940,462 B2
*Apr. 10, 2018

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

CODE VALIDATION

Applicant: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

Inventor: Marvin D. Nelson, Boise, ID (US)

Assignee: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 15/585,794

Filed: May 3, 2017

Prior Publication Data

US 2017/0235959 Al Aug. 17, 2017

Related U.S. Application Data

Continuation of application No. 13/561,530, filed on
Jul. 30, 2012, now Pat. No. 9,715,591.

Int. CL.

GO6F 11/00 (2006.01)

GO6F 21/57 (2013.01)

GO6F 21/64 (2013.01)

HO4L 930 (2006.01)

U.S. CL

CPC GO6F 21/575 (2013.01); GOG6F 21/64

(2013.01); HO4L 9/30 (2013.01); GO6F
2221/034 (2013.01)
Field of Classification Search
CPC GOGF 21/57; GO6F 2221/033; GOGF
9/44589; GOG6F 21/575
See application file for complete search history.

100

(56) References Cited
U.S. PATENT DOCUMENTS
5,189,700 A * 2/1993 Blandford GOGF 21/34
340/5.8
6,138,236 A * 10/2000 MIirovcccccecevenen GOG6F 9/24
712/E9.007
6,587,947 Bl 7/2003 O’Donnell et al.
7,424,398 B2 9/2008 Booth et al.
7,627,658 B2* 12/2009 Levettoccocveennnnen GOG6F 9/46
709/203
8,826,261 Bl 9/2014 Anand
2004/0025010 Al 2/2004 Azema
2004/0107349 Al 6/2004 Sasselli et al.
2004/0268339 Al 12/2004 Van Someren et al.
2005/0033973 Al 2/2005 Kamada et al.
(Continued)
FOREIGN PATENT DOCUMENTS
WO WO0-2012095441 7/2012

OTHER PUBLICATIONS

Abhik Roychoudhury, Embedded Systems and Software Validation,
http://www.comp.nus.edu.sg/~abhik/Book/Preface_and_TOC.pdf
12 pages.

Primary Examiner — Farid Homayounmehr
Assistant Examiner — Lizbeth Torres-Diaz

(74) Attorney, Agent, or Firm — HP Inc. Patent
Department

(57) ABSTRACT

Methods and apparatus for validating a system include
reading protected record data for a section of the system
from a secure storage element, and verifying integrity of the
section of the system using the record data. The secure
storage element independently verifies that all record data
and data to be written to the system is valid.

20 Claims, 6 Drawing Sheets

\ Update Data Block 122
1 Code
Restricted Write Verification
110 lﬁ BIOS (in ROM)
\ Boot (flash)
Secure Storage Element _\}
112
N Public Key Section
114 Main Code (flash)
N Boot Time Record Section [— 126
116 —\
Run-time Record Section
System Data (flash)
Smart Install L~ 128
Demo Pages
Data Read
K User Data (flash) L— 130

US 9,940,462 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2005/0097328 Al* 5/2005 England GOG6F 9/4416
713/173
2005/0198051 Al* 9/2005 Marr GO6F 21/52
2006/0075287 Al 4/2006 Vageline et al
2007/0162964 Al 7/2007 Wang
2007/0300207 Al* 12/2007 Booth GOG6F 21/575
717/126
2008/0168564 Al* 7/2008 Lerouge GO6F 21/64
726/26
2009/0282477 Al* 11/2009 Chencccceveueee. GO6F 21/51
726/22
2010/0082955 Al 4/2010 Chhabra et al.
2012/0005480 Al 1/2012 Batke et al.
2012/0017081 Al* 1/2012 Courtney GO6K 7/10722
713/156

* cited by examiner

U.S. Patent Apr. 10,2018 Sheet 1 of 6 US 9,940,462 B2

100 \ Update Data Block 122
1 Code
Restricted Write Verification
110 ¢ / BIOS (in ROM)
\ Boot (flash)
Secure Storage Element ~ 124
112
N Public Key Section
114 Main Code (flash)
N Boot Time Record Section | — 126
116 —
Run-time Record Section |

System Data (flash)

I Smart Install | 128
Demo Pages
Data Read

k User Data (flash) |_— 130

Fig. 1

U.S. Patent

202 — |

204 —

206 —

208 —

210 —

212 —

Apr. 10,2018

Sheet 2 of 6

- Manufacturer signature over update data block

Boot Code (in flash) with
Manufacturer Signature

Main Code (in flash) with
Manufacturer Signature

Smart Install (in flash) with
Manufacturer Signature

Demo Page (in flash) with
Manufacturer Signature

NN

Record Update Block with
Manufacturer Signature using
public key of secure storage
element

Fig. 2

US 9,940,462 B2

/ 200

US 9,940,462 B2

Sheet 3 of 6

Apr. 10,2018

U.S. Patent

¢ ‘b4
bBel4 s1epdn Ao} uonepiiep/yseH SSaIppy pul SSIPPY HEIS
bel4 eyepdn Aay| uonepijep/yseH ssalppy pu3g SSaIppy UBRIS abed owsaq jo ued —— zee
Bel4 a1epdn Ao} uoheplleA/yseH SSaIpPy pu3 SSaIPPY HelS
bej4 ayepdn Aay| uohepllep/yseH SSaIppy pu3 SSaIPPY UES 2pog Ulei - Z ¥ed — pze
bei4 ejepdn Aay uoneplleA/yseH SSappy pug SSAIPPY HelS SpoD UB - | Med —__
7 zze
89¢ |\ 98¢ I\ ot I\ 29t uoneplleA swil-uny ¢ oLl
\ 0S¢
Bel4 ayepdn Aay| uonepllep/yseH ssalppy puj SSaIPPY MelS abed owaq ove
be|4 a1epdn Ad)| uohepllep/yseH SSaIppy pu3 SSaIPPY HElS ejeq |lejsu| yews -
Bel4 a1epdn A9y uonepilea/yseH ssalppy puj SSalppy Helg eleq WaSAs — pee
beld ejepdn Aoy uonepllep/yseH Ssappy pu3 SSAIPPY HelS 9poQ Ul <
Oel4 ejepdn Ao3| uoneplieA/useH ssaJppy pu3 Ssalppy MeS (useyy ur) Joog 4>
7 7 7 7 ™ o
g8lLe gle rle [45% uonEepIBA 1009 bl
| beid aepdn | Ad) 2ljdnd |
¥0€ |\ [40}% |\>mv_ abelo)g eInoeS —— ZLL
Lgg —— Jouny jo aineubig
2z —

U.S. Patent Apr. 10,2018 Sheet 4 of 6 US 9,940,462 B2

Read protected record data for a
section of the system from a

secure storage element
402 — g

A 4

Verify integrity of the section of
the system using the record

A data

404

Fig. 4

U.S. Patent

Apr. 10,2018

Sheet 5 of 6

Intake an update data
block at a BIOS

A 4

504

Validate identity of an
author of the update
data block

506 — |

Write system data
contained in the update
data block to a section

of system flash
associated with the data

A

508

Write record data
contained in the update
data block for the
section of the flash to
storage of the secure
storage element

Fig. 5

US 9,940,462 B2

/ 500

U.S. Patent Apr. 10,2018 Sheet 6 of 6 US 9,940,462 B2

600
Review a region of /

memory of a system
using sub-record data
for the region stored in
a run-time section of a
secure storage element
during run-time

602 —

Fig. 6

700

Processor Memory

.

702 704

706
Computer-readable
storage medium

Fig. 7

US 9,940,462 B2

1
CODE VALIDATION

PRIORITY

This application is a Continuation of commonly assigned
and co-pending U.S. patent application Ser. No. 13/561,530,
filed Jul. 30, 2012, the disclosure of which is hereby
incorporated by reference in its entirety.

BACKGROUND

Peripheral components for computers and computer sys-
tems are increasingly connected or connectable to the inter-
net. As such, the peripheral components, such as but not
limited to printers, mobile telephones, routers, and the like,
are subject to attack by hackers and viruses. This is typically
because while computers have been hardened against attack
by hackers, the peripheral components have not been hard-
ened against attack.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system according to an
example of the present disclosure;

FIG. 2 is a block diagram of an update data block
according to an example of the present disclosure;

FIG. 3 is a block diagram of a record data block according
to an example of the present disclosure;

FIG. 4 is a flow chart diagram of a method according to
an example of the present disclosure;

FIG. 5 is a flow chart diagram of a method according to
another example of the present disclosure;

FIG. 6 is a flow chart diagram of a method according to
yet another example of the present disclosure; and

FIG. 7 is a block diagram of an example of a computer
system for use with various implementations.

DETAILED DESCRIPTION

In the following detailed description of the present
examples, reference is made to the accompanying drawings
that form a part hereof, and in which is shown by way of
illustration specific examples of the disclosure which may be
practiced. These examples are described in sufficient detail
to enable practice of the subject matter of the disclosure, and
it is to be understood that other examples may be utilized
and that process, electrical or mechanical changes may be
made without departing from the scope of the present
disclosure. The following detailed description is, therefore,
not to be taken in a limiting sense.

As peripheral components to computers become increas-
ingly connected to the internet, hacker attacks and viruses
are becoming more prevalent among those peripherals. This
is, in part, because the peripherals have typically not been
hardened against attack by hackers and viruses.

In order to ensure that peripheral components are more
secure from attack, one consideration is ensuring that the
code running on the peripheral component is that code
which is intended to be run on the component. In order for
that to occur, typically a root of trust is established. Once a
root of trust is established, anything executed or offered by
that root of trust is also trusted. Common practice for
ensuring that the code is that code which is intended to be
run is using validation of hashes or cyclic redundancy check
(crc) for the code. However, the hash or crc of code that is
changing is also changing and therefore uses a secure means
to not only update the code, but also the keys to validate the

5

10

15

20

25

30

35

40

45

50

55

60

65

2

code. In order to be secure, the means of storing the code and
the means of storing the validation keys are separate entities.

A typical root of trust is built starting with a read only
memory (ROM). ROM is one-time programmable, and
when the ROM is run first, that immutable piece of code
executes first. After the initial loading, additional pieces of
code may be run, building from the root of trust. Since
pieces of code after the root of trust is loaded are changing,
the validation keys such as a public key, hash, or crc code are
stored at some location available to the ROM. Storage of
validation keys in a ROM is impractical because if a private
key is corrupted, or if the hash/crc changes, the ROM
becomes worthless. For example, when a public key is
coded into a ROM, and an associated private key is used to
embed hashes for machine readable instructions, such as
software, into a signed key for updated code, once the
private key is broken or corrupted, the public key immutably
embedded in the ROM renders it worthless.

Therefore, using some element that can be changed
becomes increasingly desirable. However, as soon as any
opportunity that some piece of code comprising machine
readable instructions, such as in firmware or software, can
be executed that will allow alterations, then the root of trust
is compromised. Traditionally, peripheral manufacturers use
what is described as trusted software to attempt to ensure
that what is written to secure storage is valid. However, in
an embedded system, there is no guarantee that a single
secure software element can protect a key storage, since
other parts of the embedded system can be made to update
any part of the hardware system. Once a single piece of
software or firmware is cracked, that piece can alter the
hardware as a trusted component. Code may then be altered
to look valid, while it is not.

One way that has been attempted to secure peripherals is
the use of a completely separate processor with a separate
ROM different than the operating processor and ROM. The
separate processor and separate ROM is out of band and
cannot be updated. The function of the separate processor
and separate ROM is solely to find a root of trust on a
network, to retrieve data identifying and allowing validation
of code that is running in the component. This option is
expensive, cannot be updated, and requires a network for
performing validation.

A system 100 is shown in FIG. 1. System 100 comprises
in one example a secure storage element 110, and a periph-
eral component 120, such as a printer, mobile telephone,
router, or the like. Secure storage element 110 comprises in
one example a block of storage 112 (e.g., EPROM,
EEPROM, flash, or other changeable non-volatile memory)
for storing a validation key for decoding incoming data, a
block of storage 114 (e.g., EPROM, EEPROM, flash, or
other changeable non-volatile memory) for storing records
containing information for validation of sub-systems of the
peripheral component 120 at boot time, and a block of
storage 116 (e.g., EPROM, EEPROM, flash, or other
changeable non-volatile memory) for storing records con-
taining information for validation of sub-systems of the
peripheral component 120 at run-time. Information for vali-
dation of sub-systems in one example includes by way of
example only and not by way of limitation a specified region
of an execution data space (e.g., a code space) typically
identified by a start address and an end address, the address
range having associated hashes, checksums, crc values,
public keys, or other integrity information to validate the
specified region of data space.

The block of storage 112 for storing a validation key for
incoming data contains information that allows the secure

US 9,940,462 B2

3

storage element 110 to decode a portion of a signed update
data block that is loaded by the BIOS, such as by down-
loading, or by being supplied in some other fashion to the
BIOS. The update data block (which may also be referred to
as a blob, package, or update package, for example) is
prepared by the entity responsible for the peripheral com-
ponent 120 to be updated, for example the manufacturer of
the component, and is in general outside of the system 100.

The secure storage element 110 is a hardware component
that is capable of independently authenticating and validat-
ing data, such as a record data sub-block received in an
update data block, that it stores after the data associated with
the record data is written to system flash. The secure storage
element is not dependent on firmware or other hardware
(such as that in the peripheral component 120) for such
authentication and validation. The form of an update data
block is discussed further below referring also to FIG. 2, and
further detail on the storage within the secure storage
element is discussed further below referring also to FIG. 3.
The peripheral component 120 does not have the ability to
issue write commands to the secure storage element 110. An
outside entity, such as the manufacturer, uses a private key
corresponding to the public key stored in the secure storage
element storage 112 to update or change storages 112, 114,
or 116 provided the identity of the author is validated by the
secure storage element 110, and also to update flash memory
of the peripheral component 120. Any section of the periph-
eral component 120 (e.g., sections 122, 124, 126, 128, 130)
may be allowed to read the records 114, 116 from the secure
storage element 110, but is not allowed to write to the secure
storage element. Alternatively, an outside entity can use a
different public key for the general encryption of and update
data block and its internal sub-blocks, as long as that internal
sub-block dedicated to writing record data into the secure
storage element is encrypted with the public key currently
stored in the secure storage element.

Peripheral component 120 may include, for example, a
BIOS 122 stored in ROM format, and other sub-systems,
such as but not limited to boot code 124, main code 126,
system data 128, and user data 130, each stored in flash or
other non-volatile, changeable memory. The flash part of the
peripheral component is updatable by using the contents of
storage 114 (boot time keys) in conjunction with ROM 122
to ensure that system 100 is running the code intended for
the device at boot time. The flash part of the peripheral
component may include more or fewer sections than shown,
depending on the system.

The update data block contains in one example code to be
updated in the flash memory of the peripheral component
120, packaged and signed with, for example, a private key
of the manufacturer for which the public key is stored in the
secure storage element 110, in one example in block 112,
and record data in a portion of the update data block that is
written to the secure storage element after verification and
authentication by the secure storage element. Decryption
with the public key provides the signature of the manufac-
turer for the incoming data, allowing verification by known
methods (asymmetric keying, crc, hash code, etc. . . .) of the
signature. Once verification is complete, the incoming data
is written to the flash memory of the peripheral component
120, and then a portion of the update data block is sent to the
secure storage element, where it is used to update one or
more of storages 112, 114, and 116 after verification and
authentication by the secure storage element. The secure
storage element 110 then contains secure validation infor-
mation for the peripheral component 120 and its sub-
systems. Further, the secure storage element 110 may be

40

45

4

used in another example to store additional items, including
but not limited to items used to validate certificates and/or to
create other valuable roots of trust in addition to the ability
to validate code. Such items may also be stored in the
storage 112, 114, or 116, or in a separate additional block of
memory (not shown).

There may be a time when a public key stored in the
secure storage element should be changed, such as when a
private key of the manufacturer has become corrupt or
known. In such a circumstance, a signed update data block
is provided from the manufacturer, encrypted with the
private key, that when decrypted contains instructions to
write a new public key, contained in the data, to the secure
storage element. Then, the next update data block received
is encrypted with a new private key for which the new public
key written to the secure storage element is used for vali-
dation to find a proper signature. In this way, a change in the
private and public keys is propagated to the secure storage
element, which is written upon receipt of valid information
from the manufacturer, but not from any source that does not
have the proper private key to sign and encrypt data, and the
ROM can remain generic but still trust the secure storage
element.

The secure storage element, in another example, allows
partial writing of the key data, and sets a “valid to write” flag
enabling updates of individual sections of code while leav-
ing remaining keys unchanged. As the system is updated in
parts, the individual parts are managed as an update occurs.
Portions of the secure storage element are updated when
record data to be updated is identified by setting an update
flag for that record.

The contents of one example of an update data block 200
are shown in greater detail in FIG. 2. The update data block
is transmitted from a manufacturer or the like, or otherwise
received at the BIOS 122. The update data block is signed
and packaged by the manufacturer, and contains a manu-
facturer signature 202 for the entire update data block 200,
individual update blocks 204, 206, 208, and 210 for one or
more of the respective sub-systems (such as sub-systems
124, 126, 128, and 130 described above) of the peripheral
component 120. These update blocks 204, 206, 208, and 210
are individually signed blocks of data that are to be written
to their respective sub-system flash. Once the update data
block is validated by the BIOS using a public key (which
could be a supplied public key, available public key, or
public key stored in secure storage element 110), the code in
sub-blocks 204, 206, 208, and 210 is written to the appro-
priate sub-system flash in the peripheral component 120.

When all individual update blocks have been verified and
written to the appropriate sub-system flash, a record block
212, individually signed by the manufacturer with the pri-
vate key corresponding to the public key stored in secure
storage element 110, is verified and decoded using the public
key stored in the secure storage element. The record block
212 contains information for updating the records in storage
114 and 116 of the secure storage element 110, including by
way of example start addresses 312, end addresses 314,
validation keys 316, and update flags 318 for each of the
records in storage 114, and start addresses 362, end
addresses 364, validation keys 366, and update flags 368 for
each of the sub-records in storage 116, as described in
further detail below.

In one example, the records for storage 114 address
compressed code space stored in flash sections of the
peripheral component, and the records for storage 116
address expanded code space loaded into random access

US 9,940,462 B2

5

memory (RAM) of the peripheral component. The expanded
code runs in RAM so as to allow it to operate more quickly
in a run-time situation.

Referring now to FIG. 3, further detail of a record data
block such as block 212 is shown, with reference to specific
portions of secure storage element 110 also noted in the
Figure for illustrative purposes. Record data block 212 is
signed with the signature of the author 301, and comprises
in one example records for updating storage portion 302 for
storing validation information, in this example a public key
that is associated with a manufacturer private key, and
storage portion 304 for an update flag for storage portion
302. When a record data block is received from the BIOS by
the secure storage element, it is verified as signed and
complete using the public key currently stored in storage
portion 112. Should the update data block indicate that the
public key storage portion 112 is to be updated, the update
flag from storage portion 304 is set to true, and the new
public key 302 is written to storage portion 112.

Block 212 comprises in one example records 210, 220,
230, 240, and 250 for storage in storage 114 of secure
storage element 110, such as those described above, each
record containing a start address 312, end address 314, hash,
cre, or other validation key 316, and update flag 318. These
records are accessible to the ROM in boot validation, as
described herein. When a record data block is received from
the BIOS by the secure storage element, it is verified as
signed and complete using the public key currently stored in
storage portion 112, as described above. Should the record
data block indicate that the any of portions 310, 320, 330,
340, or 350 is to be updated, the update flag 318 for that
particular portion is set to true. Storage 114 and record data
block 212 may include more or fewer storage portions than
shown, depending on the system.

Block 212 also comprises in one example records 322,
324, and 353 (by way of example only) associated with one
or more of the records 310, 320, 330, 340, and 350. These
records are used in one example for run-time validation, as
described herein. In storage 116, for example, each of two
sub-records 322 and 324 each contain a start address 362,
end address 364, hash, crc, or other validation key 366, and
update flag 368 for a portion of the main code record 320 of
storage 114, and sub-record 352 contains a start address 362,
end address 364, hash, crc, or other validation key 366, and
update flag 368 for a portion of the main code record 350 of
storage 114. When a record data block is received from the
BIOS by the secure storage element, it is verified as signed
and complete using the public key currently stored in storage
portion 112, as described above. Should the record data
block indicate that the any of sub-records 322, 324, 352 is
to be updated, the update flag 368 for the sub-records
portions of that particular portion are set to true. Storage 116
may include more or fewer storage portions than shown,
depending on the system. Run-time validation using the
storage 116 is described in greater detail below with respect
to FIG. 6.

A method 400 of validating a system at boot time, such as
system 100, is shown in flow chart form in FIG. 4. Method
400 in one example comprises reading protected record data
for a section of the system from a secure storage element in
block 402, and verifying integrity of the section of the
system using the record data in block 404. The integrity of
remaining sections of the system is verified in another
example using record data for each respective section of the
remaining sections of the system, the record data for each
respective section stored in the secure storage element.

10

15

20

25

30

35

40

45

50

55

60

65

6

A method 500 for updating flash in a system is shown in
flow chart form in FIG. 5. Method 500 comprises, in one
example, intaking an update data block at a secure storage
element in block 502, validating an identity of the author of
the update data block in block 504, writing system data
contained in the update data block to a section of system
flash associated with the data in block 506, and writing
record data contained in the update data block for the section
of'the flash to storage of the secure storage element in block
508. Intaking of an update data block may be by one of many
methods without departing from the scope of the disclosure.
Intaking may include receiving via an internet connection, a
hardwired connection, a wireless connection, or the like. For
example, the update data block may be downloaded, or it
may be supplied in some other fashion to the secure storage
element. The update data block is produced by the entity that
has the rights to modify the system flash, such as the entity
that distributes the system or the product in which the system
flash is used, and is signed, for example, with a known
signature for the manufacturer. The signed update data block
is encoded using, for example, a private key, and the public
key stored in the secure storage element is used to decrypt
the update data block.

The secure storage element, such as element 110
described above with respect to FIG. 1, provides the ability
to use a ROM as a root of trust for operation of a system,
while allowing the ROM itself to be generic, that is, without
containing a validation key or hash that may become cor-
rupted or outdated and therefore unusable. The ROM works
with the secure storage element, and is programmed to know
where in the secure storage element its validation element
(e.g., a hash or a public key) is stored. By using the
validation element of the secure storage element, and the
data stored in the secure storage element for hashes or other
keys for other elements of the system, the ROM can validate
that other elements of the system are valid even though they
are flashable or changeable. This is because the data in the
secure storage element is validated by the providing entity.
The other elements of the system may have changing
validation information, such as hashes/crc checks, and the
like, but the secure storage element contains the current
validation information for those elements, and the ROM
uses the information stored in the secure storage element to
validate that the other elements of the system are valid.

Since no set of machine readable instructions, such as
firmware or software, has the ability to write to the secure
storage element, and only the provider of the element can
write to the secure storage element, there is no corruption of
firmware or software that can corrupt the secure storage
element. When new code is to be placed into the flash
memory of the system, an update data block is packaged
together and signed by the provider (in one example, the
manufacturer, who is the only entity with the proper key,
such as a private key, for signing the code). Once received,
the update data block is validated at the secure storage
element using the validation key, such as a public key, before
being written to the flash memory of the system, with record
information (as described above) for the new code stored in
the secure storage element to match the new code that is to
be written to the flash memory of the system.

The secure storage element 110 has information stored
therein that generic code running in the component 120,
such as in the BIOS, can access and use to validate further
parts of the component 120. Alternatively, validation can be
chained. For example, the BIOS 122 can validate that the
boot code 124 is correct, and the boot code 124 can validate
that the main code is correct, and so forth. Each sub-part of

US 9,940,462 B2

7

the component 120 may use the secure storage element and
the data therein to validate the next part of the component,
as the secure storage element has validation keys in the form
of, for example, crc code, hash code, or public key, for each
sub-part.

While some data is likely to be written to the secure
storage element for each update of information, the amount
of data to be written is typically small, such as a crc check,
hash code, or public key for a specific address range in the
ROM or the system itself.

In addition to validation of a peripheral component such
as component 120 at start-up, the secure storage element 110
may also be used, in another example, to perform run-time
checking to make sure that the component 120 is still
running valid code, and that no corruption has taken place
during run-time. A method 600 showing run-time validation
is shown in flow chart form in FIG. 6. Method 600 com-
prises reviewing a region of memory of a system (e.g., of a
peripheral component) using sub-record data for the region
stored in a run-time section of a secure storage element (such
as section 116 of secure storage element 110) during run-
time in block 602. Reviewing further comprises in one
example computing a run-time validation key on a specific
address range in the system corresponding to sub-record
information for the section, and comparing the computed
run-time validation key to respective validation key data
from the secure storage element for that address range in the
system.

In greater detail, the secure storage element contains
information about each sub-part of the component, such as
where the sub-part is in the address space of the component,
and what the hash or crc over that address space is supposed
to be. An instruction may be sent from the secure storage
element to the component to run a check on a certain address
range or a certain sub-part of the component. The root of
trust (for example the BIOS) of the system reads data from
the start address to the end address provided, and creates a
hash or crc for that address range. This hash or crc is
compared with the stored hash or crc in the secure storage
element. If the hashes/crcs match, the sub-part of the com-
ponent is still running valid code.

The BIOS, in one example, loads intrusion detection
pieces randomly, so that any intruder to the peripheral
component may be detected during run-time. Because the
run-time checks are random, that is, various parts of the
peripheral are checked at variable times and in variable
order, an intruding piece of code will not have proper crc or
hash codes to properly validate the particular area. The
runtime check in one example uses the external entity to
randomize the queries (e.g., address ranges etc. . . .) in such
a way that an intruding piece of code, be it machine readable
instructions, such as software, firmware, or some combina-
tion thereof, cannot easily answer with the proper informa-
tion. In one example, the system looks for cycles of inac-
tivity, and during inactivity, picks one of the validation
identifiers in the secure storage element, such as a starting
address, an ending address, and the resulting hash for that
address range. Random in the sense that it is used herein
does not mean that checking for run-time intrusion is not
thought through, but instead that the timing, address range,
and area of the component code that is checked will not have
a predictable pattern. A run-time check may be initiated by
the BIOS, the system, or the secure storage element, but it
its the BIOS that determines what sections or sub-sections of
the system are checked, and when.

Because the secure storage element writes only a limited
amount of information, the opportunities for a hacker to

10

30

40

45

8

break its decryption is also limited. The address ranges and
hash or crc values that are written to the secure storage
element are typically small. Further, even if a public key is
known and is used in the secure storage element, the
knowledge of the public key does not give knowledge of the
private key. Still further, the private key is used in one
example, as discussed above, to sign a message that sends a
new public key to the secure storage element that will then
be used to validate messages signed with a new private key.

The ability to switch public keys and to write new public
key information to the secure storage element also allows
the use of different private keys for different components
from the same manufacturer. For example, since the public
key stored in a secure storage element can be changed, each
product may have its own private/public key combination,
further increasing security.

Implementations of FIGS. 1-6 of the present disclosure
can be instantiated by machine-readable instructions, e.g.,
software, to cause a processor to perform methods disclosed
herein. The machine-readable instructions can be stored on
non-transitory computer-usable storage media in the form of
volatile or non-volatile storage. Examples of storage media
include solid-state memory (e.g.,, Read-Only Memory
(ROM), Random-Access Memory (RAM), Flash memory,
etc.); optical media (e.g., CD, DVD, Blu-Ray™ disks, etc.),
magnetic media (e.g., magnetic disks and disk drives, mag-
netic tape, etc.). Such storage media may be a component
part of a computer system, or it may include a removable
storage medium.

FIG. 7 is a block diagram of an example of a computer
system 700 having a processor 702, memory 704 and a
tangible storage media 706 in communication with the
processor 702 for use with various implementations. The
storage media 706 includes a non-transitory storage medium
and has machine-readable instructions stored thereon to
cause the processor 706 to perform methods disclosed
herein.

Although specific examples have been illustrated and
described herein it is manifestly intended that the scope of
the claimed subject matter be limited only by the following
claims and equivalents thereof.

What is claimed is:

1. A method comprising:

obtaining, by a processor of a device, first record data

from a storage element, wherein the storage element
contains the first record data for validating code at boot
time of the device and second record data for validating
the code during run time of the device;

validating, by the processor, the code for a particular

sub-system of the device at the boot time of the device
using the first record data without using the second
record data;

obtaining, by the processor, the second record data from

the storage element; and

validating, by the processor, the code for the particular

sub-system of the device during the run time of the
device using the second record data without using the
first record data.

2. The method of claim 1, further comprising:

validating code for remaining sub-systems of the device at

the boot time of the device using boot-time record data
obtained from the storage element for each of the
remaining sub-systems; and

validating the code for the remaining sub-systems of the

device during the run time of the device using run-time
record data obtained from the storage element for each
of the remaining sub-systems.

US 9,940,462 B2

9

3. The method of claim 1, further comprising:

storing the code to be validated at the boot time of the
device in a compressed code space in a flash section of
the device; and

storing the code to be validated during the run time of the

device in an expanded code space in a random access
memory (RAM) of the device.

4. The method of claim 1, wherein the storage element is
a secure storage element separate from the device.

5. The method of claim 1, wherein the code for the
particular sub-system to be validated at the boot time of the
device is stored in a first region of data space of the device,
and the code for the particular sub-system to be validated
during the run time of the device is stored in a second region
of the data space of the device.

6. The method of claim 1, further comprising:

updating data stored in a section of a flash of the device

from update data contained in an update data block
only after the storage element has validated an identity
of an author of the update data contained in the update
data block.

7. The method of claim 6, wherein after the storage
element has validated the identity of the author of the update
data, the storage element is to store the update data for the
section of the flash of the device as a data record, including
a start address of a location in the storage element where the
update data is stored, an end address of the location, a
validation key, and an update flag.

8. A device comprising:

a processor; and

a memory storing instructions that when executed by the

processor cause the device to:

obtain first record data from a storage element, wherein
the storage element contains the first record data for
validating code at boot time of the device and second
record data for validating the code during run time of
the device,

validate the code for a particular sub-system of the
device at the boot time of the device using the first
record data without using the second record data,

obtain the second record data from the storage element,
and

validate the code for the particular sub-system of the
device during the run time of the device using the
second record data without using the first record
data.

9. The device of claim 8, wherein the instructions are
further to cause the device to:

validate code for remaining sub-systems of the device at

the boot time of the device using boot-time record data
obtained from the storage element for each of the
remaining sub-systems, and

validate the code for the remaining sub-systems of the

device during the run time of the device using run-time
record data obtained from the storage element for each
of the remaining sub-systems.

10. The device of claim 8, wherein the instructions are
further to cause the device to:

store the code to be validated at the boot time of the device

in a compressed code space in a flash section of the
device, and

store the code to be validated during the run time of the

device in an expanded code space in a random access
memory (RAM) of the device.

11. The device of claim 8, wherein the storage element is
a secure storage element separate from the device.

10

15

20

25

30

35

40

45

50

55

60

65

10

12. The device of claim 8, wherein the code for the
particular sub-system to be validated at the boot time of the
device is stored in a first region of data space of the device,
and the code for the particular sub-system to be validated
during the run time of the device is stored in a second region
of the data space of the device.

13. The device of claim 8, wherein the instructions are
further to cause the device to:

update data stored in a section of a flash of the device with

update data contained in an update data block only after
the storage element has validated an identity of an
author of the update data contained in the update data
block.

14. The device of claim 13, wherein after the storage
element has validated the identity of the author of the update
data, the storage element is to store the update data for the
section of the flash of the device as a data record, including
a start address of a location in the storage element where the
update data is stored, an end address of the location, a
validation key, and an update flag.

15. A non-transitory computer readable medium storing
instructions that when executed by a processor of a device
cause the processor to:

obtain first record data from a storage element, wherein

the storage element contains the first record data for
validating code at boot time of the device and second
record data for validating the code during run time of
the device;

validate the code for a particular sub-system of the device

at the boot time of the device using the first record data
without using the second record data;

obtain the second record data from the storage element;

and

validate the code for the particular sub-system of the

device during the run time of the device using the
second record data without using the first record data.

16. The non-transitory computer readable medium of
claim 15, wherein the instructions are further to cause the
device to:

validate code for remaining sub-systems of the device at

the boot time of the device using boot-time record data
obtained from the storage element for each of the
remaining sub-systems; and

validate code for the remaining sub-systems of the device

during the run time of the device using run-time record
data obtained from the storage element for each of the
remaining sub-systems.

17. The non-transitory computer readable medium of
claim 15, wherein the instructions are to cause the device to:

store the code to be validated at the boot time of the device

in a compressed code space in a flash section of the
device; and

store the code to be validated during the run time of the

device in an expanded code space in a random access
memory (RAM) of the device.

18. The non-transitory computer readable medium of
claim 15, wherein the code for the particular sub-system to
be validated at the boot time of the device is stored in a first
region of data space of the device, and the code for the
particular sub-system to be validated during the run time of
the device is stored in a second region of the data space of
the device.

19. The non-transitory computer readable medium of
claim 15, wherein the instructions are to cause the processor
to:

update data stored in a section of a flash of the device with

update data contained in an update data block only after

US 9,940,462 B2
11

the storage element has validated an identity of an
author of the update data contained in the update data
block.

20. The non-transitory computer readable medium of
claim 19, wherein after the storage element has validated the 5
identity of the author of the update data, the storage element
is to store the update data for the section of the flash of the
device as a data record, including a start address of a location
in the storage element where the update data is stored, an end
address of the location, a validation key, and an update flag. 10

#* #* #* #* #*

12

