w o2014/151243 A1 [P0 000 O R O

(43) International Publication Date
25 September 2014 (25.09.2014)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization
International Bureau

Wipo I PCT

(10) International Publication Number

WO 2014/151043 Al

(51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
GO6F 9/455 (2006.01) GO6F 9/46 (2006.01) DO, Dz, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
21 Int tional Application Number- HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(21) International Application Number: Kz, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
PCTIUS20 14/024828 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
12 March 2014 (12.03.2014) SC, 8D, SE, SG, SK, SL, SM, ST, sv, §Y, TH, TJ TM,
- TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(25) Filing Language: English ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind d regional protection available): ARIPO (BW, GH,
61/800,487 15 March 2013 (15.03.2013) us GM, KE LR, LS MW, MZ NA, RW, SD, S, Sz, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(71) Applicant (for all designated Sates except US: SOFT TM), European (AL, AT, BE, BG, CH, CY, Cz, DE, DK,
MACHINES, INC. [US/US]; 321 1 Scott Boulevard, Suite EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
202, Santa Clara, CA 95054 (US). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
(72) Inventor; and TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW,
. KM, ML, MR, NE, SN, TD, TG).
(71) Applicant (for US only): ABDALLAH, Mohammad ' ' » NE, SN, D, TG)
[USIUS]; 3868 Suncrest Ave, San Jose, CA 95132 (US). Published:
(74) Agent: BARNES, Glenn, D.; Murabito, Hao & Banes — With international search report (Art. 21(3))
LLP, 2N Market S, 3rd Floor, San Jose, CA 95113 (US). _ pefore the expiration d the time limit for amending the
(81) Designated States (unless otherwise indicated, for every claims and to be republished in the event d receipt d
kind d national protection available): AE, AG, AL, AM, amendments (Rule 48.2(h))
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(54) Titlee A METHOD FOR EMULATING A GUEST CENTRALIZED FLAG ARCHITECTURE BY USING A NATIVE DIS =
TRIBUTED FLAG ARCHITECTURE
L it pop pli _
ZINlclOICE :: Guest Native
: ! m Architecture
Logicals Rll flag tracking
. registers o
Sifs R kel TITIIT D 0
g
7 / To RO
n“nn Arithmetic Operations | By e~ //I T A
T T
Special Instructions ™| Ryye—-~ } }
I I
Latest Update Type Table o) i i
Tl T2 T3 i i
Tl Renaming Table Extension Physical } }
X Architecture Physical Registers
T2 2 | ‘ F15 RIS
- Tl
x . s RT2 [—
X T2 RT3
KM
Fig. 37

(57) Abstract: A method for emulating a guest centralized
od includes
blocks, wherein each of the instruction
ecute in accordance
lation of guest instruction

receiving an incoming instruction seguence

blocks comprise
with a scheduler; and using a distributed

execution.

flag architecture
using a globa
two half blocks;, scheduling
flag architecture

The meth-
instruction
block to ex-—
for the emu -

by using a native distributed flag architecture.
front end; grouping the instructions to form
the instructions of the instruction
to emulate a centraized flag architecture

WO 2014/151043 PCT/US2014/024828

A METHOD FOR EMULATING A GUEST CENTRALIZED FLAG ARCHITECTURE BY
USING A NATIVE DISTRIBUTED FLAG ARCHITECTURE

This application claims the benefit co-pending commonly assigned U S Provisional Patent
Application serial number 61/800,487, titled "A METHOD FOR EMULATING A GUEST
CENTRALIZED FLAG ARCHITECTURE BY USING A NATIVE DISTRIBUTED FLAG
ARCHITECTURE" by Mohammad A . Abdallah, filed on March 15, 2013, and which is
incorporated herein in its entirety.

CROSS REFERENCE TO RELATED APPLICATION

This application isrelated to co-pending commonly assigned U S Patent Application serial number
2009/01 13170, titled "APPARATUS AND METHOD FOR PROCESSING AN INSTRUCTION
MATRIX SPECIFYING PARALLEL INDEPENDENT OPERATIONS" by Mohammad A.
Abdallah, filed on April 12, 2007, and which is incorporated herein in its entirety.

This application isrelated to co-pending commonly assigned U S Patent Application serial number
2010/0161948, titled "APPARATUS AND METHOD FOR PROCESSING COMPLEX
INSTRUCTION FORMATS IN A MULTITHREADED ARCHITECTURE SUPPORTING
VARIOUS CONTEXT SWITCH MODES AND VIRTUALIZATION SCHEMES" by Mohammad
A . Abdalah, filed on November 14, 2007, and which isincorporated herein in its entirety.

FIELD OF THE INVENTION

[001] The present invention is generally related to digital computer systems, more

particularly, to a system and method for selecting instructions comprising an instruction sequence.

BACKGROUND OF THE INVENTION

[002] Processors are required to handle multiple tasks that are either dependent or totally
independent. The internal state of such processors usually consists of registers that might hold

WO 2014/151043 PCT/US2014/024828

different values at each particular instant of program execution. At each instant of program

execution, the internal state image is called the architecture state of the processor.

[003] When code execution is switched to run another function (e.g., another thread,
process or program), then the state of the machine/processor has to be saved so that the new function
can utilize the internal registers to build its new state. Once the new function isterminated then its
state can be discarded and the state of the previous context will be restored and execution resumes.
Such aswitch process is called a context switch and usually includes 10's or hundreds of cycles
especially with modern architectures that employ large number of registers (e.g., 64, 128, 256)

and/or out of order execution.

[004] Inthread-aware hardware architectures, it isnormal for the hardware to support
multiple context states for alimited number of hardware-supported threads. In this case, the
hardware duplicates all architecture state elements for each supported thread. This eliminates the
need for context switch when executing anew thread. However, this still has multiple draw backs,
namely the area, power and complexity of duplicating al architecture state elements (i.e., registers)
for each additional thread supported in hardware. In addition, if the number of software threads
exceeds the number of explicitly supported hardware threads, then the context switch must still be

performed.

[005] This becomes common as parallelism is needed on afine granularity basis requiring a
large number of threads. The hardware thread-aware architectures with duplicate context-state
hardware storage do not help non-threaded software code and only reduces the number of context
switches for software that isthreaded. However, those threads are usually constructed for coarse
grain parallelism, and result in heavy software overhead for initiating and synchronizing, leaving
fine grain parallelism, such as function calls and loops parallel execution, without efficient threading
initiations/auto generation. Such described overheads are accompanied with the difficulty of auto
parallelization of such codes using sate of the art compiler or user parallelization techniques for non-

explicitly/easily parallelized/threaded software codes.

SUMMARY OF THE INVENTION

WO 2014/151043 PCT/US2014/024828

[006] In one embodiment, the present invention isimplemented as amethod for emulating
aguest centralized flag architecture by using a native distributed flag architecture. The method
includes receiving an incoming instruction sequence using a globa front end; grouping the
instructions to form instruction blocks, wherein each of the instruction blocks comprise two half
blocks; scheduling the instructions of the instruction block to execute in accordance with a
scheduler; and using a distributed flag architecture to emulate a centralized flag architecture for the
emulation of guest instruction execution.

[007] The foregoing is a summary and thus contains, by necessity, ssimplifications,
generalizations and omissions of detail; consequently, those skilled in the art will appreciate that the
summary isillustrative only and isnot intended to bein any way limiting. Other aspects, inventive
features, and advantages of the present invention, as defined solely by the claims, will become
apparent in the non-limiting detailed description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

[008] The present invention isillustrated by way of example, and not by way of limitation,
in the figures of the accompanying drawings and in which like reference numerals refer to similar

elements.

[009] Figure 1shows an overview diagram of aprocess for grouping instructions into a

block and tracking dependencies among the instructions by using aregister template.

[010] Figure 2 shows an overview diagram of aregister view, a source view, and an

instruction view in accordance with one embodiment of the present invention.

[011] Figure 3 shows adiagram that illustrates an exemplary register template and how the
source view is populated by information from the register template in accordance with one
embodiment of the present invention.

[012] Figure 4 shows adiagram illustrating afirst embodiment for dependency

broadcasting within source view. In this embodiment, each column comprises an instruction block.

WO 2014/151043 PCT/US2014/024828

[013] Figure 5 shows adiagram illustrating a second embodiment for dependency

broadcasting within source view.

[014] Figure 6 shows adiagram illustrating the selection of ready blocks for dispatch
starting from the commit pointer and broadcasting the corresponding port assignments in accordance

with one embodiment of the present invention.

[015] Figure 7 shows an adder tree structure that isused to implement the selector array
described in Figure 6 in accordance with one embodiment of the present invention.

[016] Figure 8 shows exemplary logic of aselector array adder tree in greater detail.

[017] Figure 9 shows aparale implementation of the adder tree for implementing a

selector array in accordance with one embodiment of the present invention.

[018] Figure 10 shows an exemplary diagram illustrating how adder X from Figure 9 can
be implemented by using carry save adders in accordance with one embodiment of the present

invention.

[019] Figure 11 shows a masking embodiment for masking ready bits for scheduling
starting from the commit pointer and using the selector array adders in accordance with of the

present invention.

[020] Figure 12 shows an overview diagram of how register view entries are populated by

register templates in accordance with one embodiment of the present invention.

[021] Figure 13 shows afirst embodiment for reduced register view footprint in accordance

with one embodiment of the present invention.

[022] Figure 14 shows a second embodiment for reduced register footprint in accordance

with one embodiment of the present invention.

[023] Figure 15 shows an exemplary format of the delta between snapshots in accordance

with one embodiment of the present invention.

WO 2014/151043 PCT/US2014/024828

[024] Figure 16 shows a diagram of aprocess for creating register template snapshots upon

allocations of blocks of instructions in accordance with one embodiment of the present invention.

[025] Figure 17 shows another diagram of aprocess for creating register template snapshots
upon allocations of blocks of instructions in accordance with one embodiment of the present

invention.

[026] Figure 18 shows an overview diagram of hardware for implementing the serial
implementation of creating a subsequent register template from aprevious register template in

accordance with one embodiment of the present invention.

[027] Figure 19 shows an overview diagram of hardware for implementing a parallel
implementation of creating a subsequent register template from aprevious register template in

accordance with one embodiment of the present invention.

[028] Figure 20 shows an overview diagram of the hardware for instruction block-based
execution and how it works with the source view, the instruction view, the register templates, and

the register view in accordance with one embodiment of the present invention.

[029] Figure 21 shows an example of a chunking architecture in accordance with one
embodiment of the present invention.

[030] Figure 22 shows adepiction of how threads are alocated in accordance with their

block numbers and thread 1D in accordance with one embodiment of the present invention.

[031] Figure 23 shows an implementation of a scheduler using thread pointer maps that
point to physical storage locations in order to manage multithreaded execution in accordance with

one embodiment of the present invention.

[032] Figure 24 shows another implementation of a scheduler using thread based pointer

maps in accordance with one embodiment of the present invention.

[033] Figure 25 shows a diagram of a dynamic calendar-based allocation of execution

resources to threads in accordance with one embodiment of the present invention.

WO 2014/151043 PCT/US2014/024828

[034] Figure 26 diagrams adual dispatch process in accordance with one embodiment of

the present invention.

[035] Figure 27 diagrams adual dispatch transient multiply-accumulate in accordance with

one embodiment of the present invention.

[036] Figure 28 diagrams adual dispatch architecturally visible state multiply-add in

accordance with one embodiment of the present invention.

[037] Figure 29 shows an overview diagram of afetch and formation of instruction blocks
for execution on grouped execution units process in accordance with one embodiment of the present

invention.

[038] Figure 30 shows an exemplary diagram of instruction grouping in accordance with
one embodiment of the present invention. Inthe Figure 30 embodiment two instructions are shown

with athird auxiliary operation.

[039] Figure 31 shows how half block pairs within ablock stack maps onto the execution

block units in accordance with one embodiment of the present invention.

[040] Figure 32 shows adiagram depicting intermediate block results storage as afirst level

register file in accordance with one embodiment of the present invention.

[041] Figure 33 shows an odd/even ports scheduler in accordance with one embodiment of

the present invention.

[042] Figure 34 shows amore detailed version of Figure 33 where four execution units are
shown receiving results from the scheduler array and writing outputs to atemporary register file
segment.

[043] Figure 35 shows a diagram depicting guest flag architecture emulation in accordance

with one embodiment of the present invention.

WO 2014/151043 PCT/US2014/024828

[044] Figure 36 shows adiagram illustrating the front end of the machine the scheduler and
the execution units and a centralized flag register in accordance with one embodiment of the present

invention.

[045] Figure 37 shows adiagram of a centralized flag register emulation process as

implemented by embodiments of the present invention.

[046] Figure 38 shows aflowchart of the steps of aprocess 3800 of emulating centralized
flag register behavior in aguest setting.

DETAILED DESCRIPTION OF THE INVENTION

[047] Although the present invention has been described in connection with one
embodiment, the invention is not intended to be limited to the specific forms set forth herein. On the
contrary, it is intended to cover such alternatives, modifications, and equivalents as can be

reasonably included within the scope of the invention as defined by the appended claims.

[048] Inthe following detailed description, numerous specific details such as specific
method orders, structures, elements, and connections have been set forth. It isto beunderstood
however that these and other specific details need not be utilized to practice embodiments of the
present invention. In other circumstances, well-known structures, elements, or connections have
been omitted, or have not been described in particular detail in order to avoid unnecessarily

obscuring this description.

[049] References within the specification to "one embodiment” or "an embodiment” are
intended to indicate that aparticular feature, structure, or characteristic described in connection with
the embodiment is included in at least one embodiment of the present invention. The appearance of
the phrase "in one embodiment” in various places within the specification are not necessarily al
referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive
of other embodiments. Moreover, various features are described which may be exhibited by some
embodiments and not by others. Similarly, various requirements are described which may be

requirements for some embodiments but not other embodi ments.

WO 2014/151043 PCT/US2014/024828

[050] Some portions of the detailed descriptions, which follow, are presented in terms of
procedures, steps, logic blocks, processing, and other symbolic representations of operations on data
bits within a computer memory. These descriptions and representations are the means used by those
skilled in the data processing arts to most effectively convey the substance of their work to others
skilled in the art. A procedure, computer executed step, logic block, process, etc., is here, and
generally, conceived to be a self-consistent sequence of steps or instructions |leading to a desired
result. The steps are those requiring physical manipulations of physical quantities. Usually, though
not necessarily, these quantities take the form of electrical or magnetic signals of a computer
readable storage medium and are capable of being stored, transferred, combined, compared, and
otherwise manipulated in a computer system. It has proven convenient at times, principally for
reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters,

terms, numbers, or the like.

[051] It should beborne in mind, however, that all of these and similar terms are to be
associated with the appropriate physical quantities and are merely convenient labels applied to these
quantities. Unless specifically stated otherwise as apparent from the following discussions, it is
appreciated that throughout the present invention, discussions utilizing terms such as "processing” or
"accessing" or "writing" or "storing" or "replicating” or the like, refer to the action and processes of
acomputer system, or similar electronic computing device that manipulates and transforms data
represented as physical (electronic) quantities within the computer system's registers and memories
and other computer readable media into other data similarly represented as physical quantities
within the computer system memories or registers or other such information storage, transmission or

display devices.

[052] Figure 1shows an overview diagram of aprocess for grouping instructions into a

block and tracking dependencies among the instructions by using aregister template.

[053] Figure 1shows an instruction block having aheader and abody. The block is created
from agroup of instructions. The block comprises an entity that encapsulates the group of
instructions. In the present embodiment of the microprocessor, the level of abstraction israised to
blocks instead of individual instructions. Blocks are processed for dispatch instead of individual
instructions. Each block is labeled with ablock number. The machine's out of order management

8

WO 2014/151043 PCT/US2014/024828

job isthereby greatly simplified. One key feature isto find away to manage alarger number of
instructions being processed without greatly increasing the management overhead of the machine.

[054] Embodiments of the present invention achieves this objective by implementing
instruction blocks, register templates and inheritance vectors. Inthe block shown in Figure 1, the
header of the block lists and encapsulates all the sources and destinations of the instructions of the
block and where those sources come from (e.g., from which blocks). The header includes the
destinations that update the register template. The sources included in the header will be
concatenated with the block numbers stored in the register template.

[055] The number of instructions that are processed out of order determines the
management complexity of the out of order machine. More out of order instructions leads to greater
complexity. Sources need to compare against destinations of prior instructions in the out of order
dispatch window of the processor.

[056] Asshown in Figure 1, the register template has fields for each register from RO to
R63. Blocks write their respective block numbers into the register template fields that correspond to
the block destinations. Each block reads the register fields that represent its register sources from
the register template. When ablock retires and writes its destination register contents into the
register file, its number is erased from the register template. This means that those registers can be

read as sources from the register file itself.

[057] Inthe present embodiment, the register template is updated each cycle of the machine
whenever ablock is allocated. Asnew template updates are generated, prior snapshots of the
register templates are stored into an array (e.g., the register view shown in Figure 2), one per block.
This information is retained until the corresponding block isretired. This allows the machine to
recover from miss-predictions and flushes very quickly (e.g., by obtaining the last known

dependency state).

[058] In one embodiment, the register templates stored in the register view can be
compressed (thereby saving storage space) by storing only the delta between successive snapshots
(incremental changes between snapshots). In this manner the machine obtains a shrunk register

WO 2014/151043 PCT/US2014/024828

view. Further compression can be obtained by only storing templates for blocks that have abranch

instruction.

[059] If arecovery point is needed other than abranch miss-prediction, then arecovery is
first obtained at the branch recovery point, then state can be rebuilt out of allocating instructions (but

not executing them) until the machine reaches the sought after recovery point.

[060] It should be noted that in one embodiment, the term "register template” as used
herein is synonymous with the term "inheritance vectors' as described in the earlier filed commonly
assigned patent application "EXECUTING INSTRUCTION SEQUENCE CODE BLOCKS BY
USING VIRTUAL CORES INSTANTIATED BY PARTITIONABLE ENGINES' by Mohammad
Abdallah, filed on March 23, 2012, serial number 13428440, which is incorporated herein in its
entirety.

[061] Figure 2 shows an overview diagram of aregister view, asource view, and an
instruction view in accordance with one embodiment of the present invention. This figure shows
one embodiment of a scheduler architecture (e.g., having a source view, instruction view, register
view, etc.). Other implementations of a scheduler architecture that achieves the same functionality

by combining or splitting one or more of the above cited structures are possible.

[062] Figure 2 diagrams the functional entities supporting the operation of the register
templates and retention of the machine state. The left-hand side of Figure 2 shows register
templates T Othrough T4, with the arrows indicating the inheritance of information from one register
template/inheritance vector to the next. The register view, source view, and instruction view each
comprise data structures for storing information which relates to the blocks of instructions. Figure 2
also shows an exemplary instruction block having aheader and how the instruction block includes
both sources and destinations for the registers of the machine. Information about the registers
referred to by the blocks is stored in the register view data structure. Information about the sources
referred to by the blocks is stored in the source view data structure. Information about the
instructions themselves referred to by the blocks is stored in the instruction view data structure. The
register templates/inheritance vectors themselves comprise data structures storing dependency and
inheritance information referred to by the blocks.

10

WO 2014/151043 PCT/US2014/024828

[063] Figure 3 shows adiagram that illustrates an exemplary register template and how the
source view is populated by information from the register template in accordance with one
embodiment of the present invention.

[064] Inthe present embodiment, it should be noted that the goal of the source view isto
determine when particular blocks can be dispatched. When ablock is dispatched it broadcasts its
block number to all remaining blocks. Any matches for sources of the other blocks (e.g., a compare)
causes aready bit (e.g., or some other type of indicator) to be set. When all ready bits are set (e.g.,
AND gate) the block isready to be dispatched. Blocks are dispatched based on the readiness of
other blocks they depend on.

[065] When multiple blocks are ready for dispatch, the oldest block is chosen for dispatch
ahead of younger blocks. For example, in one embodiment afind first circuit can be used to find the
oldest block based on proximity to a commit pointer and subsequent blocks based on relative

proximity to the commit pointer (e.g., working on each block's ready bit).

[066] Referring still to Figure 3, in this example, the register template snapshot created a
the arrival of block 20 isbeing examined. As described above, the register template has fields for
each register from RO to R63. Blocks write their respective block numbers into the register template
fields that correspond to the block destinations. Each block reads the register fields that represent its
register sources from the register template. The first number is the block that wrote to the register

and the second number isthe destination number of that block.

[067] For example, when block 20 arrives, it reads the snapshot of the register template and
looks up its own register sources in the register template to determine the latest block that wrote to
each of its sources and populate the source view according to the updates that its destinations make
to the previous register template snapshot Subsequent blocks , will update the register template with
their own destinations. This is shown in the bottom left of Figure 3, where block 20 populates its

sources : source 1, source 2, source 3, al the way to source 8.

[068] Figure 4 shows adiagram illustrating afirst embodiment for dependency
broadcasting within source view. In this embodiment, each column comprises an instruction block.

11

WO 2014/151043 PCT/US2014/024828

When ablock is allocated it marks (e.g., by writing 0) in all the block's columns where ever its
sources have dependency on those blocks. When any other block is dispatched its number is
broadcasted across the exact column that relates to that block. It should be noted that writing a 1is
the default value indicating that there is no dependency on that block.

[069] When al ready bits in ablock are ready, that block is dispatched and its number is
broadcast back to all the remaining blocks. The block number compares against all the numbers
stored in the sources of the other blocks. If there is amatch, the ready bit for that source is set. For
example, if the block number broadcasted on source 1equals 11then the ready bit for source 1 of
block 20 will be set.

[070] Figure 5 shows adiagram illustrating a second embodiment for dependency
broadcasting within source view. This embodiment is organized by sources as opposed to being
organized by blocks. This is shown by the sources Sl through S8 across the source view data
structure. In amanner similar to as described with Figure 4 above, in the Figure 5 embodiment,
when all ready bits in ablock are ready, that block is dispatched and its number is broadcast back to
all the remaining blocks. The block number compares against all the numbers stored in the sources
of the other blocks. If there is amatch, the ready bit for that source is set. For example, if the block
number broadcasted on source 1equals 11then the ready bit for source 1 of block 20 will be set.

[071] The Figure 5 embodiment also shows how the compares are only enabled on the

blocks between the commit pointer and the allocate pointer. All other blocks are invalid.

[072] Figure 6 shows adiagram illustrating the selection of ready blocks for dispatch
starting from the commit pointer and broadcasting the corresponding port assignments in accordance
with one embodiment of the present invention. The source view data structure is shown on the left-
hand side of Figure 6. The instruction view data structure is shown on the right-hand side of Figure
6. A selector array is shown between the source view and the instruction view. In this embodiment,

the selector array dispatches four blocks per cycle via the four dispatch ports PI through P4.

[073] Asdescribed above, blocks are selected for dispatch from the commit pointer
wrapping around to allocate pointer (e.g., trying to honor dispatching older blocks first). The

12

WO 2014/151043 PCT/US2014/024828

selector array is used to find the first 4 ready blocks starting from the commit pointer. It is desired
to dispatch the oldest ready blocks. In one embodiment, the selector array can be implemented by

using an adder tree structure. Thiswill be described in Figure 7 below.

[074] Figure 6 also shows how the selector array is coupled to each of the four ports that
passed through the entries in the instruction view. In this embodiment, the port couplings as port
enables, and enable one of the four ports to be activated and for that instruction view entry to pass
through down to the dispatch port and on to the execution units. Additionally, as described above,
dispatched blocks are broadcast back through the source view. The block numbers of selected
blocks for dispatch are broadcast back (up to 4). This is shown on the far right-hand side of Figure
6.

[075] Figure 7 shows an adder tree structure that is used to implement the selector array
described in Figure 6 in accordance with one embodiment of the present invention. The depicted
adder tree implements the functionality of the selector array. The adder tree picks the first four
ready blocks and mounts them to the four available ports for dispatch (e.g., read port 1through read
port 4). No arbitration isused. The actual logic that isused to specifically enable a specific port is
explicitly shown in entry number 1. For the sake of clarity, the logic is not specifically show in the
other entries. In this manner, Figure 7 shows one specific embodiment of how the direct selection of
each particular port for block dispatch isimplemented. It should be noted however, that

aternatively, an embodiment that uses priority encoders can be implemented.

[076] Figure 8 shows exemplary logic of aselector array adder tree in greater detail. Inthe
Figure 8 embodiment, logic is shown for arange exceed bit. The range exceed bit ensures that no
more than four blocks will be selected for dispatch if afifth block isready the range exceed bit will
not alow it to be dispatched if the first four also ready. It should be noted that the sum bits are SO
to S 3 are both used to enable the dispatch port aswell as propagation to the next adder stage in the
serial implementation.

[077] Figure 9 shows aparallel implementation of the adder tree for implementing a
selector array in accordance with one embodiment of the present invention. The paralel

implementation does not forward the sum from each adder to the next. In the paralel

13

WO 2014/151043 PCT/US2014/024828

implementation, each adder uses all its necessary inputs directly using amultiple input addition
implementation, such as multi-input carry save adder trees. For example, the adder "X" sums all of
the previous inputs. This parallel implementation is desirable in order to execute faster compute

times (e.g., single cycle).

[078] Figure 10 shows an exemplary diagram illustrating how adder X from Figure 9 can
be implemented by using carry save adders in accordance with one embodiment of the present
invention. Figure 10 shows a structure that can add 32 inputs in asingle cycle. The structure is put
together using 4-by-2 carry save adders.

[079] Figure 11 shows amasking embodiment for masking ready bits for scheduling
starting from the commit pointer and using the selector array adders in accordance with of the
present invention. In this implementation, the selector array adders are trying to select first 4 ready
blocks to dispatch starting from the commit pointer potentially wrapping around to the allocate
pointer. In this implementation, multi-input parallel adders are used. Additionaly, in this

implementation a source of these circular buffer is utilized.

[080] Figure 11 shows how the ready bits are ANDed together with each of the two masks
(individually or separately) and applied to the two adder trees in parallel. The first four are selected
by using the two adder trees and comparing against the threshold of four. The "X" marks denote
"exclude from the selection array for that adder tree”" thus the "X" value is zero. On the other hand
the "Y" marks denote "do include in the selection array for that adder tree" thus the "Y" value is

one.

[081] Figure 12 shows an overview diagram of how register view entries are populated by
register templates in accordance with one embodiment of the present invention.

[082] Asdescribed above, register view entries are populated by register templates. The
register view stores snapshots of register templates for each block in sequence. When a speculation
isnot valid (e.g., abranch miss-prediction), the register view has a latest valid snapshot before the
invalid speculation point. The machine can roll back its state to the last valid snapshot by reading
that register view entry and loading it into the base of the register template. Each entry of register

14

WO 2014/151043 PCT/US2014/024828

view shows all of the register inheritance states. For example in the Figure 12 embodiment, if the
register view for block F isinvalid, the machine state can be rolled back to an earlier last valid
register template snapshot.

[083] Figure 13 shows afirst embodiment for reduced register view footprint in accordance
with one embodiment of the present invention. The amount of memory needed to store the register
view entries can be reduced by only storing those register view template snapshots that contain
branch instructions. When an exception occurs (e.g., a speculation is not valid, abranch miss-
prediction, etc.), the last valid snapshot can be rebuilt from the branch instruction that occurred prior
to the exception. Instructions are fetched from the branch prior to the exception down to the
exception in order to build the last valid snapshot. The instructions are fetched but they are not
executed. Asshown in Figure 13, only those snapshots that include branch instructions are saved in
the reduced register view. This greatly reduces the amount of memory needed to store the register
template snapshots.

[084] Figure 14 shows a second embodiment for reduced register footprint in accordance
with one embodiment of the present invention. The amount of memory needed to store the register
view entries can be reduced by only storing a sequential subset of the snapshots (e.g., one out of
every four snapshots). The change between successive snapshots can be stored as a"delta’ from an
origina snapshot using a comparatively smaller amount of memory than full successive snapshots.
When an exception occurs (e.g., a speculation is not valid, abranch miss-prediction, etc.), the last
valid snapshot can be rebuilt from the original snapshot that occurred prior to the exception. The
"delta" from the original snapshot that occurred prior to the exception and the successive snapshots
are used to rebuild the last valid snapshot. The initial original state can accumulate deltas to arrive
to the state of the required snapshot.

[085] Figure 15 shows an exemplary format of the delta between snapshots in accordance
with one embodiment of the present invention. Figure 15 shows an original snapshot and two
deltas. In one delta, R5 and R6 are the only registers being updated by B3. The rest of the entries
are not changed. In another Delta, Rl and R7 are the only registers being updated by B2. The rest
of the entries are not changed.

15

WO 2014/151043 PCT/US2014/024828

[086] Figure 16 shows adiagram of aprocess for creating register template snapshots upon
allocations of blocks of instructions in accordance with one embodiment of the present invention. In
this embodiment, the left-hand side of Figure 16 shows two de-multiplexers and at the top of Figure
16 is a snapshot register template. Figure 16 shows adiagram for creating a subsequent register
template from aprevious register template (e.g., a serial implementation).

[087] This serial implementation shows how register template snapshots are created upon
alocation of blocks of instructions. Those snapshots serves to capture the latest register
architectural states update that are used for dependency tracking (e.g., as described in Figures 1
through 4) aswell asupdating the register view for handling miss-predictions/exceptions (e.g., as
described in Figures 12 through 15).

[088] The de-mux functions by selecting which incoming source ispassed on. For
example, register R2 will de-mux to a 1 at the second output, while R8 will de-mux to a 1 a the

seventh output, and so on.

[089] Figure 17 shows another diagram of aprocess for creating register template snapshots
upon allocations of blocks of instructions in accordance with one embodiment of the present
invention. The Figure 17 embodiment also shows the creating of a subsequent register template
from aprevious register template. The Figure 17 embodiment also shows an example of register
template block inheritance. This Figure shows an example of how the register template is updated
from allocated block numbers. For example, block Bf updates R2, R8, and R10. Bg updates Rl and
R9. The dotted arrows indicate that the values are inherited from the prior snapshot. This process
proceeds all the way down to block Bi. Thus, for example, since no snapshot updated register R7,
its original value Bb will have propagated all the way down.

[090] Figure 18 shows an overview diagram of hardware for implementing the serial
implementation of creating a subsequent register template from aprevious register template in
accordance with one embodiment of the present invention. The de-multiplexer isused to control a
series of two input multiplexers which of two block numbers will be propagated down to the next
stage. It can either bethe block number from the previous stage or the current block number.

16

WO 2014/151043 PCT/US2014/024828

[091] Figure 19 shows an overview diagram of hardware for implementing aparallel
implementation of creating a subsequent register template from aprevious register template in
accordance with one embodiment of the present invention. This Parallel implementation uses
special encoded multiplexer controls to create a subsequent register template from aprevious

register template.

[092] Figure 20 shows an overview diagram of the hardware for instruction block-based
execution and how it works with the source view, the instruction view, the register templates, and

the register view in accordance with one embodiment of the present invention.

[093] Inthis implementation, the allocator scheduler in dispatcher receives instructions
fetched by the machine's front end. These instructions go through block formation in the manner we
described earlier. Asdescribed earlier the blocks yield register templates and these register
templates are used to populate the register view. From the source view the sources are transferred to
the register file hierarchy and there are broadcasts back to the source view in the manner described
above. The instruction view transfers instructions to the execution units. The instructions are
executed by the execution units as the sources needed by the instructions coming from the register
file hierarchy. These executed instructions are then transferred out of the execution unit and back
into the register file hierarchy.

[094] Figure 21 shows an example of a chunking architecture in accordance with one
embodiment of the present invention. The importance of chunking is that it reduces the number of
write ports into each scheduler entry from 4 to 1 by using the four multiplexers shown, while still

densely packing all the entries without forming bubbles.

[095] The importance of chunking can be seen by the following example (e.g., noting that
allocation of blocks in each cycle starts at the top position, in this case B0O). Assuming in cycle 1,
three blocks of instructions are to be allocated to the scheduler entries (e.g., the three blocks will
occupy the first 3 entries in the scheduler). In the next cycle (e.g., cycle 2) another two blocks of
instructions are to be alocated. In order to avoid creating bubbles in the scheduler array entries, the
scheduler array entries have to be built with support for four write ports. This is expensive in terms

of power consumption, timing, area, and the like. The chunking structure above simplifies al

17

WO 2014/151043 PCT/US2014/024828

scheduler arrays to only have one write port by using the multiplexing structure before allocating to
the arrays. In the above example, the BOin cycle two will be selected by the last mux while Bl in

cycle two will be selected by the first mux (e.g., going from left to right).

[096] Inthis manner, each for entry chunk only needs one write port per entry and four read
ports per entry. There is atrade-off in cost because the multiplexers must be implemented, however
that cost is made up many times over in the savings from not having to implement four write ports
per entry, asthere can bevery many entries.

[097] Figure 21 also shows an intermediate allocation buffer. |f the scheduler arrays cannot
accept al the chunks sent to them, then they can be stored temporarily in the intermediate allocation
buffer. When the scheduler arrays have free space, the chunks will betransferred from the
intermediate allocation buffer to the scheduler arrays.

[098] Figure 22 shows adepiction of how threads are alocated in accordance with their
block numbers and thread 1D in accordance with one embodiment of the present invention. Blocks
are alocated to the scheduler array via a chunking implementation as described above. Each of the
thread blocks maintain a sequential order among themselves using the block number. The blocks
from different threads can beinterleaved (e.g., Blocks for thread Thl and blocks for thread Th2 are
interleaved in the scheduler array. In this manner, blocks from different threads are present within

the scheduler array.

[099] Figure 23 shows an implementation of a scheduler using thread pointer maps that
point to physical storage locations in order to manage multithreaded execution in accordance with
one embodiment of the present invention. In this embodiment, management of the threads is
implemented through the control of the thread maps. For example here Figure 23 shows thread 1
map and thread 2 map. The maps track the location of the blocks of the individua thread. The
entries in the map .2 physical storage locations the entries in the map are allocated to blocks
belonging to that thread. In this implementation, each thread has an allocation counter that counts
for both threads. The overall count cannot exceed N divided by 2 (e.g., exceeding space available).
The allocation counters have adjustable thresholds in order to implement fairness in the allocation of

18

WO 2014/151043 PCT/US2014/024828

the total entries from the pool. The allocation counters can prevent one thread from using all of the

available space.

[0100] Figure 24 shows another implementation of a scheduler using thread based pointer
maps in accordance with one embodiment of the present invention. Figure 24 shows arelationship
between the commit pointer and the allocation pointer. As shown, each thread has a commit pointer
and an allocate pointer the arrow shows how reality pointer for thread 2 can wrap around the
physical storage allocating blocks Bl and B2, but it cannot allocate block B9 until the commit
pointer for thread 2 moves down. Thisis shown by the position of the commit pointer of thread 2
and the strikethrough. The right-hand side of Figure 24 shows arelationship between the allocation

of blocks and the commit pointer as it moves around counterclockwise.

[0101] Figure 25 shows adiagram of a dynamic calendar-based allocation of execution
resources to threads in accordance with one embodiment of the present invention. Fairness can be
dynamically controlled using the allocate counters based on the forward progress of each thread. If
both threads are making substantial forward progress, then both allocation counters are set to the
same threshold (e.g., 9). However if one thread makes slow forward progress, such as suffering
from an L2 cache miss or such events, then the ratio of the threshold counters can be adjusted in the
favor of the thread that is still making substantial forward progress. If one thread is stalled or
suspended (e.g., isin wait or spin state waiting on an OS or 10 response) the ratio can be completely
adjusted to the other thread with the exception of asingle return entry that isreserved for the
suspended thread to signal the release of the wait state.

[0102] In one embodiment, the process starts off with aratio of 50%: 50%. Upon the L2
cache miss detection on block 22, the front end of the pipeline stalls any further fetch into the
pipeline or alocation into the scheduler of thread 2 blocks. Upon retirement of thread 2 blocks from
the scheduler, those entries will be made available for thread 1 allocation until the point where the
new dynamic ratio of thread allocation is achieved. For example, 3 out the recently retired thread 2
blocks will bereturned to the pool for alocation tothread 1linstead of thread 2, making the thread 1
tothread 2 ratio 75% : 25%.

19

WO 2014/151043 PCT/US2014/024828

[0103] It should be noted that a stall of thread 2 blocks in the front of the pipeline might
require flushing those blocks from the front of the pipeline if there is no hardware mechanism to
bypass them (e.g., by thread 1blocks by passing the stalled thread 2 blocks).

[0104] Figure 26 diagrams adual dispatch process in accordance with one embodiment of
the present invention. Multi- dispatch generally encompasses dispatching ablock (having multiple
instruction within) multiple times such that different instructions with the block can execute on each
pass through the execution units. One example would be a dispatch of an address calculation
instruction followed by a subsequent dispatch that consumes the resulting data. Another example
would be afloating point operation, where the first part is executed as fixed point operation and the
second part is executed to complete the operation by performing rounding, flag
generation/calculation, exponent adjustment or the like. Blocks are allocated, committed and retired

atomically as asingle entity.

[0105] A main benefit of multi-dispatch isthat it avoids allocating multiple separate blocks
into the machine window, thereby making the machine window effectively larger. A larger machine

window means more opportunities for optimization and reordering.

[0106] Looking at the bottom left the Figure 26, there is an instruction block depicted. This
block cannot be dispatched in a single cycle because there is latency between the load address
calculation and the load returning data from the caches/memory. So this block is first dispatched
with its intermediate result being held as atransient state (its result is being delivered on the fly to
the second dispatch without being visible to the architectural state). The first dispatch sends the two
components 1and 2 that are used in the address calculation and the dispatch of the LA. The second
dispatch sends components 3 and 4 which are the execution parts of the load data upon the load
returning data from the cachessmemory.

[0107] Looking at the bottom right of Figure 26 there is a floating point multiply accumulate
operation depicted. In the case where the hardware does not have sufficient bandwidth of incoming
sources to dispatch the operation in asingle phase, then dual dispatch is used, asthe multiply

accumulate figure shows. The first dispatch is afixed point multiply as shown. The second

20

WO 2014/151043 PCT/US2014/024828

dispatch is afloating point addition rounding as shown. When both of these dispatched instructions

execute, they effectively perform the floating point multiply/accumulate.

[0108] Figure 27 diagrams adual dispatch transient multiply-accumulate in accordance with
one embodiment of the present invention. As shown in Figure 27, the first dispatch isthe integer 32
bit multiply, and the second dispatch is the integer accumulate add. State communicated between
the first dispatch and the second dispatch (the result of the multiply) istransient and not
architecturally visible. The transient storage in one implementation can hold results of more than
one multiplier and can tag them to identify the corresponding multiply accumulate pair, thereby
allowing intermix of multiple multiply accumulate pairs being dispatch in an arbitrary fashion (e.g.,

interleaved, etc.).

[0109] Note that other instructions can use this same hardware for their implementation
(e.g., floating point, etc.).

[01 10] Figure 28 diagrams adual dispatch architecturally visible state multiply-add in
accordance with one embodiment of the present invention. The first dispatch isthe single precision
multiply, and the second dispatch is the single precision add. In this implementation, state
information communicated between the first dispatch and the second dispatch (e.g., the result of the
multiply) is architecturally visible since this storage is an architecture state register.

[01 11] Figure 29 shows an overview diagram of afetch and formation of instruction blocks
for execution on grouped execution units process in accordance with one embodiment of the present
invention. Embodiments of the present invention utilize aprocess whereby instructions are fetched
and formed as blocks by the hardware or dynamic converter/JIT. The instructions in the blocks are
organized such that aresult of an early instruction in the block feeds a source of a subsequent
instruction in the block. This is shown by the dotted arrows in the block of instructions. This
property enables the block to execute efficiently on the stacked execution units of the execution
block. Instructions can aso be grouped even if they can execute in parallel, such asif they share the

same source (not shown explicitly in this figure).

21

WO 2014/151043 PCT/US2014/024828

[0112] One aternative to forming the blocks in hardware isto form them in software

(statically or a runtime) where instruction pairs, triplets, quads, etc., are formed.

[01 13] Other implementations of instruction grouping functionality can be found in

commonly assigned U S patent 8,327,1 15.

[01 14] Figure 30 shows an exemplary diagram of instruction grouping in accordance with
one embodiment of the present invention. In the Figure 30 embodiment two instructions are shown
with athird auxiliary operation. The left-hand side of Figure 31 instruction block comprising an
upper half block/1 slot and alower half block/1 slot. The vertical arrows coming down from the top
indicates sources coming into the block while the vertical arrows going down from the bottom
indicate destinations going back to memory. Proceeding from the left-hand side of Figure 3 towards
the right-hand side, different instruction combinations that are possible are illustrated. In this
implementation, each half block can receive three sources and can pass on two destinations. OP1
and OP2 are normal operations. AuxiliaryOPs are auxiliary operations such as alogical, a shift, a
move, a sign extend, abranch, etc. The benefit of dividing the block into two halves isto alow the
benefit of having each half dispatch on its own independently or otherwise together as one block
dynamically (either for port utilization or because of resource constrains) based on dependency
resolution, thus having better utilization of execution times, at the same time having the 2 halves
correspond to one block allows the machine to abstract the complexity of 2 half blocks to be

managed like one block(i.e. at allocate and retirement).

[01 15] Figure 31 shows how half block pairs within ablock stack maps onto the execution
block units in accordance with one embodiment of the present invention. As shown in the execution
block, each execution block has two dlots, slot 1and slot 2. The objective isto s map the block onto
the execution units such that the first half block executes on slot 1 and the second half block
executes on slot 2. The objective isto allow the 2 half blocks to dispatch independently if the
instruction group of each half block does not depend on the other half. The paired arrows coming
into the execution block from the top are two 32-bit words of a source. The paired arrows leaving
the execution block going down are two 32-bit words of adestination. Going from left to right of
Figure 31, different exemplary combinations of instructions are shown that are capable of being

stacked onto the execution block units.

22

WO 2014/151043 PCT/US2014/024828

[01 16] The top of Figure 31 summarizes how the pairs of half blocks execute in afull block
context or any half block context. Each of the s Execution blocks have two slots/half blocks and
each one of the half bocks/execution slots executes either asingle, paired or triplet grouped
operations. There are four types of block execution types. The first is parallel halves (which alows
each half block to independently execute once its own sources are ready but the 2 half blocks can
still execute as one block on one execution unit if both halves are ready at the same time. The
second is atomic parallel halves (which refers to half blocks that can execute in parallel because
there is no dependency between the 2 halves but they are forced to execute together as one block
because the resource sharing between the 2 halves make it preferred or necessary for the two halves
to execute together atomically within the constraint of the resources available in each execution
block). Thethird type is atomic serial halves s (which requires the first half to forward datato the
second half, through transient forwarding with or without internal storage). The fourth type is
sequential halves (as in dual dispatch) where the 2nd half depend on the first half and is dispatched
on alater cycle than the first one and forwards the datathrough external storage that are tracked for

dependency resolution, similar to the dual dispatch case..

[01 17] Figure 32 shows adiagram depicting intermediate block results storage as afirst level
register file in accordance with one embodiment of the present invention. Each group of registers
represent ablock of instructions (representing two half blocks) in which both 32 bit results as well
as 64 bits results can be supported by using two 32 bit registers to support one 64 bit register. The
storage per block assumes avirtual block storage, which means two half blocks from different
blocks can write into the same virtual block storage. Combined results storage of two half blocks

that make up one virtual block storage.

[01 18] Figure 33 shows an odd/even ports scheduler in accordance with one embodiment of
the present invention. In this implementation, the result storage is asymmetrical. Some of the result
storage isthree 64 bit result registers per half block while others are one 64 bit result register per
half block, however alternative implementation can use symmetrical storage per half block and
additionally could also employ 64-bit and 32-bit partition as described in Figure 32. Inthese
embodiments, storage is assigned per half block, as opposed to per block. This implementation
reduces the number of ports needed for dispatch by using them as odd or even.

23

WO 2014/151043 PCT/US2014/024828

[01 19] Figure 34 shows amore detailed version of Figure 33 where four execution units are
shown receiving results from the scheduler array and writing outputs to atemporary register file
segment. The ports are attached a even and odd intervals. The left side of the scheduling array

shows block numbers and the right side shows half block numbers.

[0120] Each core has even and odd ports into the scheduling array, where each port is
connected to an odd or even half block position. In one implementation, the even ports and their
corresponding half blocks can reside in a different core than the odd ports and their corresponding
half blocks. In another implementation, the odd and even ports will be distributed across multiple
different cores as shown inthis figure. Asdescribed inthe prior earlier filed commonly assigned
patent application "EXECUTING INSTRUCTION SEQUENCE CODE BLOCKS BY USING
VIRTUAL CORES INSTANTIATED BY PARTITIONABLE ENGINES' by Mohammad
Abdallah, filed on March 23, 2012, serial number 13428440, which is incorporated herein in its

entirety, the cores can be physical cores or virtual cores.

[0121] In certain types of blocks, one half of ablock can be dispatched independently from
the other half of the block. In other types of blocks, both halves of ablock need to be dispatched
simultaneously to the same execution block units. In still other types of blocks, the two halves of a
block need to be dispatched sequentially (the second half after the first half).

[0122] Figure 35 shows a diagram depicting guest flag architecture emulation in accordance
with one embodiment of the present invention. The left-hand side of Figure 35 shows a centralized
flag register having five flags. The right-hand side of Figure 35 shows a distributed flag architecture
having distributed flag registers wherein the flags are distributed amongst registers themselves.

[0123] During architecture emulation, it is necessary for the distributed flag architecture to
emulate the behavior of the centralized guest flag architecture. Distributed flag architecture can also
be implemented by using multiple independent flag registers as opposed to aflag field associated
with a dataregister. For example, dataregisters can be implemented as RO to R15 while
independent flag registers can be implemented as FO to F3. Those flag registers in this case are not
associated directly with the data registers.

24

WO 2014/151043 PCT/US2014/024828

[0124] Figure 36 shows adiagram illustrating the front end of the machine the scheduler and
the execution units and a centralized flag register in accordance with one embodiment of the present
invention. In this implementation, the front end categorizes incoming instructions based on the
manner in which they update guest instruction flags. In one embodiment, the guest instructions are
categorized into 4 native instruction types, Tl, T2, T3, and T4. T1-T4 are instruction types that
indicate which flag fields that each guest instruction type updates. Guest instruction types update
different guest instruction flags, based on their type. For example, logical guest instructions update

Tl native instructions.

[0125] Figure 37 shows adiagram of a centralized flag register emulation process as
implemented by embodiments of the present invention. The actors in Figure 37 comprise alatest
update type table, arenaming table extension, physical registers, and distributed flag registers.
Figure 37 isnow described by the flowchart of Figure 38.

[0126] Figure 38 shows aflowchart of the steps of aprocess 3800 of emulating centralized
flag register behavior in aguest setting.

[0127] In step 3801, the front end/dynamic converter (hardware or software) categorizes
incoming instructions based on the manner in which they update guest instruction flags. In one
embodiment, the guest instructions are categorized into four flag architectural types, Tl, T2, T3, and
T4. T1-T4 are instruction types that indicate which flag fields that each guest instruction type
updates. Guest instruction types update different guest flags, based on their type. For example,
logical guest instructions update T type flags, shift guest instructions update T2 type flags,
arithmetic guest instructions update T3 type flags, and special guest instructions update type T4
flags. It should be noted that guest instructions can be architectural instruction representation while
native can be what the machine internally executes (e.g., microcode). Alternatively, guest

instructions can be instructions from an emulated architecture (e.g., x86, java, ARM code, etc.).

[0128] In step 3802, the order in which those instruction types update their respective guest
flags is recorded in alatest update type table data structure. In one embodiment, this action is

performed by the front end of the machine.

25

WO 2014/151043 PCT/US2014/024828

[0129] In step 3803, when those instruction types reach the Scheduler (the in-order part of
the alocation/renaming stage), the scheduler assigns an implicit physical destination that
corresponds to the architectural type and records that assignment in arenaming/mapping table data

structure.

[0130] And in step 3804, when a subsequent guest instruction reaches the
allocation/renaming stage in the scheduler, and that instruction wants to read guest flag fields, (a)
the machine determines which flag architectural types need to be accessed to perform the read. (b)
if all needed flags are found in the same latest update flag type (e.g., as determined by the latest
update type table), then the corresponding physical register (e.g., that maps to that latest flag type) is
read to obtain the needed flags. (c) if al needed flags cannot be found in a same latest update flag
type, then each flag needs to be read from the corresponding physical register that maps to the
individual latest update flag type.

[0131] And in step 3805, each flag is being read individually from the physical register that
holds its latest value that was lastly updated, astracked by the latest update flag type table.

[0132] It should be noted that if alatest update type isinclusive of another type then all then
all subset types have to map to the same physical registers of the super set type.

[0133] At retirement, that destination flag fields are merged with a cloned centralized/guest
flag architecture register. It should be noted that the cloning is performed due to the fact that the
native architecture utilizes a distributed flag architecture as opposed to a single register centralized

flag architecture.
[0134] Examples of instructions that update certain flag types:
[0135] CF,OF,SF,ZR- arithmetic instruction and load/write flags instructions
[0136] SF, ZF and conditiona CF - logicals and shifts
[0137] SF, ZF - moves/loads, EXTR, some multiplies

[0138] ZF - POPCNT and STREX[P]

26

WO 2014/151043 PCT/US2014/024828

[0139] GE - SIMD instructions ???

[0140] Examples of conditiong/predications that read certain flags:
[0141] 0000 EQ Equal Z ==

[0142] O001NE Not equal, or Unordered Z ==

[0143] 0010 CSb Carry set, Greater than or equal, or Unordered C ==
[0144] 001 1CC c Carry clear, Lessthan C==

[0145] 0100 M1 Minus, negative, Lessthan N ==

[0146] 0101 PL Plus, Positive or zero, Greater than or equal to, Unordered N ==00110V S
Overflow, Unordered V ==

[0147] 0111V C No overflow, Not unordered V ==

[0148] 1000 HI Unsigned higher, Greater than, Unordered C==1and Z ==

[0149] 1001 L SUnsigned lower or same, Lessthan orequal C==0o0rZ ==

[0150] 1010 GE Signed greater than or equal, Greater than or equal N ==

[0151] 101 1LT Signed lessthan, Less than, Unordered N =V

[0152] 1100 GT Signed greater than, Greater than Z==0and N ==V

[0153] 1101 LE Signed lessthan or equal, Less than or equal, Unordered Z == 1orN =V
[0154] 1110 None (AL), Always (unconditional), Any flag set to any value.

[0155] The foregoing description, for the purpose of explanation, has been described with
reference to specific embodiments. However, the illustrated discussions above are not intended to
be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and

variations are possible in view of the above teachings. Embodiments were chosen and described in

27

WO 2014/151043 PCT/US2014/024828

order to best explain the principles of the invention and its practical applications, to thereby enable
others skilled in the art to best utilize the invention and various embodiments with various

modifications as may be suited to the particular use contemplated.

28

10

15

20

25

30

WO 2014/151043 PCT/US2014/024828

CLAIMS

What is claimed is:

1. A method for emulating a guest centralized flag architecture by using a native distributed
flag architecture, comprising:

receiving an incoming instruction sequence using a global front end;

grouping the instructions to form instruction blocks, wherein each of the instruction blocks
comprise two half blocks,

scheduling the instructions of the instruction block to execute in accordance with a
scheduler; and

using a distributed flag architecture to emulate a centralized flag architecture for the
emulation of guest instruction execution.

2. The method of claim 1, wherein the distributed flag architecture emulates the behavior of
acentralized guest flag architecture.

3. The method of claim 1, wherein a distributed flag architecture can be implemented by
using multiple independent flag registers.

4. Themethod of claim 1, wherein , guest instructions are categorized into 4 native
instruction types.

5. Themethod of claim 1, wherein guest instructions are categorized into 4 native
instruction types and guest instruction types update different guest instruction flags, based on their

type.

6. The method of claim 1, wherein afront end/dynamic converter categorizes incoming

instructions based on the manner in which they update guest instruction flags.

29

10

15

20

25

30

WO 2014/151043 PCT/US2014/024828

7. A non-transitory computer readable media having computer readable code which when
executed by acomputer system causes the computer system to perform amethod for emulating a
guest centralized flag architecture by using anative distributed flag architecture, comprising:

receiving an incoming instruction sequence using aglobal front end;

grouping the instructions to form instruction blocks, wherein each of the instruction blocks
comprise two half blocks,

scheduling the instructions of the instruction block to execute in accordance with a
scheduler; and

using a distributed flag architecture to emulate a centralized flag architecture for the
emulation of guest instruction execution.

8. The computer readable media of claim 7, wherein the distributed flag architecture

emulates the behavior of acentralized guest flag architecture.

9. The computer readable media of claim 7, wherein adistributed flag architecture can be
implemented by using multiple independent flag registers.

10. The computer readable media of claim 7, wherein , guest instructions are categorized

into 4 native instruction types.

11. The computer readable media of claim 7, wherein guest instructions are categorized into
4 native instruction types and guest instruction types update different guest instruction flags, based
on their type.

12. The computer readable media of claim 7, wherein afront end/dynamic converter

categorizes incoming instructions based on the manner in which they update guest instruction flags.

13. A computer system having aprocessor coupled to amemory, the memory having
computer readable code which when executed by the computer system causes the computer system
to implement amethod for emulating a guest centralized flag architecture by using a native
distributed flag architecture, comprising:

receiving an incoming instruction sequence using aglobal front end;

30

10

15

20

25

30

WO 2014/151043 PCT/US2014/024828

grouping the instructions to form instruction blocks, wherein each of the instruction blocks
comprise two half blocks;

scheduling the instructions of the instruction block to execute in accordance with a
scheduler; and

using adistributed flag architecture to emulate a centralized flag architecture for the
emulation of guest instruction execution.

14. The computer system of claim 13, wherein the distributed flag architecture emulates the

behavior of acentralized guest flag architecture.

15. The computer system of claim 13, wherein a distributed flag architecture can be

implemented by using multiple independent flag registers.

16. The computer system of claim 13, wherein , guest instructions are categorized into 4

native instruction types.

17. The computer system of claim 13, wherein guest instructions are categorized into 4
native instruction types and guest instruction types update different guest instruction flags, based on
their type.

18. The computer system of claim 13, wherein afront end/dynamic converter categorizes
incoming instructions based on the manner in which they update guest instruction flags.

19. A method for executing dual dispatch of blocks and half blocks, comprising:

receiving an incoming instruction sequence using a global front end;

grouping the instructions to form instruction blocks, wherein each of the instruction blocks
comprise two half blocks,

scheduling the instructions of the instruction block to execute in accordance with a
scheduler; and

performing adual dispatch of the two half blocks for execution on an execution unit.

31

PCT/US2014/024828
1/38

WO 2014/151043

AE
13)S1631 ST) 0) 1S9NL[

9)0IM JRT) YD0[q
3y} J0 Iaqumu Y2o[g

dje[dudy 19)s1H3y <————- 1 Al ! L ¢ I

¢ A | W I 0

Apog

19peaY

uorjeurro] dnoiq /YI0[q

SUBSTITUTE SHEET (RULE 26)

WO 2014/151043

Register View

T0

Tl

12

T3

T4

PCT/US2014/024828
2/38
Header
F--———-—===—5
| Instruction group
Sources ! block/Instruction
: Matrix
Destinations
Source View Instruction View

Register template/
inheritance vector

v
Register template/
inheritance vector

Y
Register template/
inheritance vector

Register template/
inheritance vector

Register template/
inheritance vector

Fig. 2

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

WO 2014/151043

3/38

4

wonjeumsaq

¢

woneupsaq |
tonjeunsaq

o9y § uonannsuy
CUPY ¢ uonannsuy
T4'sy 2 uononnsuy
LY] uonannsuy

4 ¢

UOT)BUT)SA(UOT)BUI)SA(UOT)BUINS3(UOT

toneunsaq

02 120[g

j TOLOLOSUES ¢y
¢ TONILOSUF> 9y
7 TOLOLOSUE> LY
[UOTMNSU> gY

¢ ‘b4

a)e[dura)
1318163y

1T ¥20[g

1¢ 120[q
PIT| TS| el | 1€ | 12 | 12l | &L | &l
€9 | 8¥ [G4 | ¢M | 1M | 94 | o4 [¥ 0z 1018
61 X201
81 ¥20[g
8 L 9 S v € T I
3 3 3 3 3 3 3 I
2 2 2 2 2 2 2)
11 1 1 1 1 1 1
nL o o n Qo n o n
o o0 o0 o0 0 0 0 0
s § § § § § § 3§
13)S1631 ST} 0) 1SA)e[AJ0IM
JeT) Y00[q 3} Jo IaquINU YIO[g
151 ¢11 121 1€ |FIT| &L ___N Al
I P 2: 2 A N

pajendod ST M3IA 3InOS

) moy pue 3jejdurd) 13)sbay

SUBSTITUTE SHEET (RULE 26)

¢ 10[g

—— > 1€ ¥20[g

PCT/US2014/024828

0 0|—— > 02 ¥201q

I 0 0 § ¥20[q

L ¥20[g

4/38

9 y20[g

G y20[g

- > b 120[g

¢ 120[g

¢ 120[g

1 Y0[g

| I 84 g ¢ld 82d ¢eq

>

b A A A A b h A b A h A A NN A N A

WO 2014/151043

(Juawrrpoquia JSIf) MIIA 30Imos uIyym Huryseapeorq Aduspuadaq

SUBSTITUTE SHEET (RULE 26)

WO 2014/151043 PCT/US2014/024828

5/38

Dispatch Broadcasting within source view (Second Embodiment)

YV Y Y Y Y Yy

81 52 83 §4 § S6 ST §8

Block 1

Block 2 >

Commit Pointer
__ Block3 ——>

Block 4
Block 5 B2 Bl B3 | Bl
Block 6
Block T
Block §

The compares are only enabled on the
blocks between the commit pointer
and the allocate pointer. All other

blocks are invalid. v
RT | R2 | RS R3
Block 201 115 | 13 | 12 N ——
Allocate Pointer y
——» Block 31 >
Block 32
Fig. 5

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

WO 2014/151043

6/38

S)IUQ UONNIAXT

spoq yojedsiq

9 ‘b4

A A A A
2eq 28 100
164 Dal— R r— 1€ Y20[g
g Apeay
A A
led ng Apeay 02 10[g
A A
feiry 10)29[3¢ 8 A20[g
L 120[q
9 y0[g
G J0[q
f 120[g
0
o «— | g Apeay e EE__E —
24 N g Apeay 2 100[g
14 ™ 1 Y90[g
wd 84 7 1d 8 IS 95 ¢ S ¢S TS

MAIJ UOT)II)ISU]

::::

punseapeorqg yaedsiq

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

WO 2014/151043

1/38

Read

Read Read Read

=) — o3 o -+ (¥ 1) b
b b b b b b b b
]]]]]]]]
e e e e e e e e
[—] [—] [—] [—] [—] [—] [—] [—]
=] =] =] =] =] =] =] =]
bl ———— ——]---—] - —_—— e __]
+= 3 |
(=3 R..M
[=%] w|=
=3 x|
(=]
L S I, e =" U U (Y AUt U (SNSRI RS
o
= S|
=3 A |t
= =03
=10~
(oS] =)
eF———————1 |I.M.|IP|||| |||
1= Dan»m
(== ..LM
— S |
=r-——————1 qmulnu.r |||
= S =
= |8
B3
=%
N N /N N
m 4 ‘
—p + —» + —p + —p + —p + —p + —p + —p +

Ready Bit

Ready Bit

Ready Bit

Ready Bit

Ready Bit

Ready Bit

Ready Bit

Ready Bit

Fig. 7

SUBSTITUTE SHEET (RULE 26)

WO 2014/151043

8/38

PCT/US2014/024828

Direct Selection of each particular port with

Range Exceed Bit

SELECTOR ARRAY

Range exceed bit

Ready Bit

O——

> Port |

> Port 2

& &8

Ready Bit

> Port 3
Port 4

Oo——

Ready Bit

Oo——

Ready Bit

O—

o B EH g

Fig. 8

SUBSTITUTE SHEET (RULE 26)

WO 2014/151043 PCT/US2014/024828

9/38

Parallel implementation of the adder tree

ulby

Adder X

Fig. 9

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

WO 2014/151043

10/38

0l ‘b1

a

+

il

oh

£\

oh \\ 7 oh
oh oh oh oh
oh oh oh oh oh oh ¢h oh

1

|

|

1

[

(x) 1oppe

1

|

|

Arejdurdxs we jo woryeyudwrajdur [ajjered rappe aAeg Aire)

1

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

WO 2014/151043

11738

AR

+ 4+ + + + + + + + + +
b b o o PG B B P DA B

T
JTUIU09

i
[® ysel

+ 4+ + + + + + + + + +

P B P © S PP P P P P

JIUIuIo)
a10Ja(

[[e YSe]

I

0

I

0

! 13]Jng Te[naiy

0 mary ssom. (yrurmzod 03 yxau)
0 : 13yurod yrururos
0

I (3yeaope 03 jxau)
0 13yutod dyeao[[y
I

snq Apy

s1appe Aeire 10)23[3s ay) bursn 13jurod
JIururod 3y) woiy burpre)s burnpayas 1of s)iq Apear Huryseyy

SUBSTITUTE SHEET (RULE 26)

WO 2014/151043 PCT/US2014/024828

12738

Register view entries populated by register templates

Register View

RIOOR9 R§ RT R6 RS R4 RI R2 Rl RO

Block F register

template snap shot

10 1

Register
K|{J(T|H|G|[TIT|E|D]|C| B | A |template snap
s e shot
Block F
20 2K 2 2 2
RS FIJ|F|H|G|T|E|D|F|B]|A
R10
Fig. 12

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

WO 2014/151043

13/38

MIIA 19)SIDAI PIINPAY

€l "bi
01y
Y|a|1|a|3|1|9|H|I]|[]1 Mm
A A A A A A A A
+ + + I 190[g
10US i i
deusoefdway | v [g (9l al Tl 1l9lmlirlI!|1
13)s1h9y 01 m
g
\ I
i \
|
|
I /
M M 4 ¢ W N W I / g

19

0d

e ¢ W 9N 9N 40

M3Tp I9)SIHAY

JUSUIPOQUI JSII] MIIA 13)SI631 Paonpay

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

WO 2014/151043

14/38

AE

MITA I9)SIDAI PAINpaY

07q
vlal1|lala|T1|9|uwl|1|l]|1 Mm
A A A 4 4 4 4 /\
+ + + J 10019
101s i i
deus ajerdwa) | § | ¢ | 9| € | T[T |9 | H|I [| X
1315163y " 0
RIPC \
BRI & L
R)oq
R N /
o 14 24 ¢4 W 9 9 I /

0 T4 24 & W 94 W -0
MITp I9)SIHAY

JUSUIIPOQUI3 PUOIAS MAIA Iajsibar paanpay

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828
15/38

WO 2014/151043

Gl ‘B4

"pabueyd jou are

SIL)UIA 3 JO 1SaI AL, "¢
Aq pajepdn bHuraq s1a)sihaz

A[uo ay) are gy pue ¢y

¢q: 0 I—N_
20—\

4

19

0 1M o4 & W ¥ N N 69
Joysdeug [eubiig

"pabuey jou are

SALI)UI) JO 1SaI AL, "7
Aq pajepdn buraq s13jsihaz

A[uo ay) are [y pue 1Y

sjoysdeus uaam)aq eI[ap oY) Jo JRULI0]

SUBSTITUTE SHEET (RULE 26)

WO 2014/151043 PCT/US2014/024828

16/38

Creating register template snapshots upon allocation of
blocks of instructions

Block
Number + v + v

Block
Number

Fig. 16

SUBSTITUTE SHEET (RULE 26)

WO 2014/151043 PCT/US2014/024828

11/38

RIO R R§ RT R6 RS R4 RI R Rl RO

Ba | Bb | Bd | Bb || Bc | Be | Bc | Bb || Be | Ba | Bd

Bf§§:+v+vvvvv+vv

RO=] 1 g B B

%6:v+vvvvvvv+v

Bg

My ¥ v ¥ Vv § ¥V V¥ § ¥V ¥

Bh (RS <—

Bh Bh

Bf%: v Y Y YV ¢ Y Y VYV Y ¥V Y
Bb=] | g Bi
Fig. 17

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

WO 2014/151043

18/38

gl b1

abe)s 1xau ay) 0} joysdeug

12

12

12

S—cam e — S

XTUI(

afe)s snoraaxd wror joysdeug

uorjejuawd[dun [erIag

#{

04
0y
Xq

SUBSTITUTE SHEET (RULE 26)

WO 2014/151043 PCT/US2014/024828
19/38
1234
Block# Previous Snapshot
1
I 21
d
. !
R2<— m 4
Bf |[R8<— .
Rl0« -
X
10
]
d 9
|
Rl mn
By |pg— 1 5
X
10
]
d
-
m | A I
B R v | '
- | 41 |
) W Mux |
LI :
]
i g JBh
-
m
. |R6 «— B
Bi R10 « L
X
10

Fig. 19

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

WO 2014/151043

20/38

S)U[) UOTNIIXT

$30100¢

v

SUOT)INI)SU]

Ayarerany a1y 13)s163y

MIA TOTINNSU]

SYD0[g

U0)NI3Xd Paseq YH0[g

$390100¢

MT) 901008

$)SRIPROI]

MIIA 19)sIhdY

N

saje[durd) 19)S169Y

N

TOTJRULI0] YI0[]

1ayayedsiq pue Ia[upayas ‘103RIo[y

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

WO 2014/151043

21/38

12 b1

I3JJ0q TORIO[[R A)RIPIULIAIU]

spod Y/ Ml
YUY ANUe-f 1a[MpayIg

eq i —r—
— x| €@
g, gy . s IO O £ R [l Sy
n| of
14 19 T
SN 0q 09 W g lomisog dof

283 j 92IS JO SYUNY IA[MPayds 7 POJL B 1OJInq J20[g

SUBSTITUTE SHEET (RULE 26)

WO 2014/151043 PCT/US2014/024828

22/38

Depiction of how threads are allocated in accordance with their
block numbers and thread ID

Fetch

Scheduler Array

Bx : Thl

Block Formation

Bz

: Thl
Register View
: Th2

- Thl
: Th2

- Thl

Fig. 22

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

WO 2014/151043

23/38

= o |- |

8

[—]

abe10)g [eatskyg / w

deur | pearyy,

(8|
¢d
19

(8|
¢d
19

AL

"2 Aq papiatp
N Paadxa jouues
SpeaIy) ioq 10]
19)109 3)RI0[[Y

UL 19N0) 3eIO[[Y [—

TUL 19)unoy 9edo[[y re——-

|n-.cc.—-||

sdeuwr peaIy) ay) jo
[01y100 3y} ybnoxyy pajudura[durr
ST SPeaIy) Ay} Jo yuauabeurefy

suorjeao] abeiroys [earsAyd oy jurod jey) sdewr rdjurod pearyy Huisn I3[npayas jo woryejudwrajdun aug

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

WO 2014/151043

24/38

—

Ty Ioyurod jrururos

Ilﬂlll¢
|

[
| 019 UL
\ 64 2UL

\ 84 UL

N\

19)u10d yrunuoy / 19 2L

—

TUL T8yutod 3yeao[[y

99 UL

o UL

AN

K —— AN

gul, 1oymod jrummo) !

abe10)g [eaisAyq

¢d TUL

19 TUL

84-TUL

LETIL

A L P —
2y 13yurod dyeaofry

O UL ‘g e 3Ie SN

)0q ‘d0ue)SuI ST} U

pyL © Pa%AXe JoUUED speary

oI T)0q 10] SIHUN0D 3)RIO[[Y
7], 19)unoy Jeo[y je—
1YL T9ynoy 3)eao[[y le—

68 UL

syutod 13jutod paseq peary) Huisn I3[mpayads Jo uoryejudwajdun aug

|n-|cc.—'||

SUBSTITUTE SHEET (RULE 26)

WO 2014/151043 PCT/US2014/024828

25/38
Dynamic counter based fair allocation of execution resources to threads

Commit pointer Thread 2
)9/ —r——

Commit pointer Thread 1
— Bl

B2

Fetch B3

B4

BS

—» Allocate Counter Thi B21 d—

- Allocate Counter Th B22 T
L2 cache miss

||_—-cc'-u|

B23

B6
Thread 1

12112122211/‘

/

Thread 2

Fig. 25

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

WO 2014/151043

26/38

A|
ojedsiq puosag

purpunoy

pue uornppy
Juiog bunjeof]

9)B[nuUInIIY

/

/Adnmig

A|
[ojedsiq 1sI]

Aldnmig
Jutod paxiy

Jurod hunjeof]

sqae) 21/11

TONNIIX]
/UONRIANIY SSAIPPY

9¢ b1

[ojedsiq
Pu02ag

ojedsiq
I

wonerad(Hurpunoy 4

aber0yg dumd,

abe10yg dumd,

Afdnmy
% o | Yuog Bunyeory
Adnnyy yuog paxig
\
IR PROT
IR peoT
[

. Ss3Ippy peof

I 198163y

yojedsiq [enq

(b) 6Y ‘PY qu§—>6Y
() wf qI>h

Sl ‘cul peoT->py

-

(7) [0 ‘eu] y—> dwap”
(1) 24 ‘T8 ONY—> ¢

¥20[g

SUBSTITUTE SHEET (RULE 26)

WO 2014/151043 PCT/US2014/024828

21/38

Dual dispatch transient Multiply-Accumulate

First Dispatch Second Dispatch

e
32 hlt\ \

64 bit

Multiply

Transient
Storage

Fig. 27

SUBSTITUTE SHEET (RULE 26)

WO 2014/151043 PCT/US2014/024828

28/38
Dual dispatch architecturally visible state
Multiply-Add
First Dispatch Second Dispatch

| e
32 hlt\ \

7
|
\'4
\
-1
P \
e \ 32 32
1 A
1

32 bit

Precision

Multiply

7

\ 32

Fig. 28

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

WO 2014/151043

29/38

S)I() UOTNIIXT

S)I() UOTNIIXT

S)L)) UONMIAXT

S)I() UOTNIIXT

6¢ ‘b1

urut ‘7Y WS —> 8y

g “TH PPY —> £

STOT)INIISUI JO Y0[q

Sjun uorndaxse

padnoif wo wor)naaxa I0] SYJ0[q UOLJINIISUI JO UOLJBULIO] PUB Ya}d] Y]

SUBSTITUTE SHEET (RULE 26)

0¢ 614

(DuTpoawd 159 /01G) UONBUNSI(pif : SUOIRUNISA 7
29 ‘pareys ‘d)eIpauIuI ST G p} :$3IM0S ¢

PCT/US2014/024828

WO 2014/151043

30/38

e NS
%H ﬂ%% (0[s Au0 R
/101q JIeH
JoArerxny A ¢d0 JoArerny
- doArerxny 7d0
M o 17 O 1 140
Nl /

NN

mom M Ee i
/40l JIeR

K 1d0 ed0 i mcam:_xwﬁc A~ W0

d0AreIny M 140 140 | dohmexy

1 i di

- J

09 ‘, ouerg ‘puaixe ubis ‘aaow HJiys do ‘Teatbo[;g0 Areixny

Durdnoig wonInt)sy]

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

31/38

1€ b1

4 2 ™\
ﬂ ﬂ % \ﬁ H [10[s auo _ N
/101q JIeH
gam___mw 40 Aequay 4 140
1 40 Areyang M 140 ; ﬂa Lreypy 140
| N
|
|
_ Tt 1
| Hﬂ H\ﬁ ﬂ%% Cwsao || |)
_ /00014 JIeR
m 140 @ 7 o p
JoArerxny 1d0 doAriny 0 140
-+ 3 140 ﬁsru___xé
1l 1])
_ LI \
PN (@@ sdA[ey [enuanbag
HH HH M (abe10js ou/burpremio] JUAISURI)) ([RLI3S) SIA[RH NWONY :¢
S (wrenswod 92mosas) ([d[[ered) SIA[RH NWOIY :7
\m\nswa_ ! | sy (paynoaxa Apuapuadapur) sA[RY [d[[ered :]
i ﬁ_ L .__a_,_v__ _ 1| ¥P0Ig IXT p : SadAL, wonnaaxg ya0[g

Jo[drx) /paired /a[burs ST yaea ‘SYI0[q J[BY/S)O[S 7 : SHO[S

WO 2014/151043

_ _ _ _ Il 3 3 TX3U0) J20[q % 10 J00d U] SITeq

SUBSTITUTE SHEET (RULE 26)

WO 2014/151043 PCT/US2014/024828

32/38
T0-bit J2-bit
T0-hit 32-bit
T0-hit 32-bit
10-hit Jo-hit
T0-bit 32-bit
T0-hit 32-bit
T0-bit 32-bit
T0-hit 32-bit
T0-bit J2-bit
10-hit g_%-hlt
T0-hit -bit
T0-hit 32-bit
@ 10-hit 32-Dit
= 10-bit g_%-hlt
— T0-hit -bit
& T0-hit 32-bit
g=3
o T0-bit 32-bit
= T0-bit 32-bit
— T0-hit 32-bit >
— 10-bit 32-Dit
~ B T0-hit J2-hit Sy
=W 10-hit 32-hit i
s 8 T0-hit 32-bit LL
g D [—————-- —_———e e — —
= & ! IO RYAT |
2 8 1 [I0ht 32-bit !
/A o | 105 32-bit .
= 8 1 [Ihit 32-bit |
.2 o | 105 32-hit i
2 = 1 [0 32-bit !
g .. | [0 32-hit |
=l R e i —— et :

I Z 101§ X I syp
UL
[

H WT? ??I :ui[s | o0l 3K
NN

Combined results storage of
two half blocks that make
up one virtual block storage

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

WO 2014/151043

33/38

S0 IR
[eonuASY 1Y

I9[0payas sMog
U3AT-PPO

¢¢ b1

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

WO 2014/151043

34/38

Juawhag

I 19ys109y Arerodura,

|4

!

Juauhag

I 19)s109y Arerodurd,

|4

!

i qumy
DPOGIEEY Y OV OV YV VY Yg

b X K
X X X

b X K
X X X

b X K
X X X

b X K
X X X

b X K
X X X

X

Rqumy

SHOJ SM0J SH0J S0 SMog SMog sod sHod

U3AT pPpo U

23 PO UAT PO UOAY DPO

SUBSTITUTE SHEET (RULE 26)

WO 2014/151043 PCT/US2014/024828

35/38

Guest flag architecture emulation

Centralized flag architecture Distributed flag architecture

Distributed Flag

Registers
F0 RO
Fl RI
\j \J
F15 R15

Fig. 35

SUBSTITUTE SHEET (RULE 26)

WO 2014/151043

Centralized Flag Register

36/38

—» Execution Units

Scheduler

’

Front End

GE

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/024828

Fig. 36

PCT/US2014/024828

/€ b1

31/38

WO 2014/151043

AR
X
AR 6l
X X
— 20 £l
g g AR L
hm M_H s19)sibay [eoshyg amydR)IaIy ol X
! | [earshyq TOISUAIXT 3[qey, Hurmeusy 1L
|
| m el ol Ik
m m Ty Ol adAy aiepdq wsaret
| | () 3
| | _-—>p14 | pI suononnsuf [eroadg
| | Pid
a H \\ _-==> ¢IY | &L suonesdp dnauryry
0y 0d \\ e g
s13)s16ay o7 T
ey paMqUISIQ \\ \\\\\\-// AR A SHIYS
B EINIE) v
bunyoen befy
aIM}IA)IIY 1 | 1L s[eatho
< >
dAlRN Jsang

SUBSTITUTE SHEET (RULE 26)

WO 2014/151043 PCT/US2014/024828

38/38

[
(==
4
[—1]

The front end/dynamic converter (hardware or software) categorizes
incoming instructions based on the manner in which they update
guest instruction flags
3801

'

The order in which those instruction types update their respective
guest flags is recorded in a latest update type table data structure.
3802

l

When those instruction types reach the scheduler (the in-order part
of the allocation/renaming stage), the scheduler assigns an implicit
physical destination that corresponds to the architectural type and
records that assignment in a renaming/mapping table data
structure.

3803

'

When a subsequent guest instruction reaches the allocation/
renaming stage in the scheduler, and that instruction wants to read
guest flag fields, the machine determines which flag architectural
types need to be accessed to perform the read.

3804

'

Read each flag individually from the physical register that holds its
latest value that was lastly updated, as tracked by the latest
update flag type table.

3805

Fig. 38

SUBSTITUTE SHEET (RULE 26)

International application No.

PCT/US2014/024828

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
GOBF 9/455(2006.01)i, GOGF 9/46(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 9/455; GO6F 15/00; GO6F 13/38; GO6F 12/00; GO6F 9/45; GO6F 9/46

Documentation searched other than minimum documentation
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

to the extent that such documents are included in the fields searched

eKOMPASS(KIPO

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
internal) & Keywords: emulation, flag, architecture,

instruction, schedule

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to clam No.

A Us 2002-0029308 Al (BABAIAN, B. et al.) 7 March 2002 1-19
See abst ract , paragraphs [0016]- [0026] , and fig. 1.

A Us 05751982 A (MORLEY, J. E.) 12 May 1998 1-19
See abst ract , col. 4, line 26 - col. 5, line 31, and fig. 3.

A Us 2004-0158822 Al (SANDHAM, J. H. et al.) 12 August 2004 1-19
See abst ract , paragraphs [0043]- [0053] , and fig. 2.

A Us 2003-0093776 Al (HILTON, R.) 15 May 2003 1-19
See abst ract , paragraphs [0023]- [0026] , and fig. 1.

A Us 2005-0289530 Al (ROBISON, A. D.) 29 December 2005 1-19
See abst ract , paragraphs [0038]- [0044] , and fig. 3.

| IFurther documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which isnot considered
tobe of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
specia reason (as specified)

"0" document referring to an oral disclosure, use, exhibition or other
means

"P' document published prior to the international filing date but later
than the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document istaken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to aperson skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

25 July 2014 (25.07.2014)

Date of mailing of the international search report

28 July 2014 (28.07.2014)

Name and mailing address of the ISA/KR
International Application Division
¢ Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Dagjeon Metropolitan City, 302-701,
™V Republic of Korea
Facsimile No. +82-42-472-7140

Authorized officer

YU, Jintae

Telephone No. +82-42-481-8530

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2014/024828
Patent document Publication Patent family Publication
cited in search report date member(s) date
us 2002-0029308 Al 07/03/2002 us 2002-0046305 Al 18/04/2002
us 2002-0059268 Al 16/05/2002
us 2002-0092002 Al 11/07/2002
Us 6732220 B2 04/05/2004
Us 6820255 B2 16/11/2004
us 7065750 B2 20/06/2006
us 05751982 A 12/05/1998 EP 0817996 Al 15/04/1998
EP 0817996 Bl 16/08/2001
wo 96-30829 Al 03/10/1996
us 2004-0158822 Al 12/08/2004 GB 2388218 A 05/11/2003
JP 2004-038923 A 05/02/2004
JP 4911868 B2 04/04/2012
us 2003-0149963 Al 07/08/2003
us 2008-0177985 Al 24/07/2008
Us 7331040 B2 12/02/2008
Us 8024555 B2 20/09/2011
us 2003-0093776 Al 15/05/2003 Us 7092869 B2 15/08/2006
us 2005-0289530 Al 29/12/2005 None

Form PCT/ISA/210 (patent family annex) (July 2009)

	abstract
	description
	claims
	drawings
	wo-search-report

