Office de la Proprieté Canadian CA 2570462 C 2012/01/03

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 570 462
Findustie Canada Industry Ganada 1R BREVET GANALIEN
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 2005/06/13 (51) Cl.Int./Int.Cl. GO6F 77/30(2006.01)
(87) Date publication PCT/PCT Publication Date: 2006/01/26 | (72) Inventeurs/Inventors:
- . CHANDRASEKAR, SIVASANKARAN, US:
(45) Date de délivrance/lssue Date: 2012/01/03 THUSOO. ASHISH. US
(85) Entree phase nationale/National Entry: 2006/12/01 MURTHY, RAVI US:
(86) N° demande PCT/PCT Application No.: US 2005/020795 éG’;I_QA\f\F/{A_,Rl\IICI)P%I\lS" US;
(87) N° publication PCT/PCT Publication No.: 2006/009664 ML KKAM/&LLA, SQI,EEDHA? US
(30) Priorités/Priorities: 2004/06/16 (US60/580,445);

(73) Proprietaire/Owner:
2004/07/13 (US60/587,698); 2005/02/15 (US11/059,612) ORACLE INTERNATIONAL CORPORATION US

(74) Agent: SMITHS IP

(54) Titre : EXTRACTION EFFICACE DE CONTENU XML STOCKE DANS UN GRAND OBJET
(54) Title: EFFICIENT EXTRACTION OF XML CONTENT STORED IN A LOB

210| Identify node 200
matching path
exXpression

218

No —

Yes

220 230 create fra
gment by
" ring e “mﬁﬁﬂswrdms
gment data

]

Identify

ancestors

2500 Get information
needed for proper

240

interpretation from

ancestors

Y

Patch fragment

280

290
Deliver fragment

(57) Abréegée/Abstract:

A method and system are provided for extracting a valid, self-contained fragment for a node in a XML document stored In a
database management system. An XML index Is used to |dent|fy a location in which XML fragment data corresponding to the node
IS located. Ancestors of the node are Identified and examined for any information needed for the proper interpretation of the
fragment. If an ancestor node contains such needed information, this information is patched into the XML fragment to ensure that
the fragment Is a valid, self-contained XML fragment.

e

T N §.
.l.!.\‘\-c.c..--.
. T

3 '_{,-.T'l'.
o~

C an a d a http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

WO 2006/009664 A1 I} 1] 00A A0 10 0 OO 0 O

CA 02570462 2006-12-01

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization w’A}
International Burcau

l " hE
l.' '-. .‘.' . ‘ ’2'1: ,J‘
. ._\?J:;gtﬂlg. QW, d

(43) International Publication Date
26 January 2006 (26.01.2006)

2 A 0. O O OO

PCT

(10) International Puablication Number

WO 2006/009664 A1l

(51) International Patent Classification GO6F 17/30

(21) International Application Number:
PCT/US2005/020795

13 June 2005 (13.06.2005)
English
English

(22) International Filing Date:
(25) Filing Language:
(26) Publication Language:

(30) Priority Data:

60/580,445 16 June 2004 (16.06.2004) US
60/587,698 13 July 2004 (13.07.2004) US

11/059,612 15 February 2005 (15.02.2005) US

(71) Applicant (for all designated States except US): ORACLE
INTERNATIONAL CORPORATION [US/US]; 500 Or-
acle Parkway, Redwood Shores, CA 94065 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHAN-
DRASEKAR, Sivasankaran [IN/US]; 540 Everett
Avenue, Palo Alto, CA 94301 (US). THUSOO, Ashish
[IN/US]; 34474 Alberta Terrace, Fremont, CA 94555 (US).
MURTHY, Ravi [IN/US]; 33227 Jamie Circle, Fremont,

(74)

(81)

(84)

CA 94555 (US). AGARWAL, Nipun [US/US}; 4768
Cheeney Street, Santa Clara, CA 95054 (US). SEDLAR,
Eric [US/US]; 4270 Cesar Chavez Street, San Francisco,
CA 94131 (US). MUKKAMALLA, Sreedhar [IN/US];
360 Guerrero Street, #417, San Francisco, CA 94103 (US).

Agent: BOVERI, Lesley, Coulson; Hickman Palermo
Truong & Becker LLP, Suite 550, 2055 Gateway Place, San
Jose, CA 95110-1089 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
Al, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, T], TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: EFFICIENT EXTRACTION OF XML CONTENT STORED IN A LOB

(37) Abstract: A method and system are provided for extracting a valid,

S—

210 1dentify node 200
maiching path 'I
CXpression
.
Yes
" Y
220 23
Crcate fragment Crea.te fragment :by
: locating and reading
using Index fragment data
490 [
2 Identify
ancestors
25 Get information
needed for proper
interpretation from
ancestars
280
Patch fragment

self-contained fragment for a node in a XML document stored in a database
management system. An XML index is used to identify a location in which
XML fragment data corresponding to the node is located. Ancestors of the
node are identified and examined for any information needed for the proper
interpretation of the fragment. If an ancestor node contains such needed
information, this information is patched into the XML fragment to ensure
that the fragment is a valid, self-contained XML fragment.

CA 02570462 2006-12-01

WO 2006/009664 A1 | AN A 0 RO OO O SR G

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, Published:

ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), — with international search report

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR,HU, IE, IS, IT, LT, LU, MC, NL, PL, PT,RO, Fortwo-letter codes and other abbreviations, refer 1o the "Guid-
SE, SI, SK, TR), OAPI (BF, BJ, CE, CG, CI, CM, GA, GN, ance Notes on Codes and Abbreviations" appearing at the begin-
GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gazette.

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/0207935

EFFICIENT EXTRACTION OF XML CONTENT STORED IN A LOB

FIELD OF THE INVENTION

[0001] The present invention relates to managing information and, more specifically, to
extracting valid, self-contained XML fragments identified by XPath path expressions from
stored XML data.

BACKGROUND

[0002] Inrecent years, database systems that allow storage and querying of eXtensible
Markup Language data (“XML data”) have been developed. Though there are many evolving
standards for querying XML, all of them include some variation of XPath. XPath is a language
that describes a way to locate and process items in XML documents by using an addressing
syntax based on a path through the document's logical structure or hierarchy. The portion of an
XML document identified by an XPath “path expression” is the portion that resides, within the
structure of the XML document, at the end of any path that matches the path expression.

[0003] XML documents that are managed by a relational database server are typically stored
as unstructured serialized data in some form of a LOB (Large Object) datatype. For example,
an XML document may be stored in unstructured storage, such as a CLOB (Character LOB) or
a BLOB (Binary LOB), or the document may be stored as an O-R (object relational structure
that uses an XML schema).

[0004] No matter how the XML document is stored, in order to fulfill many XPath queries,
a method of identifying and extracting a fragment of a stored XML document matching an
XPath path expression is needed.

[0005] Unfortunately, even database systems that have built-in support for storing XML
data are usually not optimized for handle path-based queries, and the query pertormance of the
databases systems leaves much to be desired. In specific cases where an XML schema
definition may be available, the structure and data types used in XML instance documents may
be used to optimize XPath queries. However, in cases where an XML schema definition is not
available, and the documents to be searched do not conform to any schema, there are no
efficient techniques for path-based querying.

[0006] Ad-hoc mechanisms, like a full scan of all documents, or text keyword-based
indexes, may be used to increase the performance of querying documents when no XML

schema definition 1s available. However, these mechanisms do not fulfill the need for an
-1-

CA 02570462 2006-12-01

WO 2006/609664 PCT/US2005/020793

efficient method of quickly identifying and extracting a fragment of a stored XML document

that matches an XPath path expression.

[0007] Even if a method of quickly identifying a location for a fragment of stored XML data
were available, a method of efficiently extracting the fragment from the 1dentified location 1s
still needed. The fragment, as it exists at the identified location, may not be a valid, self-
contained XML document. For example, namespace prefixes used within a fragment may be
declared outside of that fragment, and therefore the fragment retrieved from the identified
location will not have all the needed declarations. '

{0008] Based on the foregoing, there is a clear need for a system and method for identifying
and extracting valid, self-contained XML fragments that match an XPath path expression.
[0009] The approaches described in this section are approaches that could be pursued, but
not necessarily approaches that have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the approaches described in this

section qualify as prior art merely by virtue of their inclusion in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The present invention 1s illustrated by way of example, and not by way of limitation,
in the figure of the accompanying drawing and in which like reference numerals refer to similar
elements and in which:

[0011] FIG. 1 1s a block diagram of a system upon which the techniques described herein
may be implemented; and - |

[0012] FIG. 2 is a flowchart illustrating steps for efficiently providing a self-contained XML

fragment in response to a request.

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020793

DETAILED DESCRIPTION
[0013] In the following description, for the purposes of explanation, numerous specific

details are set forth in order to provide a thorough understanding of the present invention. It
will be apparent, however, that the present invention may be practiced without these specific

details. In other instances, well-known structures and devices are shown in block diagram form

in order to avoid unnecessarily obscuring the present invention.

EXAMPLE XML DOCUMENTS

[0014] For the purpose of explanation, examples shall be given hereafter with reference to

the following two XML documents:
pol.xml

<PurchaseOrder>
<Reference>SBELL-2002100912333601PDT</Reference>

<Actions>
<Action>
<User>SVOLLMAN<«/User>

</Action>
</Actions>

</PurchaselOrder>

Eoz.xml

<PurchaseQOrder> |
<Reference>ABEL-20021127121040897PST</Reference>

<Actions>

<Action>
<User>Z2LOTKEY</User>

</Action>
<Action>
<User>KING</Usger>

</Action>
</Actions>

</PurchaseOrder>

[0015] As indicated above, pol.xml and po2.xml are merely two examples of XML
documents. The techniques described herein are not limited to XML documents having any
particular types, structure or content. Examples shall be given hereafter of how such documents

could be indexed and accessed according to various embodiments of the invention.

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020793

THE XML INDEX
[0016] U.S. Patent Application Serial No. 10/884,311, entitled INDEX FOR ACCESSING
XML DATA, filed on July 2, 2004, (hereinafter the “XML Index application™), describes
various embodiments of an index that may be used to efficiently access XML documents
managed by a relational database server, based on XPath queries. Such an index shall be
referred to herein as an XML index.
[0017] An XML index as described in the XML Index application may be used to process
XPath queries regardless of the format and data structures used to store the actual XML data
(the “base structures™). For example, the actual XML data can reside in structures within or
outside of a database, in any form, such as CLOB (character LOB storing the actual XML text),
O-R (object relational structured form in the presence of an XML schema), or BLOB (binary
L.OB storing some binary form of the XML data).
[0018] According to one embodiment, an XML index is a domain index that improves the
performance of queries that include XPath-based predicates and/or XPath-based fragment
extraction. An XML index can be built, for example, over both XML Schema-based as well as
schema-less XMLType columns which are stored either as CLOB or structured storage. In one
embodiment, an XML index is a logical index that results from the cooperative use of a path
index, a value index, and an order index.
[0019] The path index provides the mechanism to lookup nodes based on simple
(navigational) path expressions. The value index provides the lookup based on value equality or
range. There could be multiple secondary value indexes — one per datatype. The order index
associates hierarchical ordering information with indexed nodes. The order index is used to
determine parent-child, ancestor-descendant and sibling relationships between XML nodes.
[0020] When the user submits a query involving XPaths (as predicate or fragment
identifier), the XPath statement is decomposed into a SQL query that accesses the XML index
table. The generated query typically performs a set of path, value and order-constrained
lookups and merges their results appropriately.
[0021] For the purpose of explanation, the techniques described herein are described in a
context in which an XML index, as described in the XML Index application, is used to index the
XML documents. However, the techniques described herein are not limited to any specific
index structure or mechanism, and can be used to identify and extract valid self-contained XML

fragments regardless of what method of querying is used.

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020793

THE PATH TABLE
[0022] According to one embodiment, a logical XML index includes a PATH table, and a
set of secondary indexes. As mentioned above, each indexed XML document may include
many indexed nodes. The PATH table contains one row per indexed node. For each indexed
node, the row in the PATH table for the node contains various pieces of information associated
with the node.
[0023] According to one embodiment, the information contained in the PATH table includes
(1) a PATHID that indicates the path to the node, (2) “location data” for locating the fragment
data for the node within the base structures, and (3) “hierarchy data” that indicates the position
of the node within the structural hierarchy of the XML document that contains the node.
Optionally, the PATH table may also contain value information for those nodes that are

associated with values. Each of these types of information shall be described in greater detail

below.

PATHS
[0024] The structure of an XML document establishes parent-child relationships between
the nodes within the XML document. The “path” for a node in an XML document reflects the
series of parent-child links, starting from a “root” node, to arrive at the particular node. For
example, the path to the “User” node in po2.xml is /PurchaseOrder/Actions/Action/User, since
the “User” node is a child of the “Action” node, the “Action” node is a child of the “Actions”
node, and the “Actions” node is a child of the “PurchaseOrder” node.
[0025] The set of XML documents that an XML index indexes is referred to herein as the
“indexed XML documents”. According to one embodiment, an XML index may be built on all
of the paths within all of the indexed XML documents, or a subset of the paths within the
indexed XML documents. Techniques for specifying which paths are indexed are described

hereafter. The set of paths that are indexed by a particular XML index are referred to herein as
the “indexed XML paths”.

PATHIDS
[0026] According to one embodiment, each of the indexed XML paths 1s assigned a unique

path identifier (“PATHID”). For example, the paths that exist in pol.xml and po2.xml may be
assigned PATHIDs as illustrated in the following table:

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/02079S

e P —— ——

PATHID | PATH

1 /PurchaseOrder
2 | /PurchaseOrder/Reference
3 /PurchaseOrder/Actions
4 /PurchaseOrder/Actions/Action o
5 /PurchaseOrder/Actions/Action/User

[0027] Various techniques may be used to identify paths and assign PATHIDs to paths. For
example, a user may explicitly enumerate paths, and specify corresponding PATHIDs for the
paths thus identified. Alternatively, the database server may parse each XML document as the
document is added to the set of indexed XML documents. During the parsing operation, the
database server identifies any paths that have not already been assigned a PATHID, and
automatically assigns new PATHIDs to those paths. The PATHID-to-path mapping may be
stored within the database in a variety of ways. According to one embodiment, the PATHID-to-
path mapping is stored as metadata separate from the XML indexes themselves.

[0028] According to one embodiment, the same access structures are used for XML
documents that conform to different schemas. Because the indexed XML documents may
conform to different schemas, each XML document will typically only contain a subset of the
paths to which PATHIDs have been assigned. |

LOCATION DATA
[0029] The location data associated with a node indicates (1) where the XML document that
contains the node resides within the base structures, and (2) where the XML fragment that
corresponds to the node is located within the stored XML document. Thus, the nature of the
location data will vary from implementation to implementation based on the nature of the base

structures. Location information is typically added to the PATH table as XML documents are

parsed.

[0030] For the purpose of explanation, it shall be assumed that (1) the base structures are
tables within a relational database, and (2) each indexed XML document 1s stored in a
corresponding row of a base table. In such a context, the location data for a node may include,
for example, (1) the identifier of the row (“RID”) in the base table in which the XML document
containing the node is stored, and (2) a locator that provides fast access within the stored XML
document, to the fragment data that corresponds to the node.

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020795

[0031] A locator is conceptually a piece of information that “points” into the original
document, and is typically used to retrieve fragment data starting from that point. The locator
is dependent on the actual storage used for the XML documents, and can be different for CLOB,
O-R or BLOB forms of storage. For example, the locator for a node in an XML documeht that
is stored in a CLOB could be the starting character offset within the CLOB at which the node
starts. In addition, a byte length for the node may be stored as part of the locator. Together, this
information provides starting and ending locations within a stored XML document, and can be
used to efficiently extract an XML fragment. For example, a locator may be used to retrieve a
XML fragment containing a node that matches a specified XPath query by extracting data,
beginning at the character offset specified by the locator, and reading the data for the number of
bytes indicated by the locator.
[0032] Locators can be more complex than character or byte offsets, however. For example,
a locator could include certain flags. As another example, if the XML document is stored
shredded into relational table(s), the locator could contain appropriate table and/or row
identifier(s), etc.

HIERARCHY DATA
[0033] The PATH table row for a node also includes information that indicates where the
node resides within the hierarchical structure of the XML document containing the node. Such
hierarchical information is referred to herein as the “OrderKey” of the node.
[0034] According to one embodiment, the hierarchical order information is represented
using a Dewey-type value. Specifically, in one embodiment, the OrderKey of a node is created
by appending a value to the OrderKey of the node’s immediate parent, where the appended
value indicates the position, among the children of the parent node, of that particular child node.
[0035] For example, assume that a particular node D is the child of a node C, which itself is
a child of a node B that is a child of a node A. Assume further that node D has the OrderKey
1.2.4.3. The final “3” in the OrderKey indicates that the node D 1s the third child of its parent
node C. Similarly, the 4 indicates that node C is the fourth child of node B. The 2 indicates that
Node B is the second child of node A. The leading 1 indicates that node A 1s the root node (i.e.
has no parent).
[0036] As mentioned above, the OrderKey of a child may be easily created by appending to
the OrderKey of the parent a value that corresponds to the number of the child. Similarly, the
OrderKey of the parent is easily derived from the OrderKey of the child by removing the last
number in the OrderKey of the child.

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020793

[0037] According to one embodiment, the composite numbers represented by each
OrderKey are converted into byte-comparable values, so that a mathematical comparison
between two OrderKeys indicates the relative position, within the structural hierarchy of an
XML document, of the nodes to which the OrderKeys correspond.

[0038] For example, the node associated with the OrderKey 1.2.7.7 precedes the node
associated with the OrderKey 1.3.1 in the hierarchical structure of an XML document. Thus,
the database server uses a conversion mechanism that-converts OrderKey 1.2.7.7 to a first value,

and to convert OrderKey 1.3.1 to a second value, where the first value is less than the second

value. By comparing the second value to the first value, the database server can easily
determine that the node associated with the first value precedes the node associated with the
second value. Various conversion techniques may be used to achieve this result, and the

invention is not limited to any particular conversion technique.

VALUE INFORMATION
[0039] Some nodes within an indexed document may be attribute nodes or nodes that
correspond to simple elements. As used herein, a “simple element” is an element that does not
have any attributes or children elements, and whose value is a single text string. For example,
in “pol.xml”, the “Reference” element is a simple element with a single text value of “SBELL-
2002100912333601PDT™.
[0040] According to one embodiment, for attribute nodes and simple elements, the PATH
table row also stores the actual value of the attributes and simple elements. Such values may be
stored, for example, in a “value column” of the PATH table. The secondary “value indexes”,
which shall be described in greater detail hereafter, are built on the value column.

PATH TABLE EXAMPLE
[0041] According to one embodiment, the PATH table includes columns defined as
specified in the following table:

Datatype
W(8) ID for the path token. Each distinct path e.g. /a/b/c 1s
igned a unique 1d by the system

ik
ROWID document containing the node.
RAW(100) Dewey OrderKey for the node e.g. 3.21.5 to indicate
5™ child of 21* child of 3™ child of root.

Information corresponding to the starting position for
the fragment. This is used during fragment extraction.

RAW(2000) / | Value of the node in case of attributes and simple
BLOB elements.
_8- .

Column Name
PATHID

i’

ORDER_KEY

LOCATOR RAW(100)

II %

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020795

The type can be specified by the user (as well as the
size of the RAW column

[0042] As explained above, the PATHID is an identifier assigned to the node, and uniquely

represents a fully expanded path to the node. The ORDER_KEY is a system representation of
the Dewey ordering number associated with the node. According to one embodiment, the
internal representation of the OrderKey also preserves document ordering.

[0043] The VALUE column stores the effective text value for simple element (i.e. no
clement children) nodes and attribute nodes. According to one embodiment, adjacent text nodes
are coalesced by concatenation. As described in the XML Index application, a mechanism is
provided to allow a user to customize the effective text value that gets stored in VALUE column
by specifying options during index creation e.g. behavior of mixed text, whitespace, case-
sensitive, etc can be customized. The user can store the VALUE column in any number of
tformats, including a bounded RAW column or a BLOB. If the user chooses bounded storage,
then any overflow during index creation is flagged as an error.

[0044] The following table is an example of a PATH table that (1) has the columns
described above, and (2) is populated with entries for pol.xml and po2.xml. Specifically, each
row of the PATH table corresponds to an indexed node of either pol.xnil or po2.xml. In this

example, it 1s assumed that pol.xml and po2.xml are respectively stored at rows R1 and R2 of a
base table.

POPULATED PATH TABLE

wATHID [RID | oRDER Ky

| | SBELL-
2002100912333601PDT

—

rowid

NI

2 R2 1.1 ABEL-
20021127121040897PST

Iii" il
S| &
n
:
5

CA 02570462 2011-01-24

[0045] In this example, the rowid column stores a unique identifier for each row of the
PATH table. Depending on the database system in which the PATH table is created, the rowid
column may be an implicit column. For example, the disk location of a row may be used as the
unique identifier for the row. As shall be described in greater detail hereafter, the secondary
Order and Value indexes use the rowid values of the PATH table to locate rows within the
PATH table.

[0046] In the embodiment illustrated above, the PATHID, ORDER KEY and VALUE of a
node are all contained in a single table. In alternative embodiment, separate tables may be used
to map the PATHID, ORDER KEY and VALUE information to corresponding location data
(e.g. the base table RID and LOCATOR).

[0047] In the embodiment illustrated above, the information in the “RID” and the
“LOCATOR?” columns of the PATH table is used to identify a location where the indexed node
is stored. In this example, each row in a base table corresponds to an indexed XML document.
Each row in the base table rows uses a CLOB to store the associated XML document. The RID
column in the PATH table identifies the row in the base table where the XML document is
stored as a CLOB, and the LOCATOR column stores a character offset into the CLOB where
the indexed node starts and a character length for the node.

[0048] For example, the above-mentioned sample XML documents pol.xml and po2.xml
are stored in unstructured serialized form in rows R1 and R2 of the base table as CLOB data
structures. The node identified by rowid “1” in the PATH table is located starting at character 1
of the CLOB stored in base table row R1, and has a length of 350 characters. As another
example, the node identified by rowid “9” is located in row R2 of the base table, and starts at
character 72 with a length of 36 characters. This row of the PATH table corresponds to the first

<Action> node of po2.xml, shown below:

<Action>

<User>ZLOTKEY</User>

</Action>
[0049] The example shown in the populated PATH table above illustrates an embodiment in
which locator information is not stored for simple elements and attribute nodes. In other
embodiments, locator information could be stored and maintained for all nodes, including
simple elements. In addition, the example shown in the populated PATH table illustrates an
embodiment in which the LOCATOR column stores both offset and length information. In

alternative embodiments, only offset information may be stored. Alternatively, as discussed

-10-

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020793

above, other types of locator information may be stored in the LOCATOR column. The

techniques described herein are not dependent on any particular type of location data.

SECONDARY INDEXES
[0050] The PATH table includes the information required to locate the XML documents,
and/or XML fragments, that satisfy a wide range of queries. However, without secondary
access structures, using the PATH table to satisfy such queries will often require full scans of
the PATH table. Therefore, according to one embodiment, a variety of secondary indexes are
created by the database server to accelerate the queries that (1) perform path lookups and/or (2)

identify order-based relationships. According to one embodiment, the following secondary
indexes are created on the PATH table.

e PATHID INDEX on(PATHID, RID)
e ORDERKEY INDEX on (RID, ORDER_KEY)
e VALUE INDEXES

e PARENT ORDERKEY INDEX on (RID,
SYS DEWEY PARENT(ORDER_KEY))

PATHID INDEX

[0051] The PATHID INDEX is built on the PATHID, RID columns of the PATH table.
Thus, entries in the PATHID INDEX are in the form (keyvalue, rowid), where keyvalue is a
composite value representing a particular PATHID/RID combination, and rowid identifies a
particular row of the PATH table.

[0052] When (1) the base table row and (2) the PATHID of a node are known, the

PATHID INDEX may be used to quickly locate the row, within the PATH table, for the node.

" For example, based on the key value “3.R1”, the PATHID INDEX may be traversed to find the
entry that is associated with the key value “3.R1”. Assuming that the PATH table is populated
as illustrated above, the index entry would have a rowid value of 3. The rowid value of 3 points

to the third row of the PATH table, which is the row for the node associated with the PATHID 3
and the RID R1.

THE ORDERKEY INDEX
{0053) The ORDERKEY INDEX is built on the RID and ORDER _KEY columns of the
PATH table. Thus, entries in the ORDERKEY INDEX are in the form (keyvalue, rowid),

-11-

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020795

where keyvalue is a composite value representing a particular RID/ORDER KEY combination,
and rowid identifies a particular row of the PATH table.

[0054] When (1) the base table row and (2) the ORDERKEY of a node are known, the
ORDERKEY_ INDEX may be used to quickly locate the row, within the PATH table, for the
node. For example, based on the key value “R1.71.2’”, the ORDERKEY INDEX may be
traversed to find the entry that is associated with the key value “R1.°1.2°”. Assuming that the
PATH table is populated as illustrated above, the index entry would have a rowid value of 3.
The rowid value of 3 points to the third row of the PATH table, which is the row for the node
associated with the ORDERKEY 1.2 and the RID R1.

THE VALUE INDEXES
[00S5] Just as quenes based on path lookups can be accelerated using the PATHID INDEX,
queries based on value lookups can be accelerated by indexes built on the VALUE column of
the PATH table. However, the VALUE column of the PATH table can hold values for a variety
of data types. Therefore, according to one embodiment, a separate value index is built for each
data type stored in the VALUE column. Thus, in an implementation in which the VALUE

column holds strings, numbers and timestamps, the following value (secondary) indexes are also |

created:

e STRING _INDEX on SYS XMLVALUE TO STRING(value)
e NUMBER_INDEX on SYS XMLVALUE TO NUMBER(value)
e TIMESTAMP_INDEX on SYS_XMLVALUE TO TIMESTAMP(value)

{0056} These value indexes are used to perform datatype based comparisons (equality and
range). For example, the NUMBER value index is used to handle number-based comparisons
within user XPaths. Entries in the NUMBER _INDEX may, for example, be in the form
(number, rowid), where the rowid points to a row, within the PATH table, for a node associated

with the value of “number”. Similarly, entries within the STRING INDEX may have the form
(string, row1id), and entries within the TIMESTAMP_INDEX may have the form (timestamp,
rowid).

[00S7}] The format of the values in the PATH table may not correspond to the native format
of the data type. Therefore, when using the value indexes, the database server may call
conversion functions to convert the value bytes from stored format to the specified datatype. In

addition, the database server applies any necessary transformations, as shall be described

-12-

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020793

hereafter. According to one embodiment, the conversion functions operate on both RAW and
BLOB values and return NULL if the conversion is not possible.

[0058] By default, the value indexes are created when the XML index is created. However,
users can suppress the creation of one or more of value indexes based on the knowledge of

query workload. For example, if all XPath predicates involve string comparisons only, the
NUMBER and TIMESTAMP value indexes can be avoided.

PARENT ORDERKEY INDEX
[0059] According to one embodiment, the set of secondary indexes built on the PATH table
include a PARENT ORDERKEY INDEX. Similar to the ORDER_KEY index, the
PARENT ORDERKEY INDEX is built on the RID and ORDER_KEY columns of the PATH
table. Consequently, the index entries of the PARENT _ORDERKEY_INDEX have the form
(keyvalue, rowid), where keyvalue is a composite value that corresponds to a particular
RID/ORDER_KEY combination. However, unlike the ORDER_KEY index, the rowid in a
PARENT ORDERKEY INDEX entry does not point to the PATH table row that has the
particular RID/ORDER_KEY combination. Rather, the rowid of each
PARENT ORDERKEY INDEX entry points to the PATH table row of the node that is the
immediate parent of the node associated with the RID/ORDER_KEY combination.
[0060] For example, in the populated PATH table illustrated above, the RID/ORDER_KEY
combination “R1.’1.2°” corresponds to the node in row 3 of the PATH table. The immediate
parent of the node in row 3 of the PATH table is the node represented by row 1 of the PATH
table. Consequently, the PARENT ORDERKEY_INDEX entry associated with the “R1.°1.2°"
key value would have a rowid that points to row 1 of the PATH table (i.e. rowid = 1).

USING THE XML INDEX TO PROCESS XPATH QUERIES
[0061] As described above, an XML index improves the performance of XPath-based
queries and fragment extraction by capturing the essential parts of an XML document — tags,
values and nesting information - in PATH, VALUE and ORDER indexes. The PATH index 1s
used to index the tags and provides a mechanism to identify fragments based on simple path
expressions. The VALUE index allows the XML values to be indexed. The ORDER index
associates hierarchical ordering information with indexed nodes, and is used to determine

parent-child, ancestor-descendant and sibling relationships between XML nodes.

-13-

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020795

[0062] When a user submits a query involving XPaths, the XPath expressions can be
decomposed into SQL queries accessing the XML index table. The generated queries typically
perform a set of path, value and order-constrained lookups and merge the results appropniately.
{0063} In particular, co-pending application U.S. Patent Application Serial No. 10/944,170,
entitled “EFFICIENT QUERY PROCESSING OF XML DATA USING XML INDEX”, filed
September 16, 2004, (hereinafter the “Query Processing” application), describes various
embodiments of a method for performing an “index-enabled” query that uses the XML index to
identify the XML data corresponding to a specified path. In particular, the Query Processing
application describes techniques for using the XML Index to evaluate the XPath operators.
[0064] More specifically, the Query Processing application describes techniques for (1)
decomposing a generic path expression into simpler components such as simple paths,
predicates and structural joins; (2) generating a SQL query against tables of the XML index,
which may involve expressing the structural joins using SQL predicates on Dewey order keys of
the indexed paths components; and (3) fragment extraction using locators that point to the
original data.

[0065] Index-enabled queries are generated based on path expressions, and access the
PATH table of the XML index. The path expression of a path-based query, or fragments
thereof, are matched against templates. Each tefnplate 1S associated with a rule. When a
fragment of a specified path is in a format that matches a template, the corresponding rule is
then used to generate SQL for an index-enabled query. This process is described in detail in the

Query Processing application.

USING THE XML INDEX TO PROCESS EXTRACT() OPERATOR
[0066] One XPath operator that may be evaluated using the techniques described in the
Query Processing application is the extract() operator. The result of an XPath extract() operator
1s an XMLType containing the XML fragment(s) of the XML document(s) that satisfy the
specified XPath expression.
[0067] As descnibed in the Query Processing application, the extract() operator can be
rewritten as an SQL query on the XML Index tables. For example, the extract() operator for an

XPath query on the /PurchaseOrder/Actions nodes may be translated into an SQL query as

follows:

-14-

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020795

select extract(value(p), ‘/PurchaseOrder/Actions’)
from po_tab p;

9

select xmlagg(select SYS XMLINDEX MKXML(rid, order key, locator, value)
from path_table
where pathid = :B1 and nd = p.rowid)
from po_tabp
where :B1 = pathid(‘/PurchaseOrder/Actions’) (pathid() 1s an internal function used to look up
the PATHID associated with the concerned path) and po tab 1s the base table that contains the
stored XML documents.
[0068] The SYS XMLINDEX MKXMLY() operator builds an XMLType image based on
the index column values. In one embodiment, this lookup may be implemented using the
SYS XMLINDEX GETFRAG() operator. Given a row identifier and a locator, the
SYS XMLINDEX GETFRAG() operator constructs an XMLType image consisting of an
XML fragment corresponding to the row identifier and locator.
[0069] XMLAGG() 1s an operator that concatenates the fragments generated by the
SYS XMLINDEX MKXML() operator. Using the example above, for each row that contains
the node ‘/PurchaseOrder/Actions’, a fragment is retrieved from the base table and aggregated
into a single XMLType image.

[0070] For example, using the populated PATH table above, the output of:

select extract(value(T), ‘/PurchaseOrder/Reference’)
from xmitab T

would result in:

<Reference>SBELL-2002100912333601PDT</Reference>
<Reference>ABEL-20021127121040897PST</Reference>

In one embodiment, the output returned is a single long string created by concatenating the

above results, including start and end tags.
[0071] The techniques described herein are used to implement the
SYS_XMLINDEX GETFRAG() operator that obtains the actual text fragment corresponding to

a node.

-15-

CA 02570462 2006-12-01

WO 2006/009664 ' PCT/US2005/020793

EFFICIENT EXTRACTION PROCESS

[0072]) Process 200 shown in FIG. 2 illustrates the steps of one technique for extracting an
XML fragment, according to an embodiment of the invention. As shown, a node is first
identified at step 210. Any technique, such as those describe in the XML Index and Query
Processing applications, can be used to identify a node that matches a path expression.

[0073] Next, the node is examined at step 215 to determine if it is a simple element or a
complex element. As mentioned above, simple elements are elements having no children or
attributes, and whose value is a single text value. A complex element is an element that either
has attributes or has element children.

{0074} If the node is a simple element, then the fragment can be constructed without
consulting the original XML document, using information stored in the XML index, as shown
by step 220. If the node is a complex element, the original XML document stored in a base
table is consulted to extract the fragment, as shown by step 230, and the extracted fragment 1s
patched as needed for proper interpretation. Each process is described in more detail below.
[0075] Although the embodiment of the process shown in FIG. 2 takes advantage of the
information stored in the XML index to construct the fragment without consulting the original
XML document, it is not a requirement that simple and complex elements be treated differently.

Fragments matching any type of element, simple or complex, can be extracted from the stored

XML data.
SIMPLE ELEMENT FRAGMENTS

[0076] When stored XML documents are indexed with an XML index, the values of simple
elements are present in the VALUE column of the PATH table. Therefore, the XML fragment
for simple elements can be constructed without consulting the base table that stores the original
XML document. The fragment is built by adding appropriate start and end tags to the value
obtained from the VALUE column of the PATH table for the identified node.

[0077] For example, the node ‘/PurchaseOrder/Reference’ is a simple element in the XML

documents pol.xml and po2.xml above. The PATHID for the expression
‘/PurchaseOrder/Reference’ 1s first determined. In this example, the PATHID 1s “2”. The

PATH table is examined to determine if any nodes correspond to this PATHID (step 210). In
this example, nodes with rowids of “2” and “7” are a match for PATHID=2. The process of
FIG. 2 is executed for each matching node.

{0078] At step 215, for both node 2 and node 7, it can be determined that each is a simple
element by examining the LOCATOR and VALUE columns for these rows, as there is no

Locator information, and the VALUE column contains a simple text string. For each of these
-16-

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020793

simple element nodes, the process continues to step 220. In step 220, a fragment for the node
can be built by creating a string that contains a start tag, a value and an ¢nd tag. The start tag is
created by extracting the last component of the path associated with this PATHID (in this
example “Reference”). The VALUE corresponding to this node in the PATH table 1s put in the
fragment after the start tag. For example, the VALUE component of the fragment for node 2 1s
-“SBELL-2002100912333601PDT”. A close tag consisting of the close character /* and the
component string determined above (e.g. “Reference”) completes the fragment string. By
following this process, the fragment for node 2 is determined to be “<Reference>SBELL-
2002100912333601PDT</Reference>". This matches the fragment of the original XML
document pol.xml corresponding to this node.
[0079] Queries that extract only attributes may be treated like simple elements. However,
elements containing attributes are treated as complex elements, discussed in more detail below.
[0080] Because the system can add the namespace and a generated prefix, simple elements

do not need patching for proper interpretation, and the process continues to step 290 for simple

elements.

EXTRACTING COMPLEX ELEMENTS USING THE XML INDEX
[0081] For complex element nodes, the fragment must be parsed from base table that stores
the XML document associated with the complex element. As discussed above, each row in
PATH table corresponds to a node in an XML document, and includes a RID of the row 1n the

base table that contains the original XML document and a locator for finding the node within
the XML document stored in the base table.

[0082] For example, an XPath extract() on the node /PurchaseOrder/Reference/Actions
should result in the aggregated fragment:

<Actionss>
<Action>»
<Usexr>SVOLLMAN</User>
</Actions
</Actions>
<Actions>
<Action>
<User>ZLOTKEY</User>
</Action>
<Action>
<User>KING</Users>
</Action>
</Actions>

-17-

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020795

[0083] Unlike the simple elements described above, however, these fragments are extracted
from the stored XML documents. For example, the path expression
“/PurchaseOrder/Reference/Actions” corresponds to PATHID 3. From the PATH table, nodes
with rowids 3 and 8 match this PATHID. The VALUE column for these rows is empty, and the
LOCATOR column provides offset and length information for extracting the fragments.
Therefore at step 215, it is determined that each of these nodes corresponds to a complex
element, and the process continues to step 230.

[0084] At step 230, fragment text corresponding to the node is located and read. For
example, for node 3, the RID column indicates that the stored XML data is located at row R1 of
the base table, and the LOCATOR field indicates that the fragment starts at character 64 and has
a length of 56. The fragment text corresponding to node 3 can thus be created by extracting
characters 64-120 from the CLOB in row R1 of the base table that contains “pol.xml”. The
XML fragment corresponding to node 8 can likewise be created by extracting characters 63-152
from the CLOB in row R2 of the base table that contains “po2.xml".

[0085] In these examples, the extracted XML fragments happen to be valid. However, 1n
many cases, the XML fragment extracted using these methods may not be self-contained. For
example, the extracted fragment may contain or use references that are not defined within the
fragment. The methods described herein allow for “patching” the fragments created using the

above techniques to ensure that the resulting fragments are valid and self-contained.

PREFIXES AND NAMESPACES

[0086] Since element names in XML are not fixed, a name conflict can occur when two
different documents use the same names describing two different types of elements. One

standard method of avoiding name conflicts is to use a prefix with the name.

10087] For example, Tables 1 and 2 illustrate XML documents that both use a “table”

element.
<name>Coffee Table</name>

]
2 <tr>
3

<td>Apples</td> <width>80</width>
4 | <td>Bananas</td> - <length>120</length>
5 </tr> </table>
6 [<ftable> .

Table 1 Table 2

[0088] If these two XML documents were both stored in database, there could potentially be

an element name conflict because both documents contain a <table> element with different .

_18-

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020793

content and definition. One standard way of resolving and preventing these types of conflicts 1s
through the use of namespace prefixes. As an example, Tables 1A and 2A below 1llustrate how

the XML documents of Tables 1 and 2 could be modified to avoid element name conflicts.

1 |<hitable> | 1 [<ftable 000000

2Iiﬁﬁllllll 2| <fname>Coffee Table</finame>

3 | <h:td>Apples</h:td>

|4 | <h:td>Bananas</h:td>

5 | </mutr> B 5 |</ftable 000000000000

6 | </h:table>] e
Table 1A Table 2A

[0089] As shown in Tables 1A and 2A, the element name conflict is no longer a problem
because the two documents use a different name for their <table> element (namely, <h:table>
and <f'table>). By using a prefix, two different types of <table> elements are possible.
[0090] The prefixes typically refer to XML documents that carry information about the

elements. Tables 1B and 2B show how the p'reﬁxes can be defined to refer to specific

namespaces.
1i <h:table xmlns:h="http://www.w3.org/TR/htmli4/”> <f:table
xmlins:f="http://www.w3schools.com/furniture”>
<h:tr> <f:name>Coffee Table</f:name>

<f:width>80</f:width>
<f:length>120</f:1ength>

T —

Table 1B Table 2B

fa|afwln

[0091] Instead of using only prefixes, an xmlns attribute has been added to the <table> tag

to give the element prefix a qualified name associated with a namespace. Typically, the

namespace attribute is placed in the start tag of an element with the following syntax:
xmlns:namespace-prefix="“namespace”

(0092] As shown by Tables 1B and 2B, the namespace itself can be defined using an

Internet address, although any Uniform Resource Identifier (URI) can be used. Multiple

namespace prefixes can be declared as attributes of a single element.

[0093] When a namespace is defined as an attribute in the start tag of an element, all child

elements with the same prefix are associated with the same namespace. In addition, a default

namespace can be used for an element, as shown in Tables 1C and 2C. When a default

-19-

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020795

namespace is used, prefixes do not have to be used in all the child eclements. A defauit

namespace declaration applies to all unprefixed element names within its scope.

<table xmlns=""http://www.w3.org/TR/html4/*> 1| <table
xmlns="http://www.w3schools.com/furniture”>

<tr> <name>Coffee Table</name>

3] <td>Apples</td> <width>80</width>)

4 <td>Bananas</td> <length>120</length>

5| </tr> - 5| </table>

T e
Table 1C Table 2C

[0094] The prefix provides the namespace prefix part of the qualified name, and must be
assoclated with a namespace reference in a namespace declaration. The prefix functions only as
a placeholder for a namespace name. A namespace name, not the prefix, is used in constructing
names whose scope extends beyond the containing document. Prefixes and namespace

declarations can apply to attributes as well as elements.

[0095] The scope of a namespace declaration declaring a prefix extends from the beginning
of the start tag in which it appears to the end of the corresponding end tag, excluding the scope
of any inner declarations that use the same prefix name. Such a namespace declaration applies
- 1o all element and attribute names within its scope whose prefix matches that specified in the
declaration.

[0096] The namespace prefix must have been declared 1n a namespace declaration attribute
in either the start tag of the element where the prefix is used or in an ancestor element. This
constraint may lead to difficulties in the case where the namespace declaration attribute is
provided, not directly in the XML document, but via a default attribute declared in an external
entity.

[0097] This is particularly‘ problematic in the context of fragment extraction. Not only are
declarations in external documents a problem, but an extracted XML fragment may use a prefix

that was declared in an earlier section of the document from which the fragment is extracted. In
addition, a fragment may be extracted that is on its face valid as the extracted fragment has no
direct reference to any namespace; however, the extracted fragment should use the default
namespace declaration of an ancestor if it is within the scope of the ancestor element.

[0098] The techniques described herein solve this problem by building a list of namespace
declarations from the desired node and from all its ancestors. This list is built by querying the

PATH table. The list is then spliced into the fragment created at step 230 to obtain a complete,
valid, self-contained XML fragment.

-20-

CA 02570462 2006-12-01

WO 2006/009664 | PCT/US2005/020795

HANDLING OF NAMESPACE DECLARATIONS IN FRAGMENT EXTRACTION

[0099] As discussed above, when an XPath extract() operator is evaluated with respect to a
simple element, the desired fragment can constructed using only the PATH table. When a
complex element is extracted, the fragment is read from the original data using location
information from the PATH table. However, when a prefix 1s used in an extracted XML
fragment, the extracted fragment must also account for the prefix. In addition, any default
namespace declarations that are used in ancestor elements of the node to be extracted must be

considered.

[0100] For example, consider the example XML document “po3.xml” in Table 3:

Fl <po:purchaseOrder xmlns:po="po.xsd” xmlns:po2="po2.xsd” actionDate="04-04-04">
100 <po:Lineltem> | -
101 <myns : SomeOtherTag xmlnsg:myns="MyNs” xmins:ns2="MyNs2”>
102 <myns : MoreTags>foo</myns: MoreTags>
103 <po:quantity>1200</po:quantity>
104 </myns:SomeOthexrTag>
105 <po:USPrice>148.95</po:USPrice>
106 | </po:Lineltems

| 107 <po:Lineltem>
150 </po:Lineltem>

Bl S

rizaﬂh</p6?§5§33§§e0rdgr>

Table 3

[0101] If the XPath query “extract(/po:purchaseOrder/po:lineltem/myns:SomeOtherTag)” is
evaluated using only the process described above, the resulting fragment returned by the query
would consist of lines 101-104 of Table 3. However, this XML fragment references the
namespace prefix “po”, which is not defined anywhere in the fragment that is extracted
according to the locator information (i.e. lines 101-104). Instead, this prefix is declared and
mapped to the namespace “po.xsd” in line 1 of Table 1.

[0102] The declaration ¢ xmins:po="po.xsd” ’ needs to be spliced into the fragment created
in step 230 in order for the fragment to be interpreted properly, i.e. be “self-contained.”

[0103] In one embodiment the namespace declarations can be maintained in the locator
itself. However, this information would then be present at every level. In a preferred

embodiment, the declaration information is built using information stored in the PATH table. In
21-

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020798

this embodiment, an SQL query is used to identify all ancestor nodes of the node being
extracted, and namespace declarations are collected from the ancestor nodes. In addition, the
techniques described herein resolve namespace declarations correctly, that is, in reverse order
with deeper declarations over-riding shallow declarations, in order to adhere to XML namespace
scoping rules, discussed previously.

[0104] As shown by step 240 in FIG. 2, ancestors of the node are identified. If an XML
index 1s used, this 1s a simple query as ancestor information 1s stored using OrderKeys. At step
250, information needed for the proper interpretation of the XML fragment is retrieved for each
identified ancestor. If there are any declarations or other information retrieved from the
ancestors needed for proper interpretation of the fragment, this information is patched into the
fragment at step 280. For example, namespace declarations for any prefix used but not defined
in the fragment are retrieved from the closest ancestor node and patched into the fragment
created at step 230.

[0105] For example, the following SQL query could be used to go over all ancestor nodes to
collect the namespace declarations and resolve them correctly. (:B1 = RID of the document
being considered; :B2 = OrderKey of the node to be extracted):

select pl.pathid, pl.order key, pl.value
from path-table pl
where 1s_ns_attr(pl.pathid)=1

and pl.nd = :Bl
and exists(select 1
from path-table p2

where p2.rid = :Bl

and p2.order key = DEWEY PARENT(pl .order key)

and p2.order_key <= :B2 and maxchild(p2.order_key) > :B2)
order by order key desc;

[0106] As shown, the outer subquery selects all namespace declarations in the given
document. For each such declaration, the exists() subquery determines if the declaration is
present 1n an ancestor element.

[0107] In order to correctly account for scoping rules, declarations present in ancestor
elements that are also present in descendants should be ignored as descendants over-ride the
parent declarations. In addition, declarations present in a parent element over-rides declarations
in grandparent elements, and so forth. By considering each ancestor in proper order and
accounting for scoping rules, a list of declarations that need to be added to the fragment is

created 1n step 250. To account for scoping rules, the ancestor nodes are considered from

closest to most distant. As each declaration is found in an ancestor, if it has already been

-22-

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020795

considered, either as part of the fragment itself or in an earlier ancestor node, it is ignored.

Otherwise, it is added to a string to be patched into the fragment.

[0108] For example, consider the following XPath query for a node in Table 3:
extract(‘/po:purchaseOrder/po:lineltem/myns:SomeOtherTag’)

[0109] The fragment extracted from Table 3 in step 230 1s:

<myns : SomeOtherTag xmlns:myns="MyNs” xmlns:nsl= ”MyNsZ"
<myns :MoreTags>foo</myns: MoreTags>
<po:quantity>1200«/po:quantity>

</myns: SomeOtherTag>

[0110] The prefix “po” i1s undefined in this fragment.
[0111] When this fragment’s ancestors are considered in step 250, the following list of

definitions 1s created:

xmlns:po2="po2.xsd” xmins:po="po.xsd”

[0112] After splicing in the list of definitions into the fragment at step 280, the resulting
fragment is:

<myns:SomeQOtherTag xmilns:myns="MyNs” xmlns:ns2="MyNs2” xmlns:po2="po2.xsd” xmlns:po="po.xsd”>
<myns:MoreTags>foo</myns:MoreTags>
<po:quantity>1200</po:quantity>

</myns:SomeOtherTag>

[0113] While the declaration xmlns:ps2="p02.xsd” is not required to make this example
fragment a self-contained fragment, its inclusion does not invalidate the fragment or change the
fragment’s meaning. In an alternative embodiment, the declarations are examined to determine
if they are needed for the node being extracted before they are patched into the fragment.
[0114] The self-contained fragment created at step 280 that contains all the information
needed for proper interpretation is then returned at step 290.

[0115] While the techniques described herein have been described in the context of
namespace declarations and prefixes, the techniques can be used in other circumstances. For
example, the presence of entity or macro references similarly complicates the self-contained
nature of fragments. Like namespaces, a fragment identified by a CLOB offset cannot simply
be streamed out as any entity references need to be prepended with DTD (Data Type Definition)

declarations.

HARDWARE OVERVIEW
[0116] FIG. | is a block diagram that illustrates a computer system 100 upon which an
embodiment of the invention may be implemented. Computer system 100 includes a bus 102 or

other communication mechanism for communicating information, and a processor 104 coupled

-23-

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020795

with bus 102 for processing information. Computer system 100 also includes a main memory
106, such as a random access memory (RAM) or other dynamic storage device, coupled to bus
102 for storing information and instructions to be executed by processor 104. Main memory
106 also may be used for storing temporary variables or other intermediate information during
execution of instructions to be executed by processor 104. Computer system 100 further
includes a read only memory (ROM) 108 or other static storage device coupled to bus 102 for
storing static information and instructions for processor 104. A storage device 110, such as a
magnetic disk or optical disk, is provided and coupled to bus 102 for storing information and
instructions.

[0117] Computer system 100 may be coupled via bus 102 to a display 112, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device 114,
including alphanumeric and other keys, 1s coupled to bus 102 for communicating information
and command selections to processor 104. Another type of user input device is cursor control
116, such as a mouse, a trackball, or cursor direction keys for communicating direction
information and command selections to processor 104 and for controlling cursor movement on
display 112. This input device typically has two degrees of freedom in two axes, a first axis
(e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane.
[0118] The invention is related to the use of computer system 100 for implementing the
techniques described herein. According to one embodiment of the invention, those techniques
are performed by computer system 100 in response to processor 104 executing one or more
sequeﬁces of one or more instructions contained in main memory 106. Such instructions may
be read into main memory 106 from another machine-readable medium, such as storage device
110. Execution of the sequences of instructions contained in main memory 106 causes
processor 104 to perform the process steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination with software instructions to
implement the invention. Thus, embodiments of the invention are not limited to any specific
combination of hardware circuitry and software.

[0119] The term “machine-readable medium” as used herein refers to any medium that
participates in providing data that causes a machine to operation in a specific fashion. In an
embodiment implemented using computer system 100, various machine-readable media are
involved, for example, in providing instructions to processor 104 for execution. Such a medium
may take many forms, including but not limited to, non-volatile media, volatile media, and
transmission media. Non-volatile media includes, for example, optical or magnetic disks, such

as storage device 110. Volatile media includes dynamic memory, such as main memory 106.
-24-

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020795

Transmission media includes coaxial cables, copper wire and fiber optics, including the wires
that comprise bus 102. Transmission media can also take the form of acoustic or light waves,
such as those generated during radio-wave and infra-red data communications.

[(0120] Common forms of machine-readable media include, for example, a floppy disk, a
flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punchcards, papertape, any other physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier
wave as described hereinafter, or any other medium from which a computer can read.

{0121] Various forms of machine-readable media may be involved in carrying one or more
sequences of one or more instructions to processor 104 for execution. For example, the
instructions may initially be carried on a magnetic disk of a remote computer. The remote
computer can load the instructions into its dynamic memory and send the instructions over a
telephone line using a modem. A modem local to computer system 100 can receive the data on
the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An
infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry
can place the data on bus 102. Bus 102 carries the data to main memory 106, from which
processor 104 retrieves and executes the instructions. The instructions received by main
memory 106 may optionally be stored on storage device 110 either before or after execution by
processor 104.

[0122] Computer system 100 also includes a communication interface 118 coupled to bus
102. Communication interface 118 provides a two-way data communication coupling to a
network link 120 that is connected to a local network 122. For example, communication
interface 118 may be an integrated services digital network (ISDN) card or a modem to provide
a data communication connection to a corresponding type of telephone line. As another
example, communication interface 118 may be a local area network (LLAN) card to provide a
data communication connection to a compatible LAN. Wireless links may also be implemented.
In any such implementation, communication interface 118 sends and receives electrical,
electromagnetic or optical signals that carry digital data streams representing various types of

information.

[0123] Network link 120 typically provides data communication through one or more
networks to other data devices. For example, network link 120 may provide a connection
through local network 122 to a host computer 124 or to data equipment operated by an Internet
Service Provider (ISP) 126. ISP 126 1n turn provides data communication services through the

world wide packet data communication network now commonly referred to as the “Internet”
25.

CA 02570462 2011-01-24

128. Local network 122 and Internet 128 both use electrical, electromagnetic or optical signals
that carry digital data streams. The signals through the various networks and the signals on
network link 120 and through communication interface 118, which carry the digital data to and
from computer system 100, are exemplary forms of carrier waves transporting the information.
[0124] Computer system 100 can send messages and receive data, including program code,
through the network(s), network link 120 and communication interface 118. In the Internet
example, a server 130 might transmit a requested code for an application program through
Internet 128, ISP 126, local network 122 and communication interface 118.

[0125] The received code may be executed by processor 104 as it is received, and/or stored
in storage device 110, or other non-volatile storage for later execution. In this manner,

computer system 100 may obtain application code in the form of a carrier wave.

226-

10

15

20

25

30

Treemi, T T aer e et e

CA 02570462 2011-01-24

CLAIMS

What is claimed is: |

1. A method for providing a self-contained XML fragment for a node m an
XML document managed by a database management system, the method

comprising the computer-implemented steps of:

receiving a request for an XML fragment, wherein the request includes an

XML path expression;

identifying a node, in an XML document managed by the database

management system, that matches the XML path expression;

extracting a first XML fragment corresponding to the identified node;
identifying one or more ancestor nodes for the identified node;

for each ancestor node of the one or more ancestor nodes, determining 1f the

ancestor node includes information needed for proper interpretation of the
first XML fragment;

in response to determining that at least one of the one or more ancestor

nodes includes information needed for proper interpretation of the first
XML fragment, inserting the needed information into the first XML
fragment to construct a second XML fragment; and

providing the second XML fragment in response to the request.

2. The method of claim 1 wherein the database management system includes

an index that indexes the XML documents stored in the database management

27

RRERCTR T R L T R B R Al R T A T T L RPN PN 2o

10

15

20

25

30

CA 02570462 2011-01-24

system, and wherein the step of identifying a node in an XML document comprises

using the index to identify the node.

3. The method of claim 2 wherein the index includes path, value and order

indexes.

4, The method of claim 1 wherein the step of extracting a first XML fragment

includes:

determining a location of stored XML data corresponding to the identified

node; and

reading XML data from the determined location.

5. The method of claim 4 wherein the step of determining a location of stored
XML data corresponding to the identified node includes reading location
information from an index that indexes the XML documents stored in the database

management system.

6. The method of claim 2 wherein the step of extracting a first XML fragment

includes:

constructing an XML fragment using information in the index.

7. The method of claim 3, wherein the step of identifying ancestor nodes

includes using the order index.

8. The method of claim 1 wherein the information needed for proper

interpretation of the first XML fragment is a namespace declaration.

9. The method of claim 8 wherein the step of determining if the ancestor node

28

A I T AT g 3 B 0
. .

10

15

20

25

30

MR -r_.pff:m-s‘_.:-‘-s-%?‘f: L 3N }&}3&:\1\?&\3& e AR AL T Ttz TRIMNNGR o Wi wor s za YT o mmmass = T T AN s e e T St e Seema T el LT AR a2 0,

- " - . - e - . .- e = S - et \ - e m Rl * - - - = e e = e e - . s an @ es e e e s s = -
Ny s Fm LT v RTes TeST v (N At w0 S IR T OT TR et o e, T TR AT N s el s L L. WA L) v WL o TR Nt s ot) AN W Y e L o - STem NN N P TR R UIT TeTeeI Tl g N Ak
y : . — : - :

CA 02570462 2011-01-24

includes information needed for proper interpretation includes determining if the

namespace declaration was declared in a previously considered ancestor node.

10. The method of claim 8 wherein the step of determining if the ancestor node
includes information needed for proper interpretation includes determining if the

namespace declaration was declared in first XML fragment.

11. The method of claim 1 wherein the step of determining if an ancestor node
includes information needed for proper interpretation is performed for each

ancestor node in order from a closest ancestor node to a root ancestor node.

12. The method of claim 11 wherein the information needed for proper
interpretation of the first XML fragment is a namespace declaration, and if a
namespace declaration in an ancestor node matches a namespace declaration in
ancestor node already considered, it is determined that the namespace declaration

1s not needed for proper interpretation.

13. A machine-readable storage medium carrying one or more sequences of
instructions which, when executed by one or more processors, causes the one or

more processors to perform the method recited in claim 1.

14. A machine-readable storage medium carrying one or more sequences of

instructions which, when executed by one or more processors, causes the one or

more processors to perform the method recited in claim 2.

15. A machine-readable storage medium carrying one or more sequences of

instructions which, when executed by one or more processors, causes the one or

more processors to perform the method recited in claim 3.

16. A machine-readable storage medium carrying one or more sequences of

29

RS e b L ot SRR A

10

15

20

25

30

CA 02570462 2011-01-24

instructions which, when executed by one or more processors, causes the one or

more processors to perform the method recited in claim 4.

17. A machine-readable storage medium carrying one or more sequences of
instructions which, when executed by one or more processors, causes the one or

more processors to perform the method recited in claim 3.

18. A machine-readable storage medium carrying one or more sequences of
instructions which, when executed by one or more processors, causes the one or

more processors to perform the method recited in claim 6.

19. A machine-readable storage medium carrying one or more sequences of
instructions which, when executed by one or more processors, causes the one or

more processors to perform the method recited in claim 7.

20. A machine-readable storage medium carrying one or more sequences of
instructions which, when executed by one or more processors, causes the one or

more processors to perform the method recited in claim 8.

21. A machine-readable storage medium carrying one or more sequences of
instructions which, when executed by one or more processors, causes the one or

more processors to perform the method recited in claim 9.

22. A machine-readable storage medium carrying one or more sequences of

instructions which, when executed by one or more processors, causes the one or

more processors to perform the method recited in claim 10.

23. A machine-readable storage medium carrying one or more sequences of
instructions which, when executed by one or more processors, causes the one or

more processors to perform the method recited in claim 11.

30

. T ATERG A I T N

[T 1Y - - JEN o =g el ATyt R s ~ - - L) e = = % e =, Semg® _ = . - - . - [.~ * - P S - a o "peg ee - e . - - ~ - =
AT TN A R RS IR ST e, e T i T T T R T R S VS S SRR AR L R T o e e o R i 4 P R T L PR -.{1{‘; Y S-S e LI T e el e A A Re Pt T, Tl T -- AR RN
. .

CA 02570462 2011-01-24

24. A machine-readable storage medium carrying one or more sequences of
instructions which, when executed by one or more processors, causes the one or

more processors to perform the method recited in claim 12.

31

DASIIRPIE e SIPTTICAT T et @t MRt AR

. Ferl T et s UE ARt A SR \O\Q\Q\s\\‘\ - .

CA 02570462 2006-12-01

PCT/US2005/020795

WO 2006/009664

1/2

9Ci

8

NHOMLIN
VOO0

0Cl

ANI]
NHOMLAN

d3AH3S

48

JOV443INI
NOILVIINNWWNOD

d0SS3004d

SNg

(111} 801 901

30IA30
JOVH0LS

AHONIN
WO NIVI

S TSS— le— SE—— eke—

ot
TO41INOD

dOSHNd

213
J0IA3A LNdNI

41
AY1dSId

} Ol

CA 02570462 2006-12-01

WO 2006/009664 PCT/US2005/020795
2/2

FIG. 2

210| Identify node

matching path
expression

218

Simple
Element?

Yes

220 230 Create fragment by

locating and reading
fragment data

Create fragment

using Index

240
Identify

ancestors

250 Get information
needed for proper

interpretation from
ancestors

280
Patch fragment

290

Deliver fragment

210| Identify node 200
matching path
exXpression

2185
No r—
Yes
220 230 create fra
gment by
e ocaiog and eading
gment data
240
Identify
ancestors
250/ Get information
needed for proper
interpretation from
ancestors
Y
280
Patch fragment

290
Deliver fragment

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - abstract drawing

