(19) **日本国特許庁(JP)**

(12) 公 開 特 許 公 報(A)

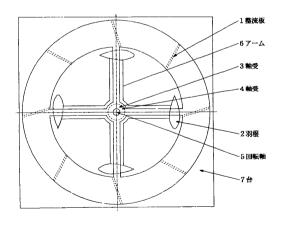
(11)特許出願公開番号

特開2006-22798 (P2006-22798A)

(43) 公開日 平成18年1月26日 (2006.1.26)

(51) Int.C1.			F I			テーマコード (参考)
F03D	11/00	(2006.01)	F O 3 D	11/00	A	3HO78
F03D	3/06	(2006.01)	FO3D	3/06	Z	
F03D	7/06	(2006.01)	FO3D	7/06	Z	

		審査請求 未請求 請求項の数 4 書面 (全 5 頁)
(21) 出願番号 (22) 出願日	特願2004-229974 (P2004-229974) 平成16年7月8日 (2004.7.8)	(71) 出願人 595091665 平田 幸男 広島県福山市新市町新市709番地
		(72) 発明者 平田 幸男
		広島県福山市新市町新市709
		F ターム (参考) 3H078 AA05 AA26 BB09 BB11 BB13
		CC03 CC07 CC11 CC22 CC52
		CC62 CC72 CC78


(54) 【発明の名称】整流式風車

(57)【要約】 (修正有)

【課題】 垂直軸風車におて羽根の前面に物体を置くと 、羽根の回転に悪影響を及ぼすが、その物体の形状と配 置の方法を工夫して、羽根の回転を増加させる、さらに 垂直軸風車に用いる揚力形の羽根は、加速力が悪いので 、断面を鉤形にしてこれを補う。

【解決手段】 整流板1を中心線に対して角度をつけて 配置すれば、整流効果と集風効果が発生して羽根2の回 転は、整流板がない状態より増加する、さらに羽根2の 断面を鉤形にすることよって加速性能が増加する、と共 に、補助翼によって高速回転も可能となる。

【選択図】 図2

【特許請求の範囲】

【請求項1】

風車の羽根2の外周に、整流板1を中心線に対して角度をとって配置し固定した整流板

【請求項2】

風車の羽根2の外周に、支柱9とストッパー8を配置して固定し、整流板10を支柱9に取り付け、ストッパー8の間を自由に動くようにした整流板。

【請求項3】

整流板の形状が、平板形(直線形)、「く」の字形、「し」の字形、弧形をした請求項1、請求項2の整流板。

【請求項4】

断面が鉤形をした風車の羽根。

【発明の詳細な説明】

【技術分野】

[0001]

この発明は、垂直軸風車の羽根の外周に整流板を配置した風車と、その風車に使用する断面が鉤形をした羽根に関するものである。

【背景技術】

[0002]

風車において、風を受ける羽根の前面に物体を置くと、回転に悪影響を及ぼす。 垂直軸風車の揚力型の羽根は加速力が悪い。 20

30

10

【発明の開示】

【発明が解決しようとする課題】

[0003]

風車において、風を受ける羽根の前面に物体を置けば、その物体が風の流れを止めたり 、乱したりして羽根の回転に悪影響を及ぼす。

本発明は、風を受ける羽根の前面に物体を置いても、羽根の回転に悪影響を及ぼさないように、その物体の形状と、配置を工夫したものである。

【課題を解決するための手段】

[0004]

垂直軸風車の羽根の外周に整流板を配置する。

整流板を固定する場合は、図2に示すように整流板1を中心線に対して、約10~30度の角度をつけて配置し固定する。

整流板を可動させる場合は、図4に示すようにまず支柱9を固定して、その支柱9に整流板(可動式)10を可動するように取り付ける、整流板10の左右の位置にストッパー8を配置して固定し、整流板10が左右のストッパー8の範囲内の角度で可動するようにする。

整流板の形状は、図10の平板形、図11の「く」の字形、図12の「し」の字形、図13の弧形である。

鉤形の羽根は図 7 に示すように図 5 の B - B 部断面が鉤の形をした羽根である。 本発明は以上のような構成よりなる整流式風車である。 40

【発明の効果】

[0005]

整流板を、図2のように中心線に対して角度をつけて配置し固定した場合、整流効果、集風効果が発生し、整流板がない状態と比較すると羽根の回転は増加する。

整流板が可動式の場合は、風の力によって整流板が、ストッパーの間を動いて中心線に対して角度がついた状態となる。

整流板によって風車全体の強度が増加する。

整流板によって羽根の回転軸を受け止める軸受を、複数個所に設置できる。

整流板によって風車全体の強度が増加し、軸受を複数個所に設置できることにより垂直

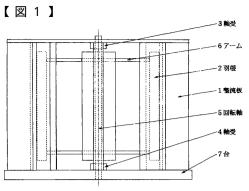
50

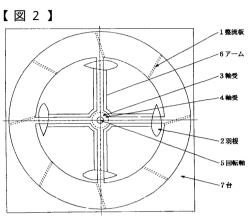
軸の風車においても、風車の直径を大きくしたり、羽根を高くしたりすることが可能となる。

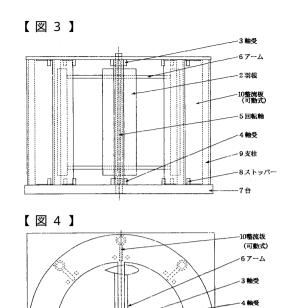
鉤形の羽根は加速性能がよくなる、さらに動く構造の補助翼 1 2 (図 8)を取り付ければ遠心力によって揚力翼の形状になり、高速回転に適した羽根の形状となる。

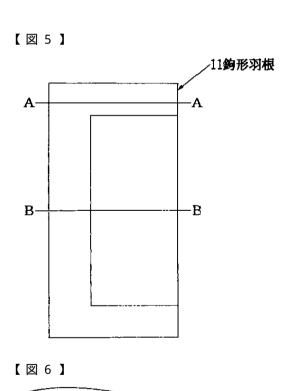
【発明を実施するための最良の形態】

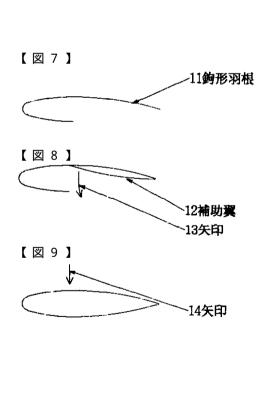
- [0006]
 - 以下、本発明の実施の形態について説明する。
- (イ) 回転軸 5 にアーム 6 を固定し、アーム 6 に羽根 2 を固定する、回転軸 5 を回転するように台 7 に取り付ける。
- (ロ) 整流板 1 を羽根 2 の外周に、中心線に対して角度をつけて配置し、台 7 に固定する
 - (ハ) 軸受4を台7に設置し、軸受3を上部に設置する。
- (二) 整流板10の可動式の場合は、台7に支柱9とストッパー8を固定して、支柱 9に整流板10を動くように取り付ける。
- (ホ) 図7の鉤形羽根11に、図8のように補助翼12を矢印13の方向に動くように取り付ける、この構造にすると遠心力によって補助翼12が矢印13の方向に動いて、 矢印14に示す図9の揚力形の羽根になる。
- 【図面の簡単な説明】
- [00007]
- 【図1】本発明の整流板を固定する構造の正面図である。
- 【図2】本発明の整流板を固定する構造の平面図である。
- 【図3】本発明の整流板を可動させる構造の正面図である。
- 【図4】本発明の整流板を可動させる構造の平面図である。
- 【図5】鉤形羽根の正面図である。
- 【図6】鉤形羽根のA-A断面図である。
- 【図7】鉤形羽根のB-B断面図である。
- 【図8】補助翼12を取り付けた場合のB-B断面図である。
- 【図9】遠心力で補助翼が動いて図6の状態になった断面図である。
- 【図10】平板形(直線形)整流板の斜視図である。
- 【図11】「く」の字形整流板の斜視図である。
- 【図12】「し」の字形整流板の斜視図である。
- 【図13】弧形の整流板の斜視図である。
- 【符号の説明】
- [0 0 0 8]
- 1は整流板 2は羽根 3は軸受 4は軸受 5は回転軸 6はアーム
- 7 は台 8 はストッパー 9 は支柱 1 0 は整流板(可動式)
- 11鉤形羽根 12は補助翼 13は矢印 14は矢印


20


10


30


-5回転軸


〜8ストッパー

【図11】

【図12】

【図13】

