

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2016253126 B2

(54) Title
Kappa myeloma antigen chimeric antigen receptors and uses thereof

(51) International Patent Classification(s)
C07K 14/705 (2006.01) **C07K 16/28** (2006.01)
A61K 39/395 (2006.01) **C07K 16/30** (2006.01)
C07K 14/725 (2006.01)

(21) Application No: **2016253126** (22) Date of Filing: **2016.04.25**

(87) WIPO No: **WO16/172703**

(30) Priority Data

(31) Number	(32) Date	(33) Country
62/158,407	2015.05.07	US
62/151,968	2015.04.23	US

(43) Publication Date: **2016.10.27**

(44) Accepted Journal Date: **2020.01.30**

(71) Applicant(s)
Haemalogix Pty. Ltd.

(72) Inventor(s)
Micklethwaite, Kenneth; Dunn, Rosanne; Gottlieb, David; Logan, Grant

(74) Agent / Attorney
FB Rice Pty Ltd, Level 23 44 Market Street, Sydney, NSW, 2000, AU

(56) Related Art
J. VERA ET AL, "T lymphocytes redirected against the ? light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells", BLOOD, US, (2006-12-01), vol. 108, no. 12, pages 3890 - 3897
GARFALL., "Immunotherapy with chimeric antigen receptors for multiple myeloma.", Discov Med., (2014), vol. 17, no. 91, pages 37 - 46
WO 2015164739 A1
WO 2010115238 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

WIPO | PCT

(10) International Publication Number

WO 2016/172703 A3

(43) International Publication Date

27 October 2016 (27.10.2016)

(51) International Patent Classification:

C07K 16/28 (2006.01) C07K 14/725 (2006.01)
C07K 14/705 (2006.01) C07K 16/30 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/US2016/029203

(22) International Filing Date:

25 April 2016 (25.04.2016)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/151,968 23 April 2015 (23.04.2015) US
62/158,407 7 May 2015 (07.05.2015) US

(71) Applicants: **HAEMALOGIX PTY. LTD.** [AU/AU]; Suite 145, National Innovation Centre, ATP, 4 Cornwallis St., Eveleigh, New South Wales 2015 (AU). **WESTERN SYDNEY LOCAL HEALTH DISTRICT** [AU/AU]; Institute Road, Westmead, New South Wales 2145 (AU). **CHILDREN'S MEDICAL RESEARCH INSTITUTE** [AU/AU]; 214 Hawkesbury Road, Westmead, New South Wales 2145 (AU).

(72) Inventors: **MICKLETHWAITE, Kenneth**; c/o Western Sydney Local Health District, Institute Road, Westmead, New South Wales 2145 (AU). **DUNN, Rosanne**; c/o HaemaLogiX Pty. Ltd., Suite 145, National Innovation Centre, ATP, 4 Cornwallis St., Eveleigh, New South Wales 2015 (AU). **GOTTLIEB, David**; c/o Western Sydney Local Health District, Institute Road, Westmead, New South Wales 2145 (AU). **LOGAN, Grant**; c/o Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, New South Wales 2145 (AU).

(74) Agents: **FULLER, Alyson C.** et al.; Cooley LLP, 1299 Pennsylvania Avenue, NW, Suite 700, Washington, District of Columbia 20004 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

(88) Date of publication of the international search report: 24 November 2016

WO 2016/172703 A3

(54) Title: KAPPA MYELOMA ANTIGEN CHIMERIC ANTIGEN RECEPTORS AND USES THEREOF

(57) Abstract: The present invention provides compositions and methods for treating KMA-expressing malignancies including chimeric antigen receptors (CARs) and T cells containing CARs (CAR T-cells). The invention also provides methods and compositions comprising CAR T-cells co-expressing other anti-tumoral agents including cytokines and antibodies.

**KAPPA MYELOMA ANTIGEN CHIMERIC ANTIGEN RECEPTORS AND USES
THEREOF**

CROSS REFERENCE TO U.S. NON-PROVISIONAL APPLICATIONS

[0001] This application claims priority from U.S. Provisional Application Serial No. 62/151,968, filed April 23, 2015, and U.S. Provisional Application Serial No. 62/158,407, filed May 7, 2015, each of which is incorporated by reference herein in its entirety for all purposes.

STATEMENT REGARDING SEQUENCE LISTING

[0002] The sequence Listing associated with this application is provided in text format in lieu of a paper copy, and is hereby incorporated by reference into the specification. The name of the text file containing the Sequence Listing is HMLX_002_02WO_SeqList_ST25.txt. The text file is about 63 KB, was created on April 22, 2016, and is being submitted electronically via EFS-Web.

BACKGROUND OF THE INVENTION

[0003] Multiple myeloma (MM) is a malignancy of bone marrow plasma cells which despite recent advances in therapy, remains incurable. Its clinical course is characterized by an initial response to therapy, followed by repeated relapse with eventual resistance to all forms of treatment. It is also associated with significant morbidity and disability both due to the disease itself and toxicity from available treatments.

[0004] Multiple myeloma is characterized by malignant plasma cells which secrete either a kappa or lambda light chain restricted monoclonal paraprotein. Kappa restriction occurs in 60% of myeloma patients and the expression of kappa myeloma antigen (KMA) is highly restricted to multiple myeloma and B-cell malignancies. KappaMab is a KMA-specific monoclonal antibody which has demonstrated safety and efficacy in phase I and II clinical trials.

[0005] Treatment with monoclonal antibodies alone is not curative with incomplete eradication of the tumor leading to eventual relapse. This may be due to inadequate penetration of antibody into the tumor (via passive diffusion), heterogeneity of antigen expression on tumor cells or resistance of tumor cells to mechanisms of antibody dependent

cytotoxicity. Thus, there is a need for effective therapies with low toxicity which can provide long term disease cure.

[0006] Chimeric Antigen Receptor bearing T cells (CAR T-cells) represent a possible solution to this problem. CAR T-cells incorporate the antigen binding domain of monoclonal antibodies with one or more intracellular signaling domain(s) of T cells to produce a localized, tumor specific immune response. CAR T-cells have several advantages over monoclonal antibodies: they actively migrate into the tumor, proliferate in response to antigen bearing tumor cells, secrete factors that recruit other arms of the immune response and can survive long term to provide ongoing protection from relapse. Another benefit of a CAR-T cell over an antibody therapeutic targeting the same antigen is that the CAR T-cell may also be further modified to enhance safety and function. For example, a T cell can be modified to include expression of a homing receptor which enhances T cell specificity and the ability of the T cell(s) to infiltrate cancer cells or tumors or they may include an “off switch” that can function to eliminate cells when toxicity occurs. Furthermore, and importantly for the treatment of multiple myeloma and its related disorders, the T cell may be modified to express additional biologically active or pharmaceutically active molecules that may enhance the anti-tumor response, such as, for example, tumor suppressive cytokines. As described herein, the current inventors have designed novel CAR constructs which are able to specifically bind to a particular conformational KMA epitope expressed only on MM cells and have engineered CAR T-cells to express an extracellular antigen binding domain specific for this epitope and an intracellular T cell signaling domain alone or in combination with the expression of other anti-tumoral immune mediators.

SUMMARY OF THE INVENTION

[0007] The present invention is drawn to chimeric antigen receptors (CAR) that are specific for kappa myeloma antigen (KMA) but contain intracellular signaling domains capable of triggering an anti-KMA T cell response, T cells containing such CARs and method of treating multiple myeloma and related disorders by administering T cells expressing KMA-specific CARs. The resulting CAR T-cells are able to mediate a targeted immune response against cancer cells while avoiding unwanted side effects associated with systemic delivery of monoclonal antibodies and/or anti-tumoral cytokines.

[0008] In one embodiment, the chimeric antigen receptors (CARs) of the present invention comprise one or more intracellular signaling domains and an extracellular antigen binding

domain that specifically recognizes kappa myeloma antigen (KMA). In one embodiment, the intracellular signaling domain is one or more co-stimulatory endodomains. In a further embodiment, the one or more co-stimulatory domain is one or more of a CD28 domain, a CD3 ζ domain, a 4-1BB domain, or an OX-40 domain or combinations thereof. In one embodiment, the one or more co-stimulatory endodomains of the CAR comprises a CD3 ζ domain and a CD28 domain. In another embodiment, the one or more co-stimulatory endodomains of the CAR comprises a CD3 ζ domain, and an OX-40 domain. In still another embodiment, the one or more co-stimulatory endodomains of the CAR comprises a CD3 ζ domain, a CD28 domain and an OX-40 domain. In still another embodiment, the one or more co-stimulatory endodomains of the CAR comprises a CD3 ζ domain and a 4-1BB domain. In still another embodiment, the one or more co-stimulatory endodomains of the CAR comprises a CD3 ζ domain, a CD28 domain and a 4-1BB domain. In still another embodiment, the one or more co-stimulatory endodomains of the CAR comprises a CD3 ζ domain, a 4-1BB domain and an OX-40 domain.

[0009] In one embodiment, the extracellular binding domain comprises a single chain variable fragment (scFv) that specifically recognizes KMA. In still another embodiment, the scFv comprises the complemetarity determining regions (CDRs) derived from KappaMab. In still another embodiment the scFv comprises the VL CDRs of SEQ ID NOs: 6-8. In yet another embodiment, the scFv comprises the VL region of SEQ ID NO: 21. In still another embodiment the scFv comprises the VH CDRs of SEQ ID NOs: 3-5. In yet another embodiment, the scFv comprises the VH region of SEQ ID NO: 22. In still a further embodiment, the scFv comprises the VL CDRs of SEQ ID NOs: 6-8 and the VH CDRs of SEQ ID NOs: 3-5. In yet a further embodiment, the scFv comprises the VL region of SEQ ID NO: 21 and the VH region of SEQ ID NO: 22. In one embodiment, the VL chain of SEQ ID NO: 2 and VH chain of SEQ ID NO: 1 are attached via a glycine-serine linker. In one embodiment, the VL region of SEQ ID NO: 21 and VH region of SEQ ID NO: 22 are attached via a glycine-serine linker. In still another embodiment, the linker is a (Gly₄Ser)_X where X is 1-5. In still another embodiment, the glycine-serine linker is a 15-20 amino acid linker. In still another embodiment, the linker is a 15 amino acid glycine serine linker and comprises (Gly₄Ser)₃. In one embodiment, the (Gly₄Ser)₃ linker is SEQ ID NO: 23. In one embodiment, the scFv is attached to the one or more intracellular signaling domains with a spacer. In still another embodiment, scFv is attached to the one or more intracellular domains by a spacer that comprises an immunoglobulin constant region. In one embodiment, the immunoglobulin constant region comprises one or more of an IgG hinge, an IgG CH2 and an

IgG CH3 domain. In a particular embodiment, the immunoglobulin constant region comprises an immunoglobulin hinge domain. In still another embodiment, the immunoglobulin constant region comprises an immunoglobulin CH3 domain. In still another embodiment, the immunoglobulin constant region comprises an IgG CH2 domain. In still another embodiment, the scFv is attached to the one or more intracellular domains by a spacer that comprises a CD8 α domain. In one embodiment, the spacer is attached to the scFv via a glycine-serine linker. In still another embodiment, the linker is a (Gly₄Ser)_x where X is 1-5. In still another embodiment, the glycine-serine linker is a 15-20 amino acid linker. In still another embodiment, the linker is a 15 amino acid glycine serine linker and comprises (Gly₄Ser)₃. In one embodiment, the (Gly₄Ser)₃ linker is SEQ ID NO: 23.

[0010] In one embodiment, the invention provides T cells comprising chimeric antigen receptors (CAR T-cells). In one embodiment, the CAR T-cells comprise CARs comprising one or more intracellular signaling domains and an extracellular binding domain. In a particular embodiment, the extracellular binding domain specifically recognizes a kappa myeloma antigen. In one embodiment the CAR T-cells are further engineered to express one or more additional biological molecules. In one embodiment, the additional one or more molecules comprise IL-12 and/or SANT7 and/or Galectin -3C (GAL3C). In one embodiment, the CAR T-cells express a single chain polypeptide comprising one IL-12 p35 subunit and one IL-12 p40 subunit joined by a flexible linker. In one embodiment the IL-12 p35 and IL-12 p40 are joined by a (G₄S)₃ linker. In one embodiment the single chain IL-12 polypeptide forms a bioactive IL-12 p70 heterodimer. In one embodiment, the CAR T- cell expresses IL-12 and a selectable marker. In one embodiment, the one or more biological molecules is SANT7. In one embodiment, the CAR T-cell expresses GAL3C. In one embodiment, the CAR T-cell expresses GAL3C and a selectable marker. In one embodiment, the CAR T-cell expresses SANT7 and GAL3C. In one embodiment, the CAR T-cell expresses SANT7, GAL3C and a selectable marker. In one embodiment, the CAR T- cell expresses IL-12 and GAL3C. In one embodiment, the CAR T-cell expresses IL-12, GAL3C and a selectable marker. In one embodiment, the CAR T-cell expresses SANT7 and a selectable marker. In one embodiment, the CAR T-cell expresses IL-12, and SANT7. In one embodiment, the CAR T-cell expresses IL-12, SANT7 and a selectable marker. In one embodiment, the CAR T-cell expresses IL-12, SANT7 and GAL3C. In one embodiment, the CAR T-cell expresses IL-12, SANT7, GAL3C and a selectable marker.

[0011] In one embodiment, the CAR T-cells of the current invention also express a hepatocyte growth factor (HGF) binding protein that is capable of inhibiting HGF signaling

and effector function. In one aspect, the HGF binding protein is an antibody or fragment thereof.

[0012] In one aspect, the current invention provides a method for producing a genetically modified T cell comprising introducing an expression vector encoding a CAR comprising one or more intracellular signaling domains and an extracellular antigen binding domain into a T cell. In a particular embodiment, the extracellular antigen binding domain specifically recognizes KMA. In one embodiment, the expression vector is a transposable vector expression system. In certain embodiments, the expression vector is a PiggyBac transposon expression vector. In another embodiment the expression vector is a viral vector. In one embodiment the viral vector is a lentiviral vector or a retroviral vector. In one embodiment, the expression vector is introduced into the cells by electroporation. In one embodiment, the one or more intracellular signaling domains in the CAR is one or more co-stimulatory endodomains. In a further embodiment, the one or more co-stimulatory domain is one or more of a CD28 domain, a CD3 ζ domain, a 4-1BB domain, or an OX-40 domain or combinations thereof. In one embodiment, the one or more co-stimulatory endodomains of the CAR comprises a CD3 ζ domain and a CD28 domain. In another embodiment, the one or more co-stimulatory endodomains of the CAR comprises a CD3 ζ domain, and an OX-40 domain. In still another embodiment, the one or more co-stimulatory endodomains of the CAR comprises a CD3 ζ domain, a CD28 domain and an OX-40 domain. In still another embodiment, the one or more co-stimulatory endodomains of the CAR comprises a CD3 ζ domain and a 4-1BB domain. In still another embodiment, the one or more co-stimulatory endodomains of the CAR comprises a CD3 ζ domain, a CD28 domain and a 4-1BB domain. In still another embodiment, the one or more co-stimulatory endodomains of the CAR comprises a CD3 ζ domain, a 4-1BB domain and an OX-40 domain. In one embodiment, the extracellular binding domain comprises a single chain variable fragment (scFv) that specifically recognizes KMA. In still another embodiment, the scFv comprises the complementarity determining regions (CDRs) derived from KappaMab. In still another embodiment the scFv comprises the VL CDRs of SEQ ID NOs: 6-8. In yet another embodiment, the scFv comprises the VL region of SEQ ID NO: 21. In still another embodiment the scFv comprises the VH CDRs of SEQ ID NOs: 3-5. In yet another embodiment, the scFv comprises the VH region of SEQ ID NO: 22. In still a further embodiment, the scFv comprises the VL CDRs of SEQ ID NOs: 6-8 and the VH CDRs of SEQ ID NOs: 3-5. In yet a further embodiment, the scFv comprises the VL region of SEQ ID NO: 21 and the VH region of SEQ ID NO: 22. In one embodiment, the VL chain of SEQ

ID NO: 2 and VH chain of SEQ ID NO: 1 are attached via a glycine-serine linker. In one embodiment, the VL region of SEQ ID NO: 21 and VH region of SEQ ID NO: 22 are attached via a glycine-serine linker. In still another embodiment, the glycine-serine linker is a 15-20 amino acid linker. In still another embodiment, the linker is a 15 amino acid glycine serine linker and comprises (Gly₄Ser)₃. In one embodiment, the (Gly₄Ser)₃ linker is SEQ ID NO: 23. In one embodiment, the scFv is attached to the one or more intracellular signaling domains with a spacer. In still another embodiment, scFv is attached to the one or more intracellular domains by a spacer that comprises an immunoglobulin constant region. In one embodiment, the immunoglobulin constant region comprises one or more of an IgG hinge, an IgG CH2 and an IgG CH3 domain. In a particular embodiment, the immunoglobulin constant region comprises an immunoglobulin hinge domain. In still another embodiment, the immunoglobulin constant region comprises an immunoglobulin CH3 domain. In still another embodiment, the immunoglobulin constant region comprises an IgG CH2 domain. In still another embodiment, the scFv is attached to the one or more intracellular domains by a spacer that comprises a CD8 α domain. In one embodiment, the spacer is attached to the scFv via a glycine-serine linker. In still another embodiment, the linker is a (Gly₄Ser)_x where X is 1-5. In still another embodiment, the glycine-serine linker is a 15-20 amino acid linker. In still another embodiment, the linker is a 15 amino acid glycine serine linker and comprises (Gly₄Ser)₃. In one embodiment, the (Gly₄Ser)₃ linker is SEQ ID NO: 23. In one embodiment the method further comprises introducing one or more additional expression vectors engineered to express one or more additional biological molecules. In one embodiment, the additional one or more molecules comprise IL-12 and/or SANT7 and/or GAL3C. In one embodiment, the one or more additional expression vectors comprise a sequence encoding a single chain polypeptide comprising one IL-12 p35 subunit and one IL-12 p40 subunit joined by a flexible linker. In one embodiment the IL-12 p35 and IL-12 p40 are joined by a (G₄S)₃ linker. In one embodiment the sequence encoding a single chain IL-12 polypeptide encodes a bioactive IL-12 p70 heterodimer. In one embodiment, the expression vector expressing the one or more biologically active agents also comprises a selectable marker. In one embodiment the expression vector comprises a sequence encoding a single chain IL-12 polypeptide comprising IL-12 p35 and IL-12 p40 joined with a flexible linker and a selectable marker joined to the single chain IL-12 with a 2A ribosomal skip. In one embodiment, the one or more biological molecules is SANT7. In one embodiment, the expression vector expressing one or more biologically active agents comprises SANT7 and a selectable marker. In one embodiment the sequence encoding SANT7 and the selectable

marker are joined by a 2A ribosomal skip sequence. In one embodiment, the expression vector expressing one or more biologically active agents comprises GAL3c and a selectable marker. In one embodiment, the sequence encoding GAL3C and the selectable marker are joined by a ribosomal skip sequence. In one embodiment, the CAR T-cell comprises IL-12, SANT7 and a selectable marker. In one embodiment, the sequence encoding the IL-12 is linked to the selectable marker via a 2A ribosomal skip and the sequence encoding SANT7 is connected to the sequence encoding IL-12 by an additional 2A ribosomal skip. In one embodiment, the CAR T-cell comprises GAL3C, SANT7 and a selectable marker. In one embodiment, the sequence encoding the GAL3C is linked to the selectable marker via a 2A ribosomal skip and the sequence encoding SANT7 is connected to the sequence encoding GAL3C by an additional 2A ribosomal skip. In one embodiment, the CAR T-cell comprises IL-12, GAL3C and a selectable marker. In one embodiment, the sequence encoding the IL-12 is linked to the selectable marker via a 2A ribosomal skip and the sequence encoding GAL3C is connected to the sequence encoding IL-12 by an additional 2A ribosomal skip. In one embodiment, the CAR T-cell comprises GAL3C, SANT7, IL-12 and a selectable marker. In one embodiment, the sequence encoding each of GAL3C, SANT7, IL-12 and the selectable marker are connected via 2A ribosomal skip sequences.

[0013] In one embodiment, a method for treating a KMA-expressing malignancy is provided. In one embodiment, the KMA-expressing malignancy is a B cell malignancy. In a further embodiment, the B-cell malignancy is multiple myeloma, Waldenstroms macroglobulinemia, diffuse large B cell lymphoma (DLBCL), or amyloidosis. In a particular embodiment, the method includes administering to a subject with multiple myeloma, Waldenstroms macroglobulinemia, diffuse large B cell lymphoma (DLBCL), amyloidosis or another B cell malignancy expressing KMA genetically modified T cells engineered to express one or more intracellular signaling domains and an extracellular antigen binding domain that specifically recognizes KMA. In one embodiment, the one or more intracellular signaling domains in the CAR is one or more co-stimulatory endodomains. In a further embodiment, the one or more co-stimulatory domain is one or more of a CD28 domain, a CD3 ζ domain, a 4-1BB domain, or an OX-40 domain or combinations thereof. In one embodiment, the one or more co-stimulatory endodomains of the CAR comprises a CD3 ζ domain and a CD28 domain. In another embodiment, the one or more co-stimulatory endodomains of the CAR comprises a CD3 ζ domain, and an OX-40 domain. In still another embodiment, the one or more co-stimulatory endodomains of the CAR comprises a CD3 ζ domain, a CD28 domain and an OX-40 domain. In still another embodiment, the one or more co-stimulatory endodomains of

the CAR comprises a CD3 ζ domain and a 4-1BB domain. In still another embodiment, the one or more co-stimulatory endodomains of the CAR comprises a CD3 ζ domain, a CD28 domain and a 4-1BB domain. In still another embodiment, the one or more co-stimulatory endodomains of the CAR comprises a CD3 ζ domain, a 4-1BB domain and an OX-40 domain. In one embodiment, the extracellular binding domain comprises a single chain variable fragment (scFv) that specifically recognizes KMA. In still another embodiment, the scFv comprises the complementarity determining regions (CDRs) derived from KappaMab. In still another embodiment the scFv comprises the VL CDRs of SEQ ID NOs: 6-8. In yet another embodiment, the scFv comprises the VL region of SEQ ID NO: 21. In still another embodiment the scFv comprises the VH CDRs of SEQ ID NOs: 3-5. In yet another embodiment, the scFv comprises the VH region of SEQ ID NO: 22. In still a further embodiment, the scFv comprises the VL CDRs of SEQ ID NOs: 6-8 and the VH CDRs of SEQ ID NOs: 3-5. In yet a further embodiment, the scFv comprises the VL region of SEQ ID NO: 21 and the VH region of SEQ ID NO: 22. In one embodiment, the VL chain of SEQ ID NO: 2 and VH chain of SEQ ID NO: 1 are attached via a glycine-serine linker. In one embodiment, the VL region of SEQ ID NO: 21 and VH region of SEQ ID NO: 22 are attached via a glycine-serine linker. In still another embodiment, the linker is a (Gly₄Ser)_x where X is 1-5. In still another embodiment, the glycine-serine linker is a 15-20 amino acid linker. In still another embodiment, the linker is a 15 amino acid glycine serine linker and comprises (Gly₄Ser)₃. In one embodiment, the (Gly₄Ser)₃ linker is SEQ ID NO: 23. In one embodiment, the scFv is attached to the one or more intracellular signaling domains with a spacer. In still another embodiment, scFv is attached to the one or more intracellular domains by a spacer that comprises an immunoglobulin constant region. In one embodiment, the immunoglobulin constant region comprises one or more of an IgG hinge, an IgG CH2 and an IgG CH3 domain. In a particular embodiment, the immunoglobulin constant region comprises an immunoglobulin hinge domain. In still another embodiment, the immunoglobulin constant region comprises an immunoglobulin CH3 domain. In still another embodiment, the immunoglobulin constant region comprises an IgG CH2 domain. In still another embodiment, the scFv is attached to the one or more intracellular domains by a spacer that comprises a CD8 α domain. In one embodiment, the spacer is attached to the scFV via a glycine-serine linker. In still another embodiment, the linker is a (Gly₄Ser)_x where X is 1-5. In still another embodiment, the glycine-serine linker is a 15-20 amino acid linker. In still another embodiment, the linker is a 15 amino acid glycine serine linker and comprises (Gly₄Ser)₃. In one embodiment, the (Gly₄Ser)₃ linker is SEQ ID NO: 23. In another

embodiment, the genetically modified T cells are further engineered to express one or more additional biological molecules. In one embodiment, the additional one or more molecules comprise IL-12 and/or SANT7 and or GAL3C. In one embodiment, the CAR T-cells express a single chain polypeptide comprising one IL-12 p35 subunit and one IL-12 p40 subunit joined by a flexible linker. In one embodiment the IL-12 p35 and IL-12 p40 are joined by a (G₄S)₃ linker. In one embodiment the single chain IL-12 polypeptide forms a bioactive IL-12 p70 heterodimer. In one embodiment, the CAR T-cell expresses IL-12 and a selectable marker. In one embodiment, the one or more biological molecules is SANT7. In one embodiment, the CAR T-cell expresses SANT7 and a selectable marker. In one embodiment the selectable marker is GAL3C. In one embodiment, the CAR T-cell expresses GAL3C and a selectable marker. In one embodiment, the CAR T-cell expresses IL-12, SANT7 and a selectable marker. In one embodiment, the CAR T-cell expresses IL-12, GAL3C and a selectable marker. In one embodiment, the CAR T-cell expresses SANT7, GAL3C and a selectable marker. In one embodiment, the CAR T-cell expresses IL-12, SANT7, GAL3C and a selectable marker.

[0014] In a further embodiment, the method includes further administering to a patient with multiple myeloma, Waldenstroms macroglobulinemia, diffuse large B cell lymphoma (DLBCL), amyloidosis or another B cell malignancy expressing KMA an HGF binding protein. In one embodiment, the HGF binding protein is an antibody or fragment thereof. In one embodiment, an expression vector comprising the HGF binding protein is co-transfected with the expression vector encoding the CAR construct into a T cell such that the resulting CAR T-cell also expresses the HGF binding protein.

[0015] In another embodiment, the method includes administering one or more additional biologically or pharmaceutically active agents. In one embodiment, the one or more additional pharmaceutically active agent is a chemotherapeutic agent. In another embodiment, the one or more pharmaceutically active agent is an immunomodulatory drug. In a particular embodiment, the immunomodulatory drug is thalidomide or an analog thereof. In still another embodiment, the thalidomide analog is actimid, lenalidomide, or pomalidomide. In still another embodiment, the additional pharmaceutically active agent is a histone deacetylase inhibitor. In still another embodiment, the histone deacetylase inhibitor is panobinostat, vorinostat, trichostatin A, depsipeptides, phenylbutyrate, valproic acid, belinostat, LAQ824, entinostat, CI944, or mocetinostat. In still another embodiment, the one or more additional biological or pharmaceutically active agents is administered before, during or after treatment with said genetically modified T cells. In still another embodiment, the

genetically modified T cells are administered intravenously. In still another embodiment, the generically modified T cells are derived from said patient. In still another embodiment, the genetically modified T cells are not derived from said patient.

[0016] In one embodiment, the CAR T-cells of the current invention are administered before, during or after an allogenic stem cell transplant. In still another embodiment, the the CAR T-cells of the current invention are administered before during or after an allogenic stem cell transplant.

[0016A] In an aspect, the present disclosure provides a chimeric antigen receptor (CAR) comprising one or more intracellular signaling domains and an extracellular antigen binding domain, wherein the extracellular antigen binding domain specifically recognizes kappa myeloma antigen (KMA).

[0016B] In an aspect, the present disclosure provides a genetically modified T cell engineered to express the CAR according to the present disclosure.

[0016C] In an aspect, the present disclosure provides a method for producing a genetically modified T cell according to the present disclosure, the method comprising introducing an expression vector encoding a CAR comprising one or more intracellular signaling domain and an extracellular antigen binding domain, wherein the extracellular antigen binding domain specifically recognizes kappa myeloma antigen (KMA) into a T cell.

[0016D] In an aspect, the present disclosure provides a method of treating a KMA-expressing malignancy in a subject in need thereof comprising administering genetically modified T cells engineered to express one or more intracellular signaling domain and an extracellular antigen binding domain, wherein the extracellular antigen binding domain specifically recognizes kappa myeloma antigen (KMA).

[0016E] Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

[0016F] Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field

relevant to the present disclosure as it existed before the priority date of each of the appended claims.

[0017] These above-characterized aspects, as well as other aspects, of the present invention are exemplified in a number of illustrated implementations and applications, some of which are shown in the figures and characterized in the claims section that follows. However, the above summary is not intended to describe each illustrated embodiment or every implementation of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention is obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:

[0019] **Figures 1A-1B** shows the structural relationship of CARs to Immunoglobulin (IgG) and the T-cell receptor (TCR) **Figure 1A** shows a single chain variable fragment (scFv) consisting of the parent antibody's light chain variable region (VL) joined to the heavy chain variable region (VH) by a polypeptide linker confers antigen specificity to the CAR. A flexible hinge connects the scFv to the transmembrane and the intracellular signaling domain of a co-stimulatory molecule such as CD28, 4-1 BB or OX-40 followed by CD3 zeta. **Figure 1B** shows T-cells transduced with the CAR are activated on encountering tumor cells bearing the target antigen (Ag) leading to tumor cell lysis.

[0020] **Figure 2** shows the structural determinants of chimeric antigen receptor function.

[0021] **Figure 3** shows KMA expression on primary myeloma cells.

[0022] **Figures 4A-4C** shows KMA.CAR-28z function. **Figure 4A** is flow cytometry analysis of KMA expression on various cell lines; **Figure 4B** is interferon-gamma (IFN γ) expression of KMA.CAR-28z transduced (upper plots) and non-transduced (lower plots)

CD8⁺ T cells. **Figure 4C** shows the specific lysis of KMA positive and negative cell lines by KMA.CAR-28z transduced T cells.

[0023] **Figure 5A** shows RPMI-Rag mice injected with 5 x 10⁵-5 x 10⁶ myeloma cells **Figure 5B** shows infiltration of the bone marrow and spleen with CD138⁺ RPMI9226 cells **Figure 5C** shows elevated levels of serum human lambda light chain on progressive disease **Figure 5D** shows CD138⁺/cytoplasmic lambda light chain positive cells in the bone marrow **Figure 5E** shows RPMI-Rag mice as a therapeutic model.

[0024] **Figures 6A-6C** shows the optimization of KMA.CAR **Figure 6A** show the initial KMA.CAR-28z construct; **Figure 6B** shows constructs with Ig heavy chain hinge and CH3 or hinge alone **Figure 6C** shows constructs combining optimal hinge region (opti) with combinations of various costimulatory molecule endodomains and CD3 zeta.

[0025] **Figure 7** shows the IL-12 and SANT7 vectors.

[0026] **Figures 8A-8B** shows KM.CAR T-cell expansion and CAR expression with constructs described in Example 3. **Figure 8A** shows expansion of total cells in CAR T-cell cultures with (left) and without (right) the addition of the KMA expressing JJN3 cell line. **Figure 8B** CAR expression as measured by GFP in cultures with (top plots) and without (bottom plots) the KMA expressing JJN3 cell line. hCH2CH3= KM.CAR_hCH2CH3_28z T-cells; hCH2CH3mut= KM.CAR_hCH2CH3mut_28TM_41BBz T-cells; h= KM.CAR_h_28TM_41BBz T-cells; CD8a= KM.CAR_8a_28TM_41BBz T-cells.

[0027] **Figure 9** shows the structure of the activation inducible transposon cassette. IR= inverted repeats; Ins= Insulator flanking the two ends of the gene insert; NFATpro= activation inducible promoter; BGHpA= bovine growth hormone polyadenylation signal; EF1 α = human elongation factor-1 alpha promoter; RQR8= marker; SV40= simian virus late polyadenylation signal.

[0028] **Figure 10** shows expression of eGFP under activation induced promoter control. Transduced PBMCs stimulated with PMA and Ionomycin (right plot) were assessed for co-expression of RQR8 (x-axis) and eGFP (y-axis) and compared to unstimulated controls (left plot). Transduced cells did not express eGFP in the absence of stimulation. Fifty percent of transduced cells expressed eGFP with stimulation.

[0029] **Figure 11** shows the structure of the activation inducible transposon cassette with CAR and biological. IR= inverted repeats; Ins= Insulator flanking the two ends of the gene insert; NFATpro= activation inducible promoter; BGHpA= bovine growth hormone polyadenylation signal; EF1 α = human elongation factor-1 alpha promoter; SV40= simian virus late polyadenylation signal.

[0030] Figures 12A-12B shows KMA-specific interferon-gamma production and cytotoxicity of KM.CAR_hCH2CH3_28z T-cells (**Figure 12A**) or KM.CAR_h_28TM_41BBz T-cells (**Figure 12 B**) standard chromium release assay with KMA+ and KMA- cell lines. KMA positive cell lines used included JJN3, Pfeiffer, NCI-H929, while KMA negative cell lines included Nalm-6 and Molt

DETAILED DESCRIPTION OF THE INVENTION

[0031] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although any methods and material similar or equivalent to those described herein can be used in the practice for testing of the present invention, the preferred materials and methods are described herein. In describing and claiming the present invention, the following definitions will be used. It will also be understood that the terminology used herein is not meant to be limiting but rather is used herein for the purpose of describing particular embodiments.

[0032] The articles “a” and “an” are used herein to refer to one or more than one (i.e. to at least one or to one or more) of the grammatical object of the article.

[0033] The term “expression vector” as used herein refers to a vector comprising a recombinant nucleic acid sequence comprising at least one expression control sequence operatively linked to the nucleic acid sequence to be expressed. An expression vector comprises all necessary cis acting elements required for expression. Examples of expression vectors include, but are not limited to, plasmids, cosmids, and viruses that encode the recombinant polynucleotide to be expressed. In some embodiments, the expression vector comprises transposable elements that are capable of integrating into the genome, for example, the PiggyBac expression system. In some embodiments, the expression vector is a viral vector that allows for integration of the expression vector contents into the host genome, for example retroviral and lentiviral vectors.

[0034] By “chimeric antigen receptor” or “CAR” is meant an engineered receptor that includes an extracellular antigen binding domain and an intracellular signaling domain. While the most common type of CAR comprises a single-chain variable fragment (scFv) derived from a monoclonal antibody fused to a transmembrane and intracellular domain of a T cell co-receptor, such as the CD3 ζ chain, the invention described herein is not limited to these domains. Rather, as used herein “chimeric antigen receptor” or “CAR” refers to any

receptor engineered to express and extracellular antigen binding domain fused or linked to any intracellular signaling molecule.

[0035] As used herein the term “CAR-T cell” refers to a T lymphocyte that has been genetically engineered to express a CAR. The definition of CAR T-cells encompasses all classes and subclasses of T-lymphocytes including CD4⁺, CD8⁺ T cells as well as effector T cells, memory T cells, regulatory T cells, and the like. The T lymphocytes that are genetically modified may be “derived” or “obtained” from the subject who will receive the treatment using the genetically modified T cells or they may “derived” or “obtained” from a different subject.

[0036] By “intracellular signaling domain” is meant the portion of the CAR that is found or is engineered to be found inside the T cell. The “intracellular signaling domain” may or may not also contain a “transmembrane domain” which anchors the CAR in the plasma membrane of a T cell. In one embodiment, the “transmembrane domain” and the “intracellular signaling domain” are derived from the same protein (e.g. CD3 ζ) in other embodiments; the intracellular signaling domain and the transmembrane domain are derived from different proteins (e.g. the transmembrane domain of a CD3 ζ and intracellular signaling domain of a CD28 molecule, or vice versa).

[0037] By “co-stimulatory endodomain” is meant an intracellular signaling domain or fragment thereof that is derived from a T cell costimulatory molecule. A non-limiting list of T cell costimulatory molecules include CD3, CD28, OX-40, 4-1BB, CD27, CD270, CD30 and ICOS. The co-stimulatory endodomain may or may not include a transmembrane domain from the same or different co-stimulatory endodomain.

[0038] By “extracellular antigen binding domain” is meant the portion of the CAR that specifically recognizes and binds to the antigen of interest. The “extracellular binding domain” may be derived from a monoclonal antibody. For example, the “extracellular binding domain” may include all or part of an Fab domain from a monoclonal antibody. In certain embodiments, the “extracellular binding domain” includes the complementarity determining regions of a particular monoclonal antibody. In still another embodiment, the “extracellular binding domain” is a single-chain variable fragment (scFv).

[0039] By “single-chain variable fragment” or “scFv” is meant a fusion protein of the variable heavy (VH) and variable light (VL) chains of an antibody with a peptide linker between the VL and VH. The linker length and composition vary depending on the antibody portions used, but generally are between about 10 and about 25 amino acids in length. In

some embodiments, the peptide linker is a glycine rich to provide for flexibility. In some embodiments, the linker also includes serine and/or threonine which may, without being bound by theory, aid in solubility. In some embodiments, the linker is an amino acid with SEQ ID NO: 23. ScFvs are designed to retain the antigen binding specificity of the parent antibody from which their variable chains were derived despite lacking the immunoglobulin heavy chain. In some embodiments, only the complementary determining regions (CDRs) from the VH and VL are used in the scFV. In some embodiments, the entire VL and VH chains are used.

[0040] The term “antibody” as used herein refers to an immunoglobulin molecule which specifically binds to an antigen. Antibodies can be intact immunoglobulins derived from natural sources or from recombinant sources and can be immunoreactive portions of intact immunoglobulins. The antibodies in the present invention may exist in a variety of forms including, for example, polyclonal antibodies, monoclonal antibodies, Fv, Fab and F(ab)₂, as well as single chain antibodies and humanized antibodies (Harlow et al., 1999, In: *Using Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, NY; Harlow et al., 1989, In: *Antibodies: A Laboratory Manual*, Cold Spring Harbor, N.Y.; Houston et al., 1988, *Proc. Natl. Acad. Sci. USA* 85:5879-5883; Bird et al., 1988, *Science* 242:423-426). As used herein the term “antibody” also encompasses antibody fragments.

[0041] The term "antibody fragment" refers to a portion of an intact antibody and refers to the antigenic determining variable regions of an intact antibody. Examples of antibody fragments include, but are not limited to, Fab, Fab', F(ab')₂, and Fv fragments, linear antibodies, scFv antibodies, and multispecific antibodies formed from antibody fragments.

[0042] An "antibody heavy chain," as used herein, refers to the larger of the two types of polypeptide chains present in all antibody molecules in their naturally occurring conformations.

[0043] An "antibody light chain," as used herein, refers to the smaller of the two types of polypeptide chains present in all antibody molecules in their naturally occurring conformations. κ and λ light chains refer to the two major antibody light chain isotypes.

[0044] As used herein the term “complementarity determining region” or “CDR” refers to the part of the two variable chains of antibodies (heavy and light chains) that recognize and bind to the particular antigen. The CDRs are the most variable portion of the variable chains and provide the antibody with its specificity. There are three CDRs on each of the variable heavy

(VH) and variable light (VL) chains and thus there are a total of six CDRs per antibody molecule.

[0045] By “KappaMab” is meant the monoclonal antibody previously termed IST-1097 or MDX-1097. Furthermore, as used herein KappaMab may refer to the full antibody sequence of the KappaMab antibody (*See e.g.* U.S. Patent Nos. 7,344,715 and 7,556,803 each of which are hereby incorporated by reference in their entireties.) Additionally, the term “KappaMab” as used herein is used to encompass any polypeptide containing the CDR sequences of SEQ ID NOs: 3-8 and/or the VL sequence of SEQ ID NO: 2 and the VH sequence of SEQ ID NO: 1. The term “KappaMab” as used herein can encompass any polypeptide containing the VL sequence of SEQ ID NO: 21 and the VH sequence of SEQ ID NO: 22. In the compositions and methods of the current invention, KappaMab may include the full monoclonal antibody or any antigen binding fragment thereof including Fab and scFv.

[0046] The term "antigen" or "Ag" as used herein is defined as a molecule that is recognized by an immune cell receptor (e.g. a T cell receptor, B cell receptor/Immunoglobulin). In some embodiments, an antigen is a molecule that elicits an immune response. This immune response may involve either antibody production, or the activation of specific immunologically-competent cells, release of cytotoxic mediators or immunostimulatory or regulatory cytokines. The skilled artisan will understand that any macromolecule, including virtually all proteins or peptides, can serve as an antigen.

[0047] As used herein the term “specifically binds” or “specifically recognizes” as used in connections with an antibody, antibody fragment or CAR refers to a an antibody, antibody fragment or CAR which recognizes a specific antigen but does not substantially recognize or bind other molecules in a sample.

[0048] By “ribosomal skip” is meant an alternative mechanism of translation in which a specific peptide prevents the ribosome of a cell from covalently linking a new inserted amino acid and instead allows it to continue translation thus resulting in a co-translational cleavage of the polyprotein. This process is induced by a “2A ribosomal skip” element or cis-acting hydrolase element (e.g. CHYSEL sequence). In some embodiments, this sequence comprises a non-conserved amino acid sequence with a strong alpha-helical propensity followed by the consensus sequence –D(V/I)ExNPG P, where x=any amino acid. The apparent cleavage occurs between the G and P. In some embodiments, the ribosomal skip

element is a 2A ribosomal skip element. The 2A ribosomal skip element can be a 5' T2A ribosomal skip element.

[0049] As used herein “immunomodulatory drug” or “IMiD” is a class of drugs that constitute thalidomide and its analogs. Thalidomide analogs include lenalidomide, pomalidomide and apremilast.

[0050] As used herein the term “histone deacetylase inhibitor” or “HDAC inhibitor” or “HDI” refers to a class of compounds that interferes with the function of histone deacetylase. Examples of HDIs include, but are not limited to, hydroxamic acids including, for example, trichostatin A, vorinostat (SAHA), belinostat (PXD101), LAQ824, panobinostat (LBH589); cyclic tripeptides, including for example, depsipeptides and tapoxin B; benzamides, including for example, entinostat (MS-275), CI994 and mocetinostat (MGCD0103); electrophilic ketones; and aliphatic compounds, such as for example, phenylbutyrate and valproic acid.

Kappa Myeloma Antigen and Antibodies

[0051] Kappa myeloma antigen or KMA is a cell membrane antigen that is found on the surface of myeloma cells. Specifically, KMA consists of free kappa light chains expressed in non-covalent association with actin on the cell membrane (Goodnow et al. (1985) *J. Immunol.* 135:1276). While any antibody that specifically binds to KMA may be used in accordance with the present invention, in a preferred embodiment the KappaMab monoclonal antibody will be used as a basis for the extracellular antigen binding domain of the CARs of the current invention. The monoclonal antibody designated KappaMab (formally designated IST-1097, also known as MDX-1097) binds to a conformational epitope in the switch region of human kappa free light chain that is only available when the kappa chain is not associated with a heavy chain and therefore does not bind to intact kappa-chain containing IgG, IgM, IgE or IgA (Hutchinson et al. (2011) *Mol. Immunol.*). Typical expression of KMA on primary myeloma cells derived from patient bone marrow biopsies is shown by KappaMab binding in **Figure 3**. The KappaMab antibody can comprise the VH chain of SEQ ID NO: 1 and the VL chain of SEQ ID NO: 2. More specifically the KappaMab VH chain can comprise the CDRs of SEQ ID NO: 3-5 and the VL CDRs of SEQ ID NO: 6-8. Additionally, the KappaMab can comprise VH region of SEQ ID NO: 22 and a VL region of SEQ ID NO: 21.

Chimeric Antigen Receptors

[0052] Chimeric antigen receptors (CARs) are artificial receptors consisting of the tumor antigen binding regions of monoclonal antibodies and the intracellular activating portion of

the T cell receptor complex in a single polypeptide chain held together by a series of linker(s) and spacer(s) (**Figures 1A-1B**). Most commonly, CARs are fusion proteins of single-chain variable fragments (ScFv) fused to the CD3 ζ transmembrane domain. However, other intracellular signaling domains such as CD28, 41-BB and Ox40 may be used in various combinations to give the desired intracellular signal. In some embodiments, the CARs provided herein comprise an Ig Heavy Chain Leader peptide. The leader peptide can be SEQ ID NO: 20.

I. Extracellular Antigen Binding Domain

[0053] In one embodiment, the CAR of the current invention comprises an extracellular antigen binding domain from a monoclonal antibody that is specific for one or more KMA epitopes expressed on MM cells. In one embodiment, the CAR of the current invention comprises an extracellular antigen binding domain from KappaMab. In one embodiment, the extracellular binding domain comprises the VL CDRs of SEQ ID NOs: 6-8 and VH CDRs of SEQ ID NOs: 3-5. In a particular embodiment, the extracellular binding domain is a scFv comprising the VL (SEQ ID NO: 2) and VH (SEQ ID NO: 1) domains of KappaMab. In another embodiment, the extracellular binding domain is a scFv comprising the VL (SEQ ID NO: 21) and VH (SEQ ID NO: 22) domains of KappaMab.

II. Linker between VL and VH domains of KappaMab scFv

[0054] In a further embodiment, the KappaMab VL is linked to the KappaMab VH via a flexible linker. Specifically, the flexible linker is a glycine/serine linker of about 10-30 amino acids (for example 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, or 5 amino acids) and comprises the structure (Gly₄Ser)₃. In a particular embodiment the linker is 15 amino acids in length. Linker length is an important determinant of a CAR. Without being bound by theory, shorter linkers may enhance affinity but can also lead to intracellular multimer formation thus impairing expression of the CAR whereas longer linkers tend to decrease antigen affinity by moving the VL and VH CDRs further apart in space.

III. Spacers between extracellular antigen binding domain and intracellular signaling domain

[0055] The extracellular antigen binding domain (e.g. KappaMab scFv) is linked to the intracellular signaling domain by the use of a “spacer”. The spacer is designed to be flexible enough to allow for orientation of the antigen binding domain in such a way as facilitates antigen recognition and binding. The spacer may derive from immunoglobulins themselves and can include the IgG1 hinge region or the CH2 and/or CH3 region of an IgG.

Alternatively, the hinge may comprise all or part of a CD8 α chain. The length and flexibility of the spacer(s) is dependent on both the antigen recognition domain as well as the intracellular binding regions and what may be functional and/or optimal for one CAR construct may not be for another CAR. In certain instances the spacer may be designated herein as “opti” (See **Figures 6A-6C**) to signify that optimal spacer identity and length varies depending on the extracellular binding portion used and the intracellular signaling domains selected. In certain embodiment, an IgG hinge alone is used. In other embodiments, the IgG hinge is used together with all or part of IgG CH2 domain. In other embodiments, the IgG hinge is used together with all or part of an IgG CH3 domain. In other embodiments the IgG hinge is used together with all or part of both an IgG CH2 and CH3 domain. In other embodiments, all or part of an IgG CH2 domain is used. In other embodiments, all or part of an IgG CH3 domain is used. In still other embodiments all or part of both an IgG CH2 and CH3 domain is used. In one embodiment, the hinge, CH2 and CH3 domains used in any of the constructs provided herein comprises a C to P mutation in the hinge region at amino acid position 103 of Uniprot P01857). In one embodiment, the hinge, CH2 and CH3 domains used in any of the constructs provided herein is SEQ ID NO: 24. In another embodiment, the hinge is used together with all or part of both an IgG CH2 and CH3 domain, wherein mutations are introduced at amino acids important for CH2 interaction with Fc-receptors. These mutations may mediate improved survival post infusion by decreasing Fc interaction with CAR T-cells provided herein. An example of these mutations can be seen in the KM.CAR_hCH2CH3mut_28TM_41BBz construct shown in Example 3 as provided herein. In a further embodiment still, a CD8 α polypeptide is used. In a further embodiment, the spacer (e.g., derived from immunoglobulin domains as described herein) can be attached to the scFV via a flexible linker. Specifically, the flexible linker is a glycine/serine linker of about 10-30 amino acids (for example 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, or 5 amino acids) and comprises the structure (Gly₄Ser)_X where X is 1-5. In other embodiments, the glycine/serine linker comprises (Gly₄Ser)₃.

IV. Intracellular Signaling Domain

[0056] The intracellular signaling domain comprises all or part of the CD3 ζ chain. CD3 ζ , also known as CD247, together with either the CD4 or CD8 T cell co-receptor is responsible for coupling extracellular antigen recognition to intracellular signaling cascades. In one embodiment, the CD3 ζ used in any of the constructs provided herein is SEQ ID NO: 26.

[0057] In addition to the including of the CD3 ζ signaling domain, the inclusion of co-stimulatory molecules has been shown to enhance CAR T-cell activity in murine models and clinical trials. Several have been investigated including CD28, 4-1BB, ICOS, CD27, CD270, CD30 and OX-40. The CAR of the current invention, in addition to including the KappaMab scFv, flexible linker, optimal hinge and CD3 ζ chain also include one or more additional costimulatory domains from CD28, 4-1BB, ICOS, CD27, CD270, CD30 and/or OX-40, for example. These co-stimulatory domains are selected based on the desired functionality of the resulting CAR T-cell. Exemplary combinations are shown, for example, in **Figures 6A-6C**. In addition to altering the length of the extracellular hinge, the inclusion of particular combinations of costimulatory domains (e.g. CD28, OX-40, 4-1BB) also enhances the proliferation and survival of CAR T-cells *in vivo*. In one embodiment, the CD28 domain used in any of the constructs provided herein is SEQ ID NO: 25.

Co-Expression of Biologically Active Molecules

[0058] The CAR T-cells of the current invention have the added benefit, when compared to the use of the KappaMAb alone to be further modifiable to contain additional biologically active molecules to enhance the anti-tumor function and/or safety of the compositions. In one embodiment, the CAR T-cells may be further genetically modified to produce antitumor cytokines which allow for focused delivery to the tumor microenvironment/cancer cells, while avoiding systemic toxicity. Examples of additional biologically active molecules which may enhance the anti-tumor response of the CAR T-cells of the current invention include, without limitation, IL-12, the carbohydrate binding protein Galectin-3 (GAL3) or it's truncated form, GAL3C, and the cytokine receptor super antagonist SANT7. In another embodiment, CAR T-cells of the current invention may also be co-transduced with a plasmid that expresses a hepatocyte growth factor (HGF) binding protein. In one embodiment, the hepatocyte growth factor protein is an antibody or fragment thereof that is able to bind to and inhibit the function of HGF.

[0059] IL-12 is a potent tumor suppressor cytokine, decreasing tumor growth and angiogenesis and enhancing the tumor specific immune response. Multiple myeloma cells retain expression of the IL-12 receptor and administration of IL-12 to myeloma bearing mice decreases tumor progression as a single agent and acts synergistically with the proteasome inhibitor bortezomib (Airoldi, et al. (2008) *Blood*, 112(3):750-759; Wang, et al. (2014) *Anticancer Drugs*, 25(3): 282-288). Expression of IL-12 by CAR T-cells dramatically enhances their ability to eradicate solid tumors but this approach has not yet been investigated

in multiple myeloma (Pegram, (2012) *Blood*, 119(180):4133-4141 and Zhang, et al. (2011) *Mol. Ther.* 19(4):751-759).

[0060] SANT7 is a cytokine receptor super-antagonist. It is an analogue of IL-6 that has been genetically modified to enhance its binding to the IL-6 receptor α -subunit 70-fold, with virtually no interaction with the gp130 signaling subunit. SANT7 induces apoptosis in IL-6 dependent myeloma cell lines *in-vitro*, overcomes stroma mediated resistance to dexamethasone in *in-vitro* and murine model and combined with NF κ B inhibitors, completely overcomes resistance to apoptosis. IL-6 is a cytokine which plays a role in the growth and survival of a variety of tumors including multiple myeloma, lung cancer, colorectal cancer, breast cancer and others. Binding of IL-6 to its receptor activates the JAK-STAT pathway, with subsequent phosphorylation of STAT3 which modulates expression of apoptosis related genes such as BCL-XL and p53, causing resistance to apoptosis. IL-6 also promotes down-regulation of the IL-12 receptor on myeloma cells, decreasing IL-12's tumor suppressive properties. (Airoldi, et al. (2008) *Blood*, 112(3):750-759). The IL-6 receptor is upregulated in myeloma and elevated systemic levels of IL-6 correlate with a poor prognosis. (Rawstron, et al. (2000) *Blood* 96(12) 3880-3886; Ludwig, et al. (1991) *Blood*, 77(12):2794-2795). Monoclonal antibodies to IL-6 have been developed for clinical use, however, although early clinical trials in myeloma showed measurable biological effects, the antibodies appeared to form complexes with circulating IL-6, leading to reduced clearance and potentially limiting their efficacy. (Bataille, et al. (1995) *Blood*, 86(2): 685-691). Recently, the chimeric IL-6 specific monoclonal antibody Siltuximab has been assessed in phase I and II clinical trials in relapsed and refractory multiple myeloma. There were no responses to Siltuximab alone, but hematological toxicity was common with more than half experiencing therapy related infections.

[0061] Galectin-3 is a carbohydrate binding protein which may play a role in tumour adhesion and invasion. A truncated form of Galectin-3, **Gal3C**, acts as a dominant negative form and can inhibit myeloma cell growth and invasion. A **Gal3C** construct for activation inducible secretion was designed based on John et al (2003) *Clin Cancer Res.*, 9(6):2374-83 and Mirandola et al. (2011) *PLoS One*, 6(7):e21811. This consists of the 143 amino acid carboxy terminal which retains its carbohydrate binding properties, but lacks the N-terminal amino acids required for ligand crosslinking. The construct also contains the CD8-alpha leader peptide to direct secretion and a 6xHis tag for detection.

[0062] In certain embodiments, in addition to expression vectors containing the CAR construct described above, T cells are further modified with one or more expression vectors comprising IL-12, SANT7 and/or GAL3C. Specifically, expression constructs expressing a single chain IL-12 comprising the IL-12 p35 subunit linked to the IL-12 p40 subunit are particularly useful in that the resulting protein is a fully bioactive IL-12 p70 heterodimer, however, expressed as a single polypeptide. In one embodiment, the single chain IL-12 construct, termed Flexi-12, is described, for example in Anderson, et al. (1997) *Hum. Gene Ther.* 8(9):1125-35 is used. The IL-12 single chain construct may be expressed in the same expression vector as the CAR construct or it may expressed in a separate expression vector and co-transduced into the T cell. Similarly, T cells transduced with the CAR construct described above, may be co-transduced with an additional expression vector comprising SANT7 and/or GAL3C, alternatively, one expression vector may be used to transduce T cells with both of SANT7 and GAL3C either alone or in combination and the CAR construct described above. In another embodiment three expression vectors may be used, one expressing the CAR construct, one expressing the single chain IL-12 construct and one expressing the SANT7 construct. A similar strategy may be used to co-express GAL3C with IL-12 and/or SANT7. Alternatively, the IL-12, GAL3C and/or SANT7 construct may be expressed via a single expression vector while the CAR construct is expressed by its own expression vector. One of skill in the art will appreciate the different combinations and possibilities for expressing these molecules in the same T cell.

HGF Binding Protein

[0063] Hepatocyte growth factor (HGF) and its receptor, MET have been implicated in cancer development and progression, in particular in tumor invasion and progression to metastatic disease. Multiple myeloma cells express both HGF and MET, thus creating both an autocrine and paracrine loop whereas normal plasma cells do not express HGF (Zhan et al. (2002); Borset, et al. (1996). Furthermore, HGF concentrations are significantly increased in the blood and bone marrow of plasma patients with multiple myeloma and high serum HGF levels correlate with advanced stage disease and extensive bone lesions (Seidel et al. (1998); Wader, et al. (2008); Alexandrakis, et al. (2003). Furthermore, serum biomarker analysis of patients in a phase I trial with KappaMab shows statistically significant dose related decrease in serum HGF after treatment with KappaMab compared to control. In order to enhance this reduction in serum HGF, in certain embodiments an HGF binding protein will be expressed in the CAR T-cells of the current invention. In a particular embodiment, the HGF binding

protein expressed is an antibody or fragment thereof. In a particular embodiment, the anti-HGF binding protein is an antibody, a diabody, a scFv or an Fab. In one embodiment, the HGF binding protein is expressed in the same expression vector as the CAR construct. In a further embodiment, the HGF binding protein is expressed in a separate expression vector but is co-transduced with the CAR construct. In still a further embodiment, the CAR-T cell expresses the CAR, an HGF binding protein and IL-12. In still a further embodiment, the CAR-T cell expresses the CAR, an HGF binding protein and SANT7. In still a further embodiment, the CAR-T cell expresses the CAR, an HGF binding protein and GAL3C. In still a further embodiment, the CAR-T cell expresses the CAR, an HGF binding protein and IL-12 and GAL3C. In still a further embodiment, the CAR-T cell expresses the CAR, an HGF binding protein and SANT7 and GAL3C. In still another embodiment, the CAR-T cell expresses the CAR, an anti-HGF binding protein, IL-12 and SANT7. In still a further embodiment, the CAR-T cell expresses the CAR, an HGF binding protein, IL-12, SANT7 and GAL3C.

Methods of Producing the CAR T-cells of the Present Invention

[0064] In one aspect, methods are provided for generating CAR T-cells expressing the CAR(s) described herein and optionally one or more anti-tumoral cytokine (e.g. IL-12 and/or SANT7) and/or one or more HGF binding protein. One of skill in the art will readily understand that while preferred methods of constructing expression vectors containing the CARs and anti-tumoral cytokines/antibodies of the present invention are described herein, that any methods which are able to transduce T cells to express these constituents may be used.

[0065] In one embodiment, T cells are obtained from the blood of a subject by venous puncture, aspiration of bone marrow, steady state leukapheresis or cytokine primed leukapheresis and subsequent isolation of peripheral blood mononuclear cells including T cells using density gradient separation. In certain embodiments, after lysing red blood cells, T cells are sorted by flow cytometry or purified using antibodies to antigens expressed on T cells and magnetic beads to obtain a population of pure T cells. In a particular embodiment, T cells are sorted based on their expression of CD3 to obtain a whole T cell fraction. In another embodiment T cells are sorted based on their expression of CD4 or CD8 to obtain a population of either CD4⁺ T cells or CD8⁺ T cells. In a particular embodiment, T cells are obtained from the subject in need of CAR T-cell therapy. In another embodiment, T cells are obtained from a donor subject who is not the intended recipient of CAR T-cell therapy.

[0066] In one embodiment, separated T cells are cultured in vivo under conditions suitable for their survival and are transduced with expression vectors containing the sequences necessary for expression of the CARs described herein and/or IL-12, SANT7, GAL3C and/or an HGF binding protein. In one embodiment, the expression vector is a transposable vector expression system. In a particular embodiment, the expression vector is a PiggyBac transposon expression plasmid or a viral vector (e.g. retroviral vector or lentiviral vector). In one embodiment, the PiggyBac transposon expression plasmid is inducible such as, for example, the PiggyBac transposon plasmid described in the Examples provided herein. In one embodiment, the PiggyBac transposon expression plasmid comprises a constitutively active promoter and/or an activation inducible promoter. The constitutively active promoter can be an elongation factor 1 alpha (EF1alpha) promoter. The activation inducible promoter can be a (NFAT pro) promoter. In one aspect, a PiggyBac expression plasmid is used and produces permanent integration of the CAR by cutting and pasting the CAR, IL-12, SANT-7, GAL3C and/or HGF binding protein coding sequences into the T cell's genome. In a particular embodiment, the expression vectors of the current invention further comprise a detectable marker which allows for identification of T cells that have been successfully transduced with the one or more expression vectors. In one embodiment, the detectable marker is chosen from the group consisting of a cell surface marker such as CD34 or CD20 or another surface protein, a fluorophore such as fluorescein isothiocyanate or any other fluorescent dye that emits light when excited to a higher energy state including by a laser, and an antibiotic resistance cassette such as kanamycin resistance, ampicillin resistance or any other cassette that confers resistance to an antibiotic substance contained in medium in which transduced T cells are to be cultured. In one embodiment, the detectable marker is a green fluorescence protein (GFP). The GFP can be an enhanced GFP, such as, for example, the constructs shown in the Examples provided herein. In a particular embodiment, each expression vector used (e.g. one expression vector comprising a CAR, and one comprising an IL-12, GAL3C and/or SANT-7 and one comprising an HGF binding protein) comprises a unique detectable marker. In one embodiment, the expression vectors are transduced into the T cell by a method suitable for the expression vector(s) selected. In one embodiment, the PiggyBac expression vector is transduced into T cells by electroporation.

[0067] After introduction of the appropriate expression vectors, T cells may be cultured and expanded in vitro by co-culture with autologous peripheral blood mononuclear cells (PBMCs) and the appropriate growth factors and further screened for the presence of the one or more detectable markers. T cells expressing the appropriate detectable markers for the

expression vectors chosen may then be sorted and purified for use in the methods of the current invention.

Methods of treating KMA-Expressing Malignancies

[0068] In one aspect, methods are provided for treating subjects in need thereof with the CAR T-cells provided herein. In a particular aspect, the subject in need thereof is a human subject who has been diagnosed with or is suspected of having a malignancy that expresses KMA, for example a B cell malignancy expressing KMA. In certain embodiments, a patient has or is suspected of having multiple myeloma (MM), Waldenstroms macroglobulinemia, diffuse large B cell lymphoma (DLBCL), or amyloidosis. Methods for diagnosing B cell malignancies expressing KMA, for example, multiple myeloma (MM) Waldenstroms macroglobulinemia, diffuse large B cell lymphoma (DLBCL), and amyloidosis are known in the art, and as such are not described in detail herein. The CAR T-cells may be used alone or in combination with other therapeutically effective agents for the treatment of multiple myeloma (MM) Waldenstroms macroglobulinemia, diffuse large B cell lymphoma (DLBCL), amyloidosis or another B cell malignancy expressing KMA. In certain aspects, the CAR T-cells of the current invention are administered in a pharmaceutical formulation suitable for intravenous delivery.

[0069] In certain aspects, the CAR T-cells of the current invention are administered before, during or after one or more immunomodulatory drugs. In a particular aspect, the one or more immunomodulatory drugs is thalidomide or a thalidomide analog such as, for example, lenolidomide or pomalidomide.

[0070] In certain aspects of the invention, the CAR T-cells of the current invention act synergistically when administered with one or more immunomodulatory drugs.

[0071] In a further embodiment, the CAR T-cells of the current invention are administered before, during or after treatment with one or more histone deacetylase inhibitors such as panobinostat, vorinostat, trichostatin A, depsipeptides, phenylbutyrate, valproic acid, belinostat, LAQ824, entinostat, CI944 or mocetinostat.

[0072] In certain aspects of the invention, the CAR T-cells of the current invention act synergistically when administered in combination with one or more histone deacetylase inhibitors.

[0073] In certain aspects of the invention, the CAR T-cells of the current invention act synergistically when administered in combination with intermediate or high dose

chemotherapy and following administration of autologous or allogenic human blood stem cells.

[0074] In one embodiment, the CAR T-cells of the current invention are administered before, during or after an allogenic stem cell transplant. In still another embodiment, the CAR T-cells of the current invention are administered before during or after an allogenic stem cell transplant. Without being bound by theory, the CAR T-cells of the present invention, when administered in combination with an autologous or allogeneic stem cell transplant prevent the appearance of minimal residual disease that may occur by incomplete ablation of the bone marrow prior to stem cell transplant or by reemergence of malignant B cell clones expressing KMA.

[0075] All patents, patent applications, and publications cited herein are expressly incorporated by reference in their entirety for all purposes.

EXAMPLES

[0076] The invention is further described in detail by reference to the following experimental examples. These examples are provided for the purposes of illustration only and are not intended to be limiting unless otherwise specified. Thus, the invention should in no way be construed as being limited to the following examples, but rather, should be construed to encompass any and all variations which become evident as a result of the teaching provided herein.

[0077] Without further description, it is believed that one of ordinary skill in the art can using the preceding description and following examples, make and utilize the compounds of the present invention and practice the claimed methods. The following working examples, therefore, specifically point out the preferred embodiments of the present invention and are not to be construed as limiting in any way the remainder of the disclosure.

EXAMPLE 1: Generation of KMA.CAR-28z

[0078] Based on the nucleotide sequence coding for the variable regions of KappaMab (SEQ ID NOS: 9 and 10), a scFv was designed and cloned into a CAR construct containing an immunoglobulin heavy chain hinge, a CD28 co-stimulatory domain and the CD3-zeta endodomain (**Figure 6A**). The construct was designed in Clone Manage 9 (Sci-Ed Software) using the genetic sequence of the antibody variable regions provided by Haemalogix Pty Ltd.

The amino acid sequence from 5' to 3' of portions of this construct(i.e., KM.CAR-hCH2CH3-28z; Figure 6A) are as follows:

[0079] The Ig heavy chain leader peptide (Uniprot P01764) is
MEFGLSWLFLVAILKGVQCSR (SEQ ID NO: 20).

[0080] The KappaMab antibody light chain variable region is
DIVMTQSQKFMSTSVGDRVSVTCKASQNVGTNVAWYQQKPGQSPKALIYSTSYRYS
GVPDRFTGSGSGTDFLTISNVQSEDLAEYFCQQYNSYPYTFGGGTLEIK (SEQ ID
NO: 21).

[0081] The heavy chain variable region is
EVQLQQSGAELVKPGASVJKLCTASGFNIKDTYMHWVKQRPEQGLEWIGRIDPANG
NTKYDPKFQGKATIIADTSSNTAYLQLSSLTSEDTAVYYCARGVYHDYDGDYWGQG
TTLTVSSYVTVSS (SEQ ID NO: 22).

[0082] The (G4S)₃ flexible linker is GGGGSGGGGGGGGG (SEQ ID NO: 23).

[0083] The hinge, CH2 and CH3 domains of IgG1 constant region with a C>P mutation in
the hinge region at amino acid position 103 (Uniprot P01857) is
YVTVSSQDPAEPKSPDKTHTCPPCPAPEELLGGPSVFLFPPKPKDTLMISRTPEVTCVVV
DVSHEDPEVKFNWYVDGVEVHNAKTPREEQYNSTYRVVSVLTVLHQDWLNGKE
YKCKVSNKALPAPIEKTIISKAKGQPREPVYTLPPSDELTKNQVSLTCLVKGFYPSD
IAVEWESNGQPENNYKTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFCSVHEAL
HNHYTQKSLSLSPGKKDPK (SEQ ID NO: 24).

[0084] The transmembrane and intracellular domains of CD28 (Uniprot P10747) is
FWVLVVVGGVLACYSLLTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGPTRKYQPY
YAPPRDFAAYRS (SEQ ID NO: 25).

[0085] The intracellular domain of human CD3 zeta (Uniprot P20963) is
RVKFSRSADAPAYQQGQNQLYNELNLGRREYDVLDKRRGRDPEMGGKPRRKNPQ
EGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALP
PR (SEQ ID NO: 26).

[0086] The full length amino acid sequence as follows is
MEFGLSWLFLVAILKGVQCSR DIVMTQSQKFMSTSVGDRVSVTCKASQNVGTNVA
WYQQKPGQSPKALIYSTSYRYS GVPDRFTGSGSGTDFLTISNVQSEDLAEYFCQQY
NSYPYTFGGGTLEIKGGGGSGGGGGSEVQLQQSGAELVKPGASVJKLCTAS
GFNIKDTYMHWVKQRPEQGLEWIGRIDPANGNTKYDPKFQGKATIIADTSSNTAYLQ

LSSLTSEDTAVYYCARGVYHDYDGYWGQGTTLVSSYVTVSSQDPAEPKSPDKTH
 TCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDG
 VEVHNAKTKPREEQYNSTYRVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTS
 KAKGQPREPQVTLPSSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT
 PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSPGKKDP
 KFWVLVVVGVLACYSLVTVAIFIWVRSKRSRLLHSDYMNMPRRPGPTRKHYQ
 PYAPPRDFAAYRSRVKFSRSADAPAYQQGQNQLYNELNLGRREYDVLDRGRDP
 EMGGKPRRKNPQEGLYNELQDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATK
 DTYDALHMQALPPR (SEQ ID NO: 27).

[0087] This amino acid sequence (SEQ ID NO: 27) is encoded by the following DNA sequence:

[0088] ATGGAGTTGGGCTGAGCTGGCTTTCTTGTGGCTATTTAAAAGGTGTC
 CAGTGCTCTAGAGACATCGTCATGACCCAGTCTAAAAATTATGTCCACATCAG
 TAGGAGACAGGGTCAGCGTCACCTGCAAGGCCAGTCAGAATGTGGGTACTAATG
 TAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACTGATTACTCGAC
 ATCCTACCGGTACAGTGGAGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACA
 GATTCACTCTACCACATCAGCAATGTGCAGTCTGAAGACTTGGCAGAGTATTCT
 GTCAGCAATATAACAGCTATCCGTACACGTTGGAGGGGGACCAAGCTGGAAA
 TAAAGGGTGGCGGTGGCTGGCGGTGGTGGTGGCGGGGGGGGGGGGGGGGGGGGGGG
 TGCAGCTGCAGCAGTCAGGGCGGAGCTTGTGAAGCCAGGGCCTCAGTCAAGT
 TGTCCCTGTACAGCTTCTGGCTCAACATTAAAGACACCTATATGCACTGGTGAA
 GCAGAGGCCTGAACAGGGCCTGGAGTGGATTGAAGGATTGATCCTGCAATGG
 TAACACTAAATATGACCCGAAGTTCCAGGGCAAGGCCACTATAATAGCAGACAC
 ATCCTCCAACACAGCCTACCTGCAGCTCAGCAGCCTGACATCTGAGGACACTGCC
 GTCTATTACTGTGCTAGGGGGCTACCATGATTACGACGGGGACTACTGGGCC
 AAGGGACCACGCTCACCGTCTCCTCACGTACCGTCTTCACAGGATCCCGC
 CGAGCCAAATCTCCTGACAAACTCACACATGCCACCGTGCCAGCACCTGA
 ACTCCTGGGGGGACCGTCAGTCTCCTCTTCCCCAAAACCCAAGGACACCCTC
 ATGATCTCCGGACCCCTGAGGTACATGCGTGGTGGACGGCGTGGAGGTGCATAATGCC
 GACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCC
 AAGACAAAGCCGCGGGAGGAGCAGTACAACACAGCACGTACCGTGTGGTCAGCGTC
 CTCACCGTCTGCACCAAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAGGTC
 TCCAACAAAGCCCTCCCAGCCCCATCGAGAAAACCATCTCCAAAGCCAAGGG
 CAGCCCCGAGAACCACAGGTGTACACCCCTGCCCTATCCGGGATGAGCTGACC

AAGAACCCAGGTCA GCCTGACCTGCCTGGTCAAAGGCTTATCCCAGCGACATC
GCCGTGGAGTGGGAGAGCAATGGCAACCGGAGAACAACTACAAGACCACGCC
TCCC GTGCTGGACTCCGACGGCTCCTCTCCTACAGCAAGCTCACCGTGGAC
AAGAGCAGGTGGCAGCAGGGAACGTCTTCTCATGCTCCGTATGCATGAGGCT
CTGCACAACCACTACACGCAGAAGAGCCTCTCCGTCTCCGGTAAAAAAGAT
CCCAAATTTGGGTGCTGGTGGTGGAGTCCTGGCTGCTATAGCTTGC
TAGTAACAGTGGCCTTATTATTTCTGGGTGAGGAGTAAGAGGAGCAGGCTCCT
GCACAGTGACTACATGAACATGACTCCCCGCCCGGGCCACCCGCAAGCA
TTACCAGCCCTATGCCACCACCGCAGTCGCAGCCTATCGCTCCAGAGTGAAG
TTCAGCAGGAGCGCAGACGCCCCCGCGTACCAGCAGGGCCAGAACCAAGAGCTAT
AACGAGCTCAATCTAGGACGAAGAGAGGGAGTACGATGTTGGACAAGAGACGT
GGCCGGGACCTGAGATGGGGGAAAGCCGAGAAGGAAGAACCTCAGGAAGG
CCTGTACAATGAACACTGCAGAAAGATAAGATGGCGGAGGCCTACAGTGAGATTGG
GATGAAAGGCGAGCGCCGGAGGGCAAGGGCACGATGGCCTTACCAAGGGTCT
CAGTACAGCCACCAAGGACACCTACGACGCCCTCACATGCAGGCCCTGCCCCCT
CGC (SEQ ID NO: 28).

[0089] In terms of constructing this construct, a gene sequence consisting of a 5' EcoRI restriction enzyme site, a 5' Kozak sequence, Leader Peptide, single chain variable fragment and a portion of the IgG1 constant region incorporating an AleI restriction enzyme site, was synthesised by GeneArt (ThermoFisher Scientific), sequence verified and then cloned into the pIRII-CAR.CD19-28z PiggyBac transposon expression plasmid. This was then introduced into donor T-cells from 2 normal donors by co-electroporation with the PiggyBac Transposase plasmid to mediate stable integration. The PiggyBac transposon/transposase system produces permanent integration of the CAR by cutting and pasting the gene of interest into the target cell genome. The PiggyBac expression system was chosen because it is capable of producing high levels of permanent genetic modification at a fraction of the cost of retroviral vectors. However, one of skill in the art will understand that other expression systems, including retroviral vectors could also be used in accordance with the current invention.

[0090] The KM.CAR-hCH2CH3-28z expressing T-cells were expanded according to our optimised protocols by co-culturing with autologous peripheral blood mononuclear (PBMC) feeder cells supplemented with interleukin-15 (IL-15) 10ng/ml. After culturing for 3 weeks with replacement of PBMCs on a weekly basis and replenishment of IL-15 two to three times per week, T-cells were harvested and assessed for phenotype and CAR expression by flow

cytometry, KMA-specific function by interferon gamma intracellular cytokine flow cytometry on stimulation with KMA+ and KMA- cell lines (**Figure 4A**) and cytotoxicity of the same cell lines in a chromium release assay.

[0091] At the end of 3 weeks, the cultures were predominantly CAR expressing CD3⁺ T-cells (55% and 70% of live cells), expressed interferon-gamma in response to KMA⁺ myeloma and B-cell lines (**Figure 4B**) and demonstrated KMA-specific cytotoxicity (**Figure 4C**).

Example 2: Establishing a human myeloma xenograft murine model.

[0092] A human myeloma to mouse xenotransplant model of multiple myeloma was established. RPMI8226 or alternative myeloma cell lines were inoculated i.v. into Rag2^{-/-}γc^{-/-} (BALB/c) mice to form the Rag MM model (**Figure 5A-5D**). The Rag2^{-/-}γc^{-/-} (BALB/c) mice lack mouse lymphocytes (T, B and NK cells) and are receptive hosts for human xenograft studies. This model has been used successfully to test novel therapeutics such as bortezomib in combination with a novel antibody (**Figure 5E**). We will use this MM model to test and further optimize the KMA.CAR T cells.

Example 3: Optimized KMA.CAR Constructs

[0093] Based on the construct described in Example 1, 6 CAR constructs containing the KM scFv described in Example 1 with variable length spacer regions and co-stimulatory endodomains (e.g., CD28 or 4-1BB (CD137-Uniport Q07011)) with the CD3 zeta endodomain were constructed (**Figure 2 & Figures 6B-6D**). Varying the spacer length altered the distance between the T-cell and the target cell with a shorter spacer potentially enhancing target cell lysis. In all constructs, the CD28 transmembrane domain was used to ensure stable T-cell surface expression of the KMA.CARs. In all cases where components of the IgG1 heavy chain constant region was used as a spacer, a second (G4S)₃ flexible linker was placed between the scFv and the spacer region. These CARs were synthesised commercially by gentscript and cloned into a pVAX1PB PiggyBac transposon plasmid for further testing.

[0094] 3 of the 6 KM.CAR constructs contained aCD28 Costimulatory Endodomain and were as follows:

[0095] The first construct of this group was the KM.CAR_hCH3_28z construct, which contains only the hinge and CH3 domains of IgG1 heavy chain constant region as the spacer and whose nucleic acid sequence is as follows:

[0096] ATGGAGTTGGGCTGAGCTGGTTTCTTGTGGCTATTTAAAAGGTGTC
 CAGTGCTCTAGAGACATCGTCATGACCCAGTCTCAAAAATTATGTCCACATC
AGTAGGAGACAGGGTCAGCGTCACCTGCAAGGCCAGTCAGAATGTGGGTAC
 TAATGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACTGATT
 TACTCGACATCCTACCGGTACAGTGGAGTCCCTGATCGCTTCACAGGCAGT
GGATCTGGGACAGATTCACTCTCACCATCAGCAATGTGCAGTCTGAAGACT
TGGCAGAGTATTCTGTCAAGCAATATAACAGCTATCCGTACACGTTGGAGG
GGGGACCAAGCTGGAAATAAAGGGTGGCGGTGGCTCGGCGGTGGTGGGT
GGTGGCGCGGATCTGAGGTGCAGCTGCAGCAGTCAGGGCGGAGCTTGT
GAAGCCAGTCAGTCAAGTTGCCTGTACAGCTCTGGCTTCAACATTAAAGACACCTATA
TGCACGGGTGAAGCAGAGGCCTGAACAGGGCTGGAGTGGATTGGAAGGATTGATC
CTGCGAACGGTAACACTAAATATGACCCGAAGTTCCAGGGCAAGGCCACTATAATAGC
AGACACATCCTCCAACACAGCCTACCTGCAGCTCAGCAGCCTGACATCTGAGGACACT
GCCGTCTATTACTGTGCTAGGGGGTCTACCATGATTACGACGGGACTACTGGGC
CAAGGGACCACGCTCACCGTCTCCCGTGGAGGCGGGTCTGGGGCGGAGGTT
CAGGCAGGGGGTGGTCCGAGCCAAATCTCCTGACAAAACACACATGCC
AGGGCAGCCCCGAGAACCAACAGGTGTACACCCCTGCCCATCCGGATGA
GCTGACCAAGAACCAAGGTCAAGCCTGACCTGCCTGGTCAAAGGCTTCTATCC
CAGCGACATGCCGTGGAGTGGAGAGCAATGGCAGCCGGAGAACAACTA
CAAGACCACGCCTCCCGTGGACTCCGACGGCTCCTCTCCTACAGC
AAGCTACCGTGGACAAGAGCAGGTGGCAGCAGGGAACGTCTTCTCATGC
TCCGTGATGCATGAGGCTCTGCACAAACACTACACAGAACAGCCTCTCC
CTGTCTCCGGTAAATTGGGTGCTGGTGGTGGAGTCCTGGCTTGCT
ATAGCTTGCTAGTAACAGTGGCCTTATTATTTCTGGGTGAGGAGTAAGAGGAGC
AGGCTCCTGCACAGTGAATGAACTCGACTCCCCGCCGCCACCC
GCAAGCATTACCAAGCCCTATGCCCAACCGCGACTCGCAGCCTATCGCTCC
AGA
GTGAAGTTCAAGCAGGAGCGCAGACGCCCGCGTACCAAGCAGGCCAGAACCAAGCT
CTATAACGAGCTCAATCTAGGACGAAGAGAGGAGTACGATGTTTGGACAAGAGACGT
GGCCGGGACCTGAGATGGGGAAAGCCGAGAAGGAAGAACCTCAGGAAGGCCT
GTACAATGAACCGCAGAAAGATAAGATGGCGGAGGCCTACAGTGAGATTGGGATGAAA
GGCGAGCGCCGGAGGGCAAGGGCACGATGCCCTTACCAAGGGTCTCAGTACAGC
CACCAAGGACACCTACGACGCCCTCACATGCAGGCCCTGCCCTCGC (SEQ ID
 NO: 29).

[0097] From 5' to 3', this construct (SEQ ID NO: 29) has a leader peptide, **a KappaMab light chain variable region, a (G4S)₃ linker, a KappaMab heavy chain variable region, a second (G4S)₃ linker, an IgG1 hinge & CH3 constant region domains, a CD28 transmembrane and intracellular domains, and a CD3 zeta intracellular domain**. A diagram of this construct is shown in Figure 6B.

[0098] The second construct of this group is the KM.CAR_h_28z construct, which contains only the hinge domain of IgG1 heavy chain constant region as the spacer, and whose nucleic acid sequence is as follows:

[0099] ATGGAGTTGGGCTGAGCTGGTTTCTTGTGGCTATTTAAAAGGTGTC
 CAGTGCTCTAGAGACATCGTCATGACCCAGTCTCAAAAATTATGTCCACATC
AGTAGGAGACAGGGTCAGCGTCACCTGCAAGGCCAGTCAGAATGTGGGTAC
 TAATGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACTGATT
 TACTCGACATCCTACCGGTACAGTGGAGTCCCTGATCGCTTCACAGGCAGT
 GGATCTGGGACAGATTCACTCTCACCATCAGCAATGTGCAGTCTGAAGACT
TGGCAGAGTATTCTGTCAAGCAATATAACAGCTATCCGTACACGTTGGAGG
GGGGACCAAGCTGGAAATAAAGGGTGGCGGTGGCTCGGGCGGTGGTGGGT
CG
GGTGGCGGCGGATCTGAGGTGCAGCTGCAGCAGTCAGGGCGGAGCTTGT
GAAGCCAGGGCCTCAGTCAAGTTGCCTGTACAGCTCTGGCTTCAACAT
AAAGACACACTATAAGGATTGATCCTGCAATGAGCTTGTGAGGACTATA
AGACACATCCTCCAACACAGCCTACCTGCAGCTCAGCAGCCTGACATCT
GAGGACACTGAGGACTACTGGCTTGTGAGGACTACTGGGCAAGGACT
GGCGCTTATTACTGTCTAGGGGGTCTACCATGATTACGACGGGACTACT
GGGGACACCACGCTACCGTCTCCCGTGGAGGCCGGTCTGGGGCGGAGG
TT
CAGGCAGGGGTGGTCCGAGCCAAATCTCCTGACAAAACATCACACATGCCA
TTTTGGGTGCTGGTGGTGGTGGAGTCCTGGCTTGCTATAGCTTGCTAGTAAC
AGTGGCCTTATTATTTCTGGGTGAGGAGTAAGAGGAGCAGGCTCCTGCACAGTG
ACTACATGAACATGACTCCCCGCCGCCGCCACCCGCAAGCATTACCAAGCCC
TATGCCCAACCACGCGACTTCGCAGCCTATCGCTCCAGAGTGAAGTTCAGCAGGAG
CGCAGACGCCCGCGTACCAAGCAGGGCCAGAACCAAGCAGCTTACACGAGCTCAATCT
AGGACGAAGAGAGGGAGTACGATGTTGGACAAGAGAGCAGTGGCCGGACCCCTGAGAT
GGGGGGAAAGCCGAGAAGGAAGAACCTCAGGAAGGCCTGTACAATGAACACTGCAGAA
AGATAAGATGGCGGAGGCCTACAGTGAGATTGGATGAAAGGCCAGCGCCGGAGGG
GCAAGGGGCACGATGGCCTTACCAAGGGCTCAGTACAGCCACCAAGGACACCTACG
ACGCCCTTCACATGCAGGCCCTGCCCTCGC (SEQ ID NO: 30).

[00100] From 5' to 3', this construct (SEQ ID NO: 30) has a leader peptide, a **KappaMab light chain variable region**, a (G4S)₃ linker, a **KappaMab heavy chain variable region**, a second (G4S)₃ linker, an **IgG1 hinge constant region domain**, a **CD28 transmembrane and intracellular domains**, and a CD3 zeta intracellular domain. A diagram of this construct is shown in Figure 6B.

[00101] The third construct of this group was the KM.CAR_CD8a_28z construct, which contains a CD8 alpha stalk (Uniprot P01732, amino acids 138-182) as the spacer, and whose nucleic sequence is as follows:

[00102] ATGGAGTTGGGCTGAGCTGGCTTTCTGTGGCTATTTAAAAGG
 TGTCCAGTGCTCTAGAGACATCGTCATGACCCAGTCTCAAAAATTATGTCCA
 CATCAGTAGGAGACAGGGTCAGCGTCACCTGCAAGGCCAGTCAGAATGTGG
 GTACTAATGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACT
 GATTTACTCGACATCCTACCGGTACAGTGGAGTCCCTGATCGCTTCACAGGC
 AGTGGATCTGGGACAGATTTCACTCTCACCACATCAGCAATGTGCAGTCTGAAG
 ACTTGGCAGAGTATTCTGTCAAGCAATATAACAGCTATCCGTACACGTTCGG
 AGGGGGGACCAAGCTGGAAATAAAGGGTGGCGGTGGCTCGGGCGGTGGTGG
TCGGGTGGCGGCGATCTGAGGTGCAGCTGCAGCAGTCAGGGCGGAGCTTGAA
 GCCAGGGGCCTCAGTCAAGTTGCCTGTACAGCTCTGGCTTCAACATTAAAGACACC
 TATATGCACTGGGTGAAGCAGAGGCCTGAACAGGGCCTGGAGTGGATTGGAAGGATT
 GATCCTGCGAATGGTAACACTAAATATGACCCGAAGTCCAGGGCAAGGCCACTATAA
 TAGCAGACACATCCTCCAACACAGCCTACCTGCAGCTCAGCAGCCTGACATCTGAGGA
 CACTGCCGTCTATTACTGTGCTAGGGGGGTCTACCATGATTACGACGGGACTACTGG
GGCCAAGGGACCACGCTCACCGTCTCCACCACGACGCCAGCGCCCGACCA
CCAACACCAGGCCACCACATCGCGTCGAGCCCCTGTCCCTGCGCCAGAG
CGTGCCGGCCAGCGCGGGGGCGCAGTGCACACGAGGGGCTGGACTT
CGCCTGTGATTTGGGTGCTGGTGGTGGAGTCCTGGCTTGCTATAGC
TTGCTAGTAACAGTGGCCTTATTATTTCTGGGTGAGGAGTAAGAGGAGCAGGCT
CCTGCACAGTGACTACATGAACATGACTCCCCGCCGCCCCGGGCCACCCGCAAG
CATTACCAGGCCATGCCACCACGCGACTTCGCAAGCCTATCGCTCCAGAGTGAA
GTTCAGCAGGAGCGCAGACGCCCGCGTACCAAGCAGGCCAGAACCCAGCTCTATAA
CGAGCTCAATCTAGGACGAAGAGAGGGAGTACGATGTTTGACAAGAGACGTGGCCG
GGACCCCTGAGATGGGGGAAAGCCGAGAAGGAAGAACCCCTCAGGAAGGCCGTACAA
TGAACTGCAGAAAGATAAGATGGCGGAGGCCTACAGTGAGATTGGGATGAAAGGCGA

GCGCCGGAGGGGCAAGGGGCACGATGGCCTTACCAGGGTCTCAGTACAGCCACCA
AGGACACCTACGACGCCCTCACATGCAGGCCCTGCCCTCGC (SEQ ID NO: 31).

[00103] From 5' to 3', this construct (SEQ ID NO: 31) has a leader peptide, a **KappaMab light chain variable region**, a (G4S)₃ linker, a *KappaMab heavy chain variable region*, a CD8 alpha stalk, a CD28 transmembrane and intracellular domains, and a CD3 zeta intracellular domain.

[00104] The remaining 3 constructs of the 6 KM.CAR constructs described in this example contained a 4-1BB (CD137) Costimulatory Endodomain and were as follows:

[00105] The first construct of this group is KM.CAR_h_28TM_41BBz, which contains only the hinge domain of IgG1 heavy chain constant region as the spacer and replaces the intracellular domain of CD28 with the intracellular domain of the 4-1BB co-stimulatory molecule, and whose nucleic acid sequence is as follows:

[00106] ATGGAGTTGGCTGAGCTGGCTTTCTGTGGCTTTAAAAGG
TGTCCAGTGCTCTAGAGACATCGTCATGACCCAGTCTCAAAAATTATGTCCA
CATCAGTAGGAGACAGGGTCAGCGTCACCTGCAAGGCCAGTCAGAATGTGG
GTACTAATGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACT
GATTTACTCGACATCCTACCGGTACAGTGGAGTCCCTGATCGCTTCACAGGC
AGTGGATCTGGGACAGATTCACTCTCACCACATCAGCAATGTGCAGTCTGAAG
ACTTGGCAGAGTATTCTGTCAAGCAATATAACAGCTATCCGTACACGTTGG
AGGGGGGACCAAGCTGGAAATAAAGGGTGGCGGTGGCTCGGGCGGTGGTGG
TCGGGTGGCGGCGATCTGAGGTGCAGCTGCAGCAGTCAGGGCGGAGCTTGAA
GCCAGGGGCCTCAGTCAAGTTGCCTGTACAGCTTCTGGCTAACATTAAAGACACC
TATATGCACTGGGTGAAGCAGAGGCCTGAACAGGGCCTGGAGTGGATTGGAAGGATT
GATCCTGCGAATGGTAACACTAAATATGACCCGAAGTCCAGGGCAAGGCCACTATAA
TAGCAGACACATCCTCCAACACAGCCTACCTGCAGCTCAGCAGCCTGACATCTGAGGA
CACTGCCGTCTATTACTGTGCTAGGGGGTCTACCATGATTACGACGGGACTACTGG
GGCCAAGGGACCACGCTCACCGTCTCCGGTGGAGGCCGGTCTGGGGCGGAG
GTTCAGGCAGGGGTGGTCCGAGCCAAATCTCCTGACAAACTCACACATGC
CCATTTGGGTGCTGGTGGTGGTGGAGTCCTGGCTATAGCTTGCTAGT
AACAGTGGCCTTATTATTTCTGGGTGAAACGGGGCAGAAAGAAACTCCTGTATA
TATTCAAACAACCATTATGAGACCAGTACAAACTACTCAAGAGGAAGATGGCTGT
AGCTGCCGATTCAGAAGAAGAAGAAGGAGGATGTGAACGTGAGAGTGAAGTTCAG
CAGGAGCGCAGACGCCCGCGTACCAAGCAGGGCCAGAACCAAGCTCTATAACGAGCT

CAATCTAGGACGAAGAGAGGGAGTACGATGTTTGGACAAGAGAGACGTGGCCGGGACCC
TGAGATGGGGGAAAGCCGAGAAGGAAGAACCCCTCAGGAAGGCCGTACAATGAACT
GCAGAAAGATAAGATGGCGGAGGCCTACAGTGAGATTGGATGAAAGGCGAGCGCCG
GAGGGCAAGGGCACGATGGCCTTACAGGGCTCAGTACAGCCACCAAGGACAC
CTACGACGCCCTCACATGCAGGCCCTGCCCTCGC (SEQ ID NO: 32).

[00107] From 5' to 3', this construct (SEQ ID NO: 32) has a leader peptide, a **KappaMab light chain variable region**, a (G4S)₃ linker, a **KappaMab heavy chain variable region**, a second (G4S)₃ linker, an **IgG hinge constant region domain**, a **CD28 transmembrane domain**, a **4-1BB intracellular domain**, and a **CD3 zeta intracellular domain**.

[00108] The second construct of this group was KM.CAR_8a_28TM_41BBz, which contains the CD8 alpha stalk (Uniprot P01732, amino acids 138-182) as the spacer and replaces the intracellular domain of CD28 with the intracellular domain of the 4-1BB co-stimulatory molecule, and whose nucleic sequence is as follows:

[00109] ATGGAGTTGGCTGAGCTGGCTTTCTGTGGCTATTTAAAAGG
 TGTCCAGTGCTCTAGAGACATCGTCATGACCCAGTCTCAAAAATTATGTCCA
 CATCAGTAGGAGACAGGGTCAGCGTCACCTGCAAGGCCAGTCAGAATGTGG
 GTACTAATGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACT
 GATTTACTCGACATCCTACCGGTACAGTGGAGTCCCTGATCGCTTCACAGGC
 AGTGGATCTGGGACAGATTCACTCTCACCATCAGCAATGTGCAGTCTGAAG
 ACTTGGCAGAGTATTCTGTCAAGCAATATAACAGCTATCCGTACACGTTGG
AGGGGGACCAAGCTGGAAATAAGGGTGGCGGTGGCTGGCGGTGGTGG
TCGGGTGGCGCGGATCTGAGGTGCAGCTGCAGCAGTCAGGGCGGAGCTTGAA
 GCCAGGGGCCTCAGTCAAGTTGCCTGTACAGCTCTGGCTAACATTAAAGACACC
 TATATGCACTGGGTGAAGCAGAGGCCTGAACAGGGCCTGGAGTGGATTGAAAGGATT
 GATCCTGCAATGGTAACACTAAATATGACCCGAAGTTCCAGGGCAAGGCCACTATAA
 TAGCAGACACATCCTCCAACACAGCCTACCTGCAGCTCAGCAGCCTGACATCTGAGGA
 CACTGCCGTCTTACTGTGCTAGGGGGTCTACCATGATTACGACGGGACTACTGG
 GGCAAGGGACCACGCTACCGTCTCCACCACGACGCCAGCGCCCGACCA
CCAACACCGGCCACCACATCGCGTCGCAGCCCTGTCCCTGCGCCCCAGAG
GCGTGCCTGGCCAGCGCGGGGGCGCAGTGCACACGAGGGGCTGGACTT
CGCCTGTGATTGGGTGCTGGTGGTGGAGTCCTGGCTTGCTATAGC
TTGCTAGTAACAGTGGCCTTATTATTTCTGGGTGAAACGGGGCAGAAAGAAACT

CCTGTATATATTCAAACAACCATTATGAGACCAGTACAAACTACTCAAGAGGAAG
ATGGCTGTAGCTGCCATTCCAGAAGAAGAAGAAGGAGGATGTGAAGTGAGAGT
GAAGTTCAGCAGGAGCGCAGACGCCCGCGTACCGAGCAGGCCAGAACAGCTCA
TAACGAGCTCAATCTAGGACGAAGAGAGGAGTACGATGTTTGGACAAGAGACGTGGC
CGGGACCCCTGAGATGGGGGGAAAGCCGAGAAGGAAGAACCTCAGGAAGGCCTGTA
CAATGAACCTGCAGAAAGATAAGATGGCGGAGGCCTACAGTGAGATTGGATGAAAGGC
GAGCGCCGGAGGGCAAGGGCACGATGGCCTTACCAAGGGTCTCAGTACAGCCAC
CAAGGACACCTACGACGCCCTCACATGCAGGCCCTGCCCTCGC (SEQ ID NO: 33).

[00110] From 5' to 3', this construct (SEQ ID NO: 33) has a leader peptide, a **KappaMab light chain variable region**, a (G4S)₃ linker, a **KappaMab heavy chain variable region**, a CD8 alpha stalk, a CD28 transmembrane domain, a 4-1BB intracellular domain, and a CD3 zeta intracellular domain.

[00111] The third construct of this group is KM.CAR_hCH2CH3mut_28TM_41BBz, which contains the hinge, CH2 and CH3 domains of IgG1 heavy chain constant region as the spacer, with mutations introduced at amino acids important for CH2 interaction with Fc-receptors (3-6) which may mediate reduced CAR T-cell survival *in-vivo* (3, 6, 7) by clearance of CAR T-cells in the reticuloendothelial system. The nucleic acid sequence is as follows:

[00112] ATGGAGTTGGCTGAGCTGGCTTTCTGTGGCTATTTAAAAGG
TGTCCAGTGCTCTAGAGACATCGTCATGACCCAGTCTCAAAAATTATGTCCA
CATCAGTAGGAGACAGGGTCAGCGTCACCTGCAAGGCCAGTCAGAATGTGG
GTACTAATGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACT
GATTACTCGACATCCTACCGGTACAGTGGAGTCCCTGATCGCTTCACAGGC
AGTGGATCTGGGACAGATTCACTCTCACCATCAGCAATGTGCAGTCTGAAG
ACTTGGCAGAGTATTCTGTCAAGCAATATAACAGCTATCCGTACACGTTGG
AGGGGGGACCAAGCTGGAAATAAGGGTGGCGGTGGCTGGCGGTGGTGGG
TCGGGTGGCGGCGGATCTGAGGTGCAGCTGCAGCAGTCAGGGCGGAGCTGTGAA
GCCAGGGGCCTCAGTCAGTTGCCTGTACAGCTTCTGGCTAACATTAAAGACACC
TATATGCACTGGGTGAAGCAGAGGCCTGAACAGGGCCTGGAGTGGATTGAAAGGATT
GATCCTGCGAATGGTAACACTAAATATGACCCGAAGTTCCAGGGCAAGGCCACTATAA
TAGCAGACACATCCTCCAACACAGCCTACCTGCAGCTCAGCAGCCTGACATCTGAGGA
CACTGCCGTCTATTACTGTGCTAGGGGGTCTACCATGATTACGACGGGGACTACTGG
GGCCAAGGGACCACGCTCACCGTCTCCGGTGGAGGCCGGTCTGGGGCGGAG
GTTCAGGCAGGGGTGGTCCGAGCCCCAAATCTCCTGACAAAACACACATG

CCACCGTCCCCAGCACCT**CCAGTCGGGGACCGTCAGTCTTCCTTTCCCC**
CAAAACCAAGGACACCC**TCATGATCGGGCGGACCC****CTGAGGT****CACATGCG**
TGGTGGTGAAC**GTGAGGCCACGAAGACCC****CTGAGGT****CAAGTTCAACTGGTACG**
TGGACGGCGTGGAGGT**GCATAATGCCAAGACAAAGCCG****GGGAGGGAGCAG**
TAC**CCAGCAGCACGTACCGTGTGGTCAGCGTCCTCACCGT****CTGCACCAGGAC**
TGGCTGAATGGCAAGGAGTACAAGTGCAAGGT**CTCCAACAAAGCCCT****CCCA**
GCCCCCATCGAGAAAACC**ATCTCCAAGCCAAGGGCAGCCCCGAGAACCA**
CAGGTGTACACCC**TGCCCGGATGAGCTGACCAAGAACCAAGGTC**
AGCCTGACCTGCCTGGTCAAAGG**CTTCTATCCCAGCGACATGCCGTGGAG**
TGGGAGAGCAATGGGCAGCCGGAGAACAA**ACTACAAGACCAACGCC****GTCCCCTGTG**
CTGGACTCCGACGGCTCCTCTACAGCAAG**GCTACCGTGGACAAGA**
GCAGGTGGCAGCAGGGAAACGT**CTTCTATGCTCCGTGATGCATGAGGCTC**
TGCACAACC**ACTACACACAGAACG****GCCTCTCCGTCTCCGGTAAATT****TTG**
GGTGCTGGTGGTGGTGGAGTCCTGGCTTGCTATAGCTT**GCTAGTAACAGTGG**
CCTTATTATTTCTGGGTGAAAC**GGGGCAGAAAGAAACTCCTGTATATATTCAA**
CAACCATTATGAGACCAGTACAA**ACTACTCAAGAGGAAGATGGCTGTAGCTGCCG**
ATTTCCAGAAGAAGAAGAAGGAGGATGTGAACTGAGAGTGAAGTT**CAGCAGGAGCG**
CAGACGCCCGCGTACCA**GCAGGGCCAGAAC****CAGCTCTATAACGAGCT****CAATCTAG**
GACGAAGAGAGGAGTACGATGTTTGGACAAGAGAC**GTGGCCGGACCC****GTGAGATGG**
GGGGAAAGCCGAGAAGGAAGAAC**CCCTCAGGAAGGC****CTGTACAATGA****ACTGCAGAAAG**
ATAAGATGGCGGAGGC**CTACAGTGAGATTGGATGAAAGGCGAGCGCCGGAGGGC**
AAGGGGCACGATGGC**CTTACCAAGGGTCTCAGTACAGCCACCAAGGACACCTACGAC**
GCCCTTCACATGCAGGCC**CTGCCCC****TCGC** (SEQ ID NO: 34).

[00113] From 5' to 3', this construct (SEQ ID NO: 34) has a leader peptide, a **KappaMab light chain variable region**, a **(G4S)₃ linker**, a **KappaMab heavy chain variable region**, a second **(G4S)₃ linker**, a **mutated IgG1 hinge, CH2 and CH3 constant region domains**, a **CD28 transmembrane domain**, a **4-1BB intracellular domain**, and a **CD3 zeta intracellular domain**. The mutated IgG1 hinge domain has, from 5' to 3', E233P, L234V, L235A, G236-, S254A, D265N, and N297A mutations highlighted within the shaded boxes of this construct (SEQ ID NO: 34). Mutations at these sites (E233P, L234V, L235A, G236-, S254A, D265N, N297A) may decrease Fc interaction with CAR T-cells, allowing improved survival post-infusion.

[00114] **Addition of 2A ribosomal skip element and eGFP to KM.CARs**

[00115] For ease of detection of T-cells expressing each of the CARs described above, an eGFP with a 5' T2A ribosomal skip element with overlapping sequences was synthesized with the CAR- CD3 zeta endodomain and the plasmid backbone. This was then cloned by restriction enzyme digestion and ligation into the CAR containing pVAX1 PB transposon plasmids to create the following-

[00116] **28z Endodomain_2A_GFP containing constructs:**

[00117] 1. pVAX1PB KM.CAR_hCH2CH3_28z_2A_GFP

[00118] 2. pVAX1PB KM.CAR_hCH3_28z_2A_GFP

[00119] 3. pVAX1PB KM.CAR_h_28z_2A_GFP

[00120] 4. pVAX1PB KM.CAR_8a_28z_2A_GFP

[00121] **41BBz Endodomain_2A_GFP containing constructs:**

[00122] 1. pVAX1PB KM.CAR_h_28TM_41BBz_2A_GFP

[00123] 2. pVAX1PB KM.CAR_8a_28TM_41BBz_2A_GFP

[00124] 3. pVAX1PB KM.CAR_hCH2CH3mut_28TM_41BBz_2A_GFP

[00125] **Generation of KM.CAR T-cells with 4-1BB costimulatory domain.**

[00126] Comparison was made between the preliminary KM.CAR_hCH2CH3_28z and the 4-1BB containing CARs. KM.CAR T-cells were generated by electroporation using the PiggyBac system as previously described herein and in the art (2). Four million peripheral blood mononuclear cells (PBMCs) from healthy donors were electroporated with the Neon electroporation system at 2400V for 20ms, single pulse, in the presence of 5ug each of PiggyBac transposase and PiggyBac Transposon plasmids. KMA.CAR constructs tested included KM.CAR_hCH2CH3_28z_2A_GFP; KM.CAR_h_28TM_41BBz_2A_GFP; KM.CAR_8a_28TM_41BBz_2A_GFP; or KM.CAR_hCH2CH3mut_28TM_41BBz_2A_GFP.

[00127] Electroporated PBMCs (CAR-PBMCs) were rested overnight in AIMV with 10% Fetal calf serum (AIM-V CM), harvested, washed and resuspended in AIM-V CM at 1x10⁶/ml. CAR-PBMCs were cocultured with autologous irradiated PBMC feeder cells with or without irradiated KMA expressing JJN3 cells at a CAR-PBMC:JJN3 ratio of 5:1. Interleukin-15 (IL-15) was added at 10ng/ml every 3 days. Cells were enumerated by trypan blue exclusion and fresh irradiated stimulator/feeder cells were added every 7 days.

[00128] **Assessment of KM.CAR Expression**

[00129] KM.CAR expression was assessed by flow cytometry at initiation of culture (Day 1), Day 15 and Day 21 (**Figures 8A-8B**). KM.CAR T-cell cultures were surface stained with anti-human-CD3 antibody and CAR expression assessed by GFP expression.

[00130] **KM.CAR T-cells require kappa myeloma antigen to persist in-vitro**

[00131] Cultures containing the KMA expressing JJN3 cell line showed either greater total expansion, increased KM.CAR expression or both, compared to cultures with PBMC alone (**Figures 8A-8B**). Consistent with known interaction of the IgG constant region-CH2 domain with Fc-receptors, the KM.CAR_hCH2CH3_28z expressing T-cells were enriched in the presence of PBMC alone (28% of CD3⁺ T-cells), but showed greater expansion and enrichment with addition of JJN3 cells (15-fold expansion with 38% CAR expression compared to 6-fold expansion with 29% CAR expression).

[00132] KM.CAR_hCH2CH3mut_28TM_41BBz expressing T-cells showed only low level CAR expression (6%) and expansion (6-fold) with PBMC alone compared to co-culture with JJN3 (26% CAR expression and 17-fold expansion). The KM.CAR T-cells containing the IgG1 hinge only spacer had similar expansion (5-fold with JJN3, 6 fold without JJN3) but increased CAR expression (17% with JJN3, 9% without). Only the KM.CAR T-cells containing the CD8alpha chain spacer did not show any enhanced expansion or enrichment in the presence of JJN3 cells (8-fold expansion and 5% CAR expression in the presence of JJN3, compared to 5-fold expansion and 5% CAR expression without JJN3).

[00133] **Functional assessment of KM.CAR T-cells**

[00134] KMA-specific interferon-gamma production and cytotoxicity of KM.CAR T-cells were assessed by intracellular cytokine flow cytometry and standard chromium release assay with KMA+ and KMA- cell lines using protocols previously described (2). KMA positive cell lines used included JJN3, Pfeiffer, NCI-H929. KMA negative cell lines included Nalm-6 and Molt (**Figure 12A-12B**).

[00135] For cytokine flow cytometry, 2x10⁵ KM.CAR T-cells were stimulated with target cells at a ratio of 1:1 for 5 hours. Monensin (2 μ M) (BD Biosciences) and Brefeldin A (1 μ g/mL) (BD Biosciences) were added after 1 hour. CAR T-cells activated non-specifically with 50ng/ml phorbol myristate acetate (PMA: Sigma-Aldrich) and 1 μ g/ml ionomycin (Sigma-Aldrich) and unstimulated cells were used as positive and negative controls. CAR T-cells were then harvested, washed, surface stained for CD3, CD4 and CD8. CAR T-cells were fixed and permeabilised with cytofix and perm/wash buffer (BD Biosciences) and stained with anti-interferon gamma antibody (BD Biosciences) followed by further washing with

perm/wash buffer. Stained cells were analysed using a FACSCanto™ II flow cytometer with acquisition of at least 30,000 events.

[00136] KMA-specific cytotoxicity was assessed using a standard chromium (^{51}Cr) release assay. Target cells were labelled with Sodium chromate ($\text{Na}_2^{51}\text{CrO}_4$) (Perkin-Elmer, Waltham, MA, USA). KM.CAR T-cells were preincubated with the K562 cell line at a 1:1 ratio to absorb NK cell activity. Chromium labelled target cells were added to the KM.CAR T-cells in triplicate at effector:target ratios ranging from 40:1 to 1.25:1 and incubated at 37°C, 5% CO₂ for 4 hours. Triplicate targets were lysed with 10% sodium dodecyl sulphate to determine maximal release and triplicate targets with no effectors were used to assess spontaneous release. Supernatants were aspirated and read using a MicroBeta2 Plate Counter (PerkinElmer). Percentage specific lysis was calculated using the standard formula- % Specific lysis= (test release - spontaneous release) / (maximal release - spontaneous release) x 100]

Example 4: Generation of PiggyBac transposon plasmid with the activation inducible promoter

[00137] A single transposon cassette containing a constitutively active promoter (EF1alpha) and an activation inducible promoter (NFATpro) was designed and cloned. The activation inducible gene expression cassette was produced by designing the NFATpro using Clone Manage 9 (Sci-Ed Software), based on Fiering et al(8). This includes 6 copies of the 30 base pair DNA sequence (response element-RE) bound by the Nuclear Factor of Activated T-cells (NFAT-RE)- GGAGGAAAAACTGTTCATACAGAAGGCGT (SEQ ID NO: 35) followed by the minimal IL-2 promoter-

ACATTTGACACCCCCATAATATTTTCCAGAACATACAGTATAATTGCATCTCT
TGTCAAGAGTCCCTATCACTCTTTAACACTCACAGAACCTCAACTCC
TG (SEQ ID NO: 36) found on chromosome 4 (NCBI Reference Sequence: NG_016779.1).

[00138] To enable detection of activation induced gene expression, the enhanced green fluorescent protein (eGFP) DNA sequence followed by the bovine growth hormone (BGH) polyadenylation signal (9-11) was placed 3' of the NFATpro. The DNA sequence of this gene cassette is as follows-

[00139] GGAGGAAAAACTGTTCATACAGAAGGCGTCAATTAGGAGGAAAA
ACTGTTCATACAGAAGGCGTCAATTAGGAGGAAAAACTGTTCATACAGAAGG
CGTCAATTGTCCCATCGAATTAGGAGGAAAAACTGTTCATACAGAAGGCGTCA
ATTAGGAGGAAAAACTGTTCATACAGAAGGCGTCAATTAGGAGGAAAAACTGT

TTCATACAGAAGGCGTCAATTGTCCCAGGACATTTGACACCCCCATAATATT
TTCCAGAATTAACAGTATAAAATTGCATCTCTTGTCAAGAGAGTCCCTATCACT
CTCTTTAATCACTACTCACAGTAACCTCAACTCCTGAACCTCCATGGATGGTGAG
CAAGGGCGAGGAGCTGTCACCGGGGTGGTGCCTCATCCTGGTCCAGCTGGACGGCG
ACGTAAACGGCCACAAGTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTAC
GGCAAGCTGACCCCTGAAGTCATCTGCACCACCGGCAAGCTGCCGTGCCCTGGCCC
ACCCTCGTGACCACCCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCAC
ATGAAGCAGCAGCAGACTTCTCAAGTCCGCCATGCCGAAGGCTACGTCCAGGAGCGC
ACCATCTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTGAG
GGCGACACCCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGC
AACATCCTGGGGCACAGCTGGAGTACAACACTACAAGCCACAACGTCTATATCATGG
CCGACAAGCAGAAGAACGGCATCAAGGTGAACCTCAAGATCCGCCACAACATCGAGGA
CGGCAGCGTGCAGCTGCCGACCACTACCAGCAGAACACCCCCATGGATCCGGAG
CCACGAACCTCTCTCTGTAAAGCAAGCAGGAGACGTTGAAGAAAACCCCAGTC
CTATTAAATCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTGCC
CTCCCCCGTGCCTTCTGACCCCTGGAAGGTGCCACTCCACTGTCCCTTCC
TAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATT
TGGGGGGTGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAAT
AGCAGGCATGCTGGGATGCGGTGGGCTATGGC (SEQ ID NO: 37).

[00140] From 5' to 3', this constructs contains the NFAT-RE, **the IL-2 Minimal Promoter**, **the eGFP**, and the BGH polyadenylation signal.

[00141] This cassette was synthesised commercially by Genscript and cloned into the pVAX1PB transposon plasmid between the 5' cHS4 Insulator (GenBank: U78775.2)(12) and the human elongation factor 1 promoter. To identify transduced T-cells in initial experiments, the chimeric RQR8 marker consisting of the epitope of CD34 recognised by the QBEnd10 monoclonal antibody and mimotopes of the CD20-specific monoclonal antibody Rituximab(13) was cloned into the transposon multicloning site to produce the transposon gene insert shown in **Figure 9** (pVAX1PB NFATGFP-RQR8 plasmid). Co-electroporation of the activation inducible gene cassette containing pVAX1PB NFATGFP-RQR8 transposon plasmid and the pVAX1 PBase transposase plasmid leads to permanent integration of the NFATGFP-RQR8 gene insert seen in **Figure 9**.

Demonstration of function of the activation inducible gene containing transposon

[00142] To demonstrate the function of the pVAX1PB NFATGFP-RQR8 transposon from Example 4 (see **Figure 9**), 4x10⁶ PBMCs were electroporated in the presence of 5ug each of the transposon and transposase plasmids. Electroporated cells were rested for 24 hours and then stimulated non-specifically over-night with 50ng/ml phorbol myristate acetate (PMA: Sigma-Aldrich) and 1ug/ml ionomycin (Sigma-Aldrich) and compared to unstimulated controls. Transduced cells were identified by QBEnd10 staining for RQR8 marker expression and activation induced gene expression (eGFP) was assessed at 19 hours. At that time point, 50% of transduced cells were seen to express eGFP (**Figure 10**).

Example 5: Design of KM.CAR controlled biological therapies

[00143] Expression plasmids containing IL-12 and/or the interleukin-6 receptor antagonist SANT7 and also containing the optimized chimeric antigen receptor with the expression of IL-12 and/or SANT7 under control of an activation inducible promoter (Hooijberg et al. 2000) were also constructed. The SANT-7 sequence was provided by Prof Rocco Savino and was based on mutating the wildtype IL-6 gene sequence (NCBI Reference Sequence: NM_000600.4) provided as per Savino et al 1994 and Sporen et al 1996(14-17). The sequence was imported into Clone Manage 9 (Sci-Ed Software) and a 6xHis tag added for detection in supernatants by ELISA.

[00144] The nucleotide sequence of SANT-7 is provided with amino acid substitutions highlighted, underlined and listed below:

[00145] MNSFSTSAGPVAFLGLLLVLPAAPVPPGEDSKDVAAPHRQPLTS
SERIDKQIRDILDEISALRKETCNKSNMCESSKEADEWNLNLPKMAEKDGCFYKGF
NEETCLVKIITGLLEFEVYLEYLQNRFESSEEQARAVQMRTKDLIQFLQKKAKNLDAI
TTPDPTTNASLLTKLQAQNQWLQDMTTHLILRSFKEFLIRSLRALRAMHHHHHHH
(SEQ ID NO: 38). The nucleotide substitutions correspond to Y31D, G35F, L57D, E59F, N60W, Q75Y, S76K, S118R, V121D. The sequence provided also contained a Q211A substitution not listed in the published sequence.

[00146] The DNA sequence corresponding to this amino acid sequence (i.e., SEQ ID NO: 38) is as follows:

[00147] ATGAACTCCTTCTCCACAAGCGCCTCGGTCCAGTTGCCTTCTCCCT
GGGGCTGCTCCTGGTGTGCTGCTGCCTTCCCTGCCAGTACCCCCAGGAGAA
GATTCCAAAGATGTAGCCGCCACACAGACAGCCACTCACGAGCTCAGAACGA
ATTGACAAACAAATTGGACATCCTCGACTTATCTCAGCCTAACGAAAGGAGA
CATGTAACAAGAGTAACATGTGTGAGAGCTCCAAAGAGGGCAGACGCATTCTGGA

ACCTGAACCTTCAAAGATGGCTGAAAAAGATGGATGCTTCTACAAAGGATTCA
ATGAGGAGACTTGCCTGGTAAAATCATCACTGGTCTCTCGAGTTGAGGTATA
CCTAGAGTACCTCCAGAACAGATTGAGAGTAGTGAGGAACAAGCCAGAGCTGT
GCAGATGCGCACAAAAGACCTGATCCAGTCCTGCAGAAAAAGGCAAAGAATCT
AGATGCAATAACCACCCCTGACCCAACCACAAATGCCAGCCTGCTGACGAAGCT
GCAGGCACAGAACCAACCAGTGGCTGCAGGACATGACAACATCATCTCATTCTGAGATC
TTTAAGGAGTTCTGATCCGTAGCCTGAGGGCTTCGGGCTATGCATCATCAC
CATCACCCT (SEQ ID NO: 39).

[00148] A single chain interleukin-12 (Flexi-IL-12) construct was designed by joining the IL-12 p40 and p35 subunits (Uniprot P29459 and P29460) with a flexible (G₄S)₃ linker similar to Zhang et al and Chinnasamy et al (18, 19), which allows both subunits to be expressed as a single peptide chain that readily forms the bioactive p70 heterodimer was used. The Flexi-IL-12 construct was synthesized and constructs containing IL-12 and SANT7 were cloned into the activation inducible transposon cassette described herein and shown in **Figure 11**.

[00149] Additionally, the Flexi-IL-12 construct could be synthesized and constructs containing IL-12 and SANT7 separated by 2A ribosomal skip elements could be cloned into the PiggyBac plasmid described herein and shown in **Figure 7**.

[00150] The amino acid sequence of Flexi-IL-12 is as follows:

[00151] MCHQQLVISWFSLVFLASPLVAIWELKKDVYVVELDWYPDAPGEM
VVLTCDTPEEDGITWTLQDQSSEVLGSGKTLTIQVKEFGDAGQYTCHKGGEVLS
HSLLLLHKKEDGIWSTDILKDQKEPKNKTFLRCEAKNYSGRFTCWWLTTISTDL
TFSVKSSRGSSDPQGVTCGAATLSAERVRGDNKEYEYSVECQEDSACPAEESLP
IEVMVDAVHKLKYENYTSSFFIRDIKPDPPKNLQLKPLKNSRQVEVSWEYPDT
WSTPHSYFSLTFCVQVQGKSKREKKDRVFTDKTSATVICRKNASISVRAQDRYY
SSSWSEWASVPCSGGGGGGGGGSRNLPVATPDPGMFPCLHHSQNLRAVS
NMLQKARQTLEFYPCTSEEIDHEDITKDKTSTVEACLPLETKNESCLNSRETSFITN
GSCLASRKTSFMMALCLSSIYEDLKMYQVEFKTMNAKLLMDPKRQIFLDQNMLAVI
DELMQALNFNSETVPQKSSLEEPDFYKTKIKLCILLHAFRIRAVTIDRVMSYLNAS
(SEQ ID NO: 40).

[00152] From 5' to 3', the Flexi-IL-12 construct contains a leader peptide, **the IL-12 p40 subunit**, **the (G₄S)₃ Linker**, and **the IL-12 p35 subunit**.

[00153] The DNA sequence corresponding to the amino acid sequence above (i.e., SEQ ID NO: 40) is as follows:

[00154] ATGTGTCACCAGCAGTTGGTCATCTCTGGTTTCCCTGGTTTCT
GGCATCTCCCTCGTGGCATATGGAACTGAAGAAAGATGTTATGTCGTAGAA
TTGGATTGGTATCCGGATGCCCTGGAGAAATGGTGGCCTCACCTGTGACACCC
CTGAAGAAGATGGTATCACCTGGACCTTGGACCAGACAGTGAAGGCTTAGGCT
CTGGCAAAACCTGACCATCCAAGTCAAAGAGTTGGAGATGCTGCCAGTACA
CCTGTCACAAAGGAGGCGAGGTTCTAAGCCATTGCTCCTGCTGCTTCACAAAAAA
GGAAGATGGAATTGGTCCACTGATATTAAAGGACCAGAAAGAACCCAAAAAA
TAAGACCTTCTAAGATGCGAGGCCAAGAATTATTCTGGACGTTCACCTGCTGG
TGGCTGACGACAATCAGTACTGATTGACATTCACTGTCAAAAGCAGCAGAGGC
TCTTCTGACCCCCAAGGGGTGACGTGCGGAGCTGCTACACTCTGCAGAGAGAG
TCAGAGGGACAACAAGGAGTATGAGTACTCAGTGGAGTGCCAGGAGGACAGT
GCCTGCCAGCTGCTGAGGAGAGTCTGCCATTGAGGTATGGTGGATGCCGTTCA
ACAAGCTCAAGTATGAAAACACACCAGCAGCTTCTCATCAGGGACATCATCA
AACCTGACCCACCCAAGAAACTTGCGAGCTGAAGCCATTAAAGAATTCTGGCAGG
TGGAGGTAGCTGGAGTACCTGACACACCTGGAGTACTCCACATTCTACTTCTC
CCTGACATTCTGCCTCAGGTCCAGGGCAAGAGCAAGAGAGAAAAGAAAGATAG
AGTCTCACGGACAAGACCTCAGCCACGGTCATCTGCCGAAAAATGCCAGCAT
TAGCGTGGGGCCCAGGACCGCTACTATAGCTCATCTGGAGCGAATGGCATCT
GTGCCCTGCAGTGGTGGCGGTGGAAGCGCGGTGGCGGAAGCGCGGTGGCGGC
AGCAGAAACCTCCCCGTGCCACTCCAGACCCAGGAATGTTCCATGCCCTCACC
ACTCCAAAACCTGCTGAGGGCGTCAGCAACATGCTCCAGAAGGCCAGACAAA
CTCTAGAATTTCACCCTGCACCTCTGAAGAGATTGATCATGAAGATAATCACAAA
AGATAAAACCAGCACAGTGGAGGCCTGTTACCATGGAAATTACCAAGAATGA
GAGTTGCCTAAATTCCAGAGAGACCTCTTCATAACTAATGGGAGTTGCCTGGCC
TCCAGAAAGACCTCTTATGATGCCCTGTGCCCTAGTAGTATTATGAAGACTT
GAAGATGTACCAAGGTGGAGTTCAAGACCATGAATGCAAAGCTCTGATGGATCC
TAAGAGGCAGATCTTCTAGATCAAAACATGCTGGCAGTTATTGATGAGCTGATG
CAGGCCCTGAATTCAACAGTGAGACTGTGCCACAAAAATCCTCCCTGAAGAAC
CGGATTTATAAAACTAAAATCAAGCTCTGCATACTCTTATGCTTCAGAATT
CGGGCAGTGACTATTGATAGAGTGATGAGCTATCTGAATGCTTCC (SEQ ID NO:
41).

[00155] Additionally, expression plasmids containing the truncated dominant negative form of Galectin-3, GAL3C is also constructed. The construct contains a **CD8-alpha leader peptide** to direct secretion as well as a 6xHis tag for detection. The amino acid sequence of GAL3C is listed here:

[00156] **MEFGLSWLFLVAILKGVQCSRHHHHHGAPAGPLIVPYNLPLPGGV**
VPRMLITILGTVKPNANRIALDFQRGNDVAFHFNPRFNENNRRVIVCNTKLDNNWGR
EERQSVFPFESGKPKIQVLVEPDHFKVAVNDAHLLQYNHRVKKLNEISKLGISGDID
LTSASYTMI (SEQ ID NO: 42)

[00157] The corresponding DNA sequence for the GAL 3C construct is provided here:

[00158] ATGGAGTTGGGCTGAGCTGGCTTTCTGTGGCTATTTAAAAGG
TGTCCAGTGCTCTAGACATCATCACCATCACCAACGGCGCCCTGCTGGGCCACTG
ATTGTGCCTTATAACCTGCCTTGCCTGGGGAGTGGTGCCTCGCATGCTGATAA
CAATTCTGGGCACGGTGAAGCCAATGCAAACAGAATTGCTTAGATTCAAAG
AGGGAATGATGTTGCCTTCCACTTAACCCACGCTTCAATGAGAACACAGGAG
AGTCATTGTTGCAATACAAAGCTGGATAATAACTGGGAAGGGAAAGAAAGACA
GTCGGTTTCCCATTGAAAGTGGAAACCATTCAAATACAAGTACTGGTGAA
CCTGACCACTCAAGGTTGCAGTGAATGATGCTCACTGTTGCAGTACAATCATC
GGGTTAAAAAACTCAATGAAATCAGCAAACGGAAATTCTGGTACATAGACC
TCACCAGTGCTTCATATACCATGATA (SEQ ID NO: 43)

[00159] The CAR and ‘biologicals’ transposon plasmids will be nucleofected to generate CAR T-cells expressing either IL-12 alone, SANT7 alone, GAL3C alone or both IL-12 and SANT7 or both of IL12 and GAL3C or both of SANT7 and GAL3C or all three of IL-12, SANT7 and GAL3C. Cells successfully transduced with ‘biologicals’ constructs may be identified by selectable marker expression for example by flow cytometry. Levels of IL-12, SANT7. And or GAL3C will be measured intracellularly by cytokine flow cytometry and in supernatants of CAR T-cell cultures by ELISA using commercial kits and reagents and compared to control T-cells expressing CAR alone. CAR T-cells will be assessed for function by cytokine flow cytometry and cytotoxicity assays as above as well as co-culture assays with myeloma cell lines to assess inhibition of tumour growth. Experiments will be performed in triplicate and the 2 optimal CAR constructs identified will be chosen to be assessed in a murine model with and without IL-12, GAL3C and/or SANT7 expression.

[00160] Based on the previously established RPMI-Rag human myeloma murine xenograft model, RPMI-Rag-Luc (KMA-) and JJN3-Rag-Luc (KMA+) models will be developed to assess the function of our CAR T-cells in-vivo. JJN3 and RPMI8226 cells will be transfected with Luc-1 and then inoculated i.v. into Rag2^{-/-}γc^{-/-} (BALB/c) mice to form the JJN3- Rag-Luc and RPMI-Rag-Luc MM models. Engraftment and disease levels will be monitored by optical imaging following IP injection with luciferin and correlated with levels of levels of serum human kappa (JJN3) and lambda (RPMI) light chain. Optimal time for inoculation with candidate CAR T-cells will be established using Optical Imaging prior to the development of hind limb paralysis, usually from weeks 5-8. Cohorts of 6 JJN3-Rag-Luc and RPMI-Rag-Luc mice will be inoculated IV with increasing doses of CAR T-Cells (with and without IL-12/SANT7 expression) to establish the therapeutic dose starting at 1x10⁶ total cells. Mice will be imaged on day 0, +1, +3, +8 and weekly thereafter until the development disease progression as determined by the development of hind limb paralysis, increasing serum free light chains (SFLC) or other institutional guidelines. Marrow and extramedullary tumors will be collected and examined histologically for distribution of MM cells and CAR T-cells. Efficacy will be determined by imaging response and survival compared with controls.

[00161] References

[00162] 1. Rossig C, Pscherer S, Landmeier S, Altvater B, Jurgens H, Vormoor J. Adoptive cellular immunotherapy with CD19-specific T cells. *Klin Padiatr.* 2005;217(6):351-6.

[00163] 2. Ramanayake S, Bilmon I, Bishop D, Dubosq MC, Blyth E, Clancy L, et al. Low-cost generation of Good Manufacturing Practice-grade CD19-specific chimeric antigen receptor-expressing T cells using piggyBac gene transfer and patient-derived materials. *Cytotherapy.* 2015.

[00164] 3. Hombach A, Hombach AA, Abken H. Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc 'spacer' domain in the extracellular moiety of chimeric antigen receptors avoids 'off-target' activation and unintended initiation of an innate immune response. *Gene Ther.* 2010;17(10):1206-13.

[00165] 4. Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. *J Biol Chem.* 2001;276(9):6591-604.

[00166] 5. Armour KL, van de Winkel JG, Williamson LM, Clark MR. Differential binding to human Fc_{gamma}RIIa and Fc_{gamma}RIIb receptors by human IgG wildtype and mutant antibodies. *Mol Immunol.* 2003;40(9):585-93.

[00167] 6. Hudecek M, Sommermeyer D, Kosasih PL, Silva-Benedict A, Liu L, Rader C, et al. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. *Cancer immunology research.* 2015;3(2):125-35.

[00168] 7. Clemenceau B, Valsesia-Wittmann S, Jallas AC, Vivien R, Rousseau R, Marabelle A, et al. In Vitro and In Vivo Comparison of Lymphocytes Transduced with a Human CD16 or with a Chimeric Antigen Receptor Reveals Potential Off-Target Interactions due to the IgG2 CH2-CH3 CAR-Spacer. *J Immunol Res.* 2015;2015:482089.

[00169] 8. Fiering S, Northrop JP, Nolan GP, Mattila PS, Crabtree GR, Herzenberg LA. Single cell assay of a transcription factor reveals a threshold in transcription activated by signals emanating from the T-cell antigen receptor. *Genes Dev.* 1990;4(10):1823-34.

[00170] 9. Miller WL, Martial JA, Baxter JD. Molecular cloning of DNA complementary to bovine growth hormone mRNA. *J Biol Chem.* 1980;255(16):7521-4.

[00171] 10. Miller WL, Thirion JP, Martial JA. Cloning of DNA complementary to bovine prolactin mRNA. *Endocrinology.* 1980;107(3):851-3.

[00172] 11. Goodwin EC, Rottman FM. The 3'-flanking sequence of the bovine growth hormone gene contains novel elements required for efficient and accurate polyadenylation. *J Biol Chem.* 1992;267(23):16330-4.

[00173] 12. Chung JH, Bell AC, Felsenfeld G. Characterization of the chicken beta-globin insulator. *Proc Natl Acad Sci U S A.* 1997;94(2):575-80.

[00174] 13. Philip B, Thomas S, Marin V, Jathoul A, Kopec A, Linch DC, et al. A Highly Compact Epitope-Based Marker-Suicide Gene for More Convenient and Safer T-Cell Adoptive Immunotherapy. *ASH Annual Meeting Abstracts.* 2010;116(21):1473-.

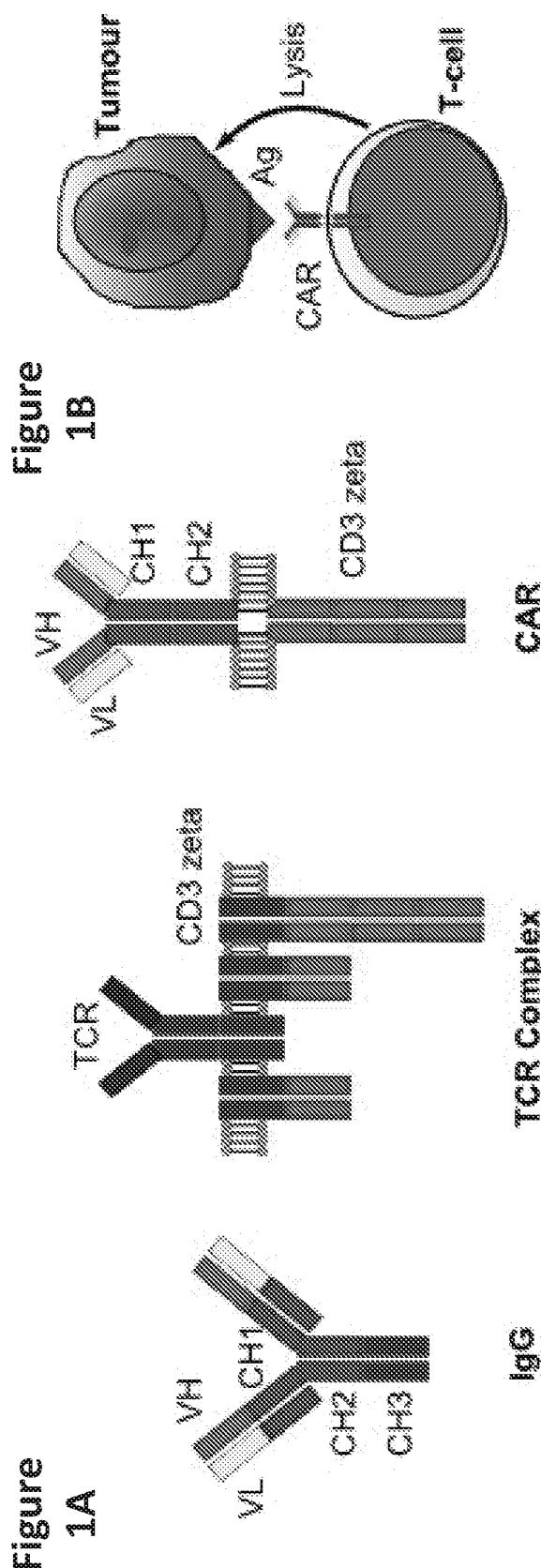
[00175] 14. Demartis A, Bernassola F, Savino R, Melino G, Ciliberto G. Interleukin 6 receptor superantagonists are potent inducers of human multiple myeloma cell death. *Cancer Res.* 1996;56(18):4213-8.

[00176] 15. Savino R, Ciapponi L, Lahm A, Demartis A, Cabibbo A, Toniatti C, et al. Rational design of a receptor super-antagonist of human interleukin-6. *EMBO J.* 1994;13(24):5863-70.

[00177] 16. Savino R, Lahm A, Salvati AL, Ciapponi L, Sporeno E, Altamura S, et al. Generation of interleukin-6 receptor antagonists by molecular-modeling guided mutagenesis of residues important for gp130 activation. *EMBO J.* 1994;13(6):1357-67.

[00178] 17. Sporeno E, Savino R, Ciapponi L, Paonessa G, Cabibbo A, Lahm A, et al. Human interleukin-6 receptor super-antagonists with high potency and wide spectrum on multiple myeloma cells. *Blood.* 1996;87(11):4510-9.

[00179] 18. Zhang L, Kerkar SP, Yu Z, Zheng Z, Yang S, Restifo NP, et al. Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. *Mol Ther.* 2011;19(4):751-9.


[00180] 19. Chinnasamy D, Yu Z, Kerkar SP, Zhang L, Morgan RA, Restifo NP, et al. Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. *Clin Cancer Res.* 2012;18(6):1672-83.

What is claimed is:

1. A chimeric antigen receptor (CAR) comprising one or more intracellular signaling domains and an extracellular antigen binding domain, wherein the extracellular antigen binding domain specifically recognizes kappa myeloma antigen (KMA).
2. The CAR of claim 1, wherein the one or more intracellular signaling domains comprises one or more co-stimulatory endodomains.
3. The CAR of claim 1 or claim 2, wherein the one or more co-stimulatory endodomains is one or more of a CD28 domain, a CD3 ζ domain, a 4-1BB domain or OX-40 domain or combinations thereof.
4. The CAR according to any one of claims 1 to 3, wherein the extracellular binding domain comprises a single chain variable fragment (scFv) that specifically recognizes KMA.
5. The CAR of claim 4, wherein the scFv comprises the complementarity determining regions (CDRs) derived from the KappaMab monoclonal antibody, wherein the KappaMAb CDRs comprise SEQ ID NOS: 3-8.
6. The CAR of claim 4, wherein the scFv comprises the VL chain and VH chain from KappaMab wherein the VL chain comprises SEQ ID NO: 2 and a VH chain comprises SEQ ID NO: 1.
7. The CAR of claim 6, wherein the VL chain and the VH chain from the KappaMab are attached via a glycine-serine linker, wherein the glycine-serine linker is a 15 amino acid linker comprising (Gly₄Ser)₃.
8. The CAR according to any one of claims 4 to 7, wherein the scFv is attached to the one or more intracellular signaling domains via a spacer, wherein the spacer is an immunoglobulin constant region or a CD8 α chain.
9. The CAR of claim 8, wherein the immunoglobulin constant region comprises one or more of an IgG hinge domain, an IgG CH2 domain and an IgG CH3 domain.

10. The CAR according to any one of claims 8 to 9, wherein the 15 amino acid linker comprises (Gly₄Ser)₃.
11. A genetically modified T cell engineered to express the CAR of any one of claims 1-10.
12. The genetically modified T cell of claim 11 further engineered to express one or more additional biological molecules.
13. The genetically modified T cell of claim 11 or claim 12, wherein the one or more additional biological molecules comprises one or more of IL-12, an hepatocyte growth factor (HGF binding protein), Galectin-3C (GAL3C) or SANT7.
14. A method for producing a genetically modified T cell according to any one of claims 11 to 13, the method comprising introducing an expression vector encoding a CAR comprising one or more intracellular signaling domain and an extracellular antigen binding domain, wherein the extracellular antigen binding domain specifically recognizes kappa myeloma antigen (KMA) into a T cell.
15. The method of claim 14, wherein the expression vector is a viral vector expression system.
16. A method of treating a KMA-expressing malignancy in a subject in need thereof comprising administering genetically modified T cells engineered to express one or more intracellular signaling domain and an extracellular antigen binding domain, wherein the extracellular antigen binding domain specifically recognizes kappa myeloma antigen (KMA).
17. The method of claim 16, wherein the KMA-expressing malignancy is multiple myeloma, Waldenstroms macroglobulinemia, diffuse large B cell lymphoma (DLBCL), or amyloidosis.
18. The method of claim 16 or claim 17, wherein the method further comprises administering one or more pharmaceutically active agents, wherein the one or more pharmaceutically active agents comprise one or more chemotherapeutic agents, an immunomodulatory drug or a histone deacetylase inhibitor.

19. The method according any one of claims 16 to 18, wherein the genetically modified T cells are derived from the subject.
20. The method according to any one of claims 16 to 19, which comprises administering a genetically modified T-cell according to any one of claims 11 to 13.

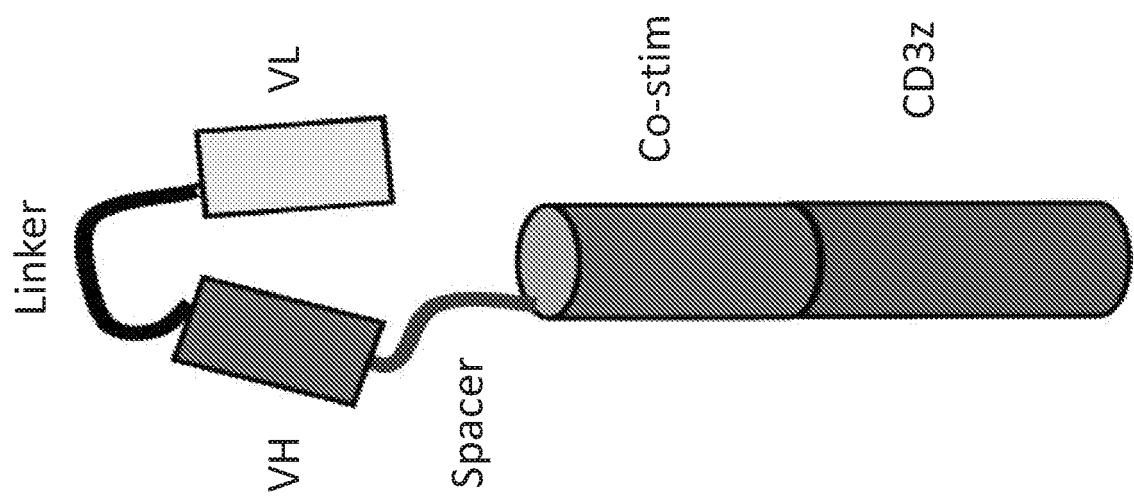


Figure 2

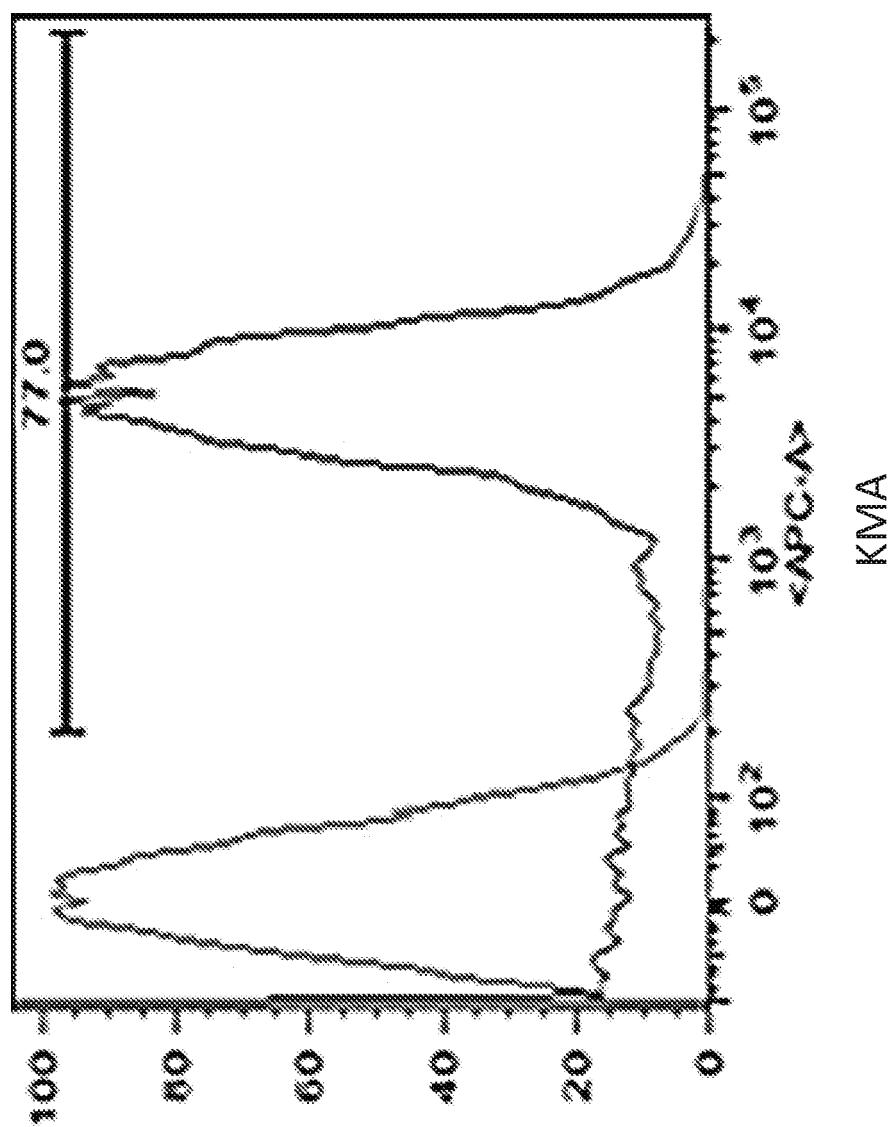
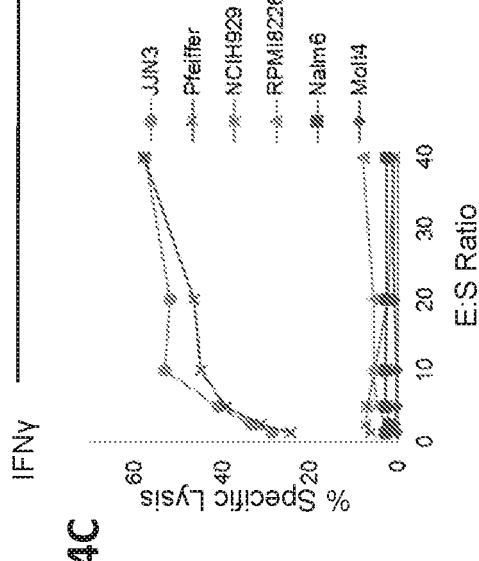
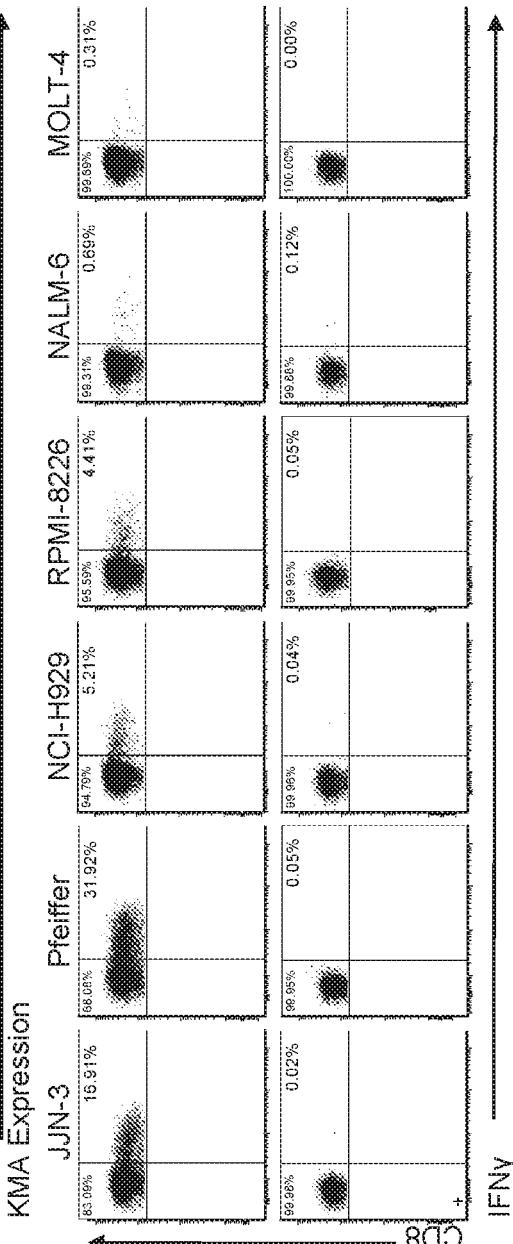
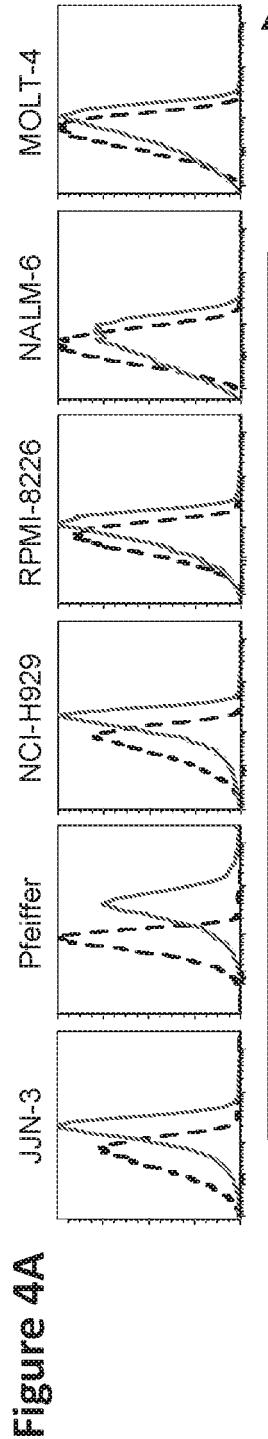
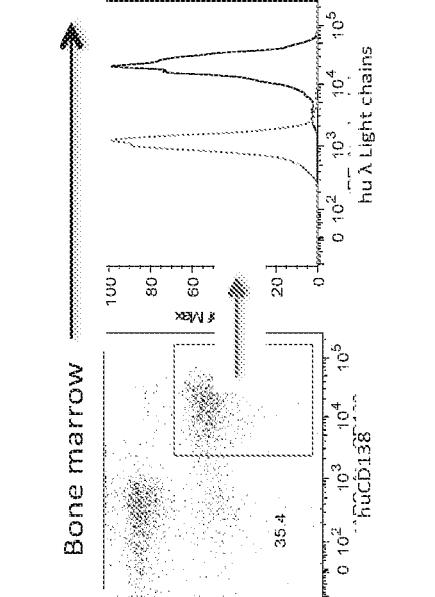
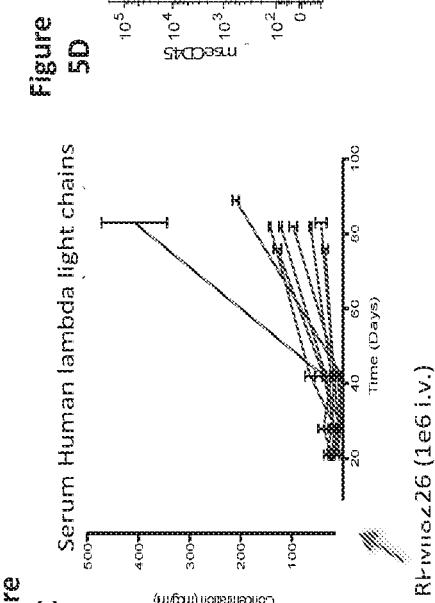
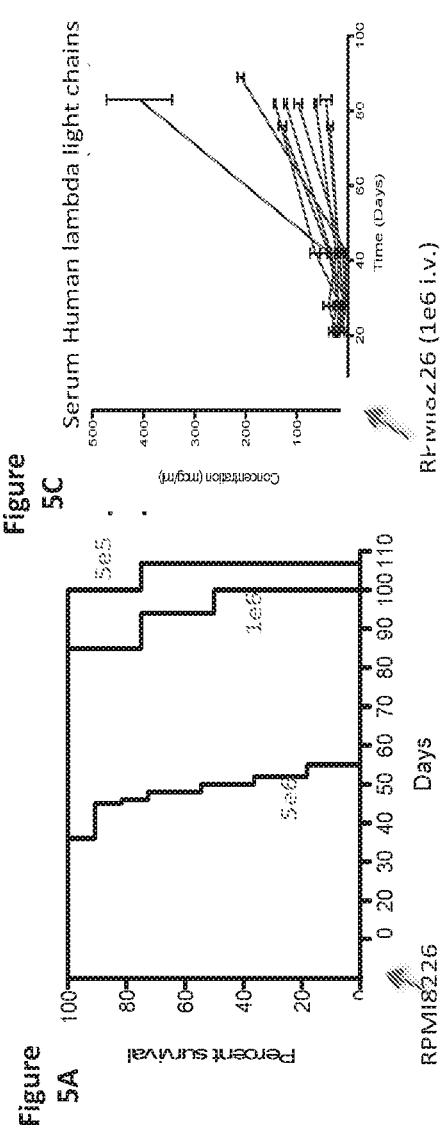
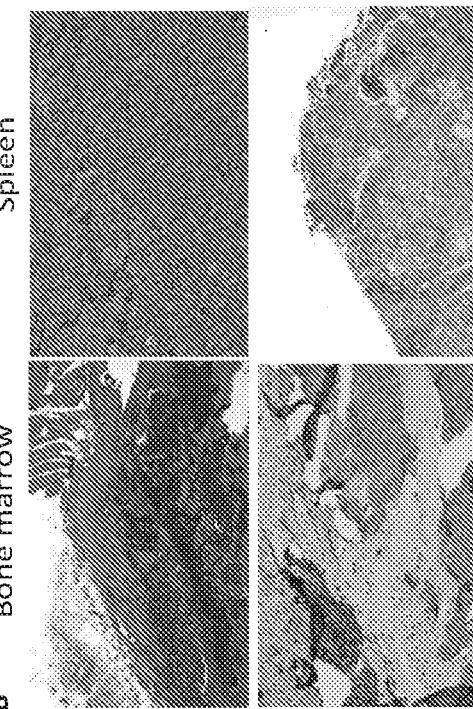









Figure 3

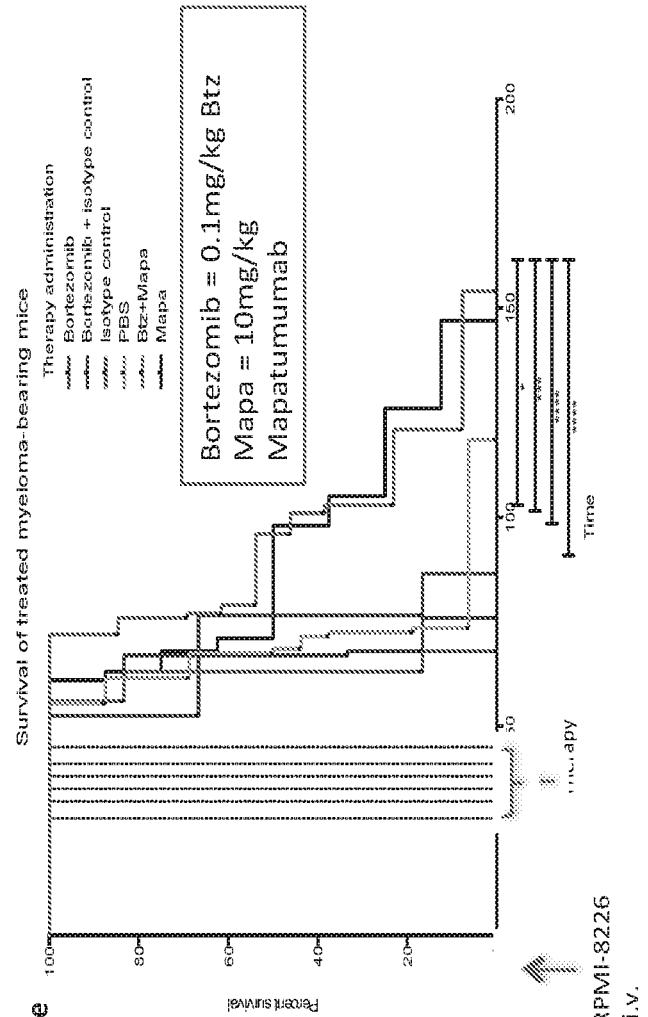
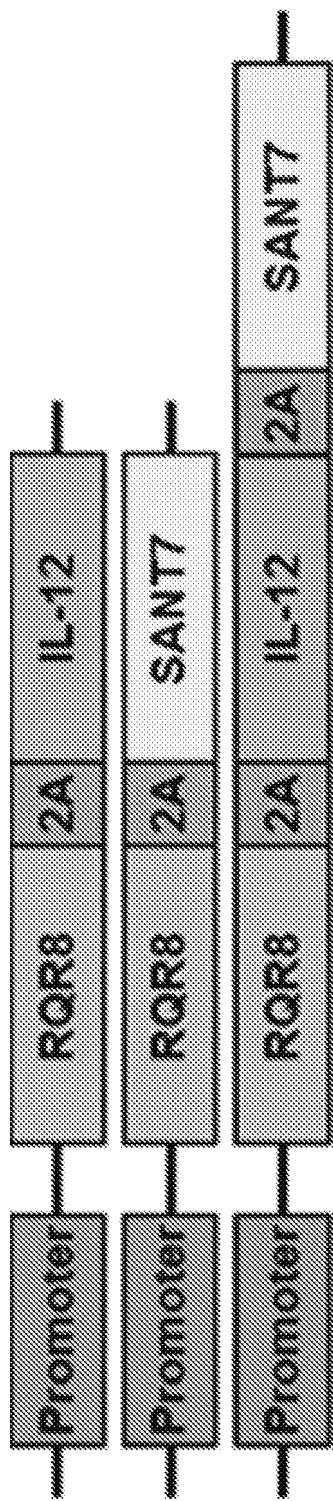


Figure 5B

Figure 5E

Figure 6A

scFv	hC42CH3	CD28	CD32
------	---------	------	------


Figure 6B

scFv	hCH3	CD28	CD32
scFv	h	CD28	CD32

Figure 6C

scFv	opti	4-1BB	CD32
scFv	opti	OX-40	CD32
scFv	opti	CD28	OX-40
scFv	opti	CD28	4-1BB
scFv	opti	4-1BB	CD32

Figure 7

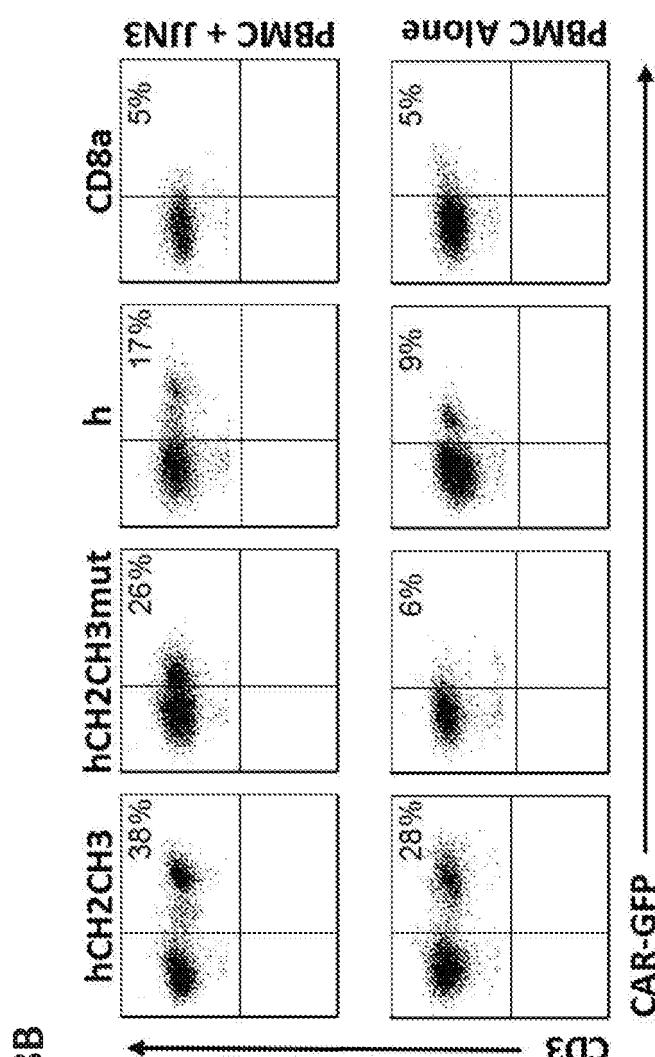
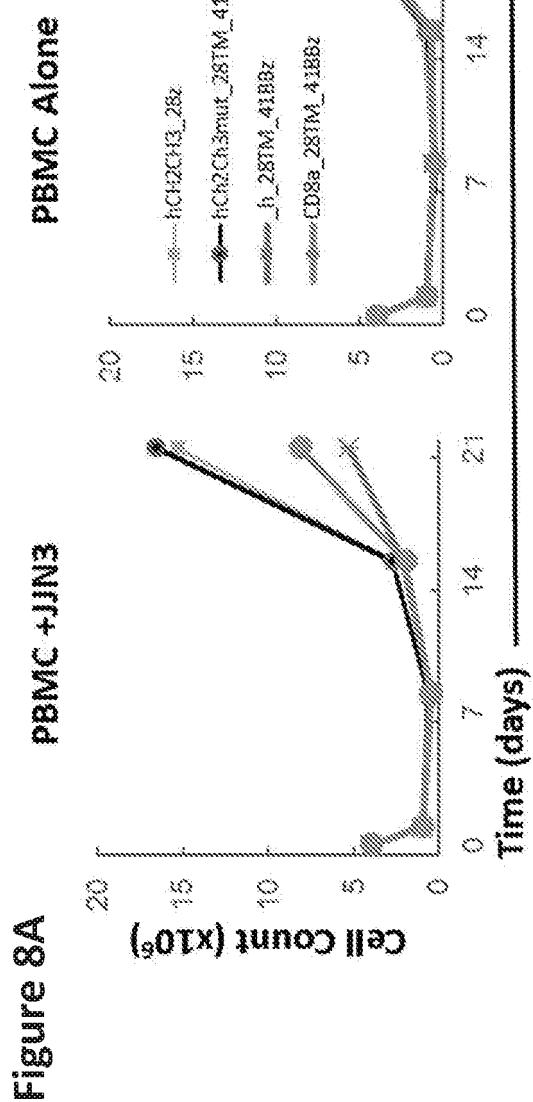



Figure 9

Figure 10

Unstimulated

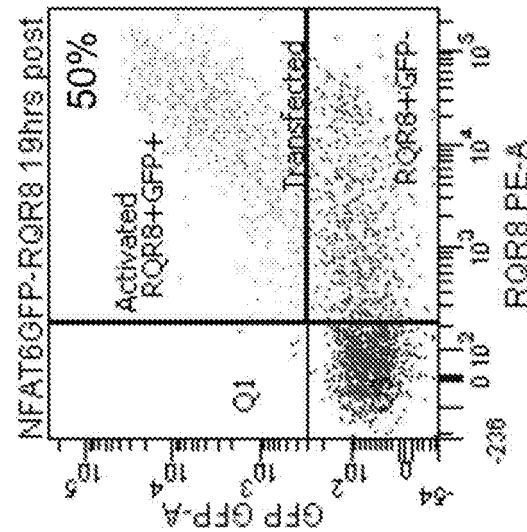
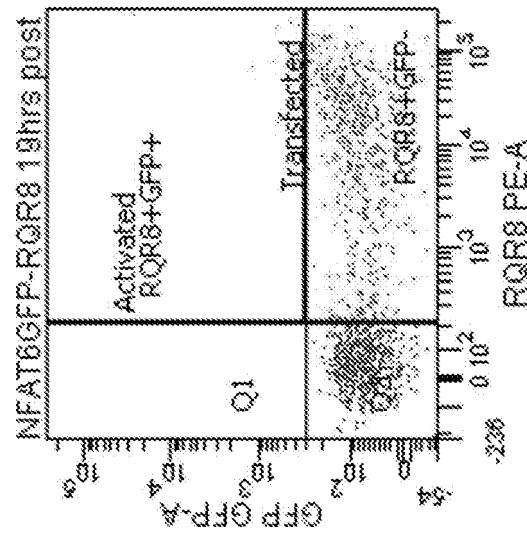



Figure 11

Figure 12A

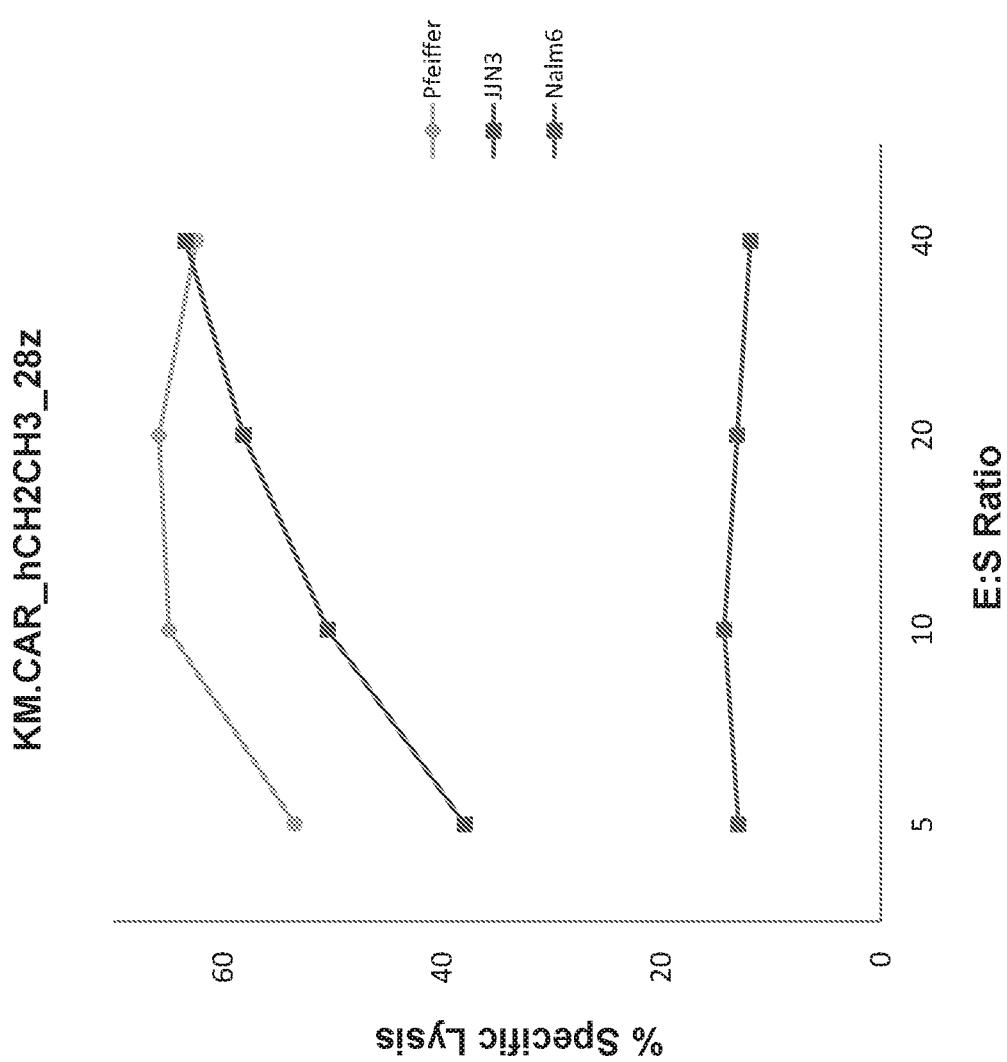
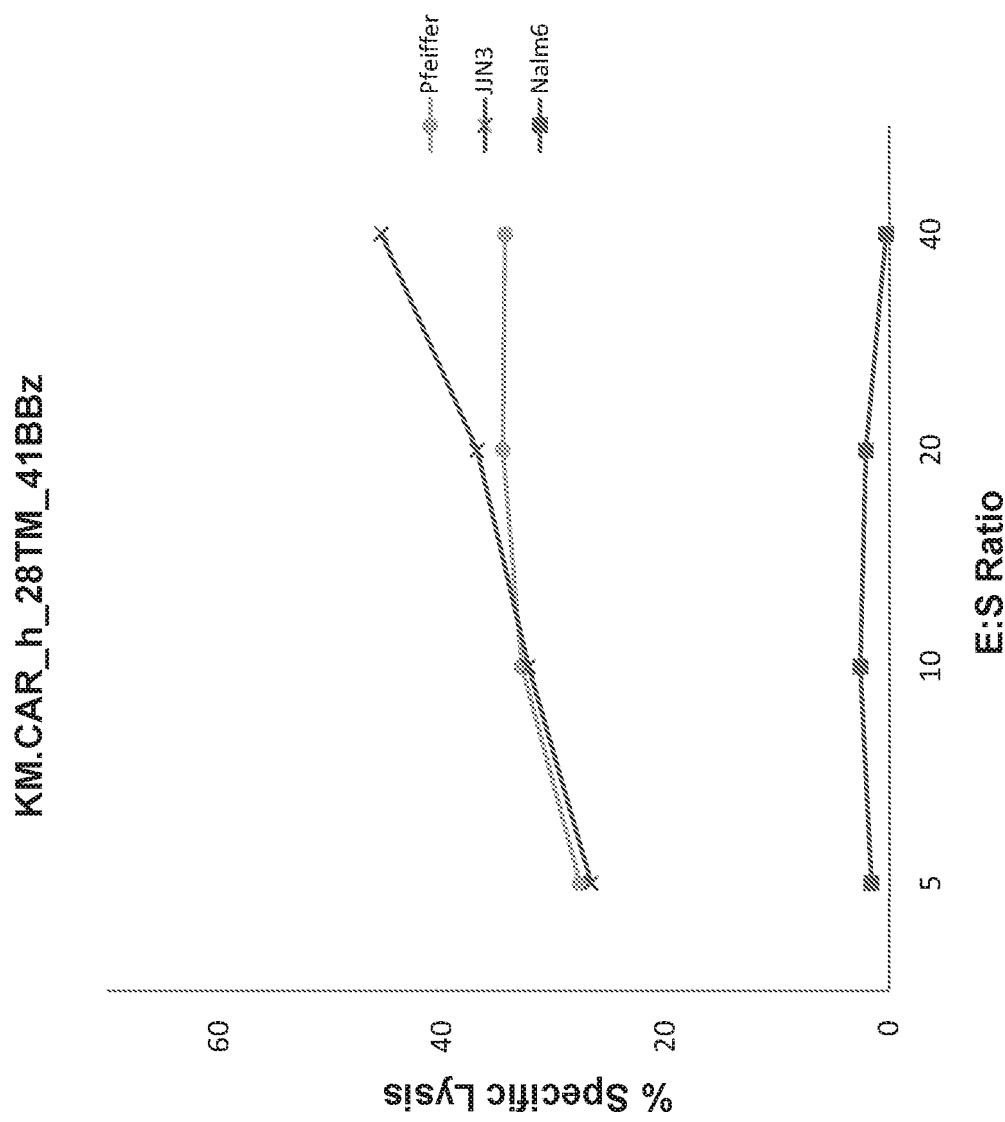



Figure 12B

HMLX_002_02WO_SeqList_ST25
SEQUENCE LISTING

<110> HaemoLogix Pty. Ltd.
Micklethwaite, Kenneth
Dunn, Rosanne
Gottlieb, David
Logan, Grant
Harrison, Simon

<120> KAPPA MYELOMA ANTIGEN CHIMERIC ANTIGEN RECEPTORS AND USES THEREOF

<130> HMLX-002/02WO 324961-2004

<150> US 62/151,968
<151> 2015-04-23

<150> US 62/158,407
<151> 2015-05-07

<160> 43

<170> PatentIn version 3.5

<210> 1
<211> 449
<212> PRT
<213> Artificial Sequence

<220>
<223> human monoclonal antibody heavy chain

<400> 1

Glu Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Thr
20 25 30

Tyr Met His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu Glu Trp Ile
35 40 45

Gly Arg Ile Asp Pro Ala Asn Gly Asn Thr Lys Tyr Asp Pro Lys Phe
50 55 60

Gln Gly Lys Ala Thr Ile Ile Ala Asp Thr Ser Ser Asn Thr Ala Tyr
65 70 75 80

Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Gly Val Tyr His Asp Tyr Asp Gly Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Leu Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
115 120 125

HMLX_002_02w0_SeqList_ST25

Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu
130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
145 150 155 160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
165 170 175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
180 185 190

Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro
195 200 205

Ser Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser Cys Asp Lys
210 215 220

Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro
225 230 235 240

Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser
245 250 255

Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp
260 265 270

Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn
275 280 285

Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val
290 295 300

Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu
305 310 315 320

Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys
325 330 335

Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr
340 345 350

Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr
355 360 365

Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu

370

375 HMLX_002_02WO_SeqList_ST25
380

Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu
385 390 395 400

Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys
405 410 415

Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu
420 425 430

Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly
435 440 445

Lys

<210> 2

<211> 214

<212> PRT

<213> Artificial Sequence

<220>

<223> human monoclonal antibody light chain

<400> 2

Asp Ile Val Met Thr Gln Ser Gln Lys Phe Met Ser Thr Ser Val Gly
1 5 10 15

Asp Arg Val Ser Val Thr Cys Lys Ala Ser Gln Asn Val Gly Thr Asn
20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Ala Leu Ile
35 40 45

Tyr Ser Thr Ser Tyr Arg Tyr Ser Gly Val Pro Asp Arg Phe Thr Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Asn Val Gln Ser
65 70 75 80

Glu Asp Leu Ala Glu Tyr Phe Cys Gln Gln Tyr Asn Ser Tyr Pro Tyr
85 90 95

Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala
100 105 110

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
115 120 125

HMLX_002_02w0_SeqList_ST25

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala
130 135 140

Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln
145 150 155 160

Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser
165 170 175

Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
180 185 190

Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser
195 200 205

Phe Asn Arg Gly Glu Cys
210

<210> 3

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> human monoclonal antibody VH CDR

<400> 3

Asp Thr Tyr Met His
1 5

<210> 4

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<223> human monoclonal antibody VH CDR

<400> 4

Arg Ile Asp Pro Ala Asn Gly Asn Thr Lys Tyr Asp Pro Lys Phe Gln
1 5 10 15

Gly

<210> 5

<211> 10

<212> PRT

<213> Artificial Sequence

HMLX_002_02WO_SeqList_ST25

<220>
<223> human monoclonal antibody VH CDR

<400> 5

Gly Val Tyr His Asp Tyr Asp Gly Asp Tyr
1 5 10

<210> 6
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> human monoclonal antibody VL CDR

<400> 6

Lys Ala Ser Gln Asn Val Gly Thr Asn Val Ala
1 5 10

<210> 7
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> human monoclonal antibody VL CDR

<400> 7

Ser Thr Ser Tyr Arg Tyr Ser
1 5

<210> 8
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> human monoclonal antibody VL CDR

<400> 8

Gln Gln Tyr Asn Ser Tyr Pro Tyr Thr
1 5

<210> 9
<211> 357
<212> DNA
<213> Artificial Sequence

<220>
<223> human monoclonal antibody VH

<400> 9

gaggtgcagc tgcagcagtc aggggcggag cttgtgaagc caggggcctc agtcaagttg 60

tcctgtacag cttctggctt caacattaaa gacacctata tgcactgggt gaagcagagg 120

HMLX_002_02w0_SeqList_ST25

cctgaacagg gcctggagtg gatttggagg attgatcctg cgaatggtaa cactaaatat	180
gaccgcagaat tccagggcaa ggccactata atagcagaca catcctccaa cacagcctac	240
ctgcagctca gcagcctgac atctgaggac actgccgtct attactgtgc taggggggtc	300
taccatgatt acgacgggaa ctactggggc caagggacca cgctcaccgt ctcctcc	357

<210> 10
<211> 321
<212> DNA
<213> Artificial Sequence

<220>
<223> human monoclonal antibody VL

<400> 10 gacatcgtca tgacccagtc tcaaaaattc atgtccacat cagtaggaga cagggtcagc	60
gtcacctgca aggccagtcga aatgtgggt actaatgttag cctggtatca acagaaacca	120
ggcaatctc ctaaagcact gatttactcg acatcctacc ggtacagtgg agtccctgat	180
cgcttcacag gcagtggatc tggacagat ttcactctca ccatcagcaa tgtgcagtct	240
gaagacttgg cagagtattt ctgtcagcaa tataacagct atccgtacac gttcggaggg	300
gggaccaagc tggaaataaa g	321

<210> 11
<211> 1200
<212> DNA
<213> Artificial Sequence

<220>
<223> human monoclonal antibody VH DNA in pHCMV-Gamm1-neo expression vector

<220>
<221> misc_feature
<222> (11)..(11)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (947)..(947)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (998)..(998)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1009)..(1009)
<223> n is a, c, g, or t

<220>

<221> misc_feature
<222> (1027)..(1027)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1032)..(1032)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1036)..(1036)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1044)..(1044)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1065)..(1065)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1085)..(1085)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1095)..(1095)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1099)..(1100)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1105)..(1105)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1108)..(1108)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1111)..(1111)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1127)..(1127)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1134)..(1134)
<223> n is a, c, g, or t

HMLX_002_02W0_SeqList_ST25

```

<220>
<221> misc_feature
<222> (1136)..(1136)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1157)..(1157)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1168)..(1168)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1172)..(1172)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1190)..(1190)
<223> n is a, c, g, or t

<400> 11
caggacgatc ngcctccgca agcttatgaa tatgcaaatc ctctgaatct acatggtaaa      60
tataggtttg tctataccac aaacagaaaa acatgagatc acagttctct ctacagttac      120
tgagcacaca ggacctcacc atggatgga gctgtatcat cctcttctt gtagcaacag      180
ctacaggtaa ggggctcaca gtagcaggct tgaggtctgg acatatatat gggtgacaat      240
gacatccact ttgccttct ctccacaggt gtgcactccg aggtgcagct gcagcagtca      300
ggggcggagc ttgtgaagcc aggggcctca gtcaagttgt cctgtacagc ttctggcttc      360
aacattaaag acacctatat gcactgggtg aagcagaggc ctgaacaggg cctggagtgg      420
attggaagga ttgatcctgc gaatggtaac actaaatatg acccgaagtt ccagggcaag      480
gccactataa tagcagacac atcctccaac acagcctacc tgcagctcag cagcctgaca      540
tctgaggaca ctgccgtcta ttactgtgct aggggggtct accatgatta cgacggggac      600
tactggggcc aagggaccac gtcaccgtc tcctccggtg agtggatccc aagctagctt      660
tctggggcag gccaggcctg accttggctt tggggcaggg agggggctaa ggtgaggcag      720
gtggcccgag ccaggtgcac accaatgcc catgagccca gacactggac gctgaacctc      780
gcggacagtt aagaacccag gggcctctgc gccctgggcc cagctctgtc ccacaccgcg      840
gtcacatggc accacctctc ttgcagcctc caccaagggc ccatcggtct tccccctggc      900
acccctcctc caagagcacc tctggggca cagcggccct gggctgnctt ggtcaaggac      960
tacttcccccc gaaccgggtga cggtgtcgtg gaactcangc gccctgacna gcggggtgca      1020
caccttnccg gntgtntac agtnctcagg actctactcc ctcancagcg tggtgaccgt      1080

```

HMLX_002_02W0_SeqList_ST25

gcccncntcagc agctngggnn cccanacnta nattgcacg ggaatcnaag cccngnaacc	1140
caaggggaaa aaaaaanttg gtgaaagncc cnccaggag ggaggggtn tgctggaaac	1200

<210> 12
<211> 1121
<212> DNA
<213> Artificial Sequence

<220>
<223> human monoclonal antibody VL DNA in pHCMV-Gamm1-neo expression vector

<220>
<221> misc_feature
<222> (1)..(1)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (12)..(12)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (983)..(983)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1002)..(1003)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1014)..(1014)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1055)..(1055)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1057)..(1057)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1084)..(1084)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1092)..(1092)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1098)..(1098)

HMLX_002_02WO_SeqList_ST25

<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> human monoclonal antibody VH CDR

<400> 13
gacacctata tgcac

15

<210> 14
<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<223> human monoclonal antibody VH CDR

<400> 14
aggattgatc ctgcgaatgg taacactaaa tatgacccga agttccaggg c

51

<210> 15
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> human monoclonal antibody VH CDR

<400> 15
gggtctacc atgattacga cggggactac

30

<210> 16
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> human monoclonal antibody VL CDR

<400> 16
aaggccagtc agaatgtggg tactaatgta gcc

33

<210> 17
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> human monoclonal antibody VL CDR

<400> 17
tcgacatcct accggtacag t

21

<210> 18
<211> 27
<212> DNA
<213> Artificial Sequence

HMLX_002_02w0_SeqList_ST25

<220>
<223> human monoclonal antibody VL CDR

<400> 18
cagcaatata acagctatcc gtacacg

27

<210> 19
<211> 530
<212> PRT
<213> Artificial Sequence

<220>
<223> Flexi-IL12

<400> 19

Met Cys His Gln Gln Leu Val Ile Ser Trp Phe Ser Leu Val Phe Leu
1 5 10 15

Ala Ser Pro Leu Val Ala Ile Trp Glu Leu Lys Lys Asp Val Tyr Val
20 25 30

Val Glu Leu Asp Trp Tyr Pro Asp Ala Pro Gly Glu Met Val Val Leu
35 40 45

Thr Cys Asp Thr Pro Glu Glu Asp Gly Ile Thr Trp Thr Leu Asp Gln
50 55 60

Ser Ser Glu Val Leu Gly Ser Gly Lys Thr Leu Thr Ile Gln Val Lys
65 70 75 80

Glu Phe Gly Asp Ala Gly Gln Tyr Thr Cys His Lys Gly Gly Glu Val
85 90 95

Leu Ser His Ser Leu Leu Leu His Lys Lys Glu Asp Gly Ile Trp
100 105 110

Ser Thr Asp Ile Leu Lys Asp Gln Lys Glu Pro Lys Asn Lys Thr Phe
115 120 125

Leu Arg Cys Glu Ala Lys Asn Tyr Ser Gly Arg Phe Thr Cys Trp Trp
130 135 140

Leu Thr Thr Ile Ser Thr Asp Leu Thr Phe Ser Val Lys Ser Ser Arg
145 150 155 160

Gly Ser Ser Asp Pro Gln Gly Val Thr Cys Gly Ala Ala Thr Leu Ser
165 170 175

Ala Glu Arg Val Arg Gly Asp Asn Lys Glu Tyr Glu Tyr Ser Val Glu
Page 12

HMLX_002_02w0_SeqList_ST25
180 185 190

Cys Gln Glu Asp Ser Ala Cys Pro Ala Ala Glu Glu Ser Leu Pro Ile
195 200 205

Glu Val Met Val Asp Ala Val His Lys Leu Lys Tyr Glu Asn Tyr Thr
210 215 220

Ser Ser Phe Phe Ile Arg Asp Ile Ile Lys Pro Asp Pro Pro Lys Asn
225 230 235 240

Leu Gln Leu Lys Pro Leu Lys Asn Ser Arg Gln Val Glu Val Ser Trp
245 250 255

Glu Tyr Pro Asp Thr Trp Ser Thr Pro His Ser Tyr Phe Ser Leu Thr
260 265 270

Phe Cys Val Gln Val Gln Gly Lys Ser Lys Arg Glu Lys Lys Asp Arg
275 280 285

Val Phe Thr Asp Lys Thr Ser Ala Thr Val Ile Cys Arg Lys Asn Ala
290 295 300

Ser Ile Ser Val Arg Ala Gln Asp Arg Tyr Tyr Ser Ser Ser Trp Ser
305 310 315 320

Glu Trp Ala Ser Val Pro Cys Ser Gly Gly Gly Ser Gly Gly Gly
325 330 335

Gly Ser Gly Gly Gly Ser Arg Asn Leu Pro Val Ala Thr Pro Asp
340 345 350

Pro Gly Met Phe Pro Cys Leu His His Ser Gln Asn Leu Leu Arg Ala
355 360 365

Val Ser Asn Met Leu Gln Lys Ala Arg Gln Thr Leu Glu Phe Tyr Pro
370 375 380

Cys Thr Ser Glu Glu Ile Asp His Glu Asp Ile Thr Lys Asp Lys Thr
385 390 395 400

Ser Thr Val Glu Ala Cys Leu Pro Leu Glu Leu Thr Lys Asn Glu Ser
405 410 415

Cys Leu Asn Ser Arg Glu Thr Ser Phe Ile Thr Asn Gly Ser Cys Leu
420 425 430

HMLX_002_02W0_SeqList_ST25
Ala Ser Arg Lys Thr Ser Phe Met Met Ala Leu Cys Leu Ser Ser Ile
435 440 445

Tyr Glu Asp Leu Lys Met Tyr Gln Val Glu Phe Lys Thr Met Asn Ala
450 455 460

Lys Leu Leu Met Asp Pro Lys Arg Gln Ile Phe Leu Asp Gln Asn Met
465 470 475 480

Leu Ala Val Ile Asp Glu Leu Met Gln Ala Leu Asn Phe Asn Ser Glu
485 490 495

Thr Val Pro Gln Lys Ser Ser Leu Glu Glu Pro Asp Phe Tyr Lys Ala
500 505 510

Phe Arg Ile Arg Ala Val Thr Ile Asp Arg Val Met Ser Tyr Leu Asn
515 520 525

Ala Ser
530

<210> 20
<211> 21
<212> PRT
<213> Artificial Sequence

<220>
<223> IgG heavy chain leader component of KM.CAR-hCH2CH3-28z construct

<400> 20

Met Glu Phe Gly Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly
1 5 10 15

Val Gln Cys Ser Arg
20

<210> 21
<211> 107
<212> PRT
<213> Artificial Sequence

<220>
<223> KappaMab variable light chain component of KM.CAR-hCH2CH3-28z
construct

<400> 21

Asp Ile Val Met Thr Gln Ser Gln Lys Phe Met Ser Thr Ser Val Gly
1 5 10 15

Asp Arg Val Ser Val Thr Cys Lys Ala Ser Gln Asn Val Gly Thr Asn
20 25 30

HMLX_002_02w0_SeqList_ST25

Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Ala Leu Ile
35 40 45

Tyr Ser Thr Ser Tyr Arg Tyr Ser Gly Val Pro Asp Arg Phe Thr Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Asn Val Gln Ser
65 70 75 80

Glu Asp Leu Ala Glu Tyr Phe Cys Gln Gln Tyr Asn Ser Tyr Pro Tyr
85 90 95

Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys
100 105

<210> 22

<211> 0

<212> PRT

<213> Artificial Sequence

<220>

<223> KappaMab variable heavy chain component of KM.CAR-hCH2CH3-28z
construct

<400> 22

000

<210> 23

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> (G4S)3 flexible linker component of KM.CAR-hCH2CH3-28z construct

<400> 23

Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
1 5 10 15

<210> 24

<211> 246

<212> PRT

<213> Artificial Sequence

<220>

<223> Hinge, CH2 and CH3 components of KM.CAR-hCH2CH3-28z construct

<400> 24

Tyr Val Thr Val Ser Ser Gln Asp Pro Ala Glu Pro Lys Ser Pro Asp
1 5 10 15

Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly
20 25 30

HMLX_002_02w0_SeqList_ST25

Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile
35 40 45

Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu
50 55 60

Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His
65 70 75 80

Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg
85 90 95

Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys
100 105 110

Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu
115 120 125

Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr
130 135 140

Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu
145 150 155 160

Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp
165 170 175

Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val
180 185 190

Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp
195 200 205

Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His
210 215 220

Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro
225 230 235 240

Gly Lys Lys Asp Pro Lys
245

<210> 25
<211> 68
<212> PRT
<213> Homo sapiens

HMLX_002_02w0_SeqList_ST25

<400> 25

Phe Trp Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu
1 5 10 15

Leu Val Thr Val Ala Phe Ile Ile Phe Trp Val Arg Ser Lys Arg Ser
20 25 30

Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr Pro Arg Arg Pro Gly
35 40 45

Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala
50 55 60

Ala Tyr Arg Ser
65

<210> 26

<211> 112

<212> PRT

<213> Homo sapiens

<400> 26

Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly
1 5 10 15

Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr
20 25 30

Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys
35 40 45

Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys
50 55 60

Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg
65 70 75 80

Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
85 90 95

Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
100 105 110

<210> 27

<211> 688

<212> PRT

<213> Artificial Sequence

<220>

HMLX_002_02W0_SeqList_ST25

<223> Full Length KM.CAR-hCH2CH3-28z amino acid construct

<400> 27

Met Glu Phe Gly Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly
1 5 10 15

Val Gln Cys Ser Arg Asp Ile Val Met Thr Gln Ser Gln Lys Phe Met
20 25 30

Ser Thr Ser Val Gly Asp Arg Val Ser Val Thr Cys Lys Ala Ser Gln
35 40 45

Asn Val Gly Thr Asn Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser
50 55 60

Pro Lys Ala Leu Ile Tyr Ser Thr Ser Tyr Arg Tyr Ser Gly Val Pro
65 70 75 80

Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile
85 90 95

Ser Asn Val Gln Ser Glu Asp Leu Ala Glu Tyr Phe Cys Gln Gln Tyr
100 105 110

Asn Ser Tyr Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
115 120 125

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Glu
130 135 140

Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Pro Gly Ala Ser
145 150 155 160

Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Thr Tyr
165 170 175

Met His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu Glu Trp Ile Gly
180 185 190

Arg Ile Asp Pro Ala Asn Gly Asn Thr Lys Tyr Asp Pro Lys Phe Gln
195 200 205

Gly Lys Ala Thr Ile Ile Ala Asp Thr Ser Ser Asn Thr Ala Tyr Leu
210 215 220

Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala
225 230 235 240

HMLX_002_02w0_SeqList_ST25

Arg Gly Val Tyr His Asp Tyr Asp Gly Asp Tyr Trp Gly Gln Gly Thr
245 250 255

Thr Leu Thr Val Ser Ser Tyr Val Thr Val Ser Ser Gln Asp Pro Ala
260 265 270

Glu Pro Lys Ser Pro Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala
275 280 285

Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
290 295 300

Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val
305 310 315 320

Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val
325 330 335

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
340 345 350

Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln
355 360 365

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala
370 375 380

Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
385 390 395 400

Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr
405 410 415

Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser
420 425 430

Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
435 440 445

Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
450 455 460

Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe
465 470 475 480

Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys
485 490 495

HMLX_002_02w0_SeqList_ST25

Ser Leu Ser Leu Ser Pro Gly Lys Lys Asp Pro Lys Phe Trp Val Leu
500 505 510

Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val
515 520 525

Ala Phe Ile Ile Phe Trp Val Arg Ser Lys Arg Ser Arg Leu Leu His
530 535 540

Ser Asp Tyr Met Asn Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys
545 550 555 560

His Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser
565 570 575

Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly
580 585 590

Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr
595 600 605

Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys
610 615 620

Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys
625 630 635 640

Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg
645 650 655

Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
660 665 670

Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
675 680 685

<210> 28

<211> 2064

<212> DNA

<213> Artificial Sequence

<220>

<223> Full length KM.CAR-hCH2CH3-28z nucleic acid construct

<400> 28

atggagtttggctgagctggctttttcttgtggctatattttaaaaagggtgtccagtgtctct
agagacatcg tcatgaccatgtctcaaaaaattcatgtccatcatgtaggagacagggtc 60
120

HMLX_002_02W0_SeqList_ST25

agcgtcacct	gcaaggccag	tcagaatgtg	ggtactaatg	tagcctggta	tcaacagaaaa	180
ccagggcaat	ctcctaaagc	actgatttac	tcgacatcct	accggtagag	tggagtccct	240
gatcgcttca	caggcagttg	atctggaca	gatttcactc	tcaccatcag	aatgtgcag	300
tctgaagact	tggcagagta	tttctgtcag	caatataaca	gctatccgt	cacgttcgga	360
ggggggacca	agctggaaat	aaagggtggc	ggtggctcg	gcgggtgg	gtcgggtggc	420
ggcggatctg	aggtgcagct	gcagcagtca	ggggcggagc	ttgtgaagcc	aggggcctca	480
gtcaagttgt	cctgtacagc	ttctggcttc	aacattaaag	acacctatat	gcactgggtg	540
aagcagaggc	ctgaacaggg	cctggagtgg	attggaagga	ttgatcctgc	aatggtaac	600
actaaatatg	acccgaagtt	ccagggcaag	gccactataa	tagcagacac	atcctccaac	660
acagcctacc	tgcagctcag	cagcctgaca	tctgaggaca	ctgccgtcta	ttactgtgct	720
aggggggtct	accatgatta	cgacggggac	tactggggcc	aagggaccac	gctcaccgtc	780
tcctcctacg	tcaccgtctc	ttcacaggat	cccgccgagc	ccaaatctcc	tgacaaaact	840
cacacatgcc	caccgtgccc	agcacctgaa	ctcctggggg	gaccgtcagt	cttcctcttc	900
cccccaaaac	ccaaggacac	cctcatgatc	tcccggaccc	ctgaggtcac	atgcgtgg	960
gtggacgtga	gccacgaaga	ccctgaggtc	aagttcaact	ggtacgtgga	cggtgtggag	1020
gtgcataatg	ccaagacaaa	gccgcggag	gagcagtaca	acagcacgt	ccgtgtgg	1080
agcgtcctca	ccgtcctgca	ccaggactgg	ctgaatggca	aggagtacaa	gtcaagg	1140
tccaacaaag	ccctcccagc	ccccatcgag	aaaaccatct	ccaaagccaa	agggcagccc	1200
cgagaaccac	aggtgtacac	cctgccccca	tcccggatg	agctgaccaa	gaaccagg	1260
agcctgacct	gcctggtcaa	aggcttctat	cccagcgaca	tcgcccgtg	gtggagag	1320
aatggcaac	cggagaacaa	ctacaagacc	acgcctcccg	tgctggactc	cgacggctcc	1380
ttcttcctct	acagcaagct	caccgtggac	aagagcaggt	ggcagcaggg	gaacgtcttc	1440
tcatgctccg	tgatgcatga	ggctctgcac	aaccactaca	cgcagaagag	cctccctg	1500
tctccggta	aaaaagatcc	caaattttgg	gtgctgg	tgggggtgg	agtccctgg	1560
tgctatagct	tgcttagtaac	agtggcttt	attattttct	gggtgaggag	taagaggag	1620
aggctcctgc	acagtgacta	catgaacatg	actccccg	gccccggcc	cacccgcaag	1680
cattaccagc	cctatgcccc	accacgcgac	ttcgcagcct	atcgctccag	agtgaagttc	1740
agcaggagcg	cagacgcccc	cgcgtaccag	cagggccaga	accagctcta	taacgag	1800
aatctaggac	gaagagagga	gtacgatgtt	ttggacaaga	gacgtggccg	ggaccctgag	1860
atggggggaa	agccgagaag	gaagaaccct	caggaaggcc	tgtacaatga	actgcagaaa	1920
gataagatgg	cggaggccta	cagtgagatt	gggatgaaag	gcgagcgccg	gagggcaag	1980
gggcacatg	gccttacca	gggtctcagt	acagccacca	aggacaccta	cgacgccc	2040

HMLX_002_02W0_SeqList_ST25

cacatgcagg	ccctgcccc	tcgc	2064
<210>	29		
<211>	1727		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Full length KM.CAR-hCH3-28z nucleic acid construct		
<400>	29		
tggagtttgg	gctgagctgg	ctttttcttg	60
gagacatcg	catgacc	ccag tctcaaaaat	120
gcgtcac	ctg	caaggcc	180
caggcaatc	tcctaa	aggca	240
atcgctt	cac	aggc	300
ctgaagactt	ggc	agc	360
gggggaccaa	gctggaaata	aagggtggcg	420
gcggatctga	ggtgcag	ctg	480
tcaagtt	ctgt	acat	540
agcagaggcc	tga	acagg	600
ctaaatatga	ccc	gaagt	660
cagcctac	ctg	acat	720
gggggtct	ccat	gatt	780
cctccgg	agg	cggt	840
ctcctg	act	gggg	900
ccccatcc	ggat	gag	960
tctatcc	acc	aa	1020
agaccac	tgcc	ccagg	1080
tggaca	cagg	ttt	1140
tgcaca	ttt	ttt	1200
tgggtt	ttt	ttt	1260
tctgg	ttt	ttt	1320
gccgcccc	ttt	ttt	1380
cctatcg	ttt	ttt	1440
agaacc	ttt	ttt	1500

HMLX_002_02WO_SeqList_ST25

cttcacatgc	aggccctgcc	ccctcgc	1407			
<210>	31					
<211>	1461					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	Full length KM.CAR-CD8a-28z nucleic acid construct					
<400>	31					
atggagttg	ggctgagctg	gcttttctt	gtggctattt	taaaagggtgt	ccagtgtct	60
agagacatcg	tcatgaccca	gtctcaaaaa	ttcatgtcca	catcagtagg	agacagggtc	120
agcgtcacct	gcaaggccag	tcagaatgtg	ggtactaatg	tagcctggta	tcaacagaaa	180
ccagggcaat	ctcctaaagc	actgatttac	tcgacatcct	accggtag	tggagtccct	240
gatcgcttca	caggcagttg	atctggaca	gatttca	tcaccatcag	aatgtgcag	300
tctgaagact	tggcagagta	tttctgtcag	caatataaca	gctatccgt	cacgttcgga	360
ggggggacca	agctggaaat	aaagggtggc	ggtggctcg	gcgggtgg	gtcgggtggc	420
ggcggatctg	aggtgcagct	gcagcgtca	ggggcggagc	ttgtgaagcc	aggggcctca	480
gtcaagttgt	cctgtacagc	ttctggcttc	aacattaaag	acacctata	gcactgggt	540
aagcagaggc	ctgaacaggg	cctggagtgg	attggaagga	ttgatcctgc	aatggtaac	600
actaaatatg	acccgaagtt	ccagggcaag	gccactataa	tagcagacac	atcctccaac	660
acagcctacc	tgca	gctcag	cagcctgaca	tctgaggaca	ctgcccgt	720
aggggggtct	accatgatta	cgacggggac	tactggggcc	aagggaccac	gctcaccgtc	780
tcctccacca	cgacgcccagc	gccgcgacca	ccaacaccgg	cgcccaccat	cgcgtcgcag	840
cccctgtccc	tgcgcccaga	ggcgtgccgg	ccagcggcgg	ggggcgcagt	gcacacgagg	900
gggctggact	tcgcctgtga	tttttgggtg	ctgggtgg	ttgggtgg	cctggcttgc	960
tatagcttc	tagtaacagt	ggccttatt	atttctgg	tgaggagtaa	gaggagcagg	1020
ctcctgcaca	gtgactacat	gaacatgact	ccccgccc	ccgggcccac	ccgcaagcat	1080
taccagccct	atgccccacc	acgcgacttc	gcagcctatc	gctccagagt	gaagttcagc	1140
aggagcgcag	acgccccccgc	gtaccagcag	ggccagaacc	agctctataa	cgagctcaat	1200
ctaggacgaa	gagaggagta	cgatgtttg	gacaagagac	gtggccgg	ccctgagatg	1260
gggggaaagc	cgagaaggaa	gaaccctcag	gaaggcctgt	acaatgaact	gcagaaagat	1320
aagatggcgg	aggcctacag	tgagattgg	atgaaaggcg	agcgccggag	gggcaagggg	1380
cacgatggcc	tttaccaggg	tctcagtaca	gccaccaagg	acacctacga	cgccttcac	1440
atgcaggccc	tgccccctcg	c				1461

HMLX_002_02WO_SeqList_ST25

<210> 32
<211> 1410

<212> DNA

<213> Artificial Sequence

<220>

<223> Full length KM.CAR-h-28TM-41BBz nucleic acid construct

<400> 32

atggagtttggctgagctggcttttcttgtggctattttaaaagggtgtccagtgtct 60
agagacatcg tcatgaccca gtctcaaaaaa ttcatgtcca catcagtagg agacagggtc 120
agcgtcacct gcaaggccag tcagaatgtg ggtactaatg tagcctggta tcaacagaaa 180
ccagggcaat ctcctaaagc actgatttac tcgacatcct accggtagc tggagtccct 240
gatcgcttca caggcagtgg atctggaca gatttcactc tcaccatcag caatgtgcag 300
tctgaagact tggcagagta tttctgtcag caatataaca gctatccgta cacgttcgga 360
ggggggacca agctggaaat aaagggtggc ggtggctcgg gcgggtgg tgcgggtggc 420
ggcggatctg aggtgcagct gcagcagtca gggcggagc ttgtgaagcc aggggcctca 480
gtcaagttgt cctgtacagc ttctggcttc aacattaaag acacctatat gcactggtg 540
aagcagaggc ctgaacaggg cctggagtgg attggaagga ttgatcctgc gaatggtaac 600
actaaatatg acccgaagtt ccagggcaag gccactataa tagcagacac atcctccaac 660
acagcctacc tgtagctcag cagcctgaca tctgaggaca ctgccgtcta ttactgtgct 720
aggggggtct accatgatta cgacggggac tactggggcc aagggaccac gtcaccgtc 780
tcctccggtg gaggcgggtc tggggcggga ggttcaggcg ggggtggttc cgagccaaa 840
tctcctgaca aaactcacac atgcccattt tgggtgctgg tgggtggttgg tggagtcctg 900
gcttgctata gcttgctagt aacagtggcc tttattattt tctgggtgaa acggggcaga 960
aagaaactcc tgtatataatt caaacaacca tttatgagac cagtacaaac tactcaagag 1020
gaagatggct gtagctgccc atttccagaa gaagaagaag gaggatgtga actgagagtg 1080
aagttcagca ggagcgcaga cgcccccgcg taccagcagg gccagaacca gctctataac 1140
gagctcaatc taggacgaag agaggagtac gatgtttgg acaagagacg tggccgggac 1200
cctgagatgg gggaaagcc gagaaggaag aaccctcagg aaggcctgta caatgaactg 1260
cagaaagata agatggcgga ggcctacagt gagattggga tcaaaggcga ggcgggagg 1320
ggcaaggggc acgatggcct ttaccagggt ctcagtacag ccaccaagga cacctacgac 1380
gcccttcaca tgcaggccct gccccctcgc 1410

<210> 33

<211> 1464

<212> DNA

<213> Artificial Sequence

HMLX_002_02W0_SeqList_ST25

<220>

<223> Full length KM.CAR_8a_28TM_41BBz nucleic acid construct

<400> 33

atggagttt	ggctgagctg	gcttttctt	gtggctattt	taaaaggtgt	ccagtgtct	60
agagacatcg	tcatgaccca	gtctcaaaaa	ttcatgtcca	catcagtagg	agacagggtc	120
agcgtcacct	gcaaggccag	tcagaatgtg	ggtactaatg	tagcctggta	tcaacagaaa	180
ccagggcaat	ctcctaaagc	actgatttac	tcgacatcct	accggtag	tggagtcct	240
gatcgcttca	caggcagtgg	atctggaca	gatttcactc	tcaccatcag	aatgtgcag	300
tctgaagact	tggcagagta	tttctgtcag	caatataaca	gctatccgt	cacgttcgga	360
ggggggacca	agctggaaat	aaagggtggc	ggtggctcgg	gcggtggtgg	gtcgggtggc	420
ggcggatctg	aggtgcagct	gcagcagtca	ggggcggagc	ttgtgaagcc	aggggcctca	480
gtcaagttgt	cctgtacagc	ttctggcttc	aacattaaag	acacctata	gcaactgggtg	540
aagcagaggc	ctgaacaggg	cctggagttgg	attggaagga	ttgatcctgc	aatggtaac	600
actaaatatg	acccgaagtt	ccagggcaag	gccactataa	tagcagacac	atcctccaac	660
acagcctacc	tgcagctcag	cagcctgaca	tctgaggaca	ctgccgtcta	ttactgtgct	720
aggggggtct	accatgatta	cgacggggac	tactggggcc	aagggaccac	gctcaccgtc	780
tcctccacca	cgacgccagc	gccgcgacca	ccaacaccgg	cgcccaccat	cgcgtcgcag	840
cccctgtccc	tgcgcccaga	ggcgtgccgg	ccagcggcgg	ggggcgcagt	gcacacgagg	900
gggctggact	tcgcctgtga	tttttgggtg	ctgggtggtg	ttgggtggagt	cctggcttgc	960
tatagcttgc	tagtaacagt	ggcccttatt	attttctggg	tgaaacgggg	cagaaagaaa	1020
ctcctgtata	tattcaaaca	accatttatg	agaccagtac	aaactactca	agaggaagat	1080
ggctgttagct	gccgatttcc	agaagaagaa	gaaggaggat	gtgaactgag	agtgaagttc	1140
agcaggagcg	cagacgcccc	cgcgtaccag	cagggccaga	accagctcta	taacgagctc	1200
aatctaggac	gaagagagga	gtacgatgtt	ttggacaaga	gacgtggccg	ggaccctgag	1260
atggggggaa	agccgagaag	gaagaaccct	caggaaggcc	tgtacaatga	actgcagaaa	1320
gataagatgg	cggaggccta	cagttagatt	ggatgaaag	gcgagcgcgg	gaggggcaag	1380
ggcacgatg	gccttacca	gggtctcagt	acagccacca	aggacaccta	cgacgccctt	1440
cacatgcagg	ccctgcccc	tcgc				1464

<210> 34

<211> 2067

<212> DNA

<213> Artificial Sequence

<220>

<223> Full length KM.CAR_hCH2CH3mut_28TM_41BBz nucleic acid construct

HMLX_002_02W0_SeqList_ST25

<400>	34					
atggagtttggctgagctggctttctt	gtggctattttaaaagggtgt	ccagtgcctct	60			
agagacatcg	tcatgaccca	gtctcaaaaa	ttcatgtcca	catcagtagg	agacagggtc	120
agcgtcacct	gcaaggccag	tcagaatgtg	ggtactaatg	tagcctggta	tcaacagaaaa	180
ccagggcaat	ctcctaaagc	actgatttac	tcgacatcct	accggtagac	tggagtcct	240
gatcgcttca	caggcagtgg	atctggaca	gatttcactc	tcaccatcag	caatgtcag	300
tctgaagact	tggcagagta	tttctgtcag	caatataaca	gctatccgt	cacgttcgga	360
ggggggacca	agctggaaat	aaagggtggc	ggtggctcgg	gcggtggtgg	gtcgggtggc	420
ggcggatctg	aggtgcagct	gcagcagtca	ggggcggagc	ttgtgaagcc	aggggcctca	480
gtcaagttgt	cctgtacagc	ttctggcttc	aacattaaag	acacctata	gcactgggtg	540
aagcagaggc	ctgaacacaggc	cctggagtgg	attggaagga	ttgatcctgc	aatggtaac	600
actaaatatg	acccgaagtt	ccagggcaag	gccactataa	tagcagacac	atcctccaac	660
acagcctacc	tgtagctcag	cagcctgaca	tctgaggaca	ctgcccgtcta	ttactgtgct	720
aggggggtct	accatgatta	cgacggggac	tactggggcc	aagggaccac	gctcaccgtc	780
tcctccggtg	gaggcgggtc	tggggggcgg	ggttcaggcg	ggggtggttc	cgagccaaa	840
tctcctgaca	aaactcacac	atgcccaccg	tgcccagcac	ctccagtcgc	gggaccgtca	900
gtcttcctct	tccccccaaa	acccaaggac	accctcatga	tcgcccggac	ccctgaggtc	960
acatgcgtgg	tggtaacgt	gagccacgaa	gaccctgagg	tcaagttcaa	ctggtagctg	1020
gacggcgtgg	aggtgcataa	tgccaagaca	aagccgcggg	aggagcagta	cgccagcacg	1080
taccgtgtgg	tcagcgtcct	caccgtcctg	caccaggact	ggctgaatgg	caaggagtagc	1140
aagtgcagg	tctccaacaa	agccctccca	gccccatcg	agaaaaccat	ctccaaagcc	1200
aaagggcagc	cccgagaacc	acaggtgtac	accctcccc	catcccgaa	tgagctgacc	1260
aagaaccagg	tcagcctgac	ctgcctggc	aaaggcttct	atcccagcga	catgcccgt	1320
gagtgggaga	gcaatggca	gccggagaac	aactacaaga	ccacgcctcc	cgtgctggac	1380
tccgacggct	ccttcttcct	ctacagcaag	ctcaccgtgg	acaagagcag	gtggcagcag	1440
ggaaacgtct	tctcatgctc	cgtgatgcat	gaggctctgc	acaaccacta	cacacagaag	1500
agcctctccc	tgtctccggg	taaattttgg	gtgctggtg	tggttggtg	agtcctggct	1560
tgctatagct	tgcttagtaac	agtggccttt	attattttct	gggtgaaacg	gggcagaaag	1620
aaactcctgt	atataattcaa	acaaccattt	atgagaccag	tacaaactac	tcaagaggaa	1680
gatggctgt	gctgccgatt	tccagaagaa	gaagaaggag	gatgtgaact	gagagtgaag	1740
ttcagcagga	gcmcagacgc	ccccgcgtac	cagcaggggcc	agaaccagct	ctataacgag	1800
ctcaatctag	gacgaagaga	ggagtagcgt	gttttggaca	agagacgtgg	ccgggaccct	1860

HMLX_002_02WO_SeqList_ST25

gagatggggg	gaaagccgag	aaggaagaac	cctcaggaag	gcctgtacaa	tgaactgcag	1920
aaagataaga	tggcggaggc	ctacagttag	attggatga	aaggcgagcg	ccggaggggc	1980
aaggggcacg	atggcctta	ccagggtctc	agtacagcca	ccaaggacac	ctacgacgcc	2040
cttcacatgc	aggccctgcc	ccctcg				2067

<210> 35
<211> 30
<212> DNA
<213> Homo sapiens

<400> 35	ggaggaaaaa	ctgtttcata	cagaaggcgt	30
----------	------------	------------	------------	----

<210> 36
<211> 114
<212> DNA
<213> Homo sapiens

<400> 36	acattttgac	accccccataa	tatTTTCCA	gaattAACAG	tataAAATTGc	atctCTTGTt	60
	caagagttcc	ctatcactct	ctttaatcac	tactcacagt	aacctcaact	cctg	114

<210> 37
<211> 1233
<212> DNA
<213> Artificial Sequence

<220>
<223> Constructed nucleic acid sequence of transposon gene expression cassette

<400> 37	ggaggaaaaa	ctgtttcata	cagaaggcgt	caattaggag	gaaaaactgt	ttcatacaga	60
	aggcgtcaat	taggagaaaa	aactgtttca	tacagaaggc	gtcaattgtc	ccatcgaaatt	120
	aggagggaaaa	actgtttcat	acagaaggcg	tcaatttagga	gaaaaactg	tttcatacag	180
	aaggcgtcaa	ttaggagggaa	aaactgtttc	atacagaagg	cgtcaattgt	cccgggacat	240
	tttgacaccc	ccataatatt	tttccagaat	taacagtata	aattgcattct	tttgcataag	300
	atttccctat	cactctttt	aatcactact	cacagtaacc	tcaactcctg	aactccatgg	360
	atggtgagca	aggcgagga	gctgttcacc	gggggtggtgc	ccatcctggt	cgagctggac	420
	ggcgcacgtaa	acggccacaa	gttcagcgtg	tccggcgagg	gcgaggcg	tgccacccat	480
	ggcaagctga	ccctgaagtt	catctgcacc	accggcaagc	tgcccgtgcc	ctggccacc	540
	ctcgtgacca	ccctgaccta	cggcgtgcag	tgcttcagcc	gctaccccg	ccacatgaag	600
	cagcacgact	tcttcaagtc	cgccatgccc	gaaggctacg	tccaggagcg	caccatcttc	660
	ttcaaggacg	acggcaacta	caagacccgc	gccgaggtga	agttcgaggg	cgacaccctg	720

HMLX_002_02w0_SeqList_ST25

gtgaaccgca	tcgagctgaa	gggcatcgac	ttcaaggagg	acggcaacat	cctggggcac	780
aagctggagt	acaactacaa	cagccacaac	gtctatatca	tggccgacaa	gcagaagaac	840
ggcatcaagg	tgaacttcaa	gatccgcccac	aacatcgagg	acggcagcgt	gcagctcgcc	900
gaccactacc	agcagaacac	ccccatcgga	tccggagcca	cgaacttctc	tctgttaaag	960
caagcaggag	acgttgaaga	aaaccccggt	cctatttaaa	tcctcgactg	tgccttctag	1020
ttgccagcca	tctgttgtt	gccctcccc	cgtgccttcc	ttgaccctgg	aaggtgccac	1080
tcccactgtc	cttcctaata	aaaatgagga	aattgcatcg	cattgtctga	gtaggtgtca	1140
ttctattctg	gggggtgggg	tggggcagga	cagcaagggg	gaggattggg	aagacaatag	1200
caggcatgct	ggggatgcgg	tgggctctat	ggc			1233

<210> 38

<211> 218

<212> PRT

<213> Artificial sequence

<220>

<223> Mutated SANT-7 amino acid sequence

<400> 38

Met	Asn	Ser	Phe	Ser	Thr	Ser	Ala	Phe	Gly	Pro	Val	Ala	Phe	Ser	Leu
1							5			10				15	

Gly	Leu	Leu	Leu	Val	Leu	Pro	Ala	Ala	Phe	Pro	Ala	Pro	Val	Pro	Pro
				20				25				30			

Gly	Glu	Asp	Ser	Lys	Asp	Val	Ala	Ala	Pro	His	Arg	Gln	Pro	Leu	Thr
				35			40				45				

Ser	Ser	Glu	Arg	Ile	Asp	Lys	Gln	Ile	Arg	Asp	Ile	Leu	Asp	Phe	Ile
				50		55				60					

Ser	Ala	Leu	Arg	Lys	Glu	Thr	Cys	Asn	Lys	Ser	Asn	Met	Cys	Glu	Ser
				65		70			75			80			

Ser	Lys	Glu	Ala	Asp	Ala	Phe	Trp	Asn	Leu	Asn	Leu	Pro	Lys	Met	Ala
				85			90				95				

Glu	Lys	Asp	Gly	Cys	Phe	Tyr	Lys	Gly	Phe	Asn	Glu	Glu	Thr	Cys	Leu
			100				105				110				

Val	Lys	Ile	Ile	Thr	Gly	Leu	Leu	Glu	Phe	Glu	Val	Tyr	Leu	Glu	Tyr
				115			120				125				

Leu	Gln	Asn	Arg	Phe	Glu	Ser	Ser	Glu	Glu	Gln	Ala	Arg	Ala	Val	Gln
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

HMLX_002_02w0_SeqList_ST25

<400> 40

Met Cys His Gln Gln Leu Val Ile Ser Trp Phe Ser Leu Val Phe Leu
1 5 10 15

Ala Ser Pro Leu Val Ala Ile Trp Glu Leu Lys Lys Asp Val Tyr Val
20 25 30

Val Glu Leu Asp Trp Tyr Pro Asp Ala Pro Gly Glu Met Val Val Leu
35 40 45

Thr Cys Asp Thr Pro Glu Glu Asp Gly Ile Thr Trp Thr Leu Asp Gln
50 55 60

Ser Ser Glu Val Leu Gly Ser Gly Lys Thr Leu Thr Ile Gln Val Lys
65 70 75 80

Glu Phe Gly Asp Ala Gly Gln Tyr Thr Cys His Lys Gly Gly Glu Val
85 90 95

Leu Ser His Ser Leu Leu Leu His Lys Lys Glu Asp Gly Ile Trp
100 105 110

Ser Thr Asp Ile Leu Lys Asp Gln Lys Glu Pro Lys Asn Lys Thr Phe
115 120 125

Leu Arg Cys Glu Ala Lys Asn Tyr Ser Gly Arg Phe Thr Cys Trp Trp
130 135 140

Leu Thr Thr Ile Ser Thr Asp Leu Thr Phe Ser Val Lys Ser Ser Arg
145 150 155 160

Gly Ser Ser Asp Pro Gln Gly Val Thr Cys Gly Ala Ala Thr Leu Ser
165 170 175

Ala Glu Arg Val Arg Gly Asp Asn Lys Glu Tyr Glu Tyr Ser Val Glu
180 185 190

Cys Gln Glu Asp Ser Ala Cys Pro Ala Ala Glu Glu Ser Leu Pro Ile
195 200 205

Glu Val Met Val Asp Ala Val His Lys Leu Lys Tyr Glu Asn Tyr Thr
210 215 220

Ser Ser Phe Phe Ile Arg Asp Ile Ile Lys Pro Asp Pro Pro Lys Asn
225 230 235 240

Leu Gln Leu Lys Pro Leu Lys Asn Ser Arg Gln Val Glu Val Ser Trp
Page 31

245

250

255

Glu Tyr Pro Asp Thr Trp Ser Thr Pro His Ser Tyr Phe Ser Leu Thr
 260 265 270

Phe Cys Val Gln Val Gln Gly Lys Ser Lys Arg Glu Lys Lys Asp Arg
 275 280 285

Val Phe Thr Asp Lys Thr Ser Ala Thr Val Ile Cys Arg Lys Asn Ala
 290 295 300

Ser Ile Ser Val Arg Ala Gln Asp Arg Tyr Tyr Ser Ser Ser Trp Ser
 305 310 315 320

Glu Trp Ala Ser Val Pro Cys Ser Gly Gly Gly Ser Gly Gly Gly
 325 330 335

Gly Ser Gly Gly Gly Ser Arg Asn Leu Pro Val Ala Thr Pro Asp
 340 345 350

Pro Gly Met Phe Pro Cys Leu His His Ser Gln Asn Leu Leu Arg Ala
 355 360 365

Val Ser Asn Met Leu Gln Lys Ala Arg Gln Thr Leu Glu Phe Tyr Pro
 370 375 380

Cys Thr Ser Glu Glu Ile Asp His Glu Asp Ile Thr Lys Asp Lys Thr
 385 390 395 400

Ser Thr Val Glu Ala Cys Leu Pro Leu Glu Leu Thr Lys Asn Glu Ser
 405 410 415

Cys Leu Asn Ser Arg Glu Thr Ser Phe Ile Thr Asn Gly Ser Cys Leu
 420 425 430

Ala Ser Arg Lys Thr Ser Phe Met Met Ala Leu Cys Leu Ser Ser Ile
 435 440 445

Tyr Glu Asp Leu Lys Met Tyr Gln Val Glu Phe Lys Thr Met Asn Ala
 450 455 460

Lys Leu Leu Met Asp Pro Lys Arg Gln Ile Phe Leu Asp Gln Asn Met
 465 470 475 480

Leu Ala Val Ile Asp Glu Leu Met Gln Ala Leu Asn Phe Asn Ser Glu
 485 490 495

HMLX_002_02WO_SeqList_ST25

Thr	Val	Pro	Gln	Lys	Ser	Ser	Leu	Glu	Glu	Pro	Asp	Phe	Tyr	Lys	Thr
500							505						510		

Lys	Ile	Lys	Leu	Cys	Ile	Leu	Leu	His	Ala	Phe	Arg	Ile	Arg	Ala	Val
515					520							525			

Thr	Ile	Asp	Arg	Val	Met	Ser	Tyr	Leu	Asn	Ala	Ser
530				535							

<210> 41
 <211> 1620
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Flexi-IL-12 nucleic acid construct

atgtgtcacc	41	60
agcagtttgt		
catctcttgg		
ttttccctgg		
tttttctggc		
atctcccttc		
gtggccatat	1620	120
gggaactgaa		
gaaagatgtt		
tatgtcgtag		
aattggattt		
gtatccggat		
gccccctggag	DNA	180
aaatggtgtt		
cctcacctgt		
gacacccttg		
aagaagatgg		
tatcacctgg		
accttggacc	Artificial Sequence	240
agagcagtga		
ggtcttaggc		
tctggcaaaa		
ccctgaccat		
ccaagtcaaa		
gagtttggag		300
atgctggcca		
gtacacctgt		
cacaaaggag		
gcgaggttct		
aagccattcg		
ctcctgctgc		360
ttcacaaaaaa		
ggaagatgga		
atttggtcca		
ctgatatttt		
aaaggaccag		
aaagaaccca		420
aaaataagac		
ctttctaaga		
tgcgaggcca		
agaattatttc		
tggacgtttc		
acctgctggt		480
ggctgacgac		
aatcagtact		
gatttgcacat		
tcagtgtaaa		
aagcagcaga		
ggctcttctg		540
acccccaagg		
ggtgacgtgc		
ggagctgcta		
cactctctgc		
agagagagtc		
agaggggaca		600
acaaggagta		
tgagtactca		
gtggagtgcc		
aggaggacag		
tgcctgccc		
gctgctgagg		660
agagtctgcc		
cattgaggtc		
atggtggatg		
ccgttcacaa		
gctcaagtat		
gaaaactaca		720
ccagcagctt		
tttcatcagg		
gacatcatca		
aacctgaccc		
acccaagaac		
ttgcagctga		780
agccattaaa		
gaattctcgg		
caggtggagg		
tcagctggaa		
gtaccctgac		
acctggagta		840
ctccacattc		
ctacttctcc		
ctgacattct		
gcgttcaggt		
ccagggcaag		
agcaagagag		900
aaaagaaaga		
tagagtcttc		
acggacaaga		
cctcagccac		
ggtcatctgc		
cgcaaaaatg		960
ccagcattag		
cgtgcgggcc		
caggaccgct		
actatagctc		
atcttggagc		
gaatgggcat		1020
ctgtgccctg		
cagtgggtggc		
ggtggaagcg		
gcgggtggcgg		
aagcggcggt		
ggcggcagca		1080
gaaacacctcc		
cgtggccact		
ccagaccctag		
gaatgttccc		
atgccttcac		
cactccaaa		1140
acctgctgag		
ggccgtcagc		
aacatgctcc		
agaaggccag		
acaaactcta		
gaattttacc		1200
cttgcacttc		
tgaagagatt		
gatcatgaag		
atatcacaaa		
agataaaaacc		
agcacagtgg		1260
aggcctgttt		
accattggaa		
ttaaccaaga		
atgagagttg		
cctaaattcc		

HMLX_002_02W0_SeqList_ST25

agagagacct	ctttcataac	taatggagt	tgcctggcct	ccagaaagac	ctctttatg	1320
atggccctgt	gccttagtag	tatttatgaa	gacttgaaga	tgtaccaggt	ggagttcaag	1380
accatgaatg	caaagcttct	gatggatcct	aagaggcaga	tctttctaga	tcaaaacatg	1440
ctggcagttt	ttgatgagct	gatgcaggcc	ctgaatttca	acagtgagac	tgtgccacaa	1500
aaatcctccc	ttgaagaacc	ggatTTTat	aaaactaaaa	tcaagctctg	catacttctt	1560
catgcttca	gaattcgggc	agtgactatt	gatagagtga	tgagctatct	gaatgcttcc	1620

<210> 42
<211> 170
<212> PRT
<213> Artificial Sequence

<220>
<223> GAL 3C amino acid construct

<400> 42

Met Glu Phe Gly Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly
1 5 10 15

Val Gln Cys Ser Arg His His His His His Gly Ala Pro Ala Gly
20 25 30

Pro Leu Ile Val Pro Tyr Asn Leu Pro Leu Pro Gly Gly Val Val Pro
35 40 45

Arg Met Leu Ile Thr Ile Leu Gly Thr Val Lys Pro Asn Ala Asn Arg
50 55 60

Ile Ala Leu Asp Phe Gln Arg Gly Asn Asp Val Ala Phe His Phe Asn
65 70 75 80

Pro Arg Phe Asn Glu Asn Asn Arg Arg Val Ile Val Cys Asn Thr Lys
85 90 95

Leu Asp Asn Asn Trp Gly Arg Glu Glu Arg Gln Ser Val Phe Pro Phe
100 105 110

Glu Ser Gly Lys Pro Phe Lys Ile Gln Val Leu Val Glu Pro Asp His
115 120 125

Phe Lys Val Ala Val Asn Asp Ala His Leu Leu Gln Tyr Asn His Arg
130 135 140

Val Lys Lys Leu Asn Glu Ile Ser Lys Leu Gly Ile Ser Gly Asp Ile
145 150 155 160

HMLX_002_02WO_SeqList_ST25
Asp Leu Thr Ser Ala Ser Tyr Thr Met Ile
165 170