(54) 发明名称
一种高温自修复型导电银胶及其制备方法

(57) 摘要
本发明提供一种高温自修复型导电银胶，其原料组分按份数计算，组成如下：环氧树脂100份，固化剂10~30份，环氧稀释剂10~40份，银粉240~990份，偶联剂3~20份，自修复微胶囊5~20份；其中自修复微胶囊的原料组分按份数计算，组成如下：环氧树脂100份，粘合型固化剂8~20份，稀释剂30~60份，乳化剂0.5~2.5份，纳米银线500~800份，偶联剂5~16份，囊壁材料60~120份，消泡剂0.5~2份，去离子水150~900份。本发明还提供了该高温自修复型导电银胶的制备方法。本发明的有益效果如下：修复效率高，在原有导电网络的基础上进行扩展，实现裂纹-导电网络双重修复，保证导电胶的长期使用效果；节约成本；提高导电胶大量高温工作环境中的可靠性和寿命。
1. 一种高温自修复型导电银胶，其特征在于：其原料组分按份数计算，组成如下：

<table>
<thead>
<tr>
<th>成分</th>
<th>份数范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>环氧树脂</td>
<td>100 份</td>
</tr>
<tr>
<td>固化剂</td>
<td>10~30 份</td>
</tr>
<tr>
<td>环氧稀释剂</td>
<td>10~40 份</td>
</tr>
<tr>
<td>银片</td>
<td>240~990 份</td>
</tr>
<tr>
<td>偶联剂</td>
<td>3~20 份</td>
</tr>
<tr>
<td>自修复微胶囊</td>
<td>5~20 份</td>
</tr>
</tbody>
</table>

其中自修复微胶囊的原料组分按份数计算，组成如下：

<table>
<thead>
<tr>
<th>成分</th>
<th>份数</th>
</tr>
</thead>
<tbody>
<tr>
<td>环氧树脂</td>
<td>100 份</td>
</tr>
<tr>
<td>潜伏型固化剂</td>
<td>8~20 份</td>
</tr>
<tr>
<td>稀释剂</td>
<td>30~60 份</td>
</tr>
<tr>
<td>乳化剂</td>
<td>0.5~2.5 份</td>
</tr>
<tr>
<td>纳米银线</td>
<td>500~800 份</td>
</tr>
<tr>
<td>偶联剂</td>
<td>5~16 份</td>
</tr>
<tr>
<td>囊壁材料</td>
<td>60~120 份</td>
</tr>
<tr>
<td>消泡剂</td>
<td>0.5~2 份</td>
</tr>
<tr>
<td>去离子水</td>
<td>150~900 份</td>
</tr>
</tbody>
</table>

上述自修复微胶囊的制备方法为：将含有稀释剂和潜伏型固化剂的环氧树脂与乳化剂混合，在50℃~70℃的水浴中加热搅拌，搅拌速度为1000~3000rpm，缓慢向溶液中滴加去离子水，搅拌1~2h，再超声分散10~60min，形成环氧树脂乳液，将干燥好的纳米银线和偶联剂、消泡剂加入到环氧树脂乳液中，以1000~3000rpm的搅拌速度搅拌10~40min，形成均匀的环氧树脂-纳米银线乳液，将囊壁材料预聚液在烧瓶中配制，加入环氧树脂-纳米银线乳液，pH值调节到1~12，加热至50~85℃，以200~500rpm的搅拌速度反应1~7小时，搅拌冷却至室温，将反应得到的胶凝乳液在1000~3000rpm的转速下离心10~40min，多次冲洗真空干燥，得到含有纳米银线和潜伏型固化剂的自修复微胶囊。

2. 如权利要求1所述的高温自修复型导电银胶，其特征在于：上述自修复型导电银
胶的制备方法为：将上述制备的自修复微胶囊、环氧树脂和环氧稀释剂在室温下混合 3～30min，得到自修复微胶囊、环氧树脂和环氧稀释剂的混合物，在混合物中依次加入银片、偶联剂和固化剂，室温下混合 3～30min，如有固体原料颗粒不易分散均匀时，在三辊研磨机上室温下进行研磨 30～60min，成为细腻的均匀混合物，在 30～50℃下通过真空搅拌，并通过搅拌 60～120min 混合均匀，得到自修复型导电银胶。

3. 如权利要求 1 所述的高温自修复型导电银胶，其特征在于：上述自修复微胶囊的原料中环氧树脂选自氯化亚砜 A 型环氧树脂、双酚 F 型环氧树脂、双酚 S 型环氧树脂、缩水甘油酯环氧树脂、脂肪族环氧树脂、酯环族环氧树脂、丙烯酸改性环氧树脂、有机硅改性环氧树脂、卤化环氧树脂的一种或多种为己有的混合物。

4. 如权利要求 1 所述的高温自修复型导电银胶，其特征在于：上述自修复微胶囊的原料中稀释剂为 1,4-丁二醇缩水甘油醚、新戊二醇缩水甘油醚、1,6-己二醇缩水甘油醚、二乙二醇缩水甘油醚、1,4-环己烷二醇缩水甘油醚、三甲基丙烷缩水甘油醚、聚乙二醇缩水甘油醚、苯甲苯、乙酸苯酯中的一种或几种的混合物。

5. 如权利要求 1 所述的高温自修复型导电银胶，其特征在于：上述自修复微胶囊的原料中固化剂为固化剂 PN32，苯乙烯、二烷基苯胺四酸酯、六氢苯二甲酸酯、二氯化硼-单乙胺络合物、乙酰丙酮过渡金属络合物、双氯胺、三乙醇胺、三氯化硼胺胺的一种或几种。

6. 如权利要求 1 所述的高温自修复型导电银胶，其特征在于：上述自修复微胶囊的原料中乳化剂选自液相甲醇脂肪酸酯、丙烯酰胺基丙基酰胺钠、十二烷基苯磺酸钠、十二烷基苯磺酸钙、烷基苯酚聚氧乙烯醚复合物、苯乙烯-马来酸酐共聚物、乙二醇、OP10 中的一种或几种。

7. 如权利要求 1 所述的高温自修复型导电银胶，其特征在于：上述自修复微胶囊的原料中的纳米银线长度选择为 30～150nm。

8. 如权利要求 1 所述的高温自修复型导电银胶，其特征在于：上述自修复微胶囊的原料中的偶联剂为 1wt% 聚乙烯基吡咯烷酮聚合物（PVP）、乙醇和乙二醇混合溶液、十六烷基三甲基溴化铵（CTAB）、油酸和吐温混合溶液中的一种。

9. 如权利要求 1 所述的高温自修复型导电银胶，其特征在于：上述自修复微胶囊的原料中的膜壁材料为聚氨酯、聚酯、聚醚、聚酰胺、聚苯乙烯、聚醚醚酮、聚丙烯酸酯或其改性物中的一种。

10. 如权利要求 1 所述的高温自修复型导电银胶，其特征在于：上述自修复微胶囊的原料中的消泡剂选自低级醇类或有机极性化合物的一种或几种以复。

11. 如权利要求 1 所述的高温自修复型导电银胶，其特征在于：上述自修复型导电胶的原料中的环氧树脂选自缩水甘油醚类双酚 A 型、双酚 F 型环氧树脂、缩水甘油酯环氧树脂、脂肪族环氧树脂、酯环族环氧树脂、丙烯酸改性环氧树脂、有机硅改性环氧树脂的一种或多种混合物。

12. 如权利要求 1 所述的高温自修复型导电银胶，其特征在于：上述自修复型导电胶的原料中的固化剂为三聚氰二甲胺、2,4,6-三（二甲胺基甲基）苯酚（DMP-30）及其改性物、2-乙基-4-甲基吡啶、氟乙基-2-乙基-4-甲基吡啶、苄基二甲胺的改性物、二氢基二苯砜、2-十一烷基吡啶、2-十七烷基吡啶、2,4-二甲基-6-(2-十一烷基吡啶-1-乙基)-S-三
噬及其衍生物和盐中其改性物中的一种或者一种以上的混合物。

13. 如权利要求1所述的高温自修复型导电银胶，其特征在于：上述自修复型导电银胶的原料中的环氧稀释剂为1,4-丁二醇缩水甘油醚、新戊二醇缩水甘油醚、1,6-己二醇缩水甘油醚、二乙二醇缩水甘油醚、1,4-环己烷二醇缩水甘油醚、三羟甲基丙烷缩水甘油醚、聚乙二醇缩水甘油醚中的一种或几种的混合物。

15. 如权利要求1所述的高温自修复型导电银胶，其特征在于：上述自修复型导电银胶的原料中的银粉为片状银粉，尺寸为0.5～100μm。

16. 如权利要求1至15任一项所述的高温自修复型导电银胶的制备方法，其特征在于：该方法包括以下步骤：

(1) 自修复微胶囊的制备方法为：将含有稀释剂和化合型固化剂的环氧树脂与乳化剂混合，在50℃～70℃的水浴锅中加热搅拌，搅拌速度为1000～3000rpm，缓慢向溶液中滴加去离子水，搅拌1～2h，再超声分散10～60min，形成环氧树脂乳液，将干燥好的纳米银线和偶联剂、消泡剂加入到环氧树脂溶液中，以1000～3000rpm的搅拌速度搅拌10～40min，形成均匀的环氧树脂-纳米银线乳液，将囊壁材料预聚液在烧瓶中配好，加入环氧树脂-纳米银线乳液，pH值调节为1～12，加热到50～85℃，以200～500rpm的搅拌速度反应1～7h，搅拌冷却至室温，将反应得到的胶囊乳液在1000～3000rpm的转速下离心10～40min，多次冲洗真空干燥，得到含有纳米银线和化合型固化剂的自修复微胶囊；

(2) 自修复型导电银胶的制备方法为：将上述制备的自修复微胶囊、环氧树脂和环氧稀释剂在室温下混合3～30min，得到自修复微胶囊、环氧树脂和环氧稀释剂的混合物，在混合物中依次加入银粉、偶联剂和固化剂，室温下混合3～30min，如有固体原料颗粒不易分散均匀时，在三辊研磨机上室温下进行研磨30～60min，成为细腻的均匀混合物，在30～50℃下通过真空搅拌，并通过搅拌60～120min混合均匀，得到自修复型导电胶。
一种高温自修复型导电银胶及其制备方法

技术领域
[0001] 本发明涉及导电胶，更具体的说涉及一种可以在高温条件下实现自修复的导电银胶及其制备方法。

背景技术
[0002] 微电子组装领域中，导电胶是代替传统的 Pb/Sn 焊料的选择之一。与传统的 Pb/Sn 焊料相比，导电胶可以实现很高的线分辨率，而且具有工艺简单、易于操作、生产效率高等特点，同时也避免了锡铅焊料中重金属铅引起的环境污染。导电胶作为互连材料，起到导热和导电的作用，因此其连接可靠性对于连接器件的长期稳定运行至关重要。然而导电胶在可靠性方面尚有一些尚未解决的问题，如：有限的抗冲击性、接触电阻的不稳定性、不同的气候环境下的力学性能的下降等，均对导电胶的应用产生很大的障碍。因此开发自修复型导电胶对提高导电胶的可靠性和使用寿命、拓展导电胶的应用领域具有重要意义。
[0003] 微胶囊自修复是目前最常使用、工业化的成熟技术路线，其修复过程为：将含有修复剂的球形微胶囊和催化剂添加到树脂聚合物中，当裂纹前端接近微胶囊时，挤破微胶囊而流出修复剂，修复剂在催化剂的作用下发生聚合反应粘结裂纹 2 个端面修复裂纹。自 White 等于 2001 年首次在 Nature 杂志上根据被动模式的埋植式自修复体系的概念，提出微胶囊埋植式高分子自修复技术以来，微胶囊在聚合基复合材料裂纹自修复方面的应用逐渐得到了重视，并成为新材料领域研究的一个热点。然而目前微胶囊的自修复技术多用于复合材料应用上，国内外很少见到自修复型导电胶的研究和专利。
[0004] 另一方面，但是随着半导体器件工作频率的进一步提高，功率容量的增大以及效率和可靠性的提高，特别是集成度越来越高，器件向越来越小和越来越轻的趋势发展，这导致器件上产生的热越来越大，而导电胶也经常在高温条件下使用进而发生失效，目前有 65% 的封装失效可以归咎为温度、湿度和耐荷下的力学问题。因此在高温下可进行自修复的导电胶能够满足实际使用环境要求，提高导电胶的使用寿命和可靠性。
[0005] 本发明专利使用含有纳米银线和潜伏型固化剂的环氧树脂作为芯材，不需要额外的催化剂和引发剂，在常温下具有较长储存期，在高温发生破坏时，修补区域材料和原导电胶基材有更好的结合力和相容性，弥补力学强度。同时纳米银线的释放、良好分散和新导电网络的形成，有效地提高了导电胶的电学性能和使用寿命，在高温可靠性要求的汽车电子、医用设备、通讯设施、国防工业和航空航天领域等拓宽了导电胶的应用和前景。

发明内容
[0006] 本发明针对目前商业化导电胶高温使用条件下可靠性方面的不足，第一目的为提供一种高温自修复型导电银胶，在高温使用条件下对破坏的基体和导电通路进行自修复；第二目的为提供一种高温自修复型导电银胶的制备方法，操作简单可大规模应用。
[0007] 本发明的高温自修复型导电银胶的修复机制为：当固化后的导电胶在高温使用过程中受到外力作用或由于疲劳在内部产生微裂纹后，微裂纹扩展贯穿微胶囊。微胶囊中的
含有纳米银线和潜伏型固化剂的液态环氧树脂释放填补裂缝纹中，发生固化粘接裂纹，达到裂缝和导电网络的双重修复。

为实现上述第一目的，本发明的技术方案如下：一种高温自修复型导电银胶，是包括自修复微胶囊、银片、环氧树脂、环氧稀释剂、固化剂和添加剂等成分的均匀混合物。

上述高温自修复型导电胶原料组分按份数计算组成如下：

<table>
<thead>
<tr>
<th>原料</th>
<th>份数</th>
</tr>
</thead>
<tbody>
<tr>
<td>环氧树脂</td>
<td>100 份</td>
</tr>
<tr>
<td>固化剂</td>
<td>10~30 份</td>
</tr>
<tr>
<td>环氧稀释剂</td>
<td>10~40 份</td>
</tr>
<tr>
<td>银片</td>
<td>240~990 份</td>
</tr>
<tr>
<td>偶联剂</td>
<td>3~20 份</td>
</tr>
<tr>
<td>自修复微胶囊</td>
<td>5~20 份</td>
</tr>
</tbody>
</table>

上述自修复微胶囊的原料组分按份数计算组成如下：

<table>
<thead>
<tr>
<th>原料</th>
<th>份数</th>
</tr>
</thead>
<tbody>
<tr>
<td>环氧树脂</td>
<td>100 份</td>
</tr>
<tr>
<td>潜伏型固化剂</td>
<td>8~20 份</td>
</tr>
<tr>
<td>稀释剂</td>
<td>30~60 份</td>
</tr>
<tr>
<td>乳化剂</td>
<td>0.5~2.5 份</td>
</tr>
</tbody>
</table>

纳米银线 | 500~800 份 |
偶联剂	5~16 份
囊壁材料	60~120 份
消泡剂	0.5~2 份
去离子水	150~900 份

上述自修复微胶囊的制备方法为：将含有稀释剂和潜伏型固化剂的环氧树脂与乳
化剂混合，在50℃~70℃的水浴锅中加热搅拌，搅拌速度为1000~3000rpm。缓慢向溶液中滴加去离子水，搅拌1~2h再超声分散10~60min，形成环氧树脂乳液。将干燥好的纳米银线和偶联剂、消泡剂加入到环氧树脂乳液中，以1000~3000rpm的搅拌速度搅拌10~40min，形成均匀的环氧树脂—纳米银线乳液。将囊壁材料预聚液在烧瓶中配好，加入环氧树脂—纳米银线乳液，pH值调节为1~12，加热到50~85℃，以200~500rpm的搅拌速度反应1~7小时，搅拌冷却至室温。将反应得到的胶囊乳液在1000~3000rpm的转速下离心10~40min，多次冲洗真空干燥，得到含有纳米银线和潜伏性固化剂的自修复微胶囊。

[0015] 上述自修复型导电胶的制备方法为：将上述制备的自修复微胶囊、环氧树脂和环氧稀释剂在室温下混合3~30min，得到自修复微胶囊、环氧树脂和环氧稀释剂的混合物，在混合物中依次加入银片、偶联剂和固化剂，室温下混合3~30min，如果有固体原料颗粒不易分散均匀时，可在三辊研磨机上室温下进行研磨30~60min，成为细腻的均匀混合物，在30~50℃下通过真空搅拌，并通过搅拌60~120min混合均匀，得到自修复型导电胶。

[0016] 为实现上述第二目的，本发明提供了上述的高温自修复型导电胶的制备方法，该方法包括以下步骤：

[0017] (1) 自修复微胶囊的制备方法为：将含有稀释剂和潜伏型固化剂的环氧树脂与乳化剂混合，在50℃~70℃的水浴锅中加热搅拌，搅拌速度为1000~3000rpm。缓慢向溶液中滴加去离子水，搅拌1~2h再超声分散10~60min，形成环氧树脂乳液。将干燥好的纳米银线和偶联剂、消泡剂加入到环氧树脂乳液中，以1000~3000rpm的搅拌速度搅拌10~40min，形成均匀的环氧树脂—纳米银线乳液。将囊壁材料预聚液在烧瓶中配好，加入环氧树脂—纳米银线乳液，pH值调节为1~12，加热到50~85℃，以200~500rpm的搅拌速度反应1~7小时，搅拌冷却至室温。将反应得到的胶囊乳液在1000~3000rpm的转速下离心10~40min，多次冲洗真空干燥，得到含有纳米银线和潜伏型固化剂的自修复微胶囊。

[0018] (2) 自修复型导电胶的制备方法为：将上述制备的自修复微胶囊、环氧树脂和环氧稀释剂在室温下混合3~30min，得到自修复微胶囊、环氧树脂和环氧稀释剂的混合物，在混合物中依次加入银片、偶联剂和固化剂，室温下混合3~30min，如果有固体原料颗粒不易分散均匀时，可在三辊研磨机上室温下进行研磨30~60min，成为细腻的均匀混合物，在30~50℃下通过真空搅拌，并通过搅拌60~120min混合均匀，得到自修复型导电胶。

[0019] 上述自修复微胶囊的原料中环氧树脂选自高质量A型环氧树脂、双酚F型环氧树脂、双酚S型环氧树脂、缩水甘油酯环氧树脂、脂肪族环氧树脂、脂环族环氧树脂、丙烯酸改性环氧树脂、有机硅改性环氧树脂、卤化环氧化树脂的一种或一种以上形成的混合物。

[0020] 上述自修复微胶囊的原料中稀释剂为1,4-丁二醇缩水甘油醚、新戊二醇缩水甘油醚、1,6-己二醇缩水甘油醚、二乙二醇缩水甘油醚、1,4-环己烷二醇缩水甘油醚、三羟甲基丙烷缩水甘油醚、聚乙二醇缩水甘油醚、氯苯、乙基乙酸苯酯中的一种或几种的混合物。

[0021] 上述自修复微胶囊的原料中潜伏型固化剂为潜伏性固化剂PN23、咔唑、十二烷基代顺烯二酸酐、六氢苯二甲酸酐、三氯化硼—单乙胺络合物、乙酰丙酮过渡金属络合物、双氧胺、三乙醇胺，三氯化硼卡胺的一种或复配。

[0022] 上述自修复微胶囊的原料中的乳化剂选自失水山梨醇脂肪酸酯、丙烯酸基异丙基磺酸钠、双十二烷基苯磺酸钠、十二烷基苯磺酸钠、十二烷基苯磺酸钠、烷基酚聚氧乙烯醚酶复合物、苯乙烯—马
说明书写于明胶的原料中的纳米银线长度选择为30~150nm。

上述自修复微胶囊的原料中的偶联剂为1wt%聚乙烯基吡咯烷酮均聚物(PVP)、乙醇和乙二醇混合溶液、十六烷基三甲基溴化铵(CTAB)、油酸、司班60和吐温混合溶液中的一种。

上述自修复微胶囊的原料中的囊壁材料为聚氨酯、聚酯、聚醚、聚酰胺、聚苯乙烯、聚脲、聚丙烯酸酯或其改性物中的一种。

上述自修复微胶囊的原料中的消泡剂选自低级醇类(甲醇、乙醇、异丙醇、正丁醇)或有机极性化合物(辛醇、异丙基辛醇、辛醇、失水三聚氰酸三油酸酯、聚丙二醇)中的一种或几种复配。

上述自修复型电胶的原料中的环氧树脂选自缩水甘油醚类双酚A型、双酚F型环氧树脂、缩水甘油醚环氧树脂、脂肪族环氧树脂、脂环族环氧树脂、丙烯酸改性环氧树脂、有机硅改性环氧树脂的一种或几种以上的混合物。

上述自修复型电胶的原料中的固化剂为自苯基二甲胺、2,4,6-三(二甲胺基甲基)苯酚(DMP-30)及其改性物、2-乙基-4-甲基咪唑、氨乙基-2-乙基-4-甲基咪唑(2EAMZ-CN)、苯基二甲胺的改性物、二氨基二苯醚、2-十一烷基咪唑、2-十七烷基咪唑、2,4-二氨基-6-(2-十一烷基咪唑-1-乙基)-S-三嗪及其衍生物和盐中其改性物中的一种或几种以上的混合物。

上述自修复型电胶的原料中的环氧稀释剂为1,4-丁二醇缩水甘油醚、新戊二醇缩水甘油醚、1,6-己二醇二缩水甘油醚、乙二醇缩水甘油醚、1,4-环己烷二醇缩水甘油醚、三羟基丙烷缩水甘油醚、聚乙二醇二缩水甘油醚中的一种或几种的混合物。

上述自修复型电胶的原料中的银粉为片状银粉，尺寸为0.5~100μm，优选的粒径范围为1~50μm。

上述自修复型电胶的自修复过程为：将导电银胶加热到100~152℃，保持15~65min。所述的加热可通过人工加热或导电胶在高温工作条件下被加热实现。

与现有材料和技术相比，本发明的有益效果如下：

第一，本发明中制备得到的自修复电胶中微胶囊的囊芯材料与基体材料均为环氧树脂，修复后与基体相互作用力强，相容性好，修复效率高。自修复过程中释放出的纳米银线在环氧树脂固化的过程中均匀分散，减少团聚发生，在原有电网络的基础上进行扩展，实现裂纹-电导网路双重修复，保证导电胶的长期使用效果。

第二，本发明中自修复使用微胶囊内的潜伏型固化剂，避免与催化剂、引发剂和固化剂接触而产生在基体环氧树脂大量使用固化剂的问题，节约成本，并且在高温条件下实现固化，延长在常温常压下的贮藏时间，提高导电胶大量高温工作环境中的可靠性和寿命。
具体实施方式

[0038] 下面结合具体实施例进一步阐述本发明。应予理解，实施例仅用于说明本发明，而不用于限定本发明的保护范围。在实际应用中技术人员根据本发明做出的改进和调整仍属于本发明的保护范围。

[0039] 实施例 1：

[0040] （1）制备自修复微胶囊

[0041] 分别按照表 1 中实施例 1 指定的各组分，将含有稀释剂和潜伏型固化剂的环氧树脂与乳化剂混合，在 50℃的水浴锅中加热搅拌，搅拌速度为 1000rpm。缓慢向溶液中滴加去离子水，搅拌 1~2h，再超声分散 10min，形成环氧树脂乳液。将干燥好的纳米银线和偶联剂、消泡剂加入到环氧树脂乳液中，以 1000rpm 的搅拌速度搅拌 10min，形成均匀的环氧树脂 - 纳米银线乳液。将囊壁材料预聚液（三聚氰氨、甲醇、去离子水比例为 7:11:12）在烧瓶中用 NaOH 溶液调节 pH 值为 8~9，以 1000rpm 的搅拌速度搅拌 1h。在 20g 上述囊壁材料预聚液中加入 120g 环氧树脂 - 纳米银线乳液，调节 pH 值为 2~3，加热到 70℃，以 200rpm 的搅拌速度反应 4h，搅拌冷却至室温。将反应得到的胶囊乳液在 1000rpm 的转速下离心 10min，用去离子水多次冲洗真空干燥，得到含有纳米银线和潜伏型固化剂的环氧自修复微胶囊。

[0042] （2）制备自修复导电胶

[0043] 在常温下，分别按照表 1 中实施例 1 指定的各组分，将 5 份自修复微胶囊、环氧树脂和环氧稀释剂在室温下混合 3min，得到自修复微胶囊、环氧树脂和环氧稀释剂的混合物。在混合物中依次加入银片、偶联剂和固化剂，室温下混合 3 min，在三辊研磨机上室温下进行研磨 30 min，成为细腻的均匀混合物。在 30℃下通过真空搅拌除去溶剂，并通过搅拌 60min 混合均匀，得到自修复型导电胶。固化条件为 150℃恒温 1h。固化后用四点探针法计算导电胶初始体积电阻率，并采用 ASTM5045-99 标准测定初始断裂韧性。将测试了初始断裂韧性的裂开试验重新对齐，并用架子在使用的裂纹处将其固定，在 140℃下修复 0.5h。采用四点探针法计算导电胶的自修复后体积电阻率，并采用 ASTM5045-99 标准测定自修复后断裂韧性。自修复效率 η 用修复前后复合材料的断裂强度比表征。

[0044] 实施例 2：

[0045] （1）制备自修复微胶囊

[0046] 分别按照表 1 中实施例 2 指定的各组分，将含有稀释剂和潜伏型固化剂的环氧树脂与乳化剂混合，在 60℃的水浴锅中加热搅拌，搅拌速度为 1500rpm。缓慢向溶液中滴加去离子水，搅拌 1.5h，再超声分散 25min，形成环氧树脂乳液。将干燥好的纳米银线和偶联剂、消泡剂加入到环氧树脂乳液中，以 1500rpm 的搅拌速度搅拌 25min，形成均匀的环氧树脂 - 纳米银线乳液。将囊壁材料预聚液（尿素与 37% 的甲醛溶液比例为 1:1.5）在烧瓶中用 NaOH 溶液调节 pH 值为 7.5~11.8，在 70℃下搅拌 3h。在 20g 上述囊壁材料预聚液中加入 130g 环氧树脂 - 纳米银线乳液，调节 pH 值为 1~5，加热到 80℃，以 300rpm 的搅拌速度反应
3h，搅拌冷却至室温。将反应得到的胶冻溶液在1500rpm的转速下离心20min，用去离子水多次冲洗真空干燥，得到含有纳米银线和聚合型固化剂的环氧自修复微胶囊。

【0047】（2）制备自修复导电胶

【0048】在常温下，分别按照表1中实施例2中指定的各组分，将10份自修复微胶囊、环氧树脂和环氧稀释剂在室温下混合10min，得到自修复微胶囊、环氧树脂和环氧稀释剂的混合物。在混合物中依次加入银片、偶联剂和固化剂，室温下混合10min，在三辊研磨机上室温下进行研磨40min，成为细腻的均匀混合物。在30°C下通过真空搅拌除去溶剂，并通过搅拌90min混合均匀，得到自修复型导电胶。固化条件为140°C恒温6h。固化后用四点探针法计算导电胶初始体积电阻率，并采用ASTM5045-99标准测定初始断裂韧性。将测试了初始断裂韧性的裂开试样重新对齐，并用架子在使用的裂纹处将其固定，在140°C下修复1h。采用四点探针法计算导电胶的自修复后体积电阻率，并采用ASTM5045-99标准测定自修复后断裂韧性。自修复效率η用修复前后复合材料的断裂强度比表征。

【0049】实施例3：

【0050】（1）制备自修复微胶囊

【0051】分别按照表1中实施例3中指定的各组分，将含有稀释剂和聚合型固化剂的环氧树脂与乳化剂混合，在70°C的水浴锅中加热搅拌，搅拌速度为2000rpm。缓慢向溶液中滴加去离子水，搅拌2h再超声分散40min，形成环氧树脂乳液。将干燥好的纳米银线和偶联剂、消泡剂加入到环氧树脂乳液中，以2000rpm的搅拌速度搅拌25min，形成均匀的环氧树脂-纳米银线乳液。将囊壁材料聚氨酯(苯乙烯-二乙烯基苯与过氧化苯甲酰溶液比例为1:1:3)在烧瓶中调节pH值为6~8。在20g上述囊壁材料聚氨酯液中加入140g环氧树脂-纳米银线乳液，加热到75°C，以400rpm的搅拌速度反应5h，搅拌冷却至室温。将反应得到的胶冻溶液在2000rpm的转速下离心30min，用去离子水多次冲洗真空干燥，得到含有纳米银线和聚合型固化剂的环氧自修复微胶囊。

【0052】（2）制备自修复导电胶

【0053】在常温下，分别按照表1中实施例3中指定的各组分，将15份自修复微胶囊、环氧树脂和环氧稀释剂在室温下混合20min，得到自修复微胶囊、环氧树脂和环氧稀释剂的混合物。在混合物中依次加入银片、偶联剂和固化剂，室温下混合20min，在三辊研磨机上室温下进行研磨50min，成为细腻的均匀混合物。在40°C下通过真空搅拌除去溶剂，并通过搅拌120min混合均匀，得到自修复型导电胶。固化条件为140°C恒温6h。固化后用四点探针法计算导电胶初始体积电阻率，并采用ASTM5045-99标准测定初始断裂韧性。将测试了初始断裂韧性的裂开试样重新对齐，并用架子在使用的裂纹处将其固定，在140°C下修复1h。采用四点探针法计算导电胶的自修复后体积电阻率，并采用ASTM5045-99标准测定自修复后断裂韧性。自修复效率η用修复前后复合材料的断裂强度比表征。

【0054】实施例4：

【0055】（1）制备自修复微胶囊

【0056】分别按照表1中实施例4中指定的各组分，将含有稀释剂和聚合型固化剂的环氧树脂与乳化剂混合，在80°C的水浴锅中加热搅拌，搅拌速度为3000rpm。缓慢向溶液中滴加去离子水，搅拌2h再超声分散60min，形成环氧树脂乳液。将干燥好的纳米银线和偶联剂、消泡剂加入到环氧树脂乳液中，以3000rpm的搅拌速度搅拌40min，形成均匀的环氧树脂-纳米
米银线乳液。将囊壁材料预聚液（碳素与 37% 的甲醛溶液比例为 1:2.5）在烧瓶中用 NaOH 溶液调节 pH 值为 7.5~11.8，在 75℃下搅拌 2.5h。在 20g 上述囊壁材料预聚液中加入 150g 西氮树脂－纳米银线乳液，调节 pH 值为 l~5，加热到 80℃，以 500rpm 的搅拌速度反应 7h。搅拌冷却至室温。将反应得到的囊胶乳液在 3000rpm 的转速下离心 40min，用去离子水多次冲洗真空干燥，得到含有纳米银线和潜伏型固化剂的环氧自修复微胶囊。

（0057）制备自修复导电胶

（0058）在常温下，分别按照表 1 中实施例 1 指定的各组分，将 20 份自修复微胶囊、环氧树脂和环氧化稀释剂在室温下混合 30min，得到自修复微胶囊、环氧树脂和环氧化稀释剂的混合物。在混合物中依次加入银片、偶联剂和固化剂，室温下混合 30min，在三辊研磨机上室温下进行研磨 60min，成为细观的均匀混合物。在 50℃下通过真空搅拌除去溶剂，并通过搅拌 120min 混合均匀，得到自修复型导电胶。固化条件为 150℃恒温 1.5h。固化后用四点探针法计算导电胶初始体积电阻率，并采用 ASTM5045-99 标准测定自修复微胶囊的自修复后初始体积电阻率，采用 ASTM5045-99 标准测定自修复后初始体积电阻率。自修复效率 η 用修复前后复合材料的断裂强度比来表征。

（0059）实施例 5：

（0060）（1）制备自修复微胶囊

（0061）分别按照表 1 中实施例 5 指定的各组分，将含有稀释剂和潜伏型固化剂的环氧树脂与乳化剂混合，于 50℃的水浴中加热搅拌，搅拌速度为 1000rpm。缓慢向溶液中滴加去离子水，搅拌 1~2h 后超声分散 10min，形成环氧树脂乳液。将干燥好的纳米银线和偶联剂、消泡剂加入到环氧树脂乳液中，以 1000rpm 的搅拌速度搅拌 10min，形成均匀的环氧树脂－纳米银线乳液。将囊壁材料预聚液（三聚氰酸二甲酯，去离子水比例为 7:11:12）在烧瓶中用 NaOH 溶液调节 pH 值为 8~9，以 1000rpm 的搅拌速度搅拌 1h。在 20g 上述囊壁材料预聚液中加入 120g 环氧树脂－纳米银线乳液，调节 pH 值为 2~3，加热到 70℃，以 200rpm 的搅拌速度反应 4h，搅拌冷却至室温。将反应得到的囊胶乳液在 1000rpm 的转速下离心 10min，用去离子水多次冲洗真空干燥，得到含有纳米银线和潜伏型固化剂的环氧自修复微胶囊。

（0062）（2）制备自修复导电胶

（0063）在常温下，分别按照表 1 中实施例 5 指定的各组分，将 5 份自修复微胶囊，环氧树脂和环氧化稀释剂在室温下混合 3min，得到自修复微胶囊、环氧树脂和环氧化稀释剂的混合物。在混合物中依次加入银片、偶联剂和固化剂，室温下混合 3min，在三辊研磨机上室温下进行研磨 30min，成为细观的均匀混合物。在 30℃下通过真空搅拌除去溶剂，并通过搅拌 60min 混合均匀，得到自修复型导电胶。固化条件为 150℃恒温 1h。固化后用四点探针法计算导电胶初始体积电阻率，并采用 ASTM5045-99 标准测定自修复微胶囊的自修复后初始体积电阻率，采用 ASTM5045-99 标准测定自修复微胶囊的自修复后初始体积电阻率。自修复效率 η 用修复前后复合材料的断裂强度比来表征。

（0064）实施例 6：

（0065）（1）制备自修复微胶囊

（0066）分别按照表 1 中实施例 6 指定的各组分，将含有稀释剂和潜伏型固化剂的环氧树
脂与乳化剂混合，在60℃的水浴锅中加热搅拌，搅拌速度为1500rpm。缓慢向溶液中滴加去离子水，搅拌1.5h后再超声分散25min，形成环氧树脂乳液。将干燥好的纳米银线和偶联剂、消泡剂加入到环氧树脂乳液中，以1500rpm的搅拌速度搅拌25min，形成均匀的环氧树脂-纳米银线乳液。将囊壁材料预聚液（尿素与37%的甲醛溶液比例为1:1.5）在烧瓶中用NaOH溶液调节pH值为7.5～11.8，在70℃下搅拌3h。在20g上述囊壁材料预聚液中加入130g环氧树脂-纳米银线乳液，调节pH值为1～5，加热到80℃，以300rpm的搅拌速度反应3h，搅拌冷却至室温。将反应得到的胶囊乳液在1500rpm的转速下离心20min，用去离子水多次冲洗真空干燥，得到含有纳米银线和潜伏型固化剂的环氧自修复微胶囊。

【0067】（2）制备自修复导电胶

【0068】在常温下，分别按照表1中实施例6指定的各组分，将10份自修复微胶囊、环氧树脂和环氧稀释剂在室温下混合10min，得到自修复微胶囊、环氧树脂和环氧稀释剂的混合物。在混合物中依次加入银粉、偶联剂和固化剂，室温下混合10min，在三辊研磨机上室温下进行研磨40min，成为细糊的均匀混合物。在30℃下通过真空搅拌除去溶剂，并通过搅拌90min混合均匀，得到自修复型导电胶。固化条件为140℃恒温6h。固化后用四点探针法计算导电胶初始体积电阻率，并采用ASTM5045-99标准测定初始断裂韧性。将测试了初始断裂韧性的裂开试样重新对齐，并用架子在使用的裂纹处将其固定，在140℃下修复1h。采用四点探针法计算导电胶的自修复后体积电阻率，并采用ASTM5045-99标准测定自修复后断裂韧性。自修复效率η用修复前后复合材料的断裂强度比表征。

【0069】实施例7：

【0070】（1）制备自修复微胶囊

【0071】分别按照表1中实施例7指定的各组分，将含有稀释剂和潜伏型固化剂的环氧树脂与乳化剂混合，在70℃的水浴锅中加热搅拌，搅拌速度为2000rpm。缓慢向溶液中滴加去离子水，搅拌2h后再超声分散40min，形成环氧树脂乳液。将干燥好的纳米银线和偶联剂、消泡剂加入到环氧树脂乳液中，以2000rpm的搅拌速度搅拌25min，形成均匀的环氧树脂-纳米银线乳液。将囊壁材料预聚液（苯乙烯、乙烯基苯与过氧化苯甲酰溶液比例为1:1.3）在烧瓶中调节pH值为6～8。在20g上述囊壁材料预聚液中加入140g环氧树脂-纳米银线乳液，加热到75℃，以400rpm的搅拌速度反应5h，搅拌冷却至室温。将反应得到的胶囊乳液在2000rpm的转速下离心30min，用去离子水多次冲洗真空干燥，得到含有纳米银线和潜伏型固化剂的环氧自修复微胶囊。

【0072】（2）制备自修复导电胶

【0073】在常温下，分别按照表1中实施例7指定的各组分，将15份自修复微胶囊、环氧树脂和环氧稀释剂在室温下混合20min，得到自修复微胶囊、环氧树脂和环氧稀释剂的混合物。在混合物中依次加入银粉、偶联剂和固化剂，室温下混合20min，在三辊研磨机上室温下进行研磨50min，成为细糊的均匀混合物。在40℃下通过真空搅拌除去溶剂，并通过搅拌120min混合均匀，得到自修复型导电胶。固化条件为140℃恒温6h。固化后用四点探针法计算导电胶初始体积电阻率，并采用ASTM5045-99标准测定初始断裂韧性。将测试了初始断裂韧性的裂开试样重新对齐，并用架子在使用的裂纹处将其固定，在140℃下修复1h。采用四点探针法计算导电胶的自修复后体积电阻率，并采用ASTM5045-99标准测定自修复后断裂韧性。自修复效率η用修复前后复合材料的断裂强度比表征。
实施例8：

（1）制备自修复微胶囊

分别按照表1中实施例8指定的各组分，将含有稀释剂和潜伏型固化剂的环氧树脂与乳化剂混合，在80℃的水浴锅中加热搅拌，搅拌速度为3000rpm。缓慢向溶液中滴加去离子水，搅拌2h，再超声分散60min，形成环氧树脂乳液。将干燥好的纳米银和偶联剂、消泡剂加入到环氧树脂乳液中，以3000rpm的搅拌速度搅拌40min，形成均匀的环氧树脂-纳米银乳液。将囊壁材料预聚液（尿素与37％的甲醛溶液比例为1:2.5）在烧瓶中用NaOH溶液调节pH值为7.5~11.8，在75℃下搅拌2.5h。在20g上述囊壁材料预聚液中加入150g环氧树脂-纳米银乳液，调节pH值为1~5，加热到80℃，以500rpm的搅拌速度反应7h，搅拌冷却至室温。将反应得到的胶囊乳液在3000rpm的转速下离心40min，用去离子水多次冲洗真空干燥，得到含有纳米银线和潜伏型固化剂的环氧自修复微胶囊。

（2）制备自修复导电胶

在常温下，分别按照表1中实施例8指定的各组分，将20份自修复微胶囊、环氧树脂和环氧稀释剂在室温下混合30min，得到自修复微胶囊、环氧树脂和环氧稀释剂的混合物。在混合物中依次加入银片、偶联剂和固化剂，室温下混合30min，在三辊研磨机上室温下进行研磨60min，成为细腻的均匀混合物。在50℃下通过真空搅拌除去溶剂，并通过搅拌120min混合均匀，得到自修复型导电胶。固化条件为150℃恒温1.5h。固化后用四点探针法计算导电胶初始体积电阻率，并采用ASTM5045-99标准测定初始断裂韧性。将测试了初始断裂韧性的裂开试样重新对齐，并用架子在使用的裂纹处将其固定，在140℃下修复0.5h。采用四点探针法计算导电胶的自修复后体积电阻率，并采用ASTM5045-99标准测定自修复后断裂韧性。自修复效率η采用修复前后复合材料的断裂强度比表征。

表1各实施例组分含量
<table>
<thead>
<tr>
<th>组分</th>
<th>含量</th>
<th>实例 1</th>
<th>实例 2</th>
<th>实例 3</th>
<th>实例 4</th>
<th>实例 5</th>
<th>实例 6</th>
<th>实例 7</th>
<th>实例 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>环氧树脂</td>
<td>双酚 A 二缩水甘油醚环氧树脂</td>
<td>100</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>双酚 F 型环氧树脂</td>
<td>100</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>固化剂</td>
<td>乙酰丙酮过渡金属络合物</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>双氰胺</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PN23</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>稀释剂</td>
<td>二乙二醇缩水甘油醚</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-丁二醇缩水甘油醚</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>乳化剂</td>
<td>十二烷基二烷基二甲基氯化铵</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>失水山梨醇脂肪酸酯</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>纳米银线</td>
<td>300nm</td>
<td>500</td>
<td>500</td>
<td>400</td>
<td>300</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>900nm</td>
<td>600</td>
<td>200</td>
<td>100</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500nm</td>
<td>700</td>
<td>800</td>
<td>300</td>
<td>200</td>
<td>400</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>偶联剂</td>
<td>1wt% PVP</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>司班/吐温混合溶剂 (8:2)</td>
<td>16</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>囊壁</td>
<td>三聚氰胺与甲醛共聚物</td>
<td>60</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>聚醚醛</td>
<td>80</td>
<td>120</td>
<td>80</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>聚苯乙烯</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>消泡剂</td>
<td>正丁醇</td>
<td>0.5</td>
<td>1.5</td>
<td>2</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>己二胺基甲基三甲氧基硅烷</td>
<td>0.5</td>
<td>1.5</td>
<td>2</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>去离子水</td>
<td>150</td>
<td>240</td>
<td>450</td>
<td>900</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>环氧树脂</td>
<td>双酚 A 型环氧树脂</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>双酚 F 型环氧树脂</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>固化剂</td>
<td>1-氯乙基-2-氯-4-甲基咪唑</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-氯基-4-氯基咪唑</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>环氧稀释剂</td>
<td>新戊二醇缩水甘油醚</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>聚乙二醇缩水甘油醚</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>银片</td>
<td>240</td>
<td>500</td>
<td>700</td>
<td>900</td>
<td>300</td>
<td>500</td>
<td>700</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>偶联剂</td>
<td>γ-(3,4-环氧丙氧) 丙基三甲氧基硅烷</td>
<td>3</td>
<td>7.5</td>
<td>15</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>γ-甲基丙烯酸氧基丙基三甲氧基硅烷</td>
<td>3</td>
<td>7.5</td>
<td>15</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0081] 对比例与实施例性能对比如表 2 所示：
[0082] 表 2 各高温自修复型导电银胶实施例测试结果比较
<table>
<thead>
<tr>
<th>性能</th>
<th>实施例1</th>
<th>实施例2</th>
<th>实施例3</th>
<th>实施例4</th>
<th>实施例5</th>
<th>实施例6</th>
<th>实施例7</th>
<th>实施例8</th>
</tr>
</thead>
<tbody>
<tr>
<td>修复效率 $\eta(%)$</td>
<td>62</td>
<td>78</td>
<td>67</td>
<td>69</td>
<td>72</td>
<td>74</td>
<td>75</td>
<td>77</td>
</tr>
<tr>
<td>初始电阻率 $(\times 10^{-4}\Omega\cdot \text{cm})$</td>
<td>0.6</td>
<td>1.1</td>
<td>2.0</td>
<td>3.5</td>
<td>0.6</td>
<td>1.1</td>
<td>2.2</td>
<td>3.5</td>
</tr>
<tr>
<td>自修复后电阻率 $(\times 10^{-4}\Omega\cdot \text{cm})$</td>
<td>0.6</td>
<td>1.0</td>
<td>1.8</td>
<td>3.3</td>
<td>0.6</td>
<td>0.9</td>
<td>2.0</td>
<td>3.3</td>
</tr>
</tbody>
</table>

[0084] 上述表2, 本发明通过含有流动性较好液态环氧树脂的自修复微胶囊，成功实现在高温工作环境下导电银胶的自修复，自修复效率可达60%以上。在液态环氧树脂释放、修补的过程中，自修复微胶囊中纳米银线得以分散良好，提高了自修复后导电银胶的导电率，有效提高了导电银胶的可靠性和使用寿命，为导电胶在大功率半导体封装、发光二极管、高可靠性要求的国防和航空航天电子领域的应用提供支持。

[0085] 以上所述仅为本发明创造的较佳实施例而已，并不用以限制本发明创造，凡在本发明创造的精神和原则之内所作的任何修改、等同替换和改进等，均应包含在本发明创造的保护范围之内。