DEMANDE DE BREVET D'INVENTION

<table>
<thead>
<tr>
<th>N° de publication :</th>
<th>3 059 319</th>
</tr>
</thead>
<tbody>
<tr>
<td>(à n'utiliser que pour les commandes de reproduction)</td>
<td></td>
</tr>
<tr>
<td>N° d'enregistrement national :</td>
<td>16 61508</td>
</tr>
</tbody>
</table>

Date de dépôt : 25.11.16.

Demandeur(s) : HAGELBERGER JEAN-CLAUDE — FR.

Inventeur(s) : HAGELBERGER JEAN-CLAUDE.

Titulaire(s) : HAGELBERGER JEAN-CLAUDE.

Mandataire(s) : CABINET NUSS Société à responsabilité limitée.

COMPOSITIONS, INTERMEDIAIRES ET PROCEDES POUR LA FABRICATION DE MORTIERS ET DE BETONS, PRODUITS OBTENUS ET LEURS UTILISATIONS.

La présente invention a pour objet une composition de base pour la fabrication de mortier et de bétons caractérisée en ce qu'elle contient, en poids :
- de 20 % à 60 %, de sable fin d'un diamètre de 0,0625 mm à 0,485 mm,
- de 20 % à 45 %, de sable d'un diamètre de 0,465 mm à 2 mm,
- de 15 % à 30 %, de sable d'un diamètre de 2 mm à 4,75 mm,
- de 0,5 % à 3 %, de pouzzolane d'une granulométrie moyenne inférieure à 100 μm,
- de 0,01 % à 0,2 %, de carbone micronisé d'une granulométrie moyenne inférieure à 100 μm,

La somme de tous les constituants étant de 100 %.

Elle concerne également une composition hydratable pour la fabrication d'un mortier ou pour la fabrication d'un béton et une solution aqueuse d'hydratation pour la fabrication d'un mortier ou d'un béton ainsi que les procédés de fabrication de mortier ou de béton et le mortier/béton susceptibles d'être obtenus par la mise en œuvre desdits procédés, les utilisations d'un tel mortier et les utilisations d'un tel béton.
DESCRIPTION

La présente invention concerne une composition de base pour la fabrication d’un mortier ou de bétons, une composition hydratable pour la fabrication d’un mortier ainsi qu’une composition hydratable à compléter pour fabriquer un béton, une solution aqueuse d’hydratation, un procédé de fabrication de mortier et un procédé de fabrication d’éléments en béton, le mortier ou béton obtenu et leurs utilisations.

On connaît toutes sortes de mortiers ou de bétons et leurs procédés de fabrication et utilisations respectives.

Les technologies développées ces dernières années dans le domaine des mortiers et bétons avec des formulations de béton à très hautes performances (BFUP/BHP/BTHP) exigent des dosages en ciment très importants, jusqu’à 1000 kg de ciment par mètre cube de béton.

Or, la fabrication du ciment est une importante source de gaz à effet de serre. En effet, elle est à l’origine d’environ 7 à 8 % des émissions totales de CO₂ à l’échelle du globe. De plus, ces bétons, certes performants, ne peuvent avoir qu’un usage très ciblé.

Un autre problème avec les bétons connus repose sur le constat que les ouvrages actuels en béton armé sont depuis quelques années soumis à des phénomènes d’érosion qui se sont même accentués sur des bétons de nouvelle génération et ce malgré des dosages très élevées en ciments et additifs divers.

Ce phénomène d’érosion, de réaction chimique est principalement dû aux intempéries qui vont provoquer un phénomène d’hydrolyse et de lessivage des hydrates de ciments ou du gonflement de ces matériaux. Ces désordres sont accélérés par les pluies qui depuis quelques années sont devenues acides avec un pH de plus en plus bas favorisant grandement l’érosion des bétons jusqu’à atteindre les armatures en acier qui étaient protégées des agressions par le pH du béton jusque-là.

Une fois les armatures atteintes, la dégradation est très rapide et irréversible condamnant les ouvrages à court ou moyen terme. Ce qui protège les bétons armés est la composition du béton lui-même qui au moment de sa confection atteint un pH élevé, pH qui perdure dans le temps.

Or, en présence de facteurs oxydants, la couche externe va subir progressivement des modifications et/ou une décalcification qui
provoquent une chute du pH et du même coup une dé-passivation des armatures qui finissent par s’oxyder provoquant des désordres internes irréversibles.

Compte tenu de ce qui précède, il existe donc un réel besoin pour la fabrication de bétons moins gourmands en ciment, dont les propriétés physico-chimiques soient au moins équivalentes à celles des bétons connus, voire supérieures, notamment en termes de résistance à l’érosion chimique précitée et qui soient utilisables dans de nombreux domaines d’application, voire optimisés pour des applications particulières.

De même, il peut être intéressant d’avoir à sa disposition de nouveaux procédés de fabrication de mortiers.

Dans le cadre de la présente invention, il a été mis au point une composition de base pour la fabrication d’un mortier ou de bétons, caractérisée en ce qu’elle contient, en poids :

- de 20 % à 60 %, de préférence 20 % à 50 % et plus préférentiellement 20 % à 45 % de sable fin d’un diamètre de 0,0625 mm (inclus) à 0,465 mm (exclus),

- de 20 % à 45 %, de préférence 20 % à 40 % et plus préférentiellement 25 % à 35 % de sable d’un diamètre de 0,465 mm (inclus) à 2 mm (exclus),

- de 15 % à 30 %, de préférence 15 % à 25 % et plus préférentiellement 17 % à 21 % de sable d’un diamètre de 2 mm (inclus) à 4,75 mm (exclus),

- de 0,5 % à 3 %, de préférence 0,5 % à 2 % et plus préférentiellement 0,5 % à 1,5 % de pouzzolane d’une granulométrie moyenne inférieure à 100 µm, de préférence comprise entre 5 µm et 100 µm, et plus préférentiellement comprise entre 8 µm et 50 µm, et

- de 0,01 % à 0,2 %, de préférence 0,01 % à 0,15 % et plus préférentiellement 0,01 % à 0,1 % de carbone micronisé d’une granulométrie moyenne inférieure à 100 µm, de préférence comprise entre 5 µm et 75 µm,

la somme de tous les constituants étant de 100 %.

Grâce à cette composition de base on formule une composition hydratable pour la fabrication d’un mortier, caractérisé en ce qu’elle contient, en poids :
- de 85 % à 95 % de ladite composition de base selon l’invention et 5 % à 15 % d’un liant hydraulique consistant en de la chaux ou en un ciment en vue de la fabrication ultérieure d’un mortier.

Une composition hydratable destinée à être complétée en outre avec un granulat pour la fabrication d’un béton, est caractérisée en ce qu’elle contient, en poids :
- de 85 % à 95 % d’une composition de base selon l’invention,
 et 5 % à 15 % d’un liant hydraulique consistant en un ciment ou un mélange de ciments en vue de la fabrication ultérieure d’un béton, la somme des pourcentages faisant 100%.

Avantageusement, cette dernière composition hydratable est caractérisée en ce que le ou les ciments sont choisis dans le groupe formé par : les ciments Portland, les ciments fondues et les ciments blancs.
Selon l’invention, on formule une solution aqueuse d’hydratation pour la fabrication d’un mortier ou d’un béton à partir d’une composition hydratable selon l’invention, caractérisée en ce qu’elle comprend, en poids :
- 98,3 % à 99,4 % d’eau, de préférence d’eau douce potable, ayant un pH allant de 6 à 8, à 21 °C,
- 0,1 % à 0,7 % de carbone pulvéruent, de préférence de carbone végétal micronisé, et
- 0,5 % à 1,0 % d’un alcool, de préférence d’un alcool monovalent facilitant l’inclusion du carbone dans l’eau, de préférence de l’éthanol à 90°, la somme des pourcentages faisant 100%.

La présente invention a encore pour objet un procédé de fabrication de mortier, caractérisé en ce qu’il comprend essentiellement les étapes consistant à mélanger une composition hydratable selon l’invention avec une quantité suffisante d’une solution aqueuse d’hydratation selon l’invention jusqu’à l’obtention d’une pâte liante capable d’agglomérer, en durcissant, des substances variées.

Elle a également pour objet un mortier susceptible d’être obtenu par la mise en œuvre du procédé selon l’invention.

Elle a également pour objet un mortier caractérisé en ce qu’il présente une résistance minimum à la compression de 10 MPa ou caractérisé en ce qu’il présente une hydrophobicité au test de la goutte d’au moins 117°, de préférence d’au moins 150°.
Elle a encore pour objet un mortier et son utilisation dans la fabrication de crépis hydrophobes, notamment de crépis pour la protection contre des eaux de ruissellement et dans la fabrication d’éléments de construction préfabriqués devant présenter un aspect extérieur de pierre naturelle, de préférence polie.

Elle a également pour objet un procédé de fabrication d’éléments en béton par moulage, caractérisé en ce qu’il comprend essentiellement les étapes consistant à :

- mélanger dans un récipient, une composition hydratable selon l’invention avec une quantité suffisante d’une solution aqueuse d’hydratation selon l’invention jusqu’à l’obtention d’une pâte liante,
- ajouter, dans ledit récipient le granulat (de diamètre et de composition minérale) désiré selon le béton à obtenir, de préférence des graviers, soit un gravier roulé un gravier concassé ou un gravier recyclé équivalent,
- mélanger soigneusement jusqu’au parfait enrobage dudit granulat,
- verser le mélange obtenu dans un moule étanchéifiable,
- soumettre le mélange précédemment obtenu dans le moule encore ouvert à une opération de viblage afin d’éliminer au moins la majorité, sinon la totalité, d’éventuelles bulles d’air présentes,
- fermer ledit moule de façon étanche et laisser cristalliser le mélange à température et hygrométrie constantes pendant au moins 16 heures, de préférence pendant au moins 24 à 48 heures et plus préférentiellement pendant au moins 72 heures,
- démouler l’élément en béton formé, et
- laisser sécher le béton obtenu à l’air libre jusqu’à l’obtention du taux d’humidité d’utilisation final souhaité.

Elle a encore pour objet un élément en béton, en particulier élément structurel de construction en béton susceptible d’être obtenu par la mise en œuvre du procédé selon l’invention, un tel élément caractérisé en ce qu’il présente une résistance minimum à la compression de 13,4 MPa, l’utilisation d’un tel élément en béton dans la fabrication de constructions
flottantes ou sous-marines, notamment pour la fabrication de caissons étanches et hydrophobes ou dans la fabrication de stations d'épuration ou dans la fabrication, par un procédé de moulage, d'éléments de béton, notamment d'éléments décoratifs de parement intérieur ou extérieur, lesdits éléments ayant une surface externe brillante, lisse et hydrophobe et pouvant être avantageusement structurée en relief.

Grâce à la présente invention on peut réduire la proportion de ciment ou de chaux entrant dans la composition des mortiers ainsi réalisés, tout en augmentant les propriétés de ces matériaux. Avec une double réaction de cristallisation conjointe et différée, cimentaire d'une part et pouzzolanique d'autre part, on permet, au terme de la maturation dans des conditions d'humidité relative, une post-cristallisation de type hydrothermal qui conduit à la formation de cristaux de la famille des zéolites de type acidulaire, strätlingite probablement, de formule Ca₈Al₄(Al₄Si₄)O₈(OH)₄*10H₂O (cf. fig. 4a et 6a). Le développement de ces cristaux bien après la fin de la réaction cimentaire, dans la matrice cimentaire et à la surface tendent à compenser et à combler les retraits dimensionnels et les porosités ouvertes et interconnectées et confère de ce fait des propriétés multiples.

Grâce à la présente invention, on pense avoir modifié le processus de cristallisation des liants hydrauliques et liants aériens tel que ciment fondu, ciment Portland, ciment blanc, etc. ainsi que les chaux hydrauliques et chaux aériennes. Par ce processus, il y a un développement important d'hylates de strätlingie très peu présents dans les bétons et mortiers conventionnels modifiant la nature même de ces matériaux réduisant de façon significative la quantité de ciment ou de chaux nécessaire, les rendant ainsi à terme complètement hydrophobes, tout en maintenant l'échange gazeux nécessaire à un environnement saint, et leur conférant une plus grande résistance aux attaques chimiques ainsi qu'aux cycles de gels et de dégels. On évite également le retrait dimensionnel après séchage. Toutes ces propriétés confondues confèrent donc des caractéristiques favorisant notamment une longévité accrue des mortiers et bétons selon l'invention.

La faible teneur en ciment a également pour conséquence un abaissement de la température de cristallisation, ayant pour résultat dans un premier temps de réduire voir d'annuler totalement les retraits
dimensionnels du matériau ainsi réalisé et en second lieu de conserver une humidité résiduelle propice à une hydratation prolongée permettant une cristallisation plus complète des éléments constitutifs de ces matériaux.

Cette hydratation par la solution d’hydratation spécifique prolongée au-delà de la prise du ciment a pour effet la consommation quasi totale des cristaux de portlandites et d’ettringites en les transformant en hydrates plus stables dans le temps comme les gels de de type « c-s-h » ou ou « c-a-s-h ». La maturation dans des conditions favorable des matériaux ainsi obtenus conduit à des propriétés améliorées telles que l’hydrophobie et même une super-hydrophobie avec un traitement complémentaire améliorant à leur tour significativement la nature même de ces matériaux en termes de durabilité.

Pour les bétons, grâce au procédé de la présente invention, les résultats sont particulièrement visibles à la surface du matériau ainsi réalisé, son état de surface étant comparable à la surface d’un miroir ou plus précisément d’un granite avec un poli miroir. La mise en œuvre de ce procédé se prête particulièrement bien à la préfabrication.

L'invention sera mieux comprise, grâce à la description ci-après, qui se rapporte à des modes de réalisation préférés, donné à titre d'exemples non limitatifs, et expliqué avec référence aux dessins schématiques annexés, dans lesquels :

- la figure 1 représente un tableau donnant les compositions de différents produits (mortiers, bétons) dont ceux selon l’invention ;

- la figure 2 représente l’évolution de la masse dans le temps pour des dalles de 50 x 50 cm réalisés avec les compositions de la figure 1 ;

- la figure 3 représente une photographie de la réflexion d’un exemple de béton selon l’invention

- les figures 4a et 4b sont des photographies de deux échantillons agrandis 500x et 400x d’un mortier selon l’invention pour visualiser leurs structures ;

- les figures 5a à 5c sont trois photographies de trois échantillons agrandis 400x d’un mortier selon l’invention illustrant la cristallisation dudit mortier (fig. 5a à 5c) et une
photographie agrandie 400x correspondante d’un mortier selon l’état de la technique (fig. 5d) ;
- les figures 6a et 6b sont des dessins modélisant en 3D les structures d’hydrates visibles sur les photos 5a à 5c, 6a correspondant à une structure complète et 6b à la même structure tronquée ;
- la figure 7 est une photo de la surface d’un mortier M1 selon l’invention pour la mesure de son hydrophobicité ; et
- la figure 8 montre deux échantillons semi-sphériques d’un mortier selon l’invention, après démoulage, après 24 et 72 heures.

A titre d’exemples non limitatifs on se référera au tableau 1 ci-après qui donne, pour chaque objet réalisé, un ou plusieurs exemples de compositions avec la nature et les quantités des ingrédients utilisés.

Conformément à la présente invention on réalise tout d’abord une composition de base, ci-après CB1, pour la fabrication d’un mortier ou de bétons.

Cette composition de base CB1 pour la fabrication d’un mortier ou de bétons, caractérisée en ce qu’elle contient, en poids :
- 38,98 % de sable fin d’un diamètre de 0,0625 mm (inclus) à 0,465 mm (exclus),
- 30,15 % de sable d’un diamètre de 0,465 mm (inclus) à 2 mm (exclus),
- 19,5 % de sable d’un diamètre de 2 mm (inclus) à 4,75 mm (exclus),
- 1,5 % de pouzzolane d’une granulométrie moyenne inférieure à 100 μm, et
- 0,04 % de carbone micronisé d’une granulométrie moyenne inférieure à 100 μm.

Comme sable fin on utilise, par exemple, du sable fin de silice gris ou rouge de carrière ou son équivalent en matériau recyclé. Comme sable grossier on utilise, par exemple, un sable blanc de quartz roulé ou concassé ou son équivalent minéral recyclé (verre broyé et calibré). Comme sable très fin, on utilise, par exemple, du sable de quartz roulé ou concassé (sable à maçonnner) ou également un gravier fin composé de roche basaltique de carrière broyée et calibré.
Comme pouzzolane on utilise, par exemple, de la pouzzolane volcanique pulvérisée ou de la pouzzolane broyée issue de hauts fourneaux. Le carbone micronisé se trouve, par exemple, sous forme de charbon finement broyé ou sous forme de cendres volantes.

Les ingrédients sont simplement mélangées mécaniquement de façon homogène dans un récipient adéquat pendant quelques minutes afin d’obtenir une répartition parfaite des différents ingrédients aux moyen d’un malaxeur ou tout autre outil permettant de réaliser cette opération, la durée étant évidemment proportionnelle à la quantité du mélange.

Grâce à la composition obtenue on peut prévoir de fabriquer un mortier ou des bétons.

On prévoit donc, d’une part, une composition hydratable CHM1 pour la fabrication d’un mortier (désigné par M5), caractérisé en ce qu’elle contient, en poids (en masse) de 90,16 % d’une composition de base CB1 selon l’invention et 9,84 % d’un liant hydraulique consistant en de la chaux en vue de la fabrication ultérieure dudit mortier.

Comme chaux on peut prendre une chaux hydraulique ou une chaux aérienne.

D’autre part, on prévoit une composition hydratable CHB1 destinée à être complétée en outre avec un granulat pour la fabrication d’un béton (ci-après B1), caractérisé en ce qu’elle contient, en poids 90,16 % d’une composition de base CB1 selon l’invention et 9,84 % d’un liant hydraulique consistant en un ciment ou un mélange de ciments en vue de la fabrication ultérieure dudit béton B1.

Puis, on formule une solution aqueuse d’hydratation pour la fabrication d’un mortier, ci-après SHM1, ou d’un béton (désignée par SHB1) à partir de la composition hydratable CHM1, respectivement CHB1 précitées caractérisée en ce qu’elle comprend, en poids :

99 % d’eau douce potable, ayant un pH allant de 6 à 8 à 21°C,
0,4 % de carbone pulvérulement sous forme de carbone végétal micronisé, et
0,6 % d’éthanol à 90° pour SHM1 et, d’autre part :

99 % d’eau douce potable, ayant un pH allant de 6 à 8 à 21 °C,
0,2 % de carbone pulvérulement sous forme de carbone végétal micronisé, et
0,8 % d’éthanol à 90° pour SHB1.

Grâce à ces éléments, il devient possible de prévoir un procédé de fabrication d’un mortier M1, caractérisé en ce qu’il comprend
essentiellement les étapes consistant à mélanger la composition hydratable CHM1 avec une quantité suffisante d’une solution aqueuse d’hydratation SHM1 précitée jusqu’à l’obtention d’une pâte liante capable d’agglomérer, en durcissant, des substances variées.

A titre d’exemple on mélange 2000 kg de CHM1 avec 200 litres de SHM1 pour obtenir 1 m³ de mortier M1.

Les mélanges se font avantageusement dans un récipient malaxeur avec une vitesse de rotation de l’ordre de 30 tours par minutes pour des temps de mélange de l’ordre de quelques minutes.

De même, on prévoit avantageusement un procédé de fabrication d’éléments en béton par moulage, caractérisé en ce qu’il comprend essentiellement les étapes consistant à :

- mélanger dans un récipient, la composition hydratable CHB1 susvisée avec une quantité suffisante d’une solution aqueuse d’hydratation SHB1 susvisée jusqu’à l’obtention d’une pâte liante,
- ajouter, dans ledit récipient un granulat de type gravier roulé ou concassé d’un diamètre moyen entre 4 et 20 mm pour le béton B1 à obtenir,
- mélanger soigneusement jusqu’au parfait enrobage desdits granulats,
- verser puis soumettre le mélange précédemment obtenu dans un moule étanche (encore) ouvert à une opération de vibraison afin d’éliminer au moins la majorité, sinon la totalité, d’éventuelles bulles d’air présentes,
- fermer ledit moule de façon étanche et laisser cristalliser le mélange à température et hygrométrie constantes pendant au moins 16 heures
- démouler l’élément en béton formé, et
- laisser sécher le béton (désigné ci-après par B1) obtenu à l’air libre jusqu’à l’obtention du taux d’humidité d’utilisation final souhaité.

A titre d’exemple, le béton B1 précité contient de 2 à 7 % en poids d’humidité au démoulage. Les autres exemples suivants sont également non limitatifs.
Pour la fabrication du béton on incorpore les ingrédients dans un malaxeur adapté jusqu’à une homogénéisation complète du mélange. On met le mélange obtenu dans un moule et on vibre suffisamment afin de faire remonter les bulles d’air contenu dans le mélange.

Les mélanges cités en exemples sont particulièrement bien adaptés pour la préfabrication de par la précision de restitution des dimensions, de rendu de surface ou de texture de type architectonique. Le contrôle du taux d’humidité de l’environnement pour la maturation est souhaitable pour l’optimisation de ses propriétés mécaniques et esthétiques.

Pour un mortier de coulage de gravier roulé ou concassé on prend également les proportions citées dans le tableau de la figure 1 et on mélange soigneusement comme dans l’exemple précédent.

Une fois le mélange obtenu, on incorpore le gravier propre et lavé avec juste le taux d’humidité résiduel afin que le gravier n’absorbe pas l’eau contenu dans le mélange déjà réalisé. Puis on mélange à nouveau le tout jusqu’à homogénéisation et remplir le moule par le moyen le plus adapté. Puis on fait vibrer jusqu’à élimination des bulles d’air.

On obtient alors un volume de béton augmenté de la quantité de gravier incorporé au mélange.

Pour les enduits à la chaux afin de garder une plus grande souplesse de mise en œuvre en reprenant l’exemple M5 susvisé, on remplacera le ciment par de la chaux.

Les ingrédients sont donnés dans le tableau de la figure 1 précité.

Un plastifiant dans la gamme des supers-plastifiants de troisième génération à base de polycarboxylate afin d’améliorer la plasticité et réduire la teneur en eau peut être également utilisé.

Il suffit de mélanger intimentement tous les éléments et d’hydrater selon la consistance désirée. Les précautions d’utilisation sont les mêmes que pour un enduit classique, c’est-à-dire appliquer sur un support humide et à l’ombre du soleil afin d’éviter une déshydratation trop rapide. En durcissant au bout de deux jours, il devient hydrophobe et au bout de quinze jours, il atteint la dureté d’un béton.

Il n’est plus utile de combiner la chaux avec du ciment pour arriver à une résistance mécanique suffisante pour protéger le support. Ce mortier est particulièrement bien adapté à la maçonnerie de pierre naturelle
ou à la restauration d’ouvrages ou d’édifices anciens grâce à une grande compatibilité due à une nature très proche de leurs constituants respectifs.

Pour mettre en évidence certaines propriétés advantageuses des produits selon l’invention on a réalisé les tests et essais suivants :

Test d’hydrophobie :

On utilise un échantillon de mortier M1 : Sur la surface lisse du parement la mesure du coefficient de tension superficiel a donné un angle de contact de 87° à l’avancé et 25° l’angle de reculé, dépassant les valeurs de la tension de surface, par exemple, d’un plexiglas qui est de 81° à l’avancé et 20° l’angle de reculé. Sur la face opposée du même échantillon, surface non lisse l’angle de contact mesuré est de 117° mais l’angle de reculé n’est pas mesurable du fait d’une forte hystérésis de la surface.

Ci-dessous, un tableau comparatif des angles de contact de plusieurs matériaux et des échantillons du mortier M1 selon l’invention.

<table>
<thead>
<tr>
<th>Matières</th>
<th>Avancés</th>
<th>Reculés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plexiglas</td>
<td>81°</td>
<td>20°</td>
</tr>
<tr>
<td>Inox</td>
<td>78°</td>
<td>32°</td>
</tr>
<tr>
<td>Cuivre</td>
<td>108°</td>
<td>47°</td>
</tr>
<tr>
<td>Laiton</td>
<td>84°</td>
<td>33°</td>
</tr>
<tr>
<td>Aluminium</td>
<td>83°</td>
<td>14°</td>
</tr>
<tr>
<td>PVC</td>
<td>91°</td>
<td>11°</td>
</tr>
<tr>
<td>Téflon</td>
<td>95°</td>
<td>67°</td>
</tr>
<tr>
<td>Mortier HP (haute performance) de l’état de la technique « E.T. »</td>
<td>48°</td>
<td>15°</td>
</tr>
<tr>
<td>Mortier M1 selon l’invention côté parement</td>
<td>87°</td>
<td>30°</td>
</tr>
<tr>
<td>Mortier M1 selon l’invention côté dos</td>
<td>117°</td>
<td>/</td>
</tr>
</tbody>
</table>

Les résultats du test précité mettent en évidence un état intermédiaire entre un mouillage partiel et un mouillage nul de la surface.
lisse de parélement avec une très faible tension de surface ou hystérésis obligeant les gouttes à se regrouper à la manière des surfaces super-hydrophobes (cf. figure 7). Des résultats similaires sont obtenus avec le béton B1 selon l'invention.

Test de perméabilité des mortiers:
La surface du mortier M1 selon l'invention durci au terme de sa cristallisation voit sa porosité relative et incompressible inhérente à tout matériau cimentaire, tellement modifiée que seule l'eau en phase gazeuse permet l'imprégnation partiel de la surface dans de faibles proportions, rappelant que la taille microscopique de la molécule d'eau est de 0,4 nm. Les propriétés de mouillage ou de non-mouillage ont été mises en évidence dans le test d'hydrophobie qui montre que la surface hydrophobe n'est pas due à un film étanche quelconque mais à la cristallisation caractéristique, le matériau demeurant partiellement poreux, mais que ce sont les microcristaux générés dans la matrice cimentaire qui réduisent la tension de surface superficielle qui tend à repousser l'eau l'empêchant ainsi de s'infiltrer en profondeur dans la structure dudit mortier. Il semble que pour ce matériau, une fois arrivé au seuil de saturation des cristaux, la vapeur d'eau est bloquée à la surface pour se condenser puis s'écouler ledit matériau retrouvant son état sec initial en quelques secondes.

Ce test a été réalisé avec une sphère creuse faite avec du mortier M1, d'un diamètre 80 mm et d'une masse de 221 grammes maintenue immergée totalement pendant 12 heures dans un récipient rempli d'eau. Au terme du temps immersion et immédiatement après égouttage, la masse de ladite sphère mesurée est de 228 grammes, ce qui correspond à un gain en masse de 3,18 %. Compté-tenu du fait que la sphère est creuse l'eau absorbée correspond uniquement aux porosités directement accessibles. Les dimensions et quantités de pores dans la matrice cimentaire sont équivalentes, voire plus importantes et dues principalement à la plus faible quantité de ciment que dans la plupart des mortiers et bétons. Ce qui diffère des compositions habituelles c'est la phase de cristallisation composée de gel c.s.h combinée aux cristaux de strätlingite qui tend à combler et à isoler les pores entre eux annulant les tensions inter-granulaires ainsi que les tensions de surface limitant le retrait exogène et la perméabilité du matériau.
Test de prise de poids (masse):
Le caractère évolutif de la matrice cimentaire est mis en évidence par des échantillons sous la forme d’éprouvettes de dalles de 50 cm x 50 cm. Les compositions des dalles sont données dans le tableau de la figure 1.

Les résultats sont représentés sur les graphes de la figure 2 où l’on constate, après une période d’évaporation de l’eau non liée, une augmentation de la masse directement en corrélation avec le caractère hydrophobe du matériau. Ces résultats vont à l’encontre des observations sur mortiers et bétons courants, séchés à l’air libre. Seuls les mortiers et bétons ayant subi une période de cure immergée dans un bassin font état d’un gain de masse correspondant à des quantités d’eau non liée consommée pendant l’hydratation prolongée. Il semblerait donc que les compositions selon l’invention soient, dans certains cas au moins, à même de prolonger l’hydratation même à l’air libre sans générer de retrait exogène ou de retrait de séchage.

On a pris des mortiers de plusieurs compositions cimentaires pour la base des tests.

On notera qu’aucun béton n’est présent dans ces éprouvettes, c’est un choix volontaire pour deux raisons, d’une part pour la masse, en effet les granulats présent dans le béton aurait engendré des pièces d’épaisseur trop importante pour la bonne marche des tests, d’autre part il est connu que dans un béton la partie la plus fragile est le mortier qui le compose, les graviers ou galets n’étant généralement pas le maillon faible dans la composition d’un béton.

Afin qu’il n’y ait pas d’interférence entre les différents processus lors de la cristallisation des différents mortiers, c’est-à-dire d’une part le durcissement du matériau cimentaire, et d’autre part la cristallisation liée à la production d’hydrates secondaires et enfin l’évaporation d’eau excédentaire ou résiduelle du mélange de départ, il a été défini un format d’échantillonnage de forme carré de 50 cm de côté par 8 mm d’épaisseur pour atteindre un seuil d’humidité minimum.

Cette dimension correspond également à un volume de 2 décimètres cube qui semble être la dimension minimum en rapport à sa masse, afin d’obtenir des résultats mesurables sans avoir à recourir à un matériau trop sophistiqué.
Le poids des échantillons restant sous la barre des 5 kilogrammes, ils pourront être pesés sur une balance électronique au grammme près.

Avec une épaisseur au-delà de 2 cm il y a un phénomène de rétention d’eau qui va fausser les mesures. Le dimensionnement permet également de procéder à un test non destructif par sondage pour mesurer la fréquence de résonnance correspondant à l’évolution de la densité des mortiers testés. La conservation des échantillons se fait dans un local à température ambiante, d’où les micro-variations visibles sur le graphique courbe comparative d’évolution de masse de la figure 2 correspondant aux micro-variations du taux d’humidité extérieur.

Les résultats des relevés sur les échantillons de différents ciments (dalles de 50 x 50 x 0,8 cm) ont été représentés sur la figure 2:

– Dalle HP témoin, (selon l’état de la technique) composée de mortier de scellement Weber HP avec un dosage de 900 kg/m³ dont une part de fumée de silice en guise d’agent pouzzolanique déjà présent dans la composition et d’autres additifs comme les super plastifiants etc.

Résultats:
Quantités d’hydrates secondaires produits selon les types de mortier :

• Dalle HP: 73 grammes (36,5 kg/m³) pour le mortier WEBER HP réalisé avec de l’eau courante.

• Dalle R Portland: 80 grammes (40 kg/m³) pour le mortier au ciment portland M2 réalisé avec la solution d’hydratation correspondante.

• Dalle T blanc: 41 grammes (20,5 kg/m³) pour le mortier au ciment blanc M3 réalisé avec la solution d’hydratation correspondante

• Dalle T silice: 98 grammes (49 kg/m³) pour le mortier au ciment blanc M4 réalisé avec la solution d’hydratation correspondante.

• Dalle Z: entre 4 et 5 grammes (0,2 kg/m³) pour le mortier au ciment fondu sans ajouts pouzzolaniques et sans la
solution carbonée réalisé avec de l’eau courante (mortier pas conforme à la présente invention désigné par M1*).

- **Dalle U** : 30 grammes (15 kg/m³) pour le mortier M1’ au ciment fondu avec la solution d’hydratation correspondante.

Les résultats ont permis de mettre en évidence une évolution progressive du matériau. Après démoulage de ces dalles, des mesures s’étalant sur une période d’une année, ont démontré qu’après plusieurs jours d’évaporation progressive de l’excès d’eau contenue dans ces dalles la courbe de masse s’inverse et reprend une phase ascendante. Cette phase ascendante est directement liée à la production d’hydrates secondaires et à l’évolution du caractère hydrophobe du matériau.

Pour la dalle Z, sa masse se stabilise au bout d’une période de 60 jours et n’aura pris que 5 grammes. C’est la seule dalle qui n’a pas bénéficié d’ajouts pouzzolaniques, ainsi que de solution d’hydratation, hormis la dalle HP du mortier WEBER. Au terme de cette période de croissance les autres échantillons auront pris entre 15 kg et 49 kg pour 1 mètre cube de mortier. Cette masse supplémentaire correspond à des hydrates secondaires produits indépendamment de la prise du ciment et se poursuivrait bien au-delà du temps de prise de ce dernier. Des résultats sur des échantillons de compositions similaires aux dalles (figure 2) âgés de plus de six mois ont démontré :

- une hydrophobie totale de la surface,
- une étanchéité totale à l’eau. Après une immersion de plusieurs heures dans l’eau et après égouttage les pesées avant et après trempage ne révèlent qu’un infime écart de poids de l’échantillon ; seule une coloration de surface de l’échantillon qui disparaît en quelques secondes au moment de l’égouttage peut être notée.

Un autre test comparatif où deux échantillons sont soumis aux intempéries depuis 9 mois a été réalisé:

- Echantillon A réalisé avec un mortier témoin (mortier weber HP) dosé à 900 kg par m³ de ciment,
- Echantillon B réalisé avec du mortier M1 selon l’invention.

Bien que les deux échantillons ne révèlent aucune dégradation visible, l’échantillon témoin A s’est couvert partiellement de dépôts verdâtres correspondant à des algues microscopiques qui sont l’une des
 principales causes d’érosion des mortiers et bétons alors que l’échantillon B n’a subi aucun changement d’aspect. Partant de ces observations ainsi que des tests et mesures sur les dalles 50 x 50 cm de composition selon l’invention (cf. figure 1) qui montrent une évolution positive en terme de résistance et d’hydratation à l’air ambiant, sauf ambiance particulièrement corrosive, il n’y pas de limite de durabilité de ce matériaux.

Tests sur la nature réfléctive des mortiers:

Ces tests ont pour but de mettre en évidence la structure cristalline et hautement réfléctive du mortier M1 ou M3 à base de liant hydraulique selon l’invention, particulièrement au ciment fondu par le procédé selon l’invention.

A l’instar d’une photographie aux rayons X, le mode d’observation utilisé consiste à diffracter par réflexion un faisceau de laser vert de longueur d’onde de 532 nm sur la surface d’un échantillon parfaitement sphérique et lisse, le rayon projeté sur une portion de cette surface correspondant à 6 mm² et allant se diffracter et se réfléchir sur un écran, à savoir une surface blanche et plane produisant ainsi une image projetée et agrandie de la surface frappée par le faisceau laser et ce dans des conditions d’obscurité suffisante pour permettre un contraste correct des clichés.

Il est ainsi mis en évidence, d’une part, la nature cristalline et hautement réfléctive d’une grande partie de la surface visée et, d’autre part, la forme et la structure de ces zones réfléctives par un agrandissement de l’image diffractée allant de 68 x à 120 x le facteur d’agrandissement correspondant au diamètre des sphères utilisées (diamètres 45 mm, 55 mm ou 80 mm) et de la distance de réflexion à l’axe de la sphère de 2,74 m (voir figure n° 3). L’analyse de la figure démontre que le faisceau s’est diffracté en un nuage de points lumineux en surbrillance correspondant à la surface hétérogène du matériau cimentaire sans pour autant être absorbé par celui-ci.

Ce nuage de points agrandi de 68 x à 120 x met également en évidence une structure organisée de micro cristaux (cf. figure 4b et 6b). À titre de comparaison, sur des mortiers courants, la très faible réflexion des échantillons avec un mortier classique ne permet pas d’obtenir de figure comparative puisque le faisceau laser est absorbé et diffracté totalement sur une distance comprise entre cinq et dix centimètres.
Afin de mettre également en évidence le caractère évolutif de la cristallisation avec le prolongement de l'hydratation, deux échantillons ont été réalisés (cf. figure 8) avec un mortier M3 dans une même gâchée. Les échantillons ont été démoulés respectivement à 24 h et 72 h après coulage. On remarque visuellement une réflectance très amplifiée avec l'échantillon démoulé à 72 h. Les mêmes résultats sont observables sur les échantillons de composition cimentaire M1/M1’/M2/M3/M4/B1/B2/B3/B4 avec de petites variations liées à la nature même des différents ciments.

Mesure de la brillance :

Afin de caractériser les valeurs de brillance selon la norme ISO 2813 l’angle de mesure pris en compte est celui de 85° en raison de la nature hétérogène du matériau, les valeurs relevées sont de 200 GU (Gloss Unit) ou 100 %.

Tests de résistance :

Pour valider les d'échantillons de dalles test de 50 x 50 x 0,8 cm de composition M1 et B1 selon l'invention, des éprouvettes ont été testées au laboratoire du LERM à ARLES (FR) sur des échantillons de même composition que les dalles (cylindres de 11 x 22 cm pour les bétons et prismes de 4 x 4 x 16 mm pour les mortiers).

Les essais ont été effectués selon le principe des normes françaises actuellement en vigueur:
- NF EN 196-1 (avril 2006) Méthodes d'essais des ciments - détermination des résistances mécaniques
- NF EN 12390-3 (avril 2012) Résistance à la compression des éprouvettes.

Résultats :

Mortier zéolite M1 : résistance à la flexion = 2 MPa ; résistance à la compression = 10 MPa (prismes précités).

Béton zéolite B1 : résistance à la compression = 13,4 MPa (cylindres précités).

Les échantillons ont volontairement été réalisés avec des teneurs en ciment minimum afin de mettre en évidence la réaction de nature pouzzolanique particulière dans la matrice cimentaire.

Pour les échantillons de béton testés, on obtient déjà un matériau écoefficient (avec une résistance à la rupture de 13,4 MPa pour un dosage en ciment de 125 kg par m³, soit une classe C8/10 à C12/15 selon la
norme NF EN206/CN) pour un bon nombre d'usages et applications à destination non structurelle. Mais pour répondre aux exigences d'un béton de structures (C25/30 ou plus), il faut adapter les dosages afin d'atteindre les valeurs de résistances demandées.

On peut passer de 125 à 212 kg par m³ pour obtenir un béton répondant à la norme NF EN206/CN avec une résistance d'au moins 30 MPa pour un dosage en ciment nettement inférieur au taux de 280 kg par m³ prescrit.

Le but d'adapter les performances du matériau à la durée de service d'une construction, vise à réaliser des ouvrages qui tiennent compte des enjeux environnementaux. Il est indispensable de maîtriser et de réduire l'énergie nécessaire en adaptant les matériaux et leurs productions dans leurs mises en œuvre pour les constructions et également limiter la pollution générée par cette activité.

Ces valeurs obtenues correspondent à la norme NF EN206/CN de la classe C8/10 à C12/15. Il faut préciser que les valeurs obtenues correspondent à des valeurs de résistances minimales qui seront ajustées pour les éléments de construction en bétons à usage de structure correspondant à un béton C25/30.

Photos et leurs commentaires :

Comme on le voit sur les figures 5a, 5b, 5c, 5d qui représentent respectivement des vues (agrandies 400x) au microscope des échantillons M1 selon l’invention et d’un échantillon de mortier standard (selon l’état de la technique), il est clairement mis en évidence la différence de nature entre le mortier HP weber et le mortier selon l’invention, la surbrillance visible sur les figures 5a à 5c correspondant à la réflexion de la lumière sur des arrangements de cristaux de strätlingite amalgamés dans une phase vitreuse.

Tests sur des mortiers M5 et enduits à la chaux :

Des tests sur des échantillons ont été réalisés sur des tuiles plates en remplacement du support traditionnel en brique de terre cuite pour l’expérience. Ces échantillons de composition analogue au mortier zéolite en remplacement du ciment par de la chaux, mesurés sur une période de plusieurs mois, ont mis en évidence le caractère évolutif, vers une augmentation de dureté et une hydrophobie quasi-total de la face externe de l’enduit qui est ainsi protégé des lessivages dû aux intempéries et de
l’érosion provoquée par les phases de gel et de dégel, à titre d’exemple un
mur de soubassement d’une construction contenant un pourcentage
d’humidité élevé due à la capillarité du matériau et à l’humidité du sol sera
protégé de l’érosion par cet enduit grâce à sa propriété d’échange hydrique
à sens unique, qui laisse transpirer l’humidité vers l’extérieur mais empêche
l’imprégnation depuis la face externe par les eaux. Le taux d’absorption de
l’eau depuis la face externe est inversement proportionnel à l’âge de
l’échantillon garantissant ainsi un matériau respirant mais non absorbant,
garantissant ainsi une bonne régulation du taux d’hygrométrie.

En résumé, la présente invention a donc également pour objet :
- un mortier susceptible d’être obtenu par la mise en œuvre
du procédé selon l’invention,
- l’utilisation d’un tel mortier dans la fabrication de crépis
hydrophobes, notamment de crépis pour la protection contre
des eaux de ruissellement,
- l’utilisation d’un tel mortier dans la fabrication d’éléments
de construction préfabriqués devant présenter un aspect
extérieur de pierre naturelle, de préférence polie,
- un élément en béton, en particulier élément structurale de
construction en béton susceptible d’être obtenu par la mise
en œuvre du procédé selon l’invention,
- l’utilisation d’un tel élément en béton dans la fabrication de
constructions flottantes ou sous-marines, notamment pour la
fabrication de caissons étanches et hydrophobes,
- l’utilisation d’un tel élément en béton dans la fabrication de
stations d’épuration,
- l’utilisation d’un tel élément en béton dans la fabrication,
par un procédé de moulage, d’éléments de béton,
notalement d’éléments décoratifs de parement intérieur ou
extérieur, lesdits éléments ayant une surface externe
brillante, lisse et hydrophobe, et pouvant être structurés en
relief.

De par son processus de cristallisation amplifié, les procédés
selon l’invention exigent une quantité réduite en ciment, jusqu’à 1/20ème
de sa masse totale. Par comparaison à un béton de qualité architectonique
dosé à 500 kg de ciment pour un mètre cube, le procédé permet de réduire
jusqu’à 350 kg le ciment, passant ainsi à 150 kg pour un béton de qualité très proche, permettant de faire des économies considérables.

Outre l’économie en ciment il permet de réduire le bilan carbone dû à la quantité d’énergie nécessaire à la production des ciments et des chaux. À titre d’exemple, pour 1000 mètre cubes de béton 200 tonnes de ciment seront économisées, soit à raison de 930 kg de CO₂ la tonne de ciment une économie de 186 tonnes de CO₂ à quoi il faut ajouter les tonnes de CO₂ générées par la production de chaux dans des proportions approchantes.

Ledit procédé permet ainsi de réduire d’environ 75 % l’empreinte carbone sur l’environnement.

Les mortiers ou les matériaux à base de chaux selon l’invention sont totalement hydrophobes tout en restant perméables à l’air, permettant ainsi de ne pas se gorger ni de se dissoudre par un phénomène d’électrolyse mais de réguler le taux d’hygrométrie de l’air en absorbant et en filtrant l’excès l’humidité dans l’air ambiant. Une autre propriété associée est une résistance aux feux accrue. Grâce à une perméabilité minimum aux échanges gazeux il n’y a pas d’accumulation de pression dans les pores internes du matériau, cette dernière étant la principale cause d’éclatement des bétons qui contiennent toujours une part incompressible d’eau.

Le fait que seule une petite quantité de ciment ou chaux entre dans la composition de ces matériaux, ne génère aucun retrait ou un retrait quasi nul et par conséquent ne provoque aucun faïencage, conservant ainsi l’intégrité structurelle du matériau. Il en résulte en outre une résistance accrue face aux attaques acides, tant les acides de fabrication industrielle que les acides naturels tels que les algues, les mousse responsables de la dissolution des liants responsables de l’érosion des bétons, des mortiers et des enduits. Grâce à son type de cristallisation les matériaux deviennent semi-translucides à l’instar d’une vitrification ce qui peut être intéressant sur le plan esthétique.

Pendant la réaction de cristallisation des hydrates se forment dans les mortiers humides, produisant un gel qui épouse fidèlement la surface de contact du moule conservant parfaitement ces dimensions et garantissant la reproduction parfaite des surfaces après démoulage et sans retrait mesurable après séchage. A la surface des pièces, les hydrates forment une vitrification de surface restant parfaitement à une échelle
moléculaire toutes les textures. Cette surface durcit en même temps que la maturation des bétons. Son caractère hydrophobe évolue de la même façon.

Des tests ont permis de mettre en évidence l'évolution progressive du matériau. Après démoulage des dalles citées à la figure 1, des mesures s'étendant sur une période de plusieurs mois, ont démontré qu'après plusieurs jours d'évaporation progressive de l'excès d'eau contenue dans la dalle, la courbe de masse s'inverse et reprend une phase ascendante. Cette phase ascendante est directement liée à la production d'hydrates secondaires et à l'évolution du caractère hydrophobe du matériau.

La masse se stabilise au bout d'une période allant de 300 à 400 jours sans modification dimensionnelle. Au terme de cette période de croissance l'échantillon aura pris entre 15 et 50 kg pour 1 mètre cube de mortier. Cette masse supplémentaire correspondant à des hydrates secondaires produits indépendamment de la prise du ciment et se poursuivant bien au-delà du temps de prise de ce dernier.

Pour les enduits à la chaux, des tests sur des échantillons ont été réalisés sur des tuiles plates en remplacement du support traditionnel en brique de terre cuites pour l'expérience. Ces échantillons mesurées sur une période de plusieurs mois, on mis en évidence le caractère évolutif, vers une augmentation de dureté et une hydrophobie quasi-totale de la face externe de l'enduit qui est ainsi protégé des lessivages dus aux intempéries et de l'érosion provoqué par les phases de gel et de dégel, à titre d'exemple un mur de soubassement d'une construction contenant un pourcentage d'humidité élevé due à la capillarité du matériau et à l'humidité du sol sera protégé de l'érosion par cet enduit grâce à sa propriété d'échange hydrique à sens unique, qui laisse transpirer l'humidité vers l'extérieur mais empêche l'imprégnation depuis la face externe par les eaux. Le taux d'absorption de l'eau depuis la face externe est inversement proportionnel à l'âge de l'échantillon garantissant ainsi un matériau respirant mais non absorbant, garantissant ainsi une bonne régulation du taux d'hygrométrie.

Les possibilités esthétiques et architectoniques sont si variées que les procédés selon l'invention élargissent considérablement les domaines d'application des matériaux ainsi réalisés. Ci-après, une liste non exhaustive des applications possibles :

- éléments de constructions écologiques avec des propriétés de surface autonettoyantes et hydrophobes face aux eaux de ruissellements,
humidité, etc. (remplace tout système d’étanchéité préalable tels que cuvelage, complexe d’étanchéité, enduits élastomères ou incorporation d’adjuvants dans le béton même),

- éléments de constructions sous-marines, notamment plateformes avec coque en béton, îles artificielles ou coques de béton pour sa résistance à l’érosion et son imperméabilité aux liquides...

- éléments de construction en béton préfabriqués, en infrastructure pour sa résistance à l’imprégnation par capillarité des eaux, nappe phréatique…

- éléments de construction en béton préfabriqué, en superstructure pour son bon comportement face aux intempéries aux cycles de gel et de dégel et même aux températures extrêmes,

- éléments préfabriqués ou appliqués pour maisons bioclimatiques, pour une gestion naturelle du rayonnement au travers de ses surfaces ainsi que les propriétés filtrantes et respirantes des matériaux tels que les enduits, et panneaux décoratifs en intérieur, extérieur ou zones humides comme les salles de bain ou saunas, et

- éléments préfabriqués d’habillage de surfaces décoratives à textures 3D de très haute résolution, pour surfaces intérieures, tel qu’auditorium, salles de réunion, halls d’aérogare, musée, et en extérieur tel que, façades personnalisées de tout type d’édifice ainsi que des éléments de mobilier urbain.

La liste ci-dessus n’est pas exhaustive car le fait que le béton ainsi réalisé n’est sujet à aucun retrait dimensionnel, il est possible de réaliser une infinité de formes complexes, jusqu’à présent difficilement réalisables pour cause de fissuration dû au retrait dimensionnel et de fait de l’imprécision finale des pièces dans les différents axes X, Y et Z.

Bien entendu, l’invention n’est pas limitée aux modes de réalisation décrits. Des modifications restent possibles, notamment du point de vue de la constitution des divers éléments ou par substitution d’équivalents techniques, sans sortir pour autant du domaine de protection de l’invention.
REVENDICATIONS

1. Composition de base pour la fabrication d’un mortier ou de bétons, caractérisée en ce qu’elle contient, en poids :
 - de 20 % à 60 %, de préférence 20 % à 50 % et plus préférentiellement 20 % à 45 % de sable fin d’un diamètre de 0,0625 mm (inclus) à 0,465 mm (exclus),
 - de 20 % à 45 %, de préférence 20 % à 40 % et plus préférentiellement 25 % à 35 % de sable d’un diamètre de 0,465 (inclus) à 2 mm (exclus),
 - de 15 % à 30 %, de préférence 15 % à 25 % et plus préférentiellement 17 % à 21 % de sable d’un diamètre de 2 mm (inclus) à 4,75 mm (exclus),
 - de 0,5% à 3%, de préférence 0,5% à 2% et plus préférentiellement 0,5% à 1,5% de pouzzolane d’une granulométrie moyenne inférieure à 100 μm, de préférence comprise entre 5 μm et 100 μm, et plus préférentiellement comprise entre 8 μm et 50 μm, et
 - de 0,01 % à 0,2 %, de préférence 0,01 % à 0,15 % et plus préférentiellement 0,01 % à 0,1 % de carbone micronisé d’une granulométrie moyenne inférieure à 100 μm, de préférence comprise entre 5 μm et 75 μm,
 la somme de tous les constituants étant de 100 %.

2. Composition hydratable pour la fabrication d’un mortier, caractérisée en ce qu’elle contient, en poids :
 - de 85 % à 95 % d’une composition de base selon la revendication 1,
 et 5 % à 15 % d’un liant hydraulique consistant en de la chaux ou en un ciment en vue de la fabrication ultérieure d’un mortier.

3. Composition hydratable destinée à être complétée en outre avec un granulat pour la fabrication d’un béton, caractérisée en ce qu’elle contient, en poids :
 - de 85 % à 95 % d’une composition de base selon la revendication 1,
et 5 % à 15 % d’un liant hydraulique consistant en un ciment ou un mélange de ciments en vue de la fabrication ultérieure d’un béton.

4. Composition hydratable selon la revendication 3, caractérisée en ce que le ou les ciments sont choisis dans le groupe formé par : les ciments Portland, les ciments fondues et les ciments blancs.

5. Solution aqueuse d’hydratation pour la fabrication d’un mortier ou d’un béton à partir d’une composition hydratable selon l’une quelconque des revendications 2 à 4, caractérisée en ce qu’elle comprend, en poids :

 - 98,3 % à 99,4 % d’eau, de préférence d’eau douce potable, ayant un pH allant de 6 à 8 à 21 °C,
 - 0,1 % à 0,7 % de carbone pulvérulent, de préférence de carbone végétal micronisé, et
 - 0,5 % à 1,0 % d’un alcool, de préférence d’un alcool monovalent facilitant l’incorporation du carbone dans l’eau, de préférence de l’éthanol à 90°, la somme des pourcentages faisant 100 %.

6. Procédé de fabrication de mortier, caractérisé en ce qu’il comprend essentiellement l’étape consistant à mélanger une composition hydratable selon la revendication 2 avec une quantité suffisante d’une solution aqueuse d’hydratation selon la revendication 5 jusqu’à l’obtention d’une pâte liante capable d’agglomérer, en durcissant, des substances variées.

8. Mortier selon la revendication 7, caractérisé en ce qu’il présente une résistance minimum à la compression de 10 MPa.

9. Mortier selon la revendication 7 ou 8, caractérisé en ce qu’il présente une hydrophobicité au test de la goutte d’au moins 117°.

10. Utilisation d’un mortier selon la revendication 9 dans la fabrication de crépis hydrophobes, notamment de crépis pour la protection contre des eaux de ruissellement.

11. Utilisation d’un mortier selon la revendication 7, 8 ou 9 dans la fabrication d’éléments de construction préfabriqués devant présenter un aspect extérieur de pierre naturelle, de préférence polie.

12. Procédé de fabrication d’éléments en béton par moulage, caractérisé en ce qu’il comprend essentiellement les étapes consistant à :
- mélanger dans un récipient, une composition hydratable selon la revendication 3 ou 4 avec une quantité suffisante d’une solution aqueuse d’hydratation selon la revendication 5 jusqu’à l’obtention d’une pâte liante,

- ajouter, dans ledit récipient le granulat désiré selon le béton à obtenir, de préférence des graviers,

- mélanger soigneusement jusqu’au parfait enrobage dudit granulat,

- verser le mélange obtenu dans un moule étanchéifiable,

- soumettre le mélange précédemment obtenu dans le moule encore ouvert à une opération de vibrage afin d’éliminer au moins la majorité, sinon la totalité, d’éventuelles bulles d’air présentes,

- fermer ledit moule de façon étanche et laisser cristalliser le mélange à température et hygrométrie constantes pendant au moins 16 heures, de préférence pendant au moins 24 à 48 heures et plus préférentiellement pendant au moins 72 heures,

- démouler l’élément en béton formé, et

- laisser sécher le béton obtenu à l’air libre jusqu’à l’obtention du taux d’humidité d’utilisation final souhaité.

13. Élément en béton, en particulier élément structuré de construction en béton susceptible d’être obtenu par la mise en œuvre du procédé selon la revendication 12.

14. Élément en béton selon la revendication 13, caractérisé en ce qu’il présente une résistance minimum à la compression de 13,4 MPa.

15. Utilisation d’un élément en béton selon la revendication 13 ou 14 dans la fabrication de constructions flottantes ou sous-marines, notamment pour la fabrication de caissons étanches et hydrophobes.

16. Utilisation d’un élément en béton selon la revendication 13 ou 14 dans la fabrication de stations d’épuration.

17. Utilisation d’un élément en béton selon la revendication 13 ou 14 dans la fabrication, par un procédé de moulage, d’éléments de béton, notamment d’éléments décoratifs de parement intérieur ou extérieur, lesdits éléments ayant une surface externe brillante, lisse et hydrophobe.
Dalle hp (dalle témoin)
Mortier haute performance selon l'état de la technique

<table>
<thead>
<tr>
<th>E.T.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. en masse (kg/m³)</td>
<td>600</td>
<td>600</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Comp. en %</td>
<td>28.571</td>
<td>0</td>
<td>28.571</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Mortier zéolite, composition des éprouvettes de mortier testées en laboratoire prisms de 40x40x160 mm

<table>
<thead>
<tr>
<th>M1</th>
<th>Comp. en masse (kg/m³)</th>
<th>500</th>
<th>500</th>
<th>0</th>
<th>0</th>
<th>142.5</th>
<th>20</th>
<th>25</th>
<th>0,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. en %</td>
<td>26.662</td>
<td>26.662</td>
<td>0</td>
<td>26.662</td>
<td>0</td>
<td>7.599</td>
<td>1.066</td>
<td>1.333</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Dalle U
Mortier de ciment fondu

<table>
<thead>
<tr>
<th>M1</th>
<th>Comp. en masse (kg/m³)</th>
<th>792.5</th>
<th>0</th>
<th>613</th>
<th>0</th>
<th>0</th>
<th>30.5</th>
<th>0</th>
<th>0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. en %</td>
<td>38.977</td>
<td>0</td>
<td>30.149</td>
<td>19.501</td>
<td>0</td>
<td>0</td>
<td>1.500</td>
<td>0</td>
<td>0.037</td>
</tr>
</tbody>
</table>

Dalle Z
Mortier de ciment fondu

<table>
<thead>
<tr>
<th>M1*</th>
<th>Comp. en masse (kg/m³)</th>
<th>792.5</th>
<th>0</th>
<th>482.5</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. en %</td>
<td>39.675</td>
<td>0</td>
<td>24.155</td>
<td>16.158</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Dalle R GRIS
Mortier de ciment portland

<table>
<thead>
<tr>
<th>M2</th>
<th>Comp. en masse (kg/m³)</th>
<th>792.5</th>
<th>460</th>
<th>369.5</th>
<th>0</th>
<th>0</th>
<th>153</th>
<th>22.5</th>
<th>0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. en %</td>
<td>39.66</td>
<td>23.02</td>
<td>18.49</td>
<td>0</td>
<td>0</td>
<td>7.66</td>
<td>1.13</td>
<td>0.00</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Dalle T BLANC
Mortier de ciment blanc

<table>
<thead>
<tr>
<th>M3</th>
<th>Comp. en masse (kg/m³)</th>
<th>871.5</th>
<th>0</th>
<th>460</th>
<th>0</th>
<th>0</th>
<th>22.5</th>
<th>0</th>
<th>0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. en %</td>
<td>43.559</td>
<td>0</td>
<td>22.991</td>
<td>22.292</td>
<td>0</td>
<td>0</td>
<td>1.125</td>
<td>0</td>
<td>0.037</td>
</tr>
</tbody>
</table>

Dalle T SILICE
Mortier de ciment blanc avec fumée de Silice

<table>
<thead>
<tr>
<th>M4</th>
<th>Comp. en masse (kg/m³)</th>
<th>920</th>
<th>0</th>
<th>545</th>
<th>0</th>
<th>0</th>
<th>303</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. en %</td>
<td>44.482</td>
<td>0</td>
<td>26.35</td>
<td>0</td>
<td>0</td>
<td>14.650</td>
<td>0.967</td>
<td>1.451</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Mortier d'enduit à la chaux
Mortier de chaux

<table>
<thead>
<tr>
<th>M5</th>
<th>Comp. en masse (kg/m³)</th>
<th>792.5</th>
<th>153</th>
<th>460</th>
<th>0</th>
<th>0</th>
<th>30.5</th>
<th>0</th>
<th>0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. en %</td>
<td>38.977</td>
<td>7.525</td>
<td>22.624</td>
<td>19.501</td>
<td>0</td>
<td>0</td>
<td>1.500</td>
<td>0</td>
<td>0.037</td>
</tr>
</tbody>
</table>

Béton zéolite, composition des éprouvettes de béton testées en laboratoire cylindres de diamètre 115x230 mm de haut

<table>
<thead>
<tr>
<th>B1</th>
<th>Comp. en masse (kg/m³)</th>
<th>222.2</th>
<th>208.3</th>
<th>208.3</th>
<th>208.3</th>
<th>972.2</th>
<th>85</th>
<th>13.9</th>
<th>12.5</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. en %</td>
<td>10.807</td>
<td>10.131</td>
<td>10.131</td>
<td>10.131</td>
<td>47.286</td>
<td>4.134</td>
<td>0.676</td>
<td>0.608</td>
<td>0.015</td>
<td></td>
</tr>
</tbody>
</table>

Béton portland

<table>
<thead>
<tr>
<th>B2</th>
<th>Comp. en masse (kg/m³)</th>
<th>222.2</th>
<th>208.3</th>
<th>208.3</th>
<th>208.3</th>
<th>972.2</th>
<th>85</th>
<th>13.9</th>
<th>12.5</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. en %</td>
<td>10.807</td>
<td>10.131</td>
<td>10.131</td>
<td>10.131</td>
<td>47.286</td>
<td>4.134</td>
<td>0.676</td>
<td>0.608</td>
<td>0.015</td>
<td></td>
</tr>
</tbody>
</table>

Béton de ciment blanc portland

<table>
<thead>
<tr>
<th>B3</th>
<th>Comp. en masse (kg/m³)</th>
<th>222.2</th>
<th>208.3</th>
<th>208.3</th>
<th>208.3</th>
<th>972.2</th>
<th>85</th>
<th>13.9</th>
<th>12.5</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. en %</td>
<td>10.678</td>
<td>10.010</td>
<td>10.010</td>
<td>10.010</td>
<td>46.718</td>
<td>4.085</td>
<td>0.668</td>
<td>0.601</td>
<td>0.014</td>
<td></td>
</tr>
</tbody>
</table>

Béton de ciment blanc portland
Avant ajout de fumée de silice et de polycarboxylate

<table>
<thead>
<tr>
<th>B4</th>
<th>Comp. en masse (kg/m³)</th>
<th>222.2</th>
<th>208.3</th>
<th>208.3</th>
<th>208.3</th>
<th>972.2</th>
<th>85</th>
<th>13.9</th>
<th>30</th>
<th>0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. en %</td>
<td>10.589</td>
<td>9.926</td>
<td>9.926</td>
<td>9.926</td>
<td>46.328</td>
<td>4.051</td>
<td>0.662</td>
<td>1.430</td>
<td>0.014</td>
<td></td>
</tr>
</tbody>
</table>

A = sable fin de silice ø 0.0625-0.465 mm
B = sable moyen de quartz ø 0.5 mm
C = sable grossier de quartz ø 0.465-2 mm
D = gravier très fin ø 2-4.75 mm
E = gravier de type ø 4-20 mm
F = gravier artificiel très fin ø1,5-2,5 mm
G = Pouzzolane en fines ø 5-100 µm
H = fumée de silice
I = Carbone en fines ø 10-200 µm

FIG. 1
<table>
<thead>
<tr>
<th>Tableau des mélange de matériaux et de résultats</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalle hp (dalle témoin)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortier haute performance</td>
<td>E.T</td>
<td>900</td>
<td>0</td>
<td>0</td>
<td>2100</td>
<td>225</td>
<td></td>
<td>2325</td>
<td></td>
</tr>
<tr>
<td>selon état de la technique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**Mortier zéolite, composition des éprouvettes</td>
<td>M1</td>
<td>0</td>
<td>187,5</td>
<td>0</td>
<td>0</td>
<td>1875,3</td>
<td>187,5</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>de mortier testées en laboratoire prismes de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40x40x160 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalle U</td>
<td>M1'</td>
<td>0</td>
<td>9,998</td>
<td>0</td>
<td>0</td>
<td>100,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortier de ciment fondu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalle Z</td>
<td>M2</td>
<td>0</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>2033,3</td>
<td>230</td>
<td></td>
<td>2263</td>
</tr>
<tr>
<td>Mortier de ciment fondu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalle R GRIS</td>
<td>M3</td>
<td>0</td>
<td>9,836</td>
<td>0</td>
<td>0</td>
<td>100,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortier de ciment portland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalle T BLANC</td>
<td>M4</td>
<td>0</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>2000,8</td>
<td>243</td>
<td></td>
<td>2244</td>
</tr>
<tr>
<td>Mortier de ciment blanc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalle T SILICE</td>
<td>M5</td>
<td>0</td>
<td>9,996</td>
<td>0</td>
<td>0</td>
<td>100,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mortier de ciment blanc avec fumée de Silice</td>
<td></td>
<td>10,013</td>
<td>0</td>
<td>0</td>
<td>100,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortier d’enduit à la chaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortier de chaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**Béton zéolite, composition des éprouvettes</td>
<td>M6</td>
<td>0</td>
<td>125</td>
<td>0</td>
<td>0</td>
<td>2056</td>
<td>175</td>
<td></td>
<td>2231</td>
</tr>
<tr>
<td>de béton testés en laboratoire prismes de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diamètre 115x230 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Béton portland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Béton de ciment blanc portland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Béton de ciment blanc portland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avec ajout de fumée de silice et polycarboxylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J = liant hydraulique Ciment portland									
K = liant hydraulique Ciment fondu									
L = liant hydraulique ciment blanc									
M = liant hydraulique CHAUX									
N = TOTAL poids sec									
O = Solution d’Hydratation									
P = eau courante									
Q = Super plastifiant polycarboxylate									
R = masse totale hydratée									

FIG. 1 (suite)
RAPPORT DE RECHERCHE PRÉLIMINAIRE

établi sur la base des dernières revendications déposées avant le commencement de la recherche

N° d'enregistrement national
FA 831547
FR 1661508

DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2005/077857 A2 (EIFFAGE TP [FR]) 25 août 2005 (2005-08-25) * page 4, ligne 17 - ligne 31 * * revendications 1,6,13 * -----</td>
<td>1-17 C04B14/06 C04B20/00 C04B28/02 E04F13/00 E04B1/04</td>
<td>-----</td>
</tr>
<tr>
<td>A</td>
<td>WO 2012/084990 A1 (LAFARGE SA [FR]; CHEN JEFFREY [FR]; GARTNER ELLIS [FR]; CHANVILLARD GI) 28 juin 2012 (2012-06-28) * revendications 1,6,7 * -----</td>
<td>1 -----</td>
<td>-----</td>
</tr>
<tr>
<td>A</td>
<td>WO 2013/037792 A1 (ITALCEMENTI SPA [IT]; ALFANI ROBERTA [IT]; CAPONE CLAUDIA [IT]; RAMPIN) 21 mars 2013 (2013-03-21) * revendications 1,9,10 * -----</td>
<td>1 -----</td>
<td>-----</td>
</tr>
<tr>
<td>A</td>
<td>FR 2 934 629 A1 (LEFEVRE M [FR]) 5 février 2010 (2010-02-05) * page 11, ligne 13 - ligne 23 * * revendications 1,3 * -----</td>
<td>1 -----</td>
<td>-----</td>
</tr>
<tr>
<td>A</td>
<td>FR 3 033 325 A1 (AGENCE NAT POUR LA GESTION DES DECHETS RADIOACTIFS [FR]; CENTRE D'ETUD) 9 septembre 2016 (2016-09-09) * revendications 12,13 * -----</td>
<td>1 -----</td>
<td>-----</td>
</tr>
</tbody>
</table>

Date d'achèvement de la recherche: 9 août 2017
Examinatrice: Kolb, Ulrike

CATÉGORIE DES DOCUMENTS CITES

- X : particulièrement pertinent à lui seul
- Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie
- A : arrière-plan technique
- O : divulgation non-eptive
- P : document interalloire
- T : théorie ou principe à la base de l'invention
- E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure.
- D : cité dans la demande
- L : cité pour d'autres raisons
- & : membre de la même famille, document correspondant
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 02/18291 A1 (LAFARGE SA [FR]; CASANOVA PASCAL [FR]; CHONG HU [FR]; CLAVAUD BERNARD) 7 mars 2002 (2002-03-07) * revendication 1 *</td>
<td>1</td>
<td>----</td>
</tr>
</tbody>
</table>

DOMAINES TECHNIQUES RECHERCHÉS (IPC)

Date d'achèvement de la recherche

9 août 2017

Examinateur

Kolb, Ulrike
ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE
RELATIF A LA DEMANDE DE BREVET FRANÇAIS NO. FR 1661508 FA 831547

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 09-08-2017
Les renseignements fournis sont donnés à titre indicatif et n’engagent pas la responsabilité de l’Office européen des brevets, ni de l’Administration française

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2005077857 A2</td>
<td>25-08-2005</td>
<td>AU 2005212878 A1</td>
<td>25-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2555590 A1</td>
<td>25-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1934052 A</td>
<td>21-03-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1713740 A2</td>
<td>25-10-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2866330 A1</td>
<td>19-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5106860 B2</td>
<td>26-12-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007522072 A</td>
<td>09-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070619701 A</td>
<td>15-02-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MA 28349 A1</td>
<td>01-12-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2359936 C2</td>
<td>27-06-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007163470 A</td>
<td>19-07-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005077857 A2</td>
<td>25-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200607632 B</td>
<td>25-03-2009</td>
</tr>
<tr>
<td>FR 2881424 A1</td>
<td>04-08-2006</td>
<td>FR 2881424 A1</td>
<td>04-08-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3762780 B1</td>
<td>05-04-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006213550 A</td>
<td>17-08-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 1275578 B</td>
<td>11-03-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008163794 A</td>
<td>10-07-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006082665 A</td>
<td>10-08-2006</td>
</tr>
<tr>
<td>WO 2008090481 A2</td>
<td>31-07-2008</td>
<td>AU 2008208628 A1</td>
<td>31-07-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR P10806782 A2</td>
<td>13-09-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2675945 A1</td>
<td>31-07-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101578244 A</td>
<td>11-11-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103922673 A</td>
<td>16-07-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104829194 A</td>
<td>12-08-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1958926 A1</td>
<td>20-08-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 201051661 A</td>
<td>20-05-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014139135 A</td>
<td>31-07-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014139136 A</td>
<td>31-07-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20090103920 A</td>
<td>01-10-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2009131696 A</td>
<td>27-02-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010043673 A</td>
<td>25-02-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008090481 A2</td>
<td>31-07-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2969600 A1</td>
<td>29-06-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012084990 A1</td>
<td>28-06-2012</td>
</tr>
<tr>
<td>WO 2013037792 A1</td>
<td>21-03-2013</td>
<td>CA 2847731 A1</td>
<td>21-03-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103958435 A</td>
<td>30-07-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201321330 A</td>
<td>01-06-2013</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l’Office européen des brevets, No.12/82
La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 09-08-2017
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2014216533 A1</td>
<td>07-08-2014</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>WO 2013037792 A1</td>
<td>21-03-2013</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>FR 2934629 A1</td>
<td>05-02-2010</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>FR 3033325 A1</td>
<td>09-09-2016</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8779301 A</td>
<td>13-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0113663 A</td>
<td>20-07-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2420775 A1</td>
<td>07-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1466555 A</td>
<td>07-01-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60128930 T2</td>
<td>28-02-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1315683 T3</td>
<td>01-10-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2288171 T3</td>
<td>01-01-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2813601 A1</td>
<td>08-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1052919 A1</td>
<td>21-09-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4947507 B2</td>
<td>06-06-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004507431 A</td>
<td>11-03-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA03001807 A</td>
<td>01-11-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1315683 E</td>
<td>04-09-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004050302 A1</td>
<td>18-03-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0218291 A1</td>
<td>07-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200301717 B</td>
<td>29-03-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR P10912403 A2</td>
<td>15-03-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2731199 A1</td>
<td>21-01-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102026932 A</td>
<td>20-04-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2145868 A1</td>
<td>20-01-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2303792 A2</td>
<td>06-04-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011528313 A</td>
<td>17-11-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2011106132 A</td>
<td>27-08-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011083585 A1</td>
<td>14-04-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010007534 A2</td>
<td>21-01-2010</td>
</tr>
<tr>
<td>DE 4329645 A1</td>
<td>09-03-1995</td>
<td>AUCUN</td>
<td></td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82