

MINISTERO DELLO SVILUPPO ECONOMICO DIREZIONE GENERALE PER LA LOTTA ALLA CONTRAFFAZIONE UFFICIO ITALIANO BREVETTI E MARCHI

DOMANDA NUMERO	102001900943098		
Data Deposito	10/07/2001		
Data Pubblicazione	10/01/2003		

	Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
l	G	08	В		

Titolo

VETRO CON FUNZIONALITA' DI SENSORE DI FRATTURA, DI SFORZO E DEFORMAZIONE E RELATIVO METODO DI REALIZZAZIONE. **DESCRIZIONE** dell'invenzione industriale dal titolo:

"VETRO CON FUNZIONALITA' DI SENSORE DI FRATTURA, DI SFORZO E DEFORMAZIONE E RELATIVO METODO DI REALIZZAZIONE"

di: Università di Trento - Dipartimento di Ingegneria dei Materiali, di nazionalità italiana, Via Mesiano 77, 38050 Trento.

Inventori designati: Gian Domenico SORARU', Vincenzo Maria SGLAVO, Denis DANDREA

Depositata il: 10 luglio 2001

TESTO DELLA DESCRIZIONE

La presente invenzione si riferisce ad un vetro con funzionalità di sensore di frattura, di sforzo e di deformazione e ad un metodo per la sua realizzazione.

Allo stato attuale della tecnica sono state sviluppate varie metodologie che mirano a fornire ad un materiale la funzionalità di sensore di frattura, ovvero avente la capacità di segnalare l'incipiente rottura del componente formato con tale materiale.

In accordo a tali metodologie si è, in particolare, cercato di far sì che il fenomeno meccanico di crisi del materiale possa produrre un segnale di tipo elettrico, in quanto più facilmente monitorabile, specie se a distanza, in siti non visibili o difficilmente raggiungibili, o per tempi lunghi.

In tale ambito sono state proposte le seguenti soluzioni:

A) Annegamento di fibre conduttrici nel materiale (sull'argomento si veda, ad esempio: S.M. Toffoli, R.L. Lehman, "DETERMINATION OF INDIVIDUAL FIBER FAILURE IN FIBER BUNDLES", Journal of the American Ceramic Society, vol. 84, no. 1, gennaio 2001).

In accordo a tale soluzione, viene sfruttata la rottura delle fibre conduttrici generata da una fessura che le attraversa a seguito del cedimento del materiale, oppure viene sfruttato il cedimento delle fibre all'interno del materiale causato dal trasferimento degli sforzi dal secondo alle prime; tale rottura o cedimento determina un aumento della resistenza elettrica, in quanto diminuisce il numero di fibre che conducono.

In accordo alla soluzione citata, le fibre conduttrici debbono essere introdotte nel materiale durante le prime fasi di realizzazione del manufatto. Ciò comporta l'inconveniente che le fibre possono modificare le proprietà del materiale e non possono essere usate su pezzi che richiedono lavorazioni meccaniche dopo i trattamenti di sinterizzazione o formatura da fuso.

Il superamento dello sforzo massimo ammesso per il materiale resta in genere memorizzato nel manufatto, in quanto le fibre non possono risaldarsi.

B) Sistemazione di un estensimetro (strain gage) sul

materiale (sull'argomento si veda, ad esempio: M. Savino,
"FONDAMENTI DELLA TEORIA DELLE MISURE", La Nuova Italia
Scientifica, Roma, pag. 438, 1992).

Gli estensimetri sono elementi che incrementano la loro resistenza elettrica in modo proporzionale alla deformazione impressa. Il fenomeno è in questo caso reversibile e quindi il materiale non "ricorda" il carico massimo raggiunto che, dunque, deve essere registrato esternamente. La misura consentita da tale tecnica, inoltre, è di deformazione e non di sforzo e si richiedono quindi calcoli di conversione da applicare al punto in cui sono sistemati gli estensimetri.

La tecnica citata risulta in genere molto costosa, poiché sono richiesti numerosi estensimetri per la realizzazione di ogni sensore, nonché apparecchiature di misura molto precise; inoltre, gli estensimetri sono soggetti a degrado termico e chimico se utilizzati in ambienti anche no particolarmente ostili (quali, ad esempio, le oscillazioni di temperatura notte-giorno) o per tempi lunghi; per tali motivi, la soluzione in oggetto viene prevalentemente utilizzata in laboratorio, per lo studio dell'andamento degli sforzi reali nella deformazione di campioni.

C) Produzione di compositi a matrice polimerica sensibili agli sforzi (sull'argomento si veda, ad esempio: S. Hirano, A. Kishimoto, M. Miyayama, "CONDUCTIVE COATING ON STRUCTURAL CERAMICS FOR STRAIN DETECTION UTILIZING ELECTRICAL

MEASURAMENTS", Journal of European Ceramic Society, no. 19, pag. 2087, 1999).

In questa soluzione, sulla superficie del manufatto viene prodotto un rivestimento formato da un composito conduttore a matrice polimerica, la cui resistenza aumenta durante il carico a cui è sottoposto. Attualmente sono note due diverse tipologie di tale soluzione tecnica:

C1) CFGFRP (Carbon - Fiber - Glass - Fiber - Reinforced Plastic) (sull'argomento si veda, ad esempio: N. Muto, H. Yanagida, M. Miyayama, T. Nakatsuji, M. Sugita, Y. Ohtsuka, "FORESEEING OF FRACTURE IN CFGFRP COMPOSITES BY THE MEASUREMENT OF RESIDUAL CHANGE IN ELECTRICAL RESISTANCE", Journal of the Ceramic Society of Japan, no. 100, vol. 4, pag. 585, 1992).

In questo caso si utilizzano fibre di grafite, in modo analogo a quanto descritto al precedente punto A), le quali vengono annegate in una matrice epossidica rinforzata con fibre di vetro. Il funzionamento risulta simile a quello in precedenza descritto con riferimento al punto A), con la differenza che lo sforzo rilevato è quello del rivestimento composito e non quello del materiale o substrato.

C2) Particelle conduttrici quali $SnO_2(Sb)$ -coated TiO_2 (si veda sull'argomento il già citato Journal of European Ceramic Society, no. 19, pag. 2087, 1999) o whisker in SiC (sull'argomento si veda, ad esempio: H. Yanagida, "INTELLIGENT

CERAMICS", Ferroelectrics, no. 102, pag. 251, 1990).

In questo caso la deformazione del composito allontana tra loro le particelle conduttrici, riducendo i punti di contatto e, quindi, aumentando la resistenza elettrica del composito. Il processo non è reversibile poiché, in generale, le particelle non riescono a ritornare alla posizione iniziale, anche a causa delle deformazioni irreversibili generate nella matrice.

In queste due tipologie di sensore è difficile in genere misurare o registrare l'andamento della resistenza elettrica durante la fase di carico e pertanto si è soliti utilizzarli per analizzare la deformazione massima subita. Come per la soluzione di cui al punto B) precedente, si misura quindi la deformazione subita e non lo sforzo nel substrato, che va ricavato matematicamente.

In genere, le soluzioni C1 e C2 sono di impiego limitato in laboratorio, per la misurazione dell'andamento degli sforzi reali sulla superficie di un campione sottoposto ad un carico noto, misurando la resistenza residua del composito. La tipica scarsa resistenza all'usura del rivestimento, i problemi di creep della matrice, la variabilità delle proprietà con l'esposizione a radiazioni ultraviolette e solventi, ne limitano l'uso pratico in ambito strutturale.

D) Modifica della conduttività della superficie del componente (sull'argomento si veda, ad esempio: N. Sadotani,

S. Hirano, A. Kishimoto, "IN SITU MONITORING OF INDENTATION FRACTURE IN SEMICONDUCTIVE TITANIA CERAMICS UTILIZING ELECTRIC CONDUCTION", Journal of Materials Science Letters, no. 19, pag. 221, 2000).

La modifica della conduttività della superficie di un componente può essere ottenuta tramite diffusione di appositi ioni, in grado di rendere semiconduttivo per drogaggio il materiale in esame.

La soluzione è stata finora applicata a TiO_2 tramite inserimento di Nb^{5+} per diffusione termica da un *layer* di Nb_2O_5 a 1.400°C per 3 ore. Questo metodo produce discreti risultati per misure di crescita di microfessurazioni o cricche singole del materiale ben identificate, quali quelle prodotte per indentazione.

Il sistema è tuttavia poco applicabile in campo strutturale, anche a causa delle alte temperature necessarie nel processo produttivo.

Va inoltre sottolineato come le varie soluzioni sopra richiamate modifichino le proprietà del substrato o materiale di base del sensore, e in particolare la trasparenza, se presente nel materiale in partenza, e il modulo elastico.

I relativi processi produttivi devono inoltre essere effettuati solamente prima (soluzioni A) e D)) o dopo (soluzioni B) e C)) eventuali trattamenti termici o meccanici sul componente.

Escludendo la metodologia di cui al punto A), le altre tecniche sono difficili da applicare in strutture reali.

L'applicazione delle tecniche suddette al vetro, anche quando tecnologicamente possibile, determina inoltre una drastica variazione delle proprietà, in particolare di quelle ottiche (in primo luogo della trasparenza, caratteristica peculiare del vetro).

La presente invenzione si propone di risolvere uno o più degli gli inconvenienti suddetti.

In tale ambito generale, un primo scopo della presente invenzione è quello di indicare un sensore di frattura e di sforzo realizzato a partire da un materiale fragile, di funzionamento affidabile nonché di facile ed economica realizzazione industriale, che sia in particolare utilizzabile su larga scala in campo strutturale, sia civile che industriale.

Scopo ulteriore della presente invenzione è quello di indicare un vetro avente funzionalità di sensore di frattura, di sforzo e di deformazione, ossia in grado di segnalare il superamento di un carico limite prima di arrivare a rottura, senza tuttavia che la trasparenza del vetro stesso sia intaccata.

Scopo ulteriore della presente invenzione è quello di indicare un vetro avente funzionalità di sensore di frattura, di sforzo o deformazione ed atto a produrre diversi livelli di

segnale, sia di natura elettrica che visiva.

Questi ed altri scopi ancora, che risulteranno chiari in seguito, sono raggiunti secondo la presente invenzione da un vetro con funzionalità di sensore di frattura, di sforzo e deformazione e da un relativo metodo di realizzazione aventi le caratteristiche delle rivendicazioni allegate, che si intendono parte integrante della presente descrizione.

Ulteriori scopi, caratteristiche e vantaggi della presente invenzione risulteranno chiari dalla descrizione che segue e dai disegni annessi, forniti a puro titolo di esempio esplicativo e non limitativo, in cui:

- la figura 1 rappresenta in modo schematico una configurazione di prova di un vetro con funzionalità di sensore di frattura, di sforzo e deformazione realizzato in accordo all'invenzione;
- la figura 2 rappresenta un grafico indicante l'andamento della resistenza elettrica di un sensore realizzato in accordo all'invenzione, in funzione di un primo sforzo applicato al medesimo;
- la figura 3 rappresenta un grafico indicante l'andamento della resistenza elettrica di un sensore realizzato in accordo all'invenzione, in funzione di un secondo sforzo applicato al medesimo;
- la figura 4 rappresenta un grafico indicante la curva di fatica di un sensore realizzato in accordo all'invenzione, in

funzione di un primo carico applicato al medesimo;

- la figura 5 rappresenta un grafico riportante la curva di fatica di un sensore realizzato in accordo all'invenzione, in funzione di un secondo carico applicato al medesimo.

L'idea alla base dell'invenzione, ai fini della realizzazione di un vetro con funzionalità di sensore di frattura, di sforzo e deformazione, è quella di impiegare, come materiale di partenza, un vetro a base di silicati, ossia un materiale di caratteristiche comuni, in termini di inerzia chimica, facilità di trattamento, durezza relativa, trasparenza.

E' peraltro noto che i vetri a base di silicati sono caratterizzati da una notevole debolezza meccanica e fragilità intrinseca. Al riguardo, si rammenta che la superficie è considerata solitamente il punto debole, dal punto di vista meccanico, dei corpi in vetro, la cui rottura avviene solitamente a partire da imperfezioni o difetti superficiali generati durante la produzione, la movimentazione o l'impiego.

Per tale motivo, secondo la presente invenzione, il vetro a base di silicati di partenza viene trasformato in vetro di tipo ESP (Engineered Stress Profile), ossia un vetro comune avente tuttavia peculiari caratteristiche meccaniche.

In breve, per realizzare un vetro ESP (la cui resistenza è sempre superiore rispetto a quella di un tradizionale vetro a base di silicati), viene impiegato un processo di doppio

scambio ionico, ossia di tempra chimica in due stadi.

In accordo a tale processo, oltre al consueto bagno di sali di potassio che provoca una profonda compressione della superficie, il vetro di base viene sottoposto a un secondo trattamento, in una soluzione di nitrato di potassio e di nitrato di sodio.

Il vetro ESP che si ottiene è definito dagli studiosi "intelligente", poiché è in grado di segnalare quando sta per rompersi, evidenziando delle fessurazioni o cricche visibili, che si propagano sulla superficie del materiale e aumentano in modo stabile al crescere della sollecitazione.

In altri termini, quindi, un vetro ESP presenta un profilo di sforzo residuo idoneo a produrre la crescita stabile di difetti superficiali prima della sua rottura catastrofica, ovvero è caratterizzato da un massimo di compressione ad una certa profondità al di sotto della superficie.

Un altro aspetto che va sottolineato è che il vetro ESP si rompe per sfarinamento, e cioè in frammenti di dimensioni inferiori al millimetro, a differenza del vetro tradizionale che si spezza in pericolose schegge.

Per una descrizione più dettagliata di alcuni possibili modi di realizzazione di un vetro ESP si rimanda a WO-A-00/47529, i cui insegnamenti al riguardo sono qui incorporati per riferimento.

Secondo l'invenzione, per produrre un vetro con

funzionalità di sensore di frattura, di sforzo e deformazione, il vetro ESP viene rivestito su almeno una sua faccia con un sottile strato o film, preferibilmente trasparente, di materiale elettricamente conduttore.

In questo modo, quando il vetro ESP viene sollecitato a trazione o flessione, in corrispondenza della crescita stabile delle tipiche fessure superficiali o cricche, si osserva un aumento della resistenza elettrica del film conduttore, a causa dell'interruzione parziale del circuito elettrico.

Monitorando la resistenza elettrica del film conduttore presente sulla superficie del vetro ESP, diventa così possibile registrare la formazione delle microfessure o cricche superficiali, che precedono la rottura del vetro, anche senza la loro diretta osservazione visiva.

La soluzione oggetto della presente invenzione può essere applicata a qualsiasi vetro tale da poter essere trasformato in vetro ESP, ad esempio secondo le modalità descritte nel già citato WO-A-0/47529.

A tale scopo, come detto, può quindi essere utilizzato qualsiasi vetro a base di silicati nel quale, attraverso un processo di tempra chimica, possa essere generato un profilo di sforzo residuo con un massimo di compressione ben pronunciato ad una certa profondità dalla superficie.

Non esistono limitazioni nelle forme e quindi, ai fini della loro realizzazione, i sensori secondo l'invenzione possono essere sia manufatti derivati da vetro piano che manufatti derivati da vetro cavo.

Il film conduttore deve essere costituito da un materiale che possieda caratteristiche fisico/meccaniche idonee affinché:

- i. le cricche che si formano sulla superficie del vetro ESP durante la sollecitazione meccanica si propaghino al film stesso;
- ii. il film non si fessuri prima del substrato, ossia
 prima del vetro ESP;
- iii. il film non si deformi elasticamente o plasticamente senza fessurarsi in corrispondenza delle cricche del substrato, ossia del vetro ESP.

Le caratteristiche fisico/meccaniche dei materiali utilizzabili come film debbono pertanto essere preferibilmente contenute nei seguenti intervalli:

- modulo elastico: circa 50-150 GPa;
- allungamento a rottura: circa 0.1%-1%.

Una ulteriore caratteristica preferita del film di rivestimento del vetro ESP è quella della trasparenza nell'intervallo delle lunghezze d'onda visibili. Si noti tuttavia che, qualora la trasparenza non fosse richiesta (per esempio a causa dell'opacità del substrato o vetro ESP utilizzato), anche il film di rivestimento potrebbe non essere necessariamente trasparente. E' bene sottolineare, inoltre,

che il film conduttore potrebbe assolvere anche ad altre funzioni, quali ad esempio di strato riflettente, antiriflettente, coibente, colorante, eccetera: in questi casi, pertanto, il film potrebbe essere trasparente, ma non necessariamente incolore.

Il film di rivestimento deve preferibilmente avere una conducibilità sufficientemente elevata, al fine di consentire la misura delle variazioni della sua resistenza elettrica con una apparecchiatura di semplice concezione, ad esempio alimentata a batteria; il circuito di misura deve preferibilmente essere dimensionato al fine di ridurre al minimo il consumo di corrente, soprattutto nell'attesa della segnalazione di sovraccarico da parte del vetro ESP.

Allo scopo può ad esempio essere utilizzato un comune multimetro o un circuito di misura costituito da un ponte di Wheatstone, in cui il sensore secondo l'invenzione è una delle resistenze.

Altra caratteristica preferita per il film conduttore deve infine essere la sua buona adesione superficiale con il vetro ESP.

Secondo l'invenzione, il film conduttore viene depositato sulla superficie del vetro ESP utilizzando una tecnologia che preferibilmente non necessiti di temperature di processo superiori a 400°C, al fine di non limitare l'applicabilità dell'invenzione.

A tale scopo, possono essere ad esempio utilizzate tutte le tecnologie PVD (Physical Vapour Deposition), CVD (Chemical Vapour Deposition), Sputtering o Sol-Gel.

Nel seguito viene fornito un esempio pratico di realizzazione di un sensore di sforzo secondo l'invenzione.

Ai fini di tale esempio si è utilizzato, come materiale base, una lastra di vetro piano alluminosilicato ESP, con ricoprimento di SnO₂ depositato mediante *sputtering* (si veda, ad esempio: K. Wasa, S. Hayakawa, "HANDBOOK OF SPUTTER DEPOSITION TECHNOLOGY", Noyes Publications, Park Ridge, New Jersey, 1992).

Lo sputtering è, in sostanza, una tecnica in cui il materiale da depositare (target) viene vaporizzato tramite il bombardamento con ioni di argon accelerati da una differenza di potenziale. Gli atomi del materiale da depositare vengono espulsi per sputtering e vanno a depositarsi sul substrato, posto di fronte al target; il campo elettrico può essere continuo, per target conduttori, o alternato in radiofrequenza, per target semiconduttori o isolanti. Spesso il flusso di ioni di argon è intrappolato in un apposito campo magnetico che ne aumenta l'efficacia: si parla in tal caso di Magnetron Sputtering.

La composizione chimica del vetro di partenza utilizzato è riportata nella Tabella 1 che segue. La temperatura di transizione vetrosa (Tg) del vetro è pari a 630°C.

TABELLA 1

SiO ₂	NaO ₂	Ca0	Mg0	K ₂ O	A1 ₂ O ₃	TiO ₃	Altro
62,3	12,8	0,3	3,3	3,5	16,4	0,8	0,6

Sono state usate allo scopo barrette di vetro dello spessore nominale di 2 mm e dalle dimensioni 60 mm x 10 mm.

Fianchi e spigoli delle citate barrette sono stati lucidati con carte di carburo di silicio con granulometria di 1000 grit.

Le barrette così ottenute sono state sottoposte ad un processo di ricottura, allo scopo di rimuovere qualsiasi tensione residua, dovuta al processo di produzione o di lucidatura. Il trattamento utilizzato è consistito in un ciclo termico così strutturato:

- velocità di riscaldamento pari a 180 °C/h;
- permanenza a 580 °C per 8h;
- velocità di raffreddamento pari a 40 °C/h.

I campioni di vetro, preparati secondo le modalità suddette, sono stati quindi sottoposti a trattamenti di tempra chimica attraverso l'utilizzo di un apposito forno (modello LEMA TC 20 A).

Il trattamento è consistito nell'immergere le barrette, precedentemente pulite e sgrassate con acetone, in un bagno di sali fusi. Quest'operazione è stata condotta tramite l'utilizzo di un cestello, nel quale le barrette sono state mantenute tra loro ad una distanza pari a 7 mm, in modo da

ottenere un processo diffusivo uniforme. Per evitare shock termici, le barrette sono state sottoposte ad un preriscaldamento e ad un post-raffreddamento in un'apposita camera del forno, per circa 25 minuti. Ultimato il ciclo di tempra, i provini sono stati lavati con cura in acqua corrente.

In particolare, per quanto riguarda la scelta del processo di tempra chimica, si è utilizzato un processo di doppia tempra, del tipo di cui all'Esempio II di WO-A-00/47529, così strutturato:

- tempra in un bagno di KNO3 puro a 500°C per 24 h;
- lavaggio in acqua corrente;
- tempra in soluzione di KNO_3 , contenente una frazione molare di $NaNO_3$ pari a 30%, a una temperatura di $400\,^{\circ}\text{C}$ per 30 min.

Dopo il processo di doppia tempra, i campioni, lavati accuratamente con acqua e acetone sono stati rivestiti su una sola faccia con il film conduttore. mediante sputtering. Allo scopo, si è utilizzato un Magnetron Sputtering con target inferiore e substrato in alto. Sono stati impiegati i seguenti parametri di processo:

Gas:

95% Ar - 5% O₂

Pressione:

5*10⁻³ mbar

Potenza impiegata:

40 W

Distanza target-substrato:

13 cm

I target sono stati ottenuti per sinterizzazione di dischi di polveri di SnO₂ puro. I dischi, del diametro iniziale di 51,7 mm e di spessore pari a 6,25 mm, sono stati sottoposti a compattazione mediante compressione in pressa a 10 MPa e successivamente sinterizzati a 1.200°C.

Lo spessore dei film conduttori misurato dopo lo sputtering è risultato di 0,29 \pm 0,01 mm, omogeneo su tutti i campioni; i campioni sono risultati comunque trasparenti nel visibile. Da misure con nanodurometro si è ricavato un modulo elastico del film pari a 104 ± 8 GPa.

Il film conduttore è risultato presentare una resistenza elettrica molto variabile tra 0,5 e 20 Mohm.

Si noti che la resistenza di contatto dipende dalla bontà dello stesso e può essere migliorata con la deposizione di contatti in oro; a tale scopo, alle estremità dei campioni di vetro con funzionalità di sensore di frattura, di sforzo e deformazione sono stati depositati contatti in oro, di area di circa 1 cm²; la resistenza di contatto si è così ridotta a 0,1-1 MOhm.

I campioni prodotti nel modo suddetto sono stati sottoposti a prove di flessione in quattro punti utilizzando una macchina universale per prove meccaniche. Per ogni prova sono stati testati cinque campioni.

Le distanze fra gli appoggi sono state scelte

rispettivamente pari a 40 mm e 20 mm, mentre la velocità di spostamento dell'attuatore é stata variata secondo la prova, al fine di evidenziare il comportamento del vetro ai vari tipi di carico. Le barrette sono state testate in modo che il film conduttore rappresentasse la superficie sottoposta a trazione.

In figura 1 é riportata schematicamente la configurazione di prova. In tale figura, con 1 viene indicato nel suo complesso uno dei campioni sotto esame, comprensivo di barretta 1A in vetro ESP e di relativo film conduttore 1B in SnO_2 .

Con 2 sono indicati gli appoggi distanti tra loro 40 mm e con 3 gli appoggi distanti tra loro 20 mm; con 4 viene indicato nel suo complesso l'attuatore di prova, mentre con 5 sono indicati dei contatti in alluminio, utilizzati per le rilevazioni di resistenza elettrica, e con 6 dei relativi isolanti rispetto agli appoggi 2.

I dati riguardanti l'andamento della forza applicata da parte dell'attuatore 4 al variare del tempo sono stati salvati in file ASCII per successive elaborazioni e confronti con le contemporanee misure di resistenza, realizzate sui contatti 5.

A questo punto si sono ricavate curve "R" in funzione di "s" per i vari campioni, dove "R" é la resistenza elettrica del film 1B ed "s" é lo sforzo massimo calcolato dai dati di carico per quel campione 1 allo stesso istante.

I campioni sono stati in particolare testati

meccanicamente al fine di evidenziare il carico a cui si ha la formazione delle cricche o fessurazioni in superficie.

Tali cricche si formano a carichi inferiori a 430 MPa, ma allo scarico si richiudono quasi perfettamente e non sono pertanto visibili. Ciò è stato evidenziato tramite fotografie di campioni sotto sforzo.

Solo se il campione è sottoposto a carichi elevati, ossia superiori a 430 MPa, la chiusura disordinata delle cricche fa sì che le facce di queste ultime non combacino perfettamente dopo lo scarico, e siano, quindi, osservabili anche ad occhio nudo.

I campioni sono stati testati a due diverse velocità di spostamento dell'attuatore 4 per evidenziare la cinetica dei fenomeni di fatica all'apice delle cricche. La prima velocità ("alta") è stata di 1 mm/min mentre la seconda velocità ("bassa") è stata di 0,25 mm/min.

Il grafico di cui alla figura 2 visualizza una curva resistenza "R" contro sforzo "s" per un campione 1 testato ad una velocità di spostamento "alta" dell'attuatore 4, ossia di 1 mm/min. Si nota il rapido e netto incremento di "R" per un carico di 320 MPa. Considerando che si sono osservate sotto sforzo cricche su campioni simili già a 290 MPa (si veda figura 5) e che il film 1B non si rompe neanche a carichi elevati, si può attribuire questo effetto alla crescita di cricche superficiali.

Nel grafico di cui alla figura 3 è invece riportata la curva relativa ad una velocità "bassa", ossia di 0,25 mm/min. Si può notare un incremento di resistenza "R" meno netto, dovuto al fatto che per carichi compresi tra 260 MPa e 300 MPa le cricche crescono sulla superficie per fatica e richiedono un certo tempo per attraversare il campione 1.

La crescita per fatica è stata studiata caricando rapidamente il campione fino ad un carico prestabilito e mantenendolo per 30 minuti, durante i quali si è misurata la resistenza.

Nei grafici di cui alle figure 4 e 5 sono riportati i dati raccolti per un carico rispettivamente di 250 e 290 Mpa.

Si può notare come la crescita per fatica a questi carichi non interessa tutti i difetti sul campione, ma solo quelli vicini alla criticità; la resistenza non cresce indefinitamente ma resta limitata ad un valore massimo che viene raggiunto in un tempo non superiore a 5÷8 minuti a seconda del carico. Si dimostra così che non vi è la formazione di nuove cricche, bensì la propagazione di quelle nate durante il carico.

Questo fenomeno può, all'occorrenza, permettere di utilizzare il sensore per "memorizzare" la storia di carico a cui è soggetto. Si osserva altresì che al di sotto dei 250 MPa non si ha propagazione delle cricche neanche per tempi lunghi o carichi lenti (si noti che nelle figure 4 e 5 i tempi T=-1 e

t=31 rappresentano le condizioni a carico nullo prima e dopo la prova). Misurazioni più precise hanno portato questo limite a 260 MPa, che quindi risulta essere il limite inferiore al quale si ha risposta dal sensore.

Le misurazioni meccaniche effettuate sui vari campioni hanno dato esito positivo e hanno permesso di ricavare i valori di soglia alle diverse velocità di spostamento che sono di seguito riportati:

- 320±10 MPa per velocità di spostamento di 1 mm/min;
- 270±10 MPa per velocità di spostamento di 0,25 mm/min;
- 260 MPa valore di soglia inferiore anche per carico lentissimo;
- 330 MPa valore di soglia superiore anche per carichi molto veloci.

Integrando i dati ricavati dai test sul film 1B di SnO_2 con quelli riguardanti il substrato 1A in vetro ESP, si possono definire i valori di soglia per tre livelli di segnale:

- elettrico, per rottura del film conduttore (1º
 livello);
- visivo, per la formazione di cricche visibili ad occhio nudo anche dopo scarico (2° livello);
- visivo, per la rottura completa del vetro per il superamento dello sforzo massimo sopportabile (3° livello).

Nella Tabella 2 che segue sono riportati, per ciascun livello, i valori di riferimento, assicurabili per ogni situazione di carico.

Si può notare che tali valori sono ben distanziati e distribuiti, permettendo un uso del sensore di sforzo secondo l'invenzione molto affidabile in dispositivi di sicurezza.

TABELLA 2

Livello	Valore Minimo	Valore Massimo		
	(MPa)	(MPa)		
1°	260	360		
2°	410	440		
3°	520	540		

E' in ogni caso evidente come la funzionalità di sensore di frattura, di sforzo e deformazione ottenuta tramite il film conduttore incrementi la sicurezza d'uso del vetro secondo l'invenzione, poiché permette la segnalazione del superamento del carico di soglia molto prima della rottura.

Da quanto sopra descritto risulta altresì chiaro come il sensore di frattura, di sforzo e deformazione realizzato secondo l'invenzione consenta di raggiungere pienamente gli scopi preposti, in modo semplice, economico ed affidabile.

I sensori di frattura, di sforzo e deformazione realizzati secondo l'invenzione possano trovare un'ampia applicazione, sia in ambito civile che industriale; il vetro secondo

l'invenzione avente funzionalità di sensore di frattura, di sforzo e deformazione può avere impieghi strutturali, quali grandi vetrate, travi trasparenti, vetri di sicurezza per esposizioni, musei, mostre, eccetera, oppure essere impiegato come sensore di sicurezza, ad esempio in macchinari o per la determinazione remota dello sforzo massimo in esercizio di strutture difficilmente accessibili (ad esempio per ilcontrollo di aperture di fessure in edifici, di sovraccarichi su strutture di varia natura).

Dalla descrizione effettuata risultano pertanto chiari i vantaggi e le caratteristiche del sensore di sforzo e del relativo metodo di produzione secondo la presente invenzione, le quali caratteristiche vengono ulteriormente dettagliate nelle rivendicazioni allegate.

Naturalmente, fermo restando il principio del trovato, i particolari di costruzione e le forme di realizzazione potranno essere ampiamente variati rispetto a quanto descritto ed illustrato, senza per questo uscire dall'ambito dell'invenzione così come definita dalle rivendicazioni allegate.

In accordo ad una possibile variante, la deposizione dello strato o film conduttore può essere realizzata in presenza di una maschera opportuna, onde ottenere un ricoprimento a griglia o a strisce sottili, che potrebbero permettere non

solo di cogliere lo sviluppo delle fessurazioni, ma anche la loro posizione sulla superficie della lastra in vetro ESP.

In accordo ad un'altra possibile variante, sul supporto in vetro ESP può essere previsto un ricoprimento multistrato, uno strato essendo previsto per conferire al vetro ESP la funzionalità di sensore di sforzo, come in precedenza descritto secondo l'invenzione, ed almeno un altro strato essendo previsto per conferire al vetro ulteriori funzionalità, quali ad esempio colore, antiriflettenza, coibentazione, eccetera.

* * * * * * * * *

RIVENDICAZIONI

- 1. Un vetro con funzionalità di sensore di frattura, di sforzo e di deformazione (1) comprendente:
- un elemento di supporto (1A) realizzato con un primo materiale avente un profilo di sforzo residuo suscettibile di produrre la nascita e/o crescita stabile di difetti superficiali prima della sua rottura catastrofica, ovvero avente un massimo di compressione ad una certa profondità al di sotto della sua superficie,
- uno strato (1B) di un secondo materiale elettricamente conduttore, applicato su almeno una faccia di detto elemento di supporto (1A),
- mezzi per rilevare la resistenza elettrica di detto strato (1B),

ove una eventuale sollecitazione meccanica su detto elemento di supporto (1A) è suscettibile di determinare la nascita e/o crescita di detti difetti con una conseguente variazione della resistenza elettrica di detta strato (1B), la rilevazione di detta variazione di resistenza elettrica consentendo di dedurre la presenza e/o l'entità di detta sollecitazione meccanica prima della eventuale rottura catastrofica di detto un elemento di supporto (1A).

- 2. Vetro, secondo la rivendicazione 1, caratterizzato dal fatto che detto primo materiale è vetro di tipo ESP.
 - 3. Vetro, secondo la rivendicazione 2, caratterizzato dal

fatto che detto vetro di tipo ESP è ottenuto a partire da vetro a base di silicati.

- 4. Vetro, secondo la rivendicazione 1, caratterizzato dal fatto che primo materiale è realizzato tramite una o più tecniche di cui alle rivendicazioni di WO-A-00/47529.
- 5. Vetro, secondo la rivendicazione 1, caratterizzato dal fatto che detto strato è in forma di film (1B).
- 6. Vetro, secondo la rivendicazione 1 o 5, caratterizzato dal fatto che detto strato o film (1B) ha modulo elastico di circa 50-150 Gpa.
- 7. Vetro, secondo la rivendicazione 1 o 5, caratterizzato dal fatto che detto strato o film (1B) ha un grado di allungamento a rottura di circa 0.1%-1%.
- 8. Vetro, secondo almeno una delle rivendicazioni precedenti, caratterizzato dal fatto che detto strato o film (1B) è trasparente nell'intervallo delle lunghezze d'onda visibili.
- 9. Vetro, secondo almeno una delle rivendicazioni precedenti, caratterizzato dal fatto che detto strato o film (1B) è almeno in parte realizzato in SnO_2 .
- 10. Vetro, secondo almeno una delle rivendicazioni precedenti, caratterizzato dal fatto che a detto strato o film (1B) sono associati contatti elettrici, per il collegamento elettrico a detti mezzi per rilevare la resistenza elettrica, detti contatti essendo in particolare in oro.

- 11. Vetro, secondo almeno una delle rivendicazioni precedenti, caratterizzato dal fatto che detti mezzi per rilevare la resistenza elettrica comprendono un multimetro o un circuito di misura comprendente un ponte di Wheatstone di cui il sensore (1) realizza un resistore.
- 12. Vetro, secondo almeno una delle rivendicazioni precedenti, caratterizzato dal fatto che è suscettibile di generare almeno una prima segnalazione di tipo visivo, tramite la formazione di difetti visibili ad occhio nudo.
- 13. Vetro, secondo la rivendicazione precedente, caratterizzato dal fatto che è suscettibile di generare almeno una seconda segnalazione di tipo visivo, tramite la rottura completa di detto un elemento di supporto (1A), raggiunta a causa del superamento dello sforzo massimo sopportabile.
- 14. Vetro, secondo almeno una delle rivendicazioni precedenti, caratterizzato dal fatto che detto strato o film (1B) adempie anche a funzioni diverse da quelle di segnalazione elettrica, quali funzioni di riflettente, antiriflettente, coibente.
- 15. Vetro, secondo almeno una delle rivendicazioni precedenti, caratterizzato dal fatto che detto strato o film (1B) è in forma di griglia o di strisce.
- 16. Vetro, secondo almeno una delle rivendicazioni precedenti, caratterizzato dal fatto che detto strato o film (1B) è ricoperto da rivestimento, volto a conferire a detto

secondo materiale ulteriori caratteristiche, quali colore, antiriflettenza, coibentazione.

- 17. Metodo per la realizzazione di un vetro di funzionalità di sensore frattura, di sforzo e di deformazione secondo più delle rivendicazioni una 0 precedenti, ove
- i) detto elemento di supporto (1A) è realizzato a partire da vetro a base di silicati sottoposto ad un processo di tempra chimica in due stadi ovvero di doppio scambio ionico,
- ii) detto strato (1B) viene depositato su detto elemento di supporto tramite tecnologia PVD, o CVD o Sputtering o Sol-Gel.
- 18. Metodo, secondo la rivendicazione 17, caratterizzato dal fatto che detto processo di tempra chimica in due stadi comprende
- una prima immersione di detto vetro a base di silicati in un bagno di sali di potassio,
- una seconda immersione di detto vetro a base di silicati
 in una soluzione comprendente nitrato di potassio e nitrato di sodio.
- 19. Metodo, secondo la rivendicazione 18, caratterizzato dal fatto che detta prima immersione è realizzata ad una temperatura di circa 500°C per un tempo di circa 24 h.
- 20. Metodo, secondo la rivendicazione 18, caratterizzato dal fatto che detta seconda immersione è realizzata ad una

temperatura di circa 400°C per un tempo di circa 30 min.

- 21. Metodo, secondo almeno una delle rivendicazioni precedenti, caratterizzato dal fatto che tra detta prima e detta seconda immersione è previsto un lavaggio del vetro in acqua.
- 22. Metodo, secondo la rivendicazione 16, caratterizzato dal fatto che detto strato (1B) comprende SnO_2 depositato tramite Magnetron Sputtering.
- 23. Metodo, secondo almeno una delle rivendicazioni precedenti, caratterizzato dal fatto che detto strato (1B) viene depositato su detto elemento di supporto (1A) ad una temperatura di processo inferiore 1.200, ed in particolare non superiore a 400°C.
- 24. Metodo, secondo la rivendicazione 16, caratterizzato dal fatto che, prima di detto processo di tempra chimica, detto vetro viene sottoposto ad un processo di ricottura, detto processo di ricottura comprendendo in particolare un ciclo termico del vetro così strutturato:
 - velocità di riscaldamento pari a circa 180 °C/h;
 - permanenza a circa 580 °C per circa 8h;
 - velocità di raffreddamento pari a circa 40 °C/h.

Il tutto sostanzialmente come descritto ed illustrato e per gli scopi sopra specificati.

* * * * * * * * * *

Ing. Mauro MARCHITELLA N. 18012 ALBO 507 (In proprio e per gli altri)

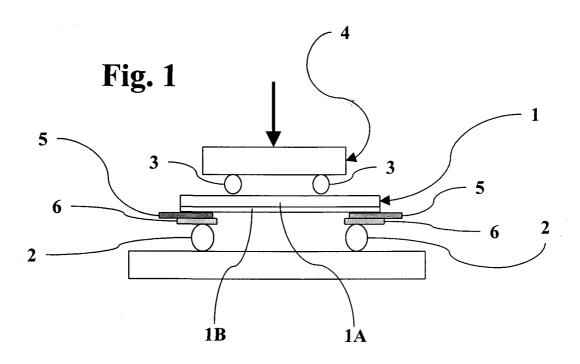
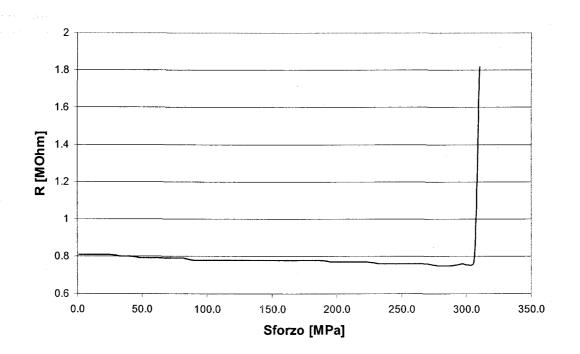



Fig. 2



Fig. 3

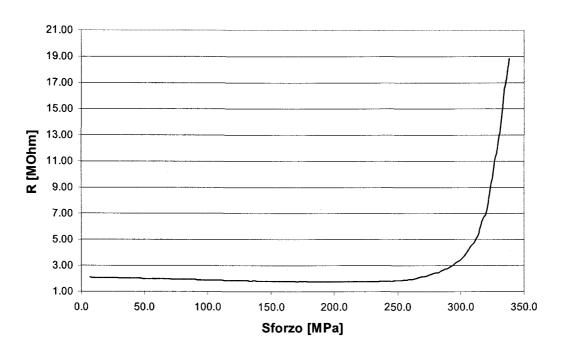
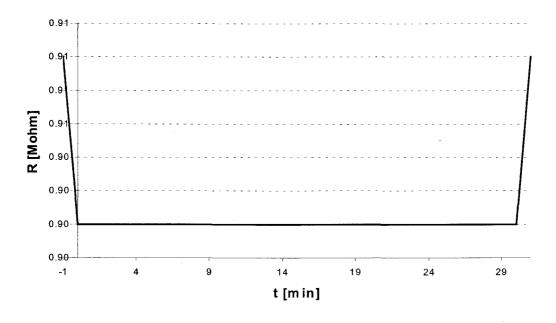
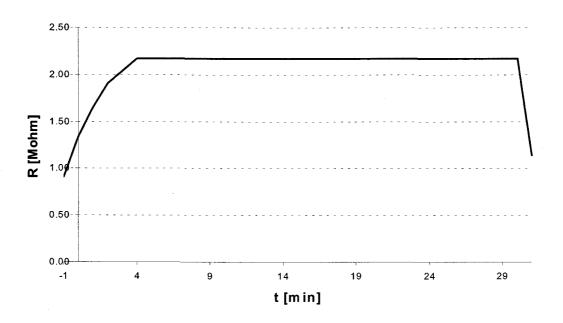
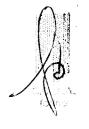


Fig. 4

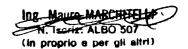


Fig. 5

