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HIGH DEFINITION LIDAR SYSTEM

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

PRIORITY CLAIM AND CROSS-REFERENCES
TO RELATED APPLICATIONS

This application is a reissue continuation of application
Ser. No. 15/180,580, filed Jun. 13, 2016, which is an
application for reissue of U.S. Pat. No. 8,767,190, issued
Jul. 1, 2014, which claims the benefit of U.S. provisional
application Ser. No. 61/345,505 filed May 17, 2010 and
which is a continuation-in-part of U.S. application Ser. No.
11/777,802, now U.S. Pat. No. 7,969,558, filed Jul. 13, 2007,
[end further] which claims the benefit of U.S. provisional
application Ser. No. 60/807,305 filed Jul. 13, 2006; [and
U.S. provisional application Ser. No. 61/345,505 filed May
17, 2010.); Notice: more than one reissue application has
been filed for the reissue of U.S. Pat. No. 8,767,190. The
reissue applications are U.S. application Ser. No. 15/180,
580, filed Jun. 13, 2016, and U.S. application Ser. Nos.
15/700,543, 15/700,558, 15/700,571, 15/700,836, 15/700,
844, 15/700,959, and 15/700,965, each of which was filed on
Sep. 11, 2017; and U.S. application Ser. No. 16/912,648,
filed Jun. 25, 2020. The contents of each of the foregoing
applications are hereby incorporated by reference.

BACKGROUND OF THE INVENTION

The present invention concerns the use of light pulses that
are transmitted, reflected from external objects, and received
by a detector to locate the objects in the field of view of the
transmitter. By pulsing a laser emitter and receiving the
reflection, the time required for the pulse of light to return
to the detector can be measured, thereby allowing a calcu-
lation of the distance between the emitter and the object
from which the pulse was reflected.

When multiple pulses are emitted in rapid succession, and
the direction of those emissions is varied, each distance
measurement can be considered a pixel, and a collection of
pixels emitted and captured in rapid succession (called a
“point cloud”) can be rendered as an image or analyzed for
other reasons such as detecting obstacles. Viewers that
render these point clouds can manipulate the view to give the
appearance of a 3-D image.

In co-pending application Ser. No. 11/777,802, the appli-
cant described a variety of systems for use in creating such
point cloud images using Laser Imaging Detection and
Ranging (LiDAR). In one version, the LiDAR system was
used for terrain mapping and obstacle detection, and incor-
porated as a sensor for an autonomous vehicle. An exem-
plary LiDAR system included eight assemblies of eight
lasers each as shown in FIG. 1, or two assemblies of 32
lasers each forming a 64-element LiDAR system as shown
in FIG. 2. Yet other numbers of lasers or detectors are
possible, and in general the LiDAR was employed in an
assembly configured to rotate at a high rate of speed in order
to capture a high number of reflected pulses in a full circle
around the LiDAR sensor.

The preferred examples of the present invention described
further below build on the inventor’s prior work as described
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2

above, incorporating several improvements to reduce the
overall size and weight of the sensor, provide better balance,
reduce crosstalk and parallax, and provide other advantages.

SUMMARY OF THE INVENTION

The present invention provides a LiDAR-based 3-D point
cloud measuring system. An example system includes a
base, a housing, a plurality of photon transmitters and
photon detectors contained within the housing, a rotary
motor that rotates the housing about the base, and a com-
munication component that allows transmission of signals
generated by the photon detectors to external components.

In one version of the invention, the system provides 32
emitter/detector pairs aligned along a vertical axis within a
housing that spins to provide a 360 degree field of view. The
emitters may be aligned along a first axis, with the detectors
aligned along a second axis adjacent to the first.

In a preferred implementation, the emitters and detectors
are mounted on thin circuit boards such as ceramic hybrid
boards allowing for installation on a vertical motherboard
for a vertical configuration, improved alignment, and other
advantages. The motherboard, in one version is formed with
a hole in which the emitters fire rearward into a mirror,
reflecting the emitted light through the hole and through
lenses adjacent the motherboard.

In certain configurations, the system employs a conjoint
lens system that reduces or eliminates the parallax problem
that may arise with the use of separate emitter and detector
optics.

In still further examples of the invention, the emitters fire
in a non-adjacent pattern, and most preferably in a pattern in
which sequentially fired lasers are physically distant from
one another in order to reduce the likelihood of crosstalk.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred and alternative embodiments of the present
invention are described in detail below with reference to the
following drawings:

FIG. 1 is a front view of a rotating LiDAR system.

FIG. 2 is a perspective view of an alternate LiDAR
system.

FIG. 3 is a perspective view of a preferred LiDAR system,
showing an exemplary field of view of the laser emitters.

FIG. 4 is a side view of the preferred LiDAR system of
FIG. 3.

FIG. 5 is a side view of the LiDAR system in accordance
with FIG. 4, shown with the housing removed.

FIG. 6 is a perspective view of a hybrid containing a
preferred detector.

FIG. 7 is a perspective view of a hybrid containing a
preferred emitter.

FIG. 8 is a back perspective view of the LiDAR system
as shown in FIG. 5.

FIG. 9 is a top perspective view of the LiDAR system as
shown in FIG. 5.

FIG. 10 is an exemplary view of a LiDAR system with a
potential parallax problem.

FIG. 11 is an exemplary front view of a lens assembly.

FIG. 12 is a sectional view of a lens assembly, taken along
line A-A in FIG. 11.

FIG. 13 is a sectional view of an alternate lens assembly,
taken along line A-A in FIG. 11.

FIG. 14 is a representative view of a conjoined D-shaped
lens solving the parallax problem of FIG. 10.
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FIG. 15 is a front view of the LiDAR system as shown in
FIG. 5.

FIG. 16 is an exemplary view of a rotary coupler for
coupling a housing to a rotating head assembly.

FIG. 17 is an illustration of a potential crosstalk problem.

FIG. 18 is an illustration of a further potential crosstalk
problem.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Exemplary LiDAR systems are shown in FIGS. 1 and 2.
In each case, a rotating housing fires light pulses that reflect
from objects so that the return reflections may be detected by
detectors within the rotating housing. By rotating the hous-
ing, the system provides a 360-degree horizontal field of
view (FOV) and, depending on the number and orientation
of lasers within the housing, a desired vertical field of view.
The system is typically mounted on the top center of a
vehicle, giving it a clear view in all directions, and rotates at
a rate of about 10 Hz (600 RPM), thereby providing a high
point cloud refresh rate, such high rate being advantageous
for autonomous navigation at higher speeds. In other ver-
sions, the spin rate is within a range of about 5 to 20 Hz
(300-1200 RPM). At this configuration, the system can
collect approximately 2.56 million time of flight (TOF)
distance points per second. The system therefore provides
the unique combination 0f 360 degree FOV, high point cloud
density, and high refresh rate. The standard deviation of TOF
distance measurements is equal to or less than 2 cm. The
LiDAR system may incorporate an inertial navigation sys-
tem (INS) sensor system mounted on it to report X, y, Z
deviations and pitch, roll, and yaw of the unit that is used by
navigational computers to correct for these deviations.

Through the use of DSP a dynamic power feature allows
the system to increase the intensity of the laser emitters if a
clear terrain reflection is not obtained by photo detectors
(whether due to reflective surface, weather, dust, distance, or
other reasons), and to reduce power to the laser emitters for
laser life and safety reasons if a strong reflection signal is
detected by photo detectors. A direct benefit of this feature
is that the LiDAR system is capable of seeing through fog,
dust, and heavy rain by increasing laser power dynamically
and ignoring early reflections. The unit also has the capa-
bility to receive and decipher multiple returns from a single
laser emission through digitization and analysis of the
waveform generated by the detector as the signal generated
from the emitter returns.

The LiDAR systems of FIGS. 1 and 2 report data in the
form of range and intensity information via Ethernet (or
similar output) to a master navigational system. Using
standard trigonometry, the range data is converted into x and
y coordinates and a height value. The height value can be
corrected for the vehicle’s pitch and roll so the resulting map
is with reference to the horizontal plane of the vehicle. The
map is then “moved” in concert with the vehicle’s forward
or turning motion. Thus, the sensor’s input is cumulative and
forms an ultra-high-density profile map of the surrounding
environment.

This highly detailed terrain map is then used to calculate
obstacle avoidance vectors if required and to determine the
maximum allowable speed given the terrain ahead. The
LiDAR system identifies of size and distance of objects in
view, including the vertical position and contour of a road
surface. The anticipated offset of the vehicle from a straight,
level path, either vertical or horizontal, at different distances
is translated into the G-force that the vehicle will be subject
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4

to when following the proposed path at the current speed.
That information can be used to determine the maximum
speed that the vehicle should be traveling, and acceleration
or braking commands are issued accordingly. In all cases the
software seeks the best available road surface (and thus the
best possible speed) still within the boundaries of a global
positioning system (GPS) waypoint being traversed.

One version of the inventor’s prior system as illustrated in
FIG. 1 includes 64 emitter/detector (i.e. laser diode/photo
diode) pairs divided into eight groups of eight. The system
shown in FIG. 2 also includes 64 emitter/detector pairs, but
in a configuration of 2 assemblies of 32 pairs. It is also
possible to “share” a single detector among several lasers by
focusing several detection regions onto a single detector, or
by using a single, large detector. By firing a single laser at
a time, there would be no ambiguity as to which laser is
responsible for a return signal. Conversely, one could also
sub-divide a single laser beam into several smaller beams.
Each beam would be focused onto its own detector. In any
event, such systems are still considered emitter-detector
pairs.

In the versions as illustrated in FIGS. 1 and 2, the laser
diode is preferably an OSRAM 905 nm emitter, and the
photo diode is preferably an Avalanche variety. More par-
ticularly, in the preferred version each one of the detectors
is an avalanche photodiode detector. The lenses are prefer-
ably UV treated to block sunlight, or employ a separate UV
lens filter in the optical path. Each pair is preferably physi-
cally aligned in %3° increments, ranging from approximately
2° above horizontal to approximately 24° below horizontal.
Each of the emitter/detector pairs are controlled by one or
more DSPs (or, in some versions, field programmable gate
arrays, or FPGAs, or other microprocessor), which deter-
mines when they will fire, determines the intensity of the
firing based on the previous return, records the time-of-
flight, calculates height data based time-of-flight and angular
alignment of each pair. Results, including multiple returns if
any, are transmitted via Ethernet to the master navigational
computer via a rotary coupling.

It is also advantageous to fire only several lasers, or
preferably just one, at a time. This is because of naturally
occurring crosstalk, or system blinding that occurs when the
laser beam encounters a retroreflector. Such retroreflectors
are commonly used along the roadways. A single beam at a
time system is thus resistant to retroreflector blinding, while
a flash system could suffer severe image degradation as a
result.

In addition to crosstalk concerns, firing single lasers at
once while rotating at a high rate facilitates eye safety. The
high powered lasers used with the present preferred versions
of the invention would require protective eyewear if the
system was used in a stationary fashion. Rotation of the
system and firing fewer lasers at once for brief pulses allows
high powered lasers to be used while still meeting eye safety
requirements that do not require protective eyewear. In
accordance with this aspect of the invention, the system
employs a control component that does not allow the emit-
ters to fire until the head has reached a desired minimal
rotation speed.

Another advantage of firing only a small number of lasers
at a time is the ability to share, or multiplex, the detection
circuitry among several detectors. Since the detection cir-
cuitry consists of high speed Analog to Digital Converters
(ADCs), such as those made by National Semiconductor,
considerable cost savings can be had by minimizing the use
of these expensive components.
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In the preferred embodiment, the detectors are power
cycled, such that only the desired detector is powered up at
any one time. Then the signals can simply be multiplexed
together. An additional benefit of power-cycling the detec-
tors is that total system power consumption is reduced, and
the detectors therefore run cooler and are therefore more
sensitive.

A simple DC motor controller driving a high reliability
brushed or brushless motor controls the rotation of the
emitter/detectors. A rotary encoder feeds rotational position
to the DSPs (or other microprocessor) that use the position
data to determine firing sequence. Software and physical
fail-safes ensure that no firing takes place until the system is
rotating at a minimum RPM.

FIG. 2 illustrates a perspective view of a 64 emitter/
detector pair LiDAR component 150. The component 150
includes a housing 152 that is opened on one side for
receiving a first LIDAR system 154 located above a second
LiDAR system 156. The second LiDAR system 156 is
positioned to have line of sight with a greater angle relative
to horizontal than the first LiDAR system 154. The housing
152 is mounted over a base housing section 158.

The LiDAR system of FIG. 2 includes a magnetic rotor
and stator. A rotary coupling, such as a three-conductor
Mercotac model 305, passes through the center of the base
158 and the rotor. The three conductors facilitated by the
rotary coupling are power, signal, and ground. A bearing
mounts on the rotary coupling. A rotary encoder has one part
mounted on the rotary coupling and another part mounted on
the base section 158 of the housing 152. The rotary encoder,
such as a U.S. Digital Model number E65-1000-750-1-PKG1
provides information regarding to rotary position of the
housing 152. The magnetic rotor and stator cause rotary
motion of the base section 158 and thus the housing 152
about the rotary coupling.

The version described below with reference to FIGS. 3-16
is generally referred to as an High Definition LiDAR 32E
(HDL-32E) and operates on the same foundational prin-
ciples as the sensors of FIGS. 1 and 2 in that a plurality (in
this embodiment up to 32) of laser emitter/detector pairs are
aligned along a vertical axis with the entire head spinning to
provide a 360 degrees horizontal field of view (FOV). Each
laser issues light pulses (in this version, 5 ns pulses) that are
analyzed for time-of-flight distance information (called a
“distance pixel” or “return”). Like the system of FIG. 2, the
system reports returns in Ethernet packets, providing both
distance and intensity (i.e. the relative amount of light
received back from the emitter) information for each return.
The sample system reports approximately 700,000 points
per second. While all or any subset of the features described
above with respect to FIGS. 1 and 2 may be incorporated
into the version described below with respect to FIGS. 3-16,
alternate embodiments of the invention may optionally
include the additional aspects as described in detail below.

In a preferred version as illustrated in FIG. 3, the cylin-
drical sensor head 10 is about 3.5 inches in diameter and the
unit has an overall height of 5.6 inches and weighs about 2.4
pounds. By contrast, the HDL-64E (shown in FIG. 2) is 8
inches in diameter by approximately one foot tall, and
weighs about 29 pounds. This reduction in size is the result
of several inventive improvements, as described more fully
below.

The sample embodiment of FIG. 3 can be built with a
variable number of lasers, aligned over a vertical FOV 12 of
+10 to -30 degrees as best seen in FIG. 4. The vertical FOV
may be made larger or smaller, as desired, by adjusting the
number or orientation of the emitters and detectors. When
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using the emitters as described and orienting them as
described, the range is approximately 100 meters. The head
10 is mounted on a fixed platform 14 having a motor
configured such that it preferably spins at a rate of 5 Hz to
20 Hz (300-1200 RPM). The sample system uses 905 nm
laser diodes (although other frequencies such as 1550 nm
could be used) and is Class 1 eye safe.

FIG. 5 illustrates the same version as shown in FIGS. 3
and 4, though without the outer housing covering the inter-
nal components. In general, and as discussed more fully
below, the system includes a main motherboard 20 support-
ing a plurality of detector hybrids 32 and emitter hybrids
(not visible in FIG. 5). The emitters fire back toward the rear
of the system, where the pulses are reflected from a mirror
and then are directed through a lens 50. Return pulses pass
through a lens, are reflected by a mirror 40, then directed to
the detectors incorporated into the hybrids 32. The mother-
board 20 and mirror 40 are mounted to a common frame 22
providing common support and facilitating alignment.

The hybrids 32 are mounted to the motherboard in a fan
pattern that is organized about a central axis. In the version
as shown, 32 hybrids are used in a pattern to create a field
of view extending 10 degrees above and 30 degrees below
the horizon and therefore the central axis extends above and
below the ninth board 38, with 8 boards above and 23 boards
below the central axis. In one version, each successive board
is inclined an additional one and one-third degree with
respect to the next adjacent board. The desired incremental
and overall inclination may be varied depending on the
number of hybrids used, the geometry of the mirrors and
lenses, and the desired range of the system.

One of the features allowing for compact size and
improved performance of the version of FIG. 3 is the use of
thin circuit boards such as ceramic hybrid boards for each of
the emitters and detectors. An exemplary detector circuit
board 32 is shown in FIG. 6; an exemplary emitter circuit
board 30 is shown in FIG. 7. In the preferred example, the
thin circuit boards are in the form of ceramic hybrid boards
that are about 0.015 inches thick, with only one emitter
mounted on each emitter board, and only one detector
mounted on each detector board. In other versions the thin
circuit boards may be formed from other materials or
structures instead of being configured as ceramic hybrids.

One of the advantages of mounting emitters and detectors
on individual hybrid boards is the ability to then secure the
individual hybrid boards to the motherboard in a vertically
aligned configuration. In the illustrated version, the detectors
are positioned in a first vertical alignment along a first
vertical axis while the emitters are positioned in a second
vertical alignment along a second vertical axis, with the first
and second vertical axes being parallel and next to one
another. Thus, as best seen in FIGS. 5 and 8, the hybrid
boards carrying the emitters and detectors are mounted in
vertical stacks that allow the sensor head to have a smaller
diameter than a differently configured sensor having emitters
and detectors positioned about the circumference of the
system. Accordingly, the configuration reduces the overall
size and requires less energy for spinning by moving more
of the weight toward the center of the sensor.

As further shown in FIG. 8, the preferred version incor-
porates a plurality of detectors (in this case, 32 of them)
mounted to an equal number of detector hybrids 32. The
system likewise has the same number of emitters mounted to
an equal number of emitter hybrids 30. In the preferred
version, the system therefore has one emitter per hybrid and
one detector per hybrid. In other versions this may be varied,
for example to incorporate multiple emitters or detectors on
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a single hybrid. The emitter and detector hybrids are con-
nected to a common motherboard 20, which is supported by
a frame 22. The motherboard has a central opening 24 that
is positioned to allow emitted and received pulses to pass
through the motherboard. Because the lenses are positioned
over the middle of the motherboard, the central opening is
configured to be adjacent the lenses to allow light to pass
through the portion of the motherboard that is next to the
lenses.

The density of emitter/detector pairs populated along the
vertical FOV is intentionally variable. While 32 pairs of
emitters and detectors are shown in the illustrated versions,
the use of hybrids and a motherboard allows for a reduction
in the number of emitters and detectors by simply removing
or not installing any desired number of emitter/detector
pairs. This variation of the invention cuts down on the
number vertical lines the sensor produces, and thus reduce
cost. It is feasible that just a few emitter/detector pairs will
accomplish the goals of certain autonomous vehicles or
mapping applications. For some uses increased density is
desirable to facilitate seeing objects at further distances and
with more vertical resolution. Other uses exploit the fact that
there is a direct relationship between the number of emitter
detector pairs and sensor cost, and do not need the full
spread of vertical lasers to accomplish their sensor goals.

Alternatively, multiple emitters and detectors can be
designed and mounted onto the hybrid boards at slightly
different vertical angles, thus increasing the density of
vertical FOV coverage in the same footprint. If, for example,
two emitters and two detectors were mounted on each of the
hybrids shown in FIGS. 6 and 7 with slight vertical offsets,
the design would incorporate 64 emitters and detectors
rather than 32. This example design describes two emitters
and detectors mounted per board, but there is no practical
limit to the number of emitters and detectors that may be
mounted on a single board. The increased number of emit-
ters and detectors may be used to increase the field of view
by adjusting the relative orientation, or may be used to
increase the density of points obtained within the same field
of view.

Another design feature of the preferred version is the
vertical motherboard on which the main electronics that
control the firing of the lasers and the capturing of returns
are located. As noted above, the motherboard is mounted
vertically, defining a plane that is preferably parallel to the
central axis 13 (see FIG. 3) about which the system will
rotate. While the motherboard is preferably parallel to this
axis of rotation, it may be inclined toward a horizontal plane
by as much as 30 degrees and still be considered substan-
tially vertical in orientation. The emitter and detector hybrid
boards are aligned and soldered directly to this vertical
motherboard, thus providing for small overall head size and
increased reliability due to the omission of connectors that
connect the laser boards with the motherboard. This board is
mechanically self-supported, mounted to a frame 22 that
fixes it rigidly in position in a vertical orientation so that it
spins with the rotating sensor head. The insertion of the
hybrid boards can be automated for easy assembly. Prior art
sensors exclusively employ motherboard design requiring
connectors and cables between the emitters and detectors
and the motherboard. The positioning and configuration of
the motherboard as shown overcomes these problems.

Another feature of the vertical motherboard design is its
proximity inside the sensor head. In order to optimize space,
the motherboard is positioned between the mirror and the
lenses, as best seen in FIG. 9. Thus, as shown, the sensor
head includes one or more lenses 50, 52 supported within a
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lens frame 54 positioned at a front side of the sensor head.
One or more mirrors 40, 42 are positioned at the opposite
side of the sensor head and mounted to the frame 22. In the
illustrated version, separate mirrors 40, 42 are used for the
emitter and detectors, respectively. Most preferably, the
frame 22 is a unitary frame formed from a single piece of
material that supports the motherboard and the mirrors.

This configuration allows the hybrid emitters to fire
rearward into the first mirror 40, wherein the light then
reflects off the mirror and travels through the hole 24 in the
motherboard 20, through the lens 50 and so that the emitted
light 60 travels out to the target 70. This configuration
further increases the net focal length of the light path while
retaining small size. Likewise the returning light 62 passes
through the detector lens 52, through the hole 24 in the
motherboard to the opposite mirror 52 and is reflected into
the corresponding detector.

Another benefit of the vertical motherboard design is that
it facilitates the goal of balancing the sensor head both
statically and dynamically to avoid shimmy and vibration
during operation. Most preferably, the various components
are positioned to allow a near-balanced condition upon
initial assembly that requires a minimum of final static and
dynamic balancing counterweights. As best seen in FIG. 9,
this balancing is obtained by positioning major portions of
components about the circumference of the sensor head.
More specifically, the lenses and frame are on one side while
the mirrors and a generally T-shaped portion of the frame is
diametrically opposite the lenses, with the mirrors and
rearward portion of the frame configured to have a weight
that is about equal to that of the lenses and lens frame.
Likewise, the emitter and detector hybrids are carried on
diametrically opposite sides of the sensor head, positioned at
about a 90 degree offset with respect to the lens and mirror
diameter. The motherboard is nearly along a diameter,
positioned to counter balance the weight of the other com-
ponents, such that the center of gravity is at the center of
rotation defined by the center of the base 80.

When the present invention is incorporated into an
autonomous navigation or mobile mapping vehicle, GPS
and inertial sensors are often included to locate the vehicle
in space and correct for normal vehicle motion. Inertial
sensors often include gyros, such as fiber optic gyros (FOG),
and accelerometers. In one embodiment, there is a 6-axis
inertial sensor system mounted in the LiDAR base and the
signals from the gyros and accelerometers are output along
with the LiDAR distance and intensity data.

The separate location of emitters’ and detectors’ optical
paths can create a parallax problem. When the emitters and
detectors are separated by a finite distance there always
exists a “blind” region nearest to the sensor in which objects
cannot be illuminated or detected. Likewise, at long range
the emitter’s laser light becomes misaligned with its corre-
sponding detector and creates a similar blind spot. The
parallax problem is best seen with reference to FIG. 10. A
representative emitter 170 transmits a light signal through a
lens 172, with the propagated light signal traveling outward
and toward a target in the distance. Light reflected from a
target may return through a second lens 162 and onward
toward a detector 160. The nonparallel orientation of the
emitter and detector, however, creates nonparallel light
emitter and detector paths. Consequently, there is a near
blind spot 180 adjacent the system and a far blind spot 184
more distant from the system. In either of the two blind
spots, light reflecting from an object will return along a path
that cannot be received by the detector. The near blind spot
extends for a distance “A” in front of the system, while the
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far blind spot extends in the region of distance “C” beyond
the system. Between the two blind spots, in a distance
defined by “B”, the system will see an object in that light
reflected from the object can return along a path that can be
detected. Even within region B, however, there is a “sweet
spot” 182 defined by the straight line paths of travel from the
emitter and to the detector. For the sample embodiment
shown in FIGS. 1 and 2 the “sweet spot” 182 for parallax
alignment is approximately 100 feet from the centerline of
the sensor. Inside of about 10 feet the emitter’s light misses
its corresponding detector entirely, shown at 180, and
beyond approximately 240 feet, shown at 184, the signal
becomes weak due to the misalignment of the emitter and
detector in the opposite direction.

This effect can be alleviated in one version of the inven-
tion by having two “D”-shaped lenses 50, 52 (see FIG. 15),
constructed for the emitter and detector, and having these
two lenses attached to each other with a minimal gap in
between. The close proximity of the conjoint lens system,
best seen in FIG. 14, reduces the “blind” region to near zero,
as shown by the parallel nature of the emitter’s light 60 and
detector’s light path 62.

Due to the complex nature of the optical propagation in
lenses, a lens array is usually needed to correct for various
aberrations that are commonly associated with any optical
design. For the purpose of constructing a conjoint lens
system to overcome the parallax problem described with
respect to FIG. 10, it is useful to have the first surface of the
lens array being the largest pupil; that is, the optical rays
entering the lens system should bend towards the center.

FIG. 11 illustrates a front view of a lens array 50. Though
indicated as the emitter lens array, it may also be illustrative
of the detector lens array as well. In order to form a
D-shaped lens, an edge 51 of the otherwise circular lens is
cut away from the lens, removing a left edge 120 of the
otherwise circular lens. The resulting lens is somewhat
D-shaped, having a vertical left edge. The use of a D-shaped
lens array is advantageous in that D-shaped lens arrays for
the emitter and detector may be placed back-to-back to form
“conjoined” D-shape lens arrays as best seen in FIG. 15.
Placing the vertical edges of the D-shapes adjacent one
another allows the otherwise circular lenses to be much
closer to one another than would be the case if using circular
lenses which would only allow for tangential contact
between the lens arrays.

The creation of D-shaped lenses and the use of a con-
joined pair of D-shaped lens arrays, however, brings a
potential signal loss. FIG. 12 illustrates a correct design of
the lens array, shown in sectional view taken along lines A-A
from FIG. 11. In this illustration the lens array includes a
first lens 113, a second lens 111, and a third lens 112. The
input rays 100 always bend towards the center in this lens
array. Consequently, when a D-shaped cut is made (that is,
cutting off a portion of one side of each of the lenses in the
area indicated by the shaded region 120), there is no loss of
light. As the shaded region indicates, all of the light entering
the first lens 113 travels through the entire lens array to the
mirror.

FIG. 13 illustrates an incorrect design having a similar
array of three lenses 110, 111, 112. In this case, the front lens
110 is differently shaped and some of the input light rays 100
bend away from the center as they travel through the front
lens. A cut through the ends of one side of this lens array
would result in the loss of some of the light entering the
array, as indicated in the shaded region 120 in FIG. 12.

By configuring the lenses in an ideal fashion as illustrated
in FIG. 12, a portion of each side of the lens array may be
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cut in the form of a D-shape. This creates a straight edge
along the sides of each lens in the array, allowing the straight
sides of the D’s forming each lens array to be positioned
closely adjacent one another. In this sense, the term “closely
adjacent” is understood to mean either in contact with one
another or positioned such that the center of the lenses are
closer to one another than they could be without the
D-shaped cut. As best see in FIG. 15, the two lens arrays 50,
52 are positioned closely adjacent one another with the
straight sides back-to-back to form conjoined D-shaped lens
arrays. As described above, a first lens array 50 serves as the
emitter lens array while the adjacent second lens array 52
serves as the detector lens array.

FIG. 14 illustrates an advantage of the conjoint D-shaped
lens design, particularly in how it overcomes the parallax
problem illustrated in FIG. 10. In this case, light emerging
from the emitter 170 is directed to a first D-shaped lens 50.
Most preferably, the emitter is oriented to direct its light path
toward a position just inward of the straight side edge of the
D-shape. Because of the lens array configuration of the type
described in FIG. 12, the light emerges from the first lens 50
in a straight line 60 that can be directed radially away from
the sensor head. Likewise, light reflected from the distant
object will return along a return path 62 that is parallel to the
emitter light path. The closely parallel return path will travel
through the second, adjacent conjoined D lens array 52,
entering the lens array at a position just inward of the
straight side edge of the D-shape, where it is then directed
to the detector 160. Consequently, there is no blind spot as
with conventional lenses and the parallax problem is
resolved.

Another unique design consideration for the preferred
implementation addresses the need to transfer power and
signal up to the head, and receive signal and offer grounding
down from the head. Off the shelf mercury-based rotary
couplers are too unreliable and too big for this problem. In
one embodiment, shown in FIG. 16, the use of a rotary
transformer 145 enables sending power up to the head, and
the use of a capacitive coupler 140 down from the head to
accommodate these requirements. A phase modulation
scheme allows for communication to the head from the base
using serial commands in order to instruct the head to limit
horizontal field of view, fire all lasers at full power, update
its firmware, and other commands.

It is also desired to have the distance returns of the LIDAR
scanner be as accurate as possible and be free of spurious
images or returns. Firing multiple lasers at once can create
a crosstalk condition where the light emitted from one laser
inadvertently is detected by the detector of another laser,
thus giving a false return. Thus, with reference to FIG. 17,
if emitters E1 through E4 all fire at once, their returns would
be intended to be received by emitters D1 through D4. But
depending on the positioning and configuration of the object
from which the light returns, light from one of the emitters
may be directed to the wrong detector. For example, as
indicated in FIG. 17, light from emitter E1 may end up
directed to detector D3, as indicated by the dotted line return
path. This would be an invalid return, and the system would
erroneously associate it with light sent from emitter E3,
thereby creating a faulty pixel in the point cloud.

A similar error can occur if adjacent lasers are fired in a
sequential fashion. Thus, with reference to FIG. 16, firing a
single emitter E1 may result in light being detected at
detector D2 rather than D1. This may most commonly occur
when light from emitter E1 travels beyond the true range of
the sensor but is reflected from a particularly reflective
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object, such as a stop sign covered with reflective paint. The
firing of adjacent emitters in order makes this form of
cross-talk more likely.

In accordance with a preferred version of the invention,
the emitters are fired in a non-adjacent single laser firing
order. This means that only one emitter detector pair is active
at any given time, and at no time do adjacent emitters and
detectors fire in sequence. Most preferably there is as much
distance as possible between the emitters that are fired in
order. Thus, if there are 32 emitters in a vertical stack, the
emitters would be assigned labels E1 representing the top-
most emitter and then sequentially numbered through E32
representing the bottom emitter in the stack. Emitter E1 (at
the top) would be fired first, followed by emitter E17 (in the
middle of the stack), then E2, E18, E3, E19, and so on,
ending with E16 and E32 before starting over again at the
beginning This pattern begins with the top emitter and the
middle emitter, dividing the stack into two groups. It then
alternates firing one from each group, moving from the top
of each half-stack and proceeding sequentially down each
half-stack of emitters in an this alternating fashion and then
repeating. This pattern ensures the largest possible distance
between fired lasers, thereby reducing the chance of cross-
talk.

While the preferred embodiment of the invention has been
illustrated and described, as noted above, many changes can
be made without departing from the spirit and scope of the
invention. Accordingly, the scope of the invention is not
limited by the disclosure of the preferred embodiment.
Instead, the invention should be determined entirely by
reference to the claims that follow.

The embodiments of the invention in which an exclusive

property or privilege is claimed are defined as follows:

[1. A LiDAR-based sensor system comprising:

a base;

head assembly;

a rotary component configured to rotate the head assem-
bly with respect to the base, the rotation of the head
assembly defining an axis of rotation;

an electrical motherboard carried in the head assembly,
the motherboard defining a plane and being positioned
substantially parallel to the axis of rotation;

a lens positioned on the head assembly on a first side of
the motherboard,

a mirror positioned on the head assembly on a second side
of the motherboard;

aplurality of photon transmitters mounted to a plurality of
emitter circuit boards, the plurality of emitter circuit
boards being mounted directly to the motherboard; and

a plurality of detectors mounted to a plurality of detector
circuit boards, the plurality of detector circuit boards
being mounted directly to the motherboard.]

[2. The sensor system of claim 1, wherein

the lens comprises an emitter lens and a detector lens, the
emitter lens and the detector lens being positioned
adjacent one another; and

the mirror comprises an emitter mirror and a detector
mirror;

wherein the emitter mirror is positioned within the head
assembly to reflect light from the plurality of photon
transmitters through the emitter lens, and the detector
mirror is positioned within the head to reflect light
received through the detector lens toward the plurality
of detectors.]
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[3. The sensor system of claim 2, further comprising a
unitary support structure, the motherboard, detector lens,
emitter lens, detector mirror, and emitter mirror all being
secured to the unitary support structure.]

[4. The sensor system of claim 2, wherein the plurality of
emitters are oriented to transmit light from the second side
of the motherboard toward the emitter mirror.]

[5. The sensor system of claim 4, wherein the mother-
board comprises a central opening, the central opening being
positioned to allow light from the emitters to pass from
emitter mirror through the central opening and toward the
emitter lens.]

[6. The sensor system of claim 5, wherein the central
opening is further positioned to allow light to pass from the
detector lens through the central opening and toward the
detector mirror.]

[7. The sensor system of claim 2, wherein the plurality of
emitter circuit boards are secured to the motherboard to form
a first vertical stack.]

[8. The sensor system of claim 7, wherein the first vertical
stack of emitter circuit boards forms an angularly fanned
array.]

[9. The sensor system of claim 7, wherein the plurality of
detector circuit boards are secured to the motherboard to
form a second vertical stack, the first vertical stack of emitter
circuit boards being positioned substantially parallel to the
second vertical stack of detector circuit boards.]

[10. The sensor system of claim 9, wherein the second
vertical stack of detector circuit boards forms an angularly
fanned array.]

[11. The sensor system of claim 2, wherein the emitter
lens comprises a first D-shaped lens and the detector lens
comprises a second D-shaped lens, a respective vertical side
of each of the first D-shaped lens and the second D-shaped
lens being positioned closely adjacent one another to form a
conjoined D-shaped lens array.]

[12. The sensor system of claim 11, wherein the first
D-shaped lens comprises a first plurality of lenses, and
wherein the second D-shaped lens comprises a second
plurality of lenses.]

[13. The sensor system of claim 2, wherein the plurality
of emitter circuit boards are secured to the motherboard to
form a first vertical stack, the first vertical stack being
divided into at least two groups of emitters, each of the at
least two groups comprising several emitters from the plu-
rality of emitters such that the at least two groups form
non-overlapping subsets of the plurality of emitters, the
sensor further having a control component to control the
firing of the emitters such that one emitter is fired at a time,
the control component further causing firing from one of the
at least two groups and then the other of the at least two
groups in an alternating fashion.]

[14. The sensor system of claim 13, wherein the at least
two groups comprises:

a first group forming a first portion of the first vertical
stack and organized sequentially from a first top posi-
tion to a first bottom position; and

a second group forming a remaining portion of the first
vertical stack organized sequentially from a second top
position to a second bottom position;

whereby the control component causes firing of the emit-
ters to alternate between the first group and the second
group, and further causes firing within the first group to
proceed sequentially and firing within the second group
to proceed sequentially.]

[15. The sensor system of claim 2, wherein the rotary

component further comprises a capacitive coupler.]
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[16. A LiDAR-based sensor system comprising:

a base;

head assembly;

a motor configured to rotate the head assembly with
respect to the base, the rotation of the head assembly
defining an axis of rotation;

an electrical motherboard carried in the head assembly;

aplurality of photon transmitters mounted to a plurality of
emitter circuit boards, the plurality of emitter circuit
boards being mounted to the motherboard;

a plurality of detectors mounted to a plurality of detector
circuit boards, the plurality of detector circuit boards
being mounted to the motherboard;

an emitter mirror supported within the head assembly;

a detector mirror supported within the head assembly; and

a conjoined D-shaped lens assembly, the lens assembly
forming an emitter portion and a detector portion;

wherein the motherboard is a unitary component for
mounting the plurality of emitter circuit boards and the
plurality of detector circuit boards, the motherboard
being positioned between the emitter mirror and the
detector mirror on a first side and the lens assembly on
the other side, the motherboard further having an
opening to allow light to pass between the lens assem-
bly and either the detector mirror or the emitter mirror;

whereby light transmitted by one of the plurality of
emitters is reflected from the emitter mirror and passes
through the emitter portion of the lens assembly, and
light received by the detector portion of the lens
assembly is reflected by the detector mirror and
received by one of the plurality of detectors.]

[17. The sensor system of claim 16, wherein the mother-

board defines a plane that is parallel to the axis of rotation.]

[18. The sensor system of claim 17, further comprising:

a control component for causing the firing of the plurality
of emitters; and

further wherein there are n emitters in the plurality of
emitters, the n emitters being positioned in a vertical
stack from 1 to n, the plurality of emitters being divided
into two groups, including a first group of emitters from
1 to n/2 and a second group of emitters from n/2+1 to
n; wherein the control component causes the emitters to
fire alternatingly between the first group and the second
group, and to fire sequentially within each group such
that emitter 1 and emitter n/2+1 fire sequentially.]

19. A LiDAR-based sensor system comprising:

a base having a head assembly and a rotary component
configured to rotate the head assembly with respect to
the base, the head assembly further having a civcum-
ference spaced apart from an axis of rotation of the
head assembly;

an electrical motherboard carried in the head assembly;

a lens positioned on the head assembly along the circum-
ference of the head assembly;

a mirror positioned on the head assembly along the
circumference of the head assembly;

a plurality of transmitters carried on the head assembly
for rotation with the head assembly, the plurality of
transmitters positioned to transmit light pulses through
the lens;
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a plurality of detectors carried on the head assembly for
rotation with the head assembly, the plurality of detec-
tors positioned to receive the light pulses after reflec-
tion from one or more surfaces;

a processor coupled to the plurality of transmitters and to
the rotary component; and

a memory including processor executable code, wherein
the processor executable code, upon execution by the
processor, configures the processor to prohibit firing of
the plurality of transmitters until the head assembly has
reached a minimum rotation speed.

20. The sensor system of claim 19, further comprising a
rotary encoder that provides data related to the rotational
position of the head assembly to the processor, wherein the
processor is configured to use the data to determine the
minimum rvotation speed of the head assembly.

21. The sensor system of claim 19, wherein the minimum
rotation speed comprises a minimum number of head assem-
bly revolutions per minute.

22. A LiDAR-based sensor system comprising:

a base;

a head assembly;

a rotary component configured to rotate the head assem-

bly with respect to the base along an axis of rotation;

a motherboard carried in the head assembly;

a lens positioned at a periphery of the head assembly;

a mirror positioned at the periphery the head assembly;

a plurality of photon transmitters mounted to a plurality
of emitter circuit boards, the plurality of emitter circuit
boards mounted to the motherboard;

a plurality of detectors mounted to a plurality of detector
circuit boards, the plurality of detector circuit boards
mounted to the motherboard;

a processor coupled the plurality of photon transmitters
and the rotary component; and

a memory including processor executable code, wherein
the processor executable code, upon execution by the
processor, configures the processor to prohibit firing of
the plurality of photon transmitters until the head
assembly has rveached a minimum rotation speed.

23. The sensor system of claim 22, wherein the rotary
component further comprises a rotary encoder that provides
data related to the rotational position of the head assembly,
wherein the processor is configured to use the data to
determine the minimum rotation speed of the head assembl)y.

24. The sensor system of claim 22, wherein the minimum
rotation speed is measured in head assembly rvevolutions per
minute.

25. The sensor system of claim 19, wherein the processor
is configured to cause firing of fewer than the entire plurality
of transmitters according to a rotation speed of the head
assembly.

26. The sensor system of claim 22, wherein the processor
is configured to cause firing of fewer than the entire plurality
of transmitters according to a rotation speed of the head
assembly.



