PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: (11) International Publication Number: WO 00/33187
GOGF 9/45 Al i -

(43) International Publication Date: 8 June 2000 (08.06.00)

(21) International Application Number: PCT/US99/28427 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

(22) International Filing Date: 30 November 1999 (30.11.99)

(30) Priority Data:
60/110,416 30 November 1998 (30.11.98) US
(71) Applicant (for all designated States except US): SIEBEL

SYSTEMS, INC. [US/US]; 1855 South Grant Street, San
Mateo, CA 94402 (US). '

(72) Inventors; and

(75) Inventors/Applicants (for US only): AMBROSE, Jesse
[US/US]; 1542 Via Campo Aureo, San Jose, CA 95120
(US). ROTHWEIN, Thomas, M. [US/US]; 314 Ballymore
Circle, San Jose, CA 95136 (US). STROBEL, Klaus

BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD,
MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, SI, SK, SL, TJ, T™, TR, TT, TZ, UA, UG, US,
UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS,
MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of

[US/US]; 36999 Papaya Street, Newark, CA 94560 (US). amendments.

(74) Agents: GOLDMAN, Richard, M.; Cooley Godward LLP,
3000 El Camino Real, Five Palo Alto Square, Palo Alto,
CA 94306-2155 (US) et al.

(54) Title: DEVELOPMENT TOOL, METHOD, AND SYSTEM FOR CLIENT SERVER APPICATIONS

o armu-n—-rmmmmnmmmw

.'iﬂELQL&LJ!P:EI B wldrin OOl eltel|- Ol ol of olerfeclBel72]c

1 2] Contral PiddsF of Acpiet ucome 2 Porm Aooi 4 v - “

[control Wit of Asoiet rcomp 2 Form Avciet 1y

B[] conwe maicw o Accis o 2 8orm Aceiat v |-

-} Coniral Lubaimaidit! of Apphet WaComo 2 Form Aociet j .

] wuuuw&muw
Corival Libad' of Appiel W - o

B et commmed v ot et ""“"'"‘"‘ :

l mcmur.mwm [ornat s-unnuw _I

I"EEHEI&EIE!E!EB

[Dvawe o curvid T vt the sslsckd s widh -

AR
AR

;_muum.yuu_g_q_;nr L B
7

(57) Abstract

A software development method and system having a suite of graphical customization tools that enables developers to rapidly configure
all aspects of the underlying application software, including the look—and—feel, behavior, and workflow [62]. This is accomplished without
modifying application source code, base objects, or SQL. The sophisticated repository management capabilities [63] of the method and
system of our invention allows teams of developers to work efficiently on configuring applications. The application upgrader [61] provides
an automated process to upgrade the customizations to future product releases thus protecting the investment in customization. The ease,
comprehensiveness, scalability, and upgradeability of the customization process help reduce the total lifecycle cost of customizing enterprise
applications.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ

BY
CA
CF
CG
CH
CI
CcM
CN
Cu
CzZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Céote d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 00/33187 PCT/US99/28427

DEVELOPMENT TOOL, METHOD, AND
SYSTEM FOR CLIENT SERVER APPLICATIONS

FIELD OF THE INVENTION
The method, and system of our invention relate to client server systems, and
especially to development tools, methods and systems that build upon functions,

routines, subroutines, subroutine calls, or object oriented programming.

BACKGROUND OF THE INVENTION
Programming paradigms built upon such concepts as functions and function calls,
subroutines and subroutines and subroutine calls, global variables and local variables,

and object orientation are characterized by such features as “reusable code” and

“inheritance.”

In older languages, such as FORTRAN and BASIC, reusability and inheritance were
obtained through crafting of functions, routines, and subroutines that were called
through global variables in a main program. Subsequently, this has evolved into
object oriented programming in such languages as C++ and Java and is built upon a
programming paradigm foundation of objects, functions, and class data types. An
"object" is a variable that has "functions" associated with it. These functions are
called "member functions." A "class" is a data type whose variable are "objects." The
object's class, that is, the type of the object, determines which member functions the

object has.

In a modern, object oriented programming language, such as C++ or Java, the
mechanism to create objects and member functions is a "class." Classes can support
"information hiding" which is a critical part of modern program design. In
“information hiding”, one programming team may design, develop, and implement a
class, function, routine, or subroutine while another programming team may use the
new class, function, routine, or subroutine. It is not necessary for the programmers

who use the class, function, routine, or subroutine to know how it is implemented.

WO 00/33187 PCT/US99/28427

10

15

20

25

30

To be noted is that “object oriented programming” uses the terms “public” and
“private” while the older techniques use the terms “global” and “local” for the domain

of variables.

One aspect of both paradigms is "code reusability,” whether implicitly by the
subroutine or function calls of FORTRAN and the like or explicitly by declaring
variables in C++ or JAVA.

There is an especially strong need for a development environment, including
development tools, and either functions, routines, and subroutines with global and
Jocal variables, or base classes, to allow end users to develop business applications
customized to their needs and derived from the supplied functions, routines, and

subroutines with global and local variables, or base classes.

SUMMARY OF THE INVENTION
The method and system of our invention is an application development environment.
It is designed to meet the customization needs of demanding sales, marketing, and

customer service information system deployments.

One embodiment of our invention is a system for customizing an application program.
The system includes a plurality of reusable modules (characterized as “base” modules
in object oriented programming literature and as functions, routines and subroutines in
other programming paradigms) for incorporation into end-user derived modules
(characterized as “derived” in object oriented programming literature). At least one of
the reusable modules has a set of variables accessible by an end-user (“public” in
object oriented programming and “global” in conventional programming) and a set of
variables not accessible by the end-user (“private” in object oriented programming
and “local” in conventional programming). When a derived module incorporates a

reusable module, the derived module inherits attributes of the reusable module.

A further aspect of our invention is the provision of a graphical editor for modifying
and managing software modules, and an object visualization editor for graphically

representing relationships between modules and variables within modules. A further

WO 00/33187 PCT/US99/28427

10

15

20

25

30

aspect of our invention is the provision of one or more applet designer modules for
doing one or more of modifying and extending lists, forms, dialogs, and chart user
interfaces. The system can also include one or more view designer modules for
visually modifying existing views, as well as wizard modules for creating end user
created modules. In one embodiment of our invention at least one of the wizard
modules provides an enumeration of required end-user entries for an end user module,
this being in response to an end-user entry of the type of end-user created module to

be created.

A directory or module repository manager may be provided to allow only one end-

user to modify a module at one time.

Depending on the underlying source code, the system of the invention may include a
compiler or translator for incremental compilation or translation of end user created

modules.

In a preferred embodiment the system of our invention includes one or more

interfaces for accessing data and rules from external applications.

In still another embodiment, especially useful for spreadsheet or database
applications, the system includes database extension modules for extending a database
and to capture data from new fields in one or more of application screens, and
external sources. In a particularly preferred embodiment, the database extension
modules may contain modules for triggering updates to client applications that reflect
and incorporate new database extensions, and for reflecting new columns in existing

end user created modules.

A further aspect of the system of our invention is the provision of modules for
notification of conflicts between new end user created modules and existing modules.
These modules may be incorporated in the translator or compiler, or in an index to the

repository.

WO 00/33187 PCT/US99/28427

10

15

20

25

30

A further aspect of our invention is a method having for customizing an application
program. This method works with the system of the invention, summarized above,
and includes the steps of modifying and managing the end user created modules
through a graphical editor; and graphically representing relationships between

modules and variables within modules.

A further aspect of the method of our invention is doing one or more of modifying
and extending lists, forms, dialogs, and chart user interfaces. Another aspect of our

invention is visually modifying existing views.

Another aspect of the method of our invention is creating end user created modules
using wizard modules. This may include the additional step of providing an
enumeration of required end-user entries for an end user created module in response

to an end-user entry of the type of end-user derived module to be created.

Yet another aspect of our invention is storing derived (that is, end user created)
modules in a derived module repository manager. This is to allow only one end-user

to modify a software module at one time.

A still further aspect of our invention is incrementally compiling a derived module.

Another aspect of our invention is accessing data and rules from external software

applications through interfaces.

Another aspect of our invention is extending or scaling a database, that is, modifying
its metadata and/or schema, to include new fields and capturing data from new fields
in one or more of application screens, and external sources. A further aspect of this is
triggering updates to client applications that reflect and incorporate new database

extension, as well as reflecting new columns in existing end user created modules.

A further aspect of our invention is providing notification of conflicts between end

user created modules and existing modules.

WO 00/33187 PCT/US99/28427

10

15

20

25

30

The software development method and system of our invention utilizes a suite of tools
that serve as the bases for “reusability”, whether implicitly or explicitly. This enables
developers to rapidly configure all aspects of the underlying application software,
including the look-and-feel, behavior, and workflow, without modifying application
source code, SQL, or base classes. The sophisticated repository management
capabilities of the method and system of our invention allows teams of developers

work efficiently on configuring applications.

The suite of conventional and object oriented development tools includes a business
object designer; a Microsoft Visual Basic-like scripting language, a set of business

object interfaces, a Database Extension Designer, and an Application Upgrader.

The application upgrader provides an automated process to upgrade the
customizations to future product releases thus protecting the investment in
customization. The ease, comprehensiveness, scalability, and upgradeability of the
customization process help reduce the total lifecycle cost of customizing enterprise

applications.

To be noted is the difference between declarative programming and procedural
programming. Declarative programming allows developers to control the behavior of
a class by merely setting attribute values, that is, set the property color=black, instead
of writing a line of code to set the color the color to black. This may be accomplished

under either paradigm.

Also to be noted is that the meta-data repository that contains configuration and
customization information can serve to separate this configuration and customization
data from the application source code. By this expedient, developers and end-users

can configure these objects in an intuitive and easy manner that is less prone to error.

WO 00/33187 PCT/US99/28427

10

15

20

25

30

THE FIGURES
The method and system of our invention may be understood by reference to the
Figures appended hereto.
Figure 1 illustrates a screen shot of a Business Component definition.
Figure 2 illustrates a screen shot of details of a Business Component definition.
Figure 3 illustrates a screen shot of features of the Applet Designer.
Figure 4 illustrates a screen shot of features of the view.
Figure 5 illustrates a screen shot of aspects of the editor and debugger.

Figure 6 illustrates a screen shot of the components of the application upgrader .

DETAILED DESCRIPTION OF THE INVENTION
Using the method and system of our invention, teams of developers can work together
cooperatively, to rapidly customize all aspects of software applications without
modifying application source code, SQL, or vendor supplied base classes (referred to
herein as "business objects"). This approach to customization results in dramatically
lower development and maintenance costs, and provides seamless upward

compatibility with future product releases.

The components of the development tool include:

1. A business object designer

2. A language, such as Microsoft Visual Basic, Microsoft Visual C++, Microsoft
Visual J++ or the like.

3. Business object interfaces

4. A Database Extension Designer

5. An Application Upgrader

BUSINESS OBJECT DESIGNER
The business object designer gives developers the ability to quickly and easily
customize software applications. It includes a business object explorer. This is a
graphical editing tool for modifying and managing object definitions. It includes a
hierarchical object explorer that allows developers to browse the various object types,

an object list editor viewing and editing object definitions, and a properties window

WO 00/33187 PCT/US99/28427

10

15

20

25

for editing object property values. The business object explorer also includes a
Windows-style "Find" capability that allows developers to quickly locate objects in

the repository.

OBJECT VISUALIZATION VIEWS
The Object Visualization Views are a set of graphical representations of the
relationships between the various object definitions in the business object repository
that help simplify the configuration process. A typical application configuration
contains thousands of objects. Developers can use these views to understand and
navigate through the object hierarchies. Then, using the editing tools, they can
modify the properties of these objects. These views help assess the impact of these
modifications, and track down configuration errors. The visualization views can be
printed and used as a valuable reference during configuration. Figure 1 illustrates a
screen shot of a Business Component definition, 1, with an objects field, 11, a field
indicating the source and type of components, 12, and a field indicating the actions to
be taken with respect to a component, 13, while Figure 2 illustrates a screen shot of
the details of a Business Component definition with the account object explorer, 21,
the account external products, 22, and the object attributes, 23. It depicts the various
Fields in the Business Component, their types, and points to their respective sources —
either Columns in underlying database tables, or Fields in other Business
Components. A developer can further introspect the properties of an object in this
view, by using the Properties window. The other Visualization Views work similarly.
The Hierarchy View describes the object hierarchy as it relates to the selected object
i.e. the Objects used by the selected Object and the Objects that use it. For example,
the Hierarchy View for a View Object will show the Applets contained in that View,
the Business Components on which each of these Applets are based, the Screens and

Applications in which this View appears.

WO 00/33187 PCT/US99/28427

10

15

20

25

30

APPLET DESIGNER
The Applet Designer module is an intuitive drag-and-drop visual programming
interface for modifying and extending list, form, dialog, and chart user interface
objects (Applets). These objects can be populated with standard Windows controls,
including buttons, combo boxes, check boxes, labels, and text fields, as well as
ActiveX controls. The Applet Designer of the method and system of our invention
leverages the familiarity of developers with popular graphical application
development tools such as Microsoft Visual Basic. Features of the Applet Designer
are illustrated in Figure 3. These include the object explorer, 31, and the applet being

designed or modified, 32. An’ account information form is being designed in
block 32.

The developer can add, delete, and modify the properties of the controls. The controls
can be configured using the Properties Window. For example, a control can be
associated with a Field in the underlying Business Component. This is accomplished
by setting the Field attribute of the Control to one of the Fields in the Business
Component. The choice of Fields is limited to those that belong to the Business
Component that the Applet is based on. The behavior of controls can be scripted using
the Visual Basic or other script editor. The Applet Designer also helps ensure
visually accurate and correctly translated configurations by providing a design-time
preview of the Applet on various screen resolutions, and under different language
settings. In this mode, the Applet designer simulates the Applet being viewed under
the specified settings and allows the developer to quickly detect any presentation
errors such as truncation or overlapping controls. Features of the Applet Designer are

illustrated in Figure 3.

VIEW DESIGNER
The view designer module of the development tool method and system of our
invention allows developers to visually modify existing views and construct new
views by simply dragging and dropping the desired Applets onto the view canvas.
There is no additional specification or code required to define the relationships
between the Applets. Most other application customization tools require developers

to write significant amounts of code to achieve this same functionality. In the prior

WO 00/33187 PCT/US99/28427

10

15

20

25

30

art, this code had to be replicated for each and every screen in the application. This
was inefficient and error-prone. Features of the view designer 4 are illustrated in
Figure 4. To create a View based on a specific Business Object, the developer is
presented with a blank canvas with eight sectors and a window 41 containing the list
of Applets that can be included in the View (based on the Business Object of the
View). The desired Applets can then be simply dragged from the Applets window and
dropped on the View canvas in the desired sector. The Applets may be resized at this
point, if necessary. The underlying Business Components, and their context within the
Business Object determine the relationships between the Applets in the View. Hence,
these relationships do not need to be specified again in the definition of the View.

They are simply re-used.

MENU DESIGNER
The menu designer module of the development tool method and system of our
invention allows developers to customize and extend Siebel menu structures using a
visual metaphor. A menu can be created by adding menu items, defining the
command to be executed when the menu is clicked, and specifying an accelerator key

for easy navigation.

OBJECT WIZARDS
The development tool method and system of our invention provides a set of Wizards
to assist developers in the creation of new objects in the underlying repository.
Examples of Wizards include a Form Applet Wizard, Chart Applet Wizard, List
Applet Wizard, and Business Component Wizard. The user clicks on the type of the
new object he or she wants to create, and the Wizard guides them through the entry of

the properties needed for that type of object.

Typically, the graphical user interface guides the user through the various steps of
creating an applet, such as selecting the business component that it is based on, the
dimensions of the applet, the fields to be included, the buttons that appear in the
applet, and the like. Wherever possible, the list of choices are restricted to only those
that are applicable — Fields in the underlying Business Component, Projects that have

been locked by the developer, etc. Once the developer has gone through the various

WO 00/33187 PCT/US99/28427

10

15

20

25

30

screens in a wizard, a new Object is created based on the attributes specified. A
default layout is generated for the type of Object being created. For example, for a
Form Applet, Text box and Check box controls are created for each Business
Component Field that is to be included in the Applet, depending on the data type of
Field. Labels are also created right next to the Text boxes and Check boxes. All these

controls are laid out in an aesthetically pleasing columnar layout.

BUSINESS OBJECT REPOSITORY MANAGER
The business object repository manager of our invention provides application
developers with an efficient multi-user development environment that includes access
to check-in/check-out functionality and version control. In a typical development
environment, there is a server repository that contains the master application
definition. Each developer on the team has a local repository that the development
tools method and system of our invention connects to. The various object definitions
in the business object repository are grouped into Projects. Developers lock and
check out projects from the server repository onto their local repositories in order to
make changes to the object definitions. If another developer tries to check out the
same Project, he/she is unable to do so, and is informed that the Project is locked.
This prevents other developers on the team from modifying the same project. Once
the developer has made the changes and tested them, the project can be checked into
the server repository. Before checking in a project, the developer can review the
changes that have been made thereby minimizing check-in errors. The check-
in/check-out process can be integrated with an external version control system such as
Microsoft Visual SourceSafe, PVCS, or ClearCase. This allows the development

team to maintain a version history of all changes to the repository.

BUSINESS OBJECT COMPILER
This tool that is part of the development tool method and system of our invention
allows developers to compile the repository or projects either completely or
incrementally. Incremental compilation involves a compilation of only a subset of the
Projects (typically those that have been modified). The definitions of objects in these
Projects are the only ones that are updated. The remainder of the repository file is left

untouched. This significantly speeds the development cycle of any project. The

10

WO 00/33187 PCT/US99/28427

10

15

20

25

30

compiler generates a repository file that is used to run the underlying application. The
storage of the application definition in the repository file is optimized for high-speed
access and performance. This repository file is then deployed to the end-users of the
application. The application executable reads the application definition from the
repository file and instantiated objects based on their definitions stored in the

repository file.

PROGRAMMING PLATFORM
The development tool method and system of our invention includes a development
platform. For example, a Microsoft Visual Basic or Microsoft Visual C++
programming platform for integrating enterprise applications with third-party
cooperative applications and extending the base functionality of the application
screens and business components. In a preferred embodiment of our invention, the
Visual Basic provides a Visual Basic-compliant environment that includes an editor,
debugger, and interpreter/compiler. This allows application developers to extend and
further configure applications. This capability may be integrated with the Applet
Designer so developers can attach scripts to user interface element controls such as
buttons, fields, and ActiveX controls. Business component behavior can also be
further configured using the programming platform. Figure 5 illustrates some aspects
of the editor and debugger screen 5. It includes the object explorer 51 and the object

code view, 52.

BUSINESS OBJECT INTERFACES
Not only can application developers extend applications with the development
platform, e.g., Visual Basic, they can also use COM interfaces to access data from
third-party applications, provide integration with legacy systems, and automate
applications from other external applications. This allows developers to extend
application behavior, provide client-side integration to other applications, and enable
access to data and business rules from other programs that use Microsoft Visual
Basic, Powerbuilder, Java, or ActiveX. COM interfaces expose selected objects to
custom routines external from the applications. Developers can access these COM

interfaces using a wide variety of programming languages.

11

WO 00/33187 PCT/US99/28427

10

15

20

25

30

DATABASE EXTENSION DESIGNER
When developers require extensions beyond built-in database extensions, the database
extension designer module of the method provides a point-and-click interface to
extend application tables. Developers can use these database extensions to capture
data from new fields in application screens, or from external sources using enterprise

integration managers.

The database extension designer is integrated with the business object repository. The
developer first defines the extensions in the repository and makes use of these
extensions in Business Components and Applets. These changes are then applied to
the local database by clicking on the Apply button. This causes the database schema
of the local database to be updated. The developer then tests these extensions in the
local environment. Once the testing is complete, the changes are checked into the

server repository and made available to the rest of the team.

This process allows developers to make one set of changes that automatically triggers
updates to client applications that reflect and incorporate the new database extension
into mobile users' databases. These changes reflect the appropriate visibility rules for
database extensions. New columns are automatically reflected in the business object
repository and named appropriately to ensure easy migration to, for example, future

releases of applications.

The database extension designer works with client-server applications to provide
seamless integration of database extensions for mobile user databases. The database
extension designer automatically applies database extension instructions to the server
database and these extensions are automatically routed to mobile user databases via
remote software distribution applications such as Siebel Remote. Changes take effect
automatically the next time mobile users synchronize. The changes are "in-place," so

mobile users do not need to refresh or reinitialize their local database.

APPLICATION UPGRADER
The application upgrader module of the method and system of our invention

dramatically reduces the time and cost of version upgrades by allowing customers to

12

WO 00/33187 PCT/US99/28427

10

15

20

25

30

better determine what changes are available with each release and compare unique
object customizations from the prior release with changes in the new release. The
application upgrader provides systems administrators with notification of conflicts
between object customizations and new releases, automatically merges differences
between object definitions, and allows administrators to manually override and apply
any changes. This tool obviates the need to manually migrate changes from release to
release and significantly reduces the total lifecycle cost of ownership of typical
business applications as compared to traditional client/server applications. Figure 6
illustrates the components of the application upgrader 6 of the method and system of
our invention. The Application Upgrader screen has two views, an “Application
Upgrades™ view, 61, and an “Object Differences” view, 62, as well as a “Merge

Repositories” choice box 63.

The Application Upgrader identifies customizations made to an Application, and
applies these customizations to the newer release of that Application. Application
definitions are contained in a repository. The Application upgrader compares three
repositories — the Prior Standard Repository, the Customized Repository, and New
Standard Repository — and generates a fourth repository (New Customized
Repository) based on the new repository but containing the customizations made by
the customer. Any object definitions that have been added to the Customized
Repository, but not in the New Standard Repository are added to the New Customized
Repository. If an object definition has been modified in the Customized Repository
and also in the New Standard Repository, the upgrader compares each attribute of the
two versions of object definition, and for each conflict encountered (i.e. differing
attribute values), selects the value from one of the versions based on a set of pre-
determined rules. All conflicts and their resolutions are presented to the user who then
has the option of reviewing these and overriding the default resolution adopted by the

Application Upgrader.

The result of the upgrade process is an upgraded version of the Application that
incorporates the features of the new release with the customizations made to the prior

release.

13

WO 00/33187 PCT/US99/28427

While the invention has been described with respect to certain preferred embodiments
and exemplifications, it is not intended to limit the scope of the invention thereby, but

solely by the claims appended hereto.

14

WO 00/33187 PCT/US99/28427

10

15

20

25

30

We claim:

1. A system for customizing an application program, comprising:

q)) a plurality of reusable modules for incorporation into end-user derived
modules, at least one of said reusable modules having a set of variables accessible by
an end-user and a set of variables not accessible by the end-user, and wherein a
derived module incorporating said reusable module inherits attributes of said reusable
module;

2) a graphical editor for modifying and managing software modules; and

3 an object visualization editor for graphically representing relationships

between modules and variables within modules;

2. The system of claim 1 further including applet designer modules for doing one

or more of modifying and extending lists, forms, dialogs, and chart user interfaces.

3. The system of claim 1 further comprising view designer modules for visually

modifying existing views.

4. The system of claim 1 further including wizard modules for creating end user
created modules.
5. The system of claim 4 wherein at least one of said wizard modules provides an

enumeration of required end-user entries for an end user module in response to an

end-user entry of the type of end-user created module to be created.

6. The system of claim 1 further comprising a module repository manager to

allow only one end-user to modify a module at one time.

7. The system of claim 1 further comprising a compiler for incremental

compilation of end user created modules.

8. The system of claim 1 further comprising interfaces for accessing data and

rules from external applications.

WO 00/33187 PCT/US99/28427

10

15

20

25

30

9. The system of claim 1 further comprising database extension modules for
extending a database and to capture data from new fields in one or more of

application screens, and external sources.

10. The system of claim 9 further comprising modules within said database
extension modules for triggering updates to client applications that reflect and

incorporate new database extensions.

11. The system of claim 10 modules for reflecting new columns in existing end

user created modules.

12. The system of claim 1 further comprising modules for notification of conflicts

between new end user created modules and existing modules.

13. A method having for customizing an application program, comprising:

(D incorporating at least one reusable module having global variables accessible
by an end-user created module and local variables not accessible by the end-user
created module, and wherein an end user created module has attributes of said
reusable module;

2) modifying and managing said modules through a graphical editor; and

3) graphically representing relationships between modules and variables within

modules.

14. The method of claim 13 further including one or more of modifying and

extending lists, forms, dialogs, and chart user interfaces.

15. The method of claim 13 further comprising visually modifying existing views.

16. The method of claim 13 further including creating end user created modules

using wizard modules.

16

WO 00/33187 PCT/US99/28427

10

15

20

25

17. The method of claim 16 comprising providing an enumeration of required
end-user entries for an end user created module in response to an end-user entry of the

type of end-user derived module to be created.

18. The method of claim 13 further comprising storing derived modules in a
derived module repository manager whereby to allow only one end-user to modify a

software module at one time.

19. The method of claim 13 further comprising incrementally compiling a derived

module.

20. The method of claim 13 further comprising accessing data and rules from

external software applications through interfaces.

21. The method of claim 13 further comprising extending a database to include
new fields and capturing data from new fields in one or more of application screens,

and external sources.

22. The method of claim 21 further comprising triggering updates to client

applications that reflect and incorporate new database extensions.

23. The method of claim 22 reflecting new columns in existing end user created
modules.
24. The method of claim 13 further comprising providing notification of conflicts

between end user created modules and existing modules.

17

WO 00/33187

tmpoit Werard

Jon
&2 Muli Vaiue Field
T D MukiValus Link
&3] SingeVakue Feld
3-%p Account Attachment
3 % Account Extemal Product
3-9p Account Product
3 %P Account Synorym
-850 Baseire
3-99 Store Condiions

PCT/US99/28427

FIGURE 1

1/6

WO 00/33187 PCT/US99/28427

F_.-; visview bmp - Paint

Fie ER Yiw mege (ptore: Helw.

I8
11 Cilte Syebel Tools - Siebel Repository - Business Component {Account E xtemnat Product] - Details
7 | @]} Fle E®View: Screens .Go Qoay Reports Fomat Debug Regostony Iods Widow Help- e
Z1Ql| elaiel slmlef olaf| 2]] OlBIsa| sitel| Sl Jes]&] 2]l
7 A
ro[A |} oo [| ¥ T8
N\ |2 Tyoos '0“ | | Account External Product S_ORG_PRDEXT
O3l 2 |§ |5 -2 Siebei Obrects - "B AICoumns
= 7] Applet Comment © COMMENTS
f=li=] & [Appicaton Conflict Id . CoNRLICT_D
— 1 7} Assignment Attribute Created | CREATED
i @- ¢} Assignment ltem Type Cioated By . CREATED_BY
§| & J BimapCatogory Updated i LAsT_UPD -
= % Business Component Updated By i LAST_UPD_BY
’ 7] Business Component Scrpt Mod td | MODIFICATION_HUM -
: 7] Business Component User Prop AEP Account ki i ou 3¢
= -y Field AEP Product id : PRDEXT_D T P— o{ -~
7] Field User Prop Id : i ROW_ID
% L2 Pick Map
; T 7 Jon
| / N £ 7] MukiValue Fieid
.} Multi Value Link Ay
@ 1 5 L Single Vakue Field e IO
< i LIJ
™ Illlllllllllll& o
W CrE B EE R EE

For Help, clck Help Topics on the Help Menc... - [Dassaze:-

B -

] G| Bo] 2] 2| Wof] o] 3] 5| Bol Frel B off . [SHOE G SBOL M 2
7
&

FIGURE 2

2/6

WO 00/33187

I appdes bmp - Pant

>y
v

a!wn:hnrﬁamwanml@wleaqmmlszMmuw

PCT/US99/28427

NS}

:@_‘gjﬂl _*.llﬂ:':’_]ﬂ __j Nl ‘ l » l nl plplgllz l

se|2e| 2"

& o of of “It-fl

gﬁ

=

Types | Detad | Fiat |

3

A\

i= 2} Srebel Obrects

1olols
&
| L}

41 2 Drildown Object
@ 3 List

(\

*‘) Assignment Attribute
+ _7) Assignment item Type
+ :d Bitmap Category

<;l[u
'f_f'lyl&dLL.;1
ity
i

ﬁfllllllllllllll
S [(| (il)

Pienwaeduhunhmbmm

= I

mumggﬂﬂﬂmu:ﬂaqmr— S T D

J

7

FIGURE 3

3/6

WO 00/33187

PCT/US99/28427

P

Y
2 1eo|kHe ER View Sceens 6o~ Quy
2]Q alo| =] 1l]| 0] o188
":‘i' | Campaign calis ¢
NI, Types |D“ | At | Name Start Dete
olz = :A%ebelobieds Purpose EndDatel
= =] Apolet - {——————— —
o LO_) D Appication 7 Objective Revenuse __l
I=—-) tﬂﬁwwﬂ Target‘ Team =
?j e B S Ka . r-_-—__—_
\ '»113 wiiinaili - - Languagar—___'j I
. ER . . -
| = u‘iﬁ““*"';*) it Retresh| _Script] lespons|
w5 leors lug | N
k - - LatlLats 3]
= 5 TG |
K ‘ : ‘
R Campagn Campagn CampaignAgent _|
5 .7 | Achieveme.. ~ Achevementl. Analysis Chait ... 0
" j:] = A _
- o Z B L
- ,“—.—‘ Lall Gud

=

".—,llllllllllllll
i [(3 | T [}

Mror Help, cick Help Tosics on the Heb Ment .

ise] G| W0 o] o] M| il] el e e BeflE

4

FIGURE 4

33%5%&1[31 312PM

4/6

WO 00/33187 PCT/US99/28427

I, svb bmp - Paint :

Flo EdkYiew imags- Qotiors_Heg-~ - - O RS S
Ao " =
740,) Flo Edk:Yew: -Screem Go. Quoy Hepots: Fomet Debup Regosiory: Tooks. Window . Helr's" - o d
Zialllela] el olo]] s]| olelailil] seliel| & ol of ol SlodElHE
7 3 || (oo 7] Erendin [0
rofAfjeom [= ' :
- Function BusComp_PreSetFieldValue (FieldName As String.
\|? Types 'Dddl A | " Routine to check if a quote discount > 20%
= 2 Siebel Obects ’ ' if it 1s, notify user, set comment field on
& e = ' create an activity record to tell manager tc
o0 4 [d Apphcation Dia msgtitle as gtr:.ng
gl Romdl 2 7] Assignment Altribute Din msgtext as String
.:, _—'g;w"mrm Dia QuoteNuamber as String
il Dia BC as BusObject
7 .2 Bitmap Categoy . Dia BO as BusComp -
= % Business Companent
=2 B ,,,Cm,ism If FieldN *Di t* the 4%
9 " ieldName = "Discoun n ,
_ ‘Z]E.* User Pr : value = Val(FieldValue) /\—//
;’1 L2 Fie If value > 20 then
4) Jom asgtext = "Discounts greater than 20% must be e
T 9] Multi Value Field . asgbox (msgtext)
- T7) MuliValue Link & QuoteNumber = GetFieldValue(°Quote Number®)
8 L2] Singe Vakue Field Set BC = Thedpplication.GetBusObject ("Action”)
\ - =) ; Set BO = BC.GetBusComp (‘“Action”)
\ . + Q Business Object
v-" 3 _J) Class BO .ExecutsQuery
3 Command BO.NevRecord (1) .
: A0W BO.SetFieldValue ("Description®). ("Please appreg
- [RO SatFimidVaium ('}‘vm'\ {*Te DA™ -
1 . Famiais i 3
ﬁfll.lllllllllll} A
—CCEC mENET T R & T
{For Help, cick Holp Topice on the Help Mems: -

e mr o Wi p o] el e PWeESEIIntE
i

FIGURE 5

5/6

WO 00/33187

PCT/US99/28427

_fio Ed Yiow [mage Qptione- -

A plca de : 2

7 ||| Be_Ed Yow Sowers G0 Guay Bepots Fomat Detwo Regoroy Iooks Window Hep

Zqlb 2l »lmeler oo =« (v in] OlO[AHR| +i2el| S|+l ol uf e feelBl 70

7 3

| (™ T Operation | Saba T Prior Stardard v [prior 4 Raposkory | New Sundard

\N 2 >. OMASTER Merge Complete Orignal Siebel Repotitory C d Siebel Repository New Sibel Re(

B

o

A

| Object - | Attribute | Add 1o New G ol Siabel Rap | In Original Siebel Rey
| 3] Control Fied1S' of Applet BusCome 2 Form Applet v 4
|| Control 'Fiekd16' of Appiet BusCome 2 Form Applet v v L b
|| Control Fied®" of Applet BusComp 2 Form Applet v v v i
[| Control LabeiField15' of Applet ‘BusComo 2 Form Apcket v 4

___’ Control LabaiFeldis' of Applet 'Su LD LT LIRS
|| Control LabalField®’ of Applet 'Bus

List Cohunn "Field 1' of List ‘List' of » Pricr standard reposkony.) Now standaed copoadons o :
| Uit ok Fied 2 of Lt st of 1| OrignalSiebel Repostary] s [NowsebolRoposoy ¥]
I'ill.llll.l....l
S CCH T S

"Drawe & cuved ine with the sslected fne widh. - @ B
o) | o) 3] .| W] 9] 0] o] 5] Sl

7
&

FIGURE 6

6/ 6

INTERNATIONAL SEARCH REPORT International application No.
PCT/US$9/28427

A. CLASSIFICATION OF SUBJECT MATTER
[PC(7) : GOG6F 9/45
USCL : 7171
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

us. @ 1in

Documentation searched other than minimum documentation to the extent that such documents are included inthe fields searched
Please See Extra Sheet.

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

IEEFR/IEE Electronic Library[online], ACM Digital Library[online], DR Dobb's Journal[online]

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X,E CARNELL, M.; "Applet Designer". DBMS and Internet Systems. | 1-24
Accessed on 20 March 2000. Retrieved from the Internet:
http://www.dbmsmag.com/9706d08.html, June 1997, entire
document.

ALE TV Objects Corporation; "Applet Designer Enterprise Edition".| 1-24
Access on 20 March 2000. Retrieved from the Internet:
http://moreinfo.vbonline.com/vbonline/tvobjects, June 1997, entire
document.

A TAULLI, T.: "Visual Basic Meets Java". Internet Java and ActiveX| 1-24
Advisor Magazine, August 1997. entire document.

AP US 5,978,579 A [BUXTON et al.] 02 November 1999, entire| 1-24
document.

Further documents are listed in the continuation of Box C. D See patent family annex.

b Special categories of cited documents: "T" later document published after the international filing date or prionty

date and not in contlict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the nvention
to be of particular relevance
. . o X" of relevance: ed 1 canno! be
"E" earlier document published on or after the international filing date X document of particular relevance: the claimed nventor o
considered novel or cannot be considered to invoive an mvenuve step
“L" document which may throw doubts on priority claun(s) or which is when the document 1s taken alone
cited to establish the publication date of another citation or other X .
special reason (as specified) "y document of particular relevance, the claimed mvention cannot be
considered to involve an mventive step when the document s
"o document referring to an oral disclosure. use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
'pe document published prior to the international filing date but later than g » document member of the same patent family

the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

20 MARCH 2000 18 APR ZOUG

Name and mailing address of the ISA/US Authorized officer -
Commissioner of Patents and Trademarks F
Box PCT . -
Washington, D.C. 20231 Tariq R. Haliz

Facsimile No. (703) 305-3230 Telephone No. (703) 305-9643

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT Ime:aational application No.

PCT/US99/28427

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation ot document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5,819,092 A [FERGUSON et al.] 06 October 1998, entire 1-24

document.
AP US 5,970,252 A [BUXTON et al.] 19 October 1999, entire 1-24

document.
AP US 5,911,075 A [GLASER et al.] 08 June 1999, entire document. 1-24

Form PCT/ISA/210 (continuation of second sheet) (July 1998) =

INTERNATIONAL SEARCH REPORT Intesnational application No.
PCT/US%9/28427

B. FIELDS SEARCHED
Documentation other than minimum documentation that are included in the fields searched:

Sun Microsystem's Website[www.sun.com], Microsoft Website[www.microsoft.com], TV Object Corporation
Website[www. tvobjects.com], general Internet search.

Form PCT/ISA/210 (extra sheet) (July 1998) »

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

