
US 20210020041A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0020041 A1

Yang et al . (43) Pub . Date : Jan. 21 , 2021

(54) PRIVACY - PRESERVING DISTRIBUTED
VISUAL DATA PROCESSING

(71) Applicant : Intel Corporation , Santa Clara , CA
(US)

(72) Inventors : Shao - Wen Yang , San Jose , CA (US) ;
Yen - Kuang Chen , Palo Alto , CA (US) ;
Addicam V. Sanjay , Gilbert , AZ (US)

G06Q 50/26 (2006.01)
GIIB 27/031 (2006.01)
H04N 7/18 (2006.01)

(52) U.S. CI .
CPC G08G 1/091 (2013.01) ; G08G 1/087

(2013.01) ; G06F 21/604 (2013.01) ; G06K
9700771 (2013.01) ; G06F 9/4881 (2013.01) ;

GO6F 21/6245 (2013.01) ; GO6K 986271
(2013.01) ; G06K 9/00369 (2013.01) ; GO6K
9/4604 (2013.01) ; GO6K 9/6268 (2013.01) ;

G06Q 50/26 (2013.01) ; GIIB 27/031
(2013.01) ; H04N 7/181 (2013.01) ; GOOF

2209/506 (2013.01) ; G06F 9/505 (2013.01)

(73) Assignee : Intel Corporation , Santa Clara , CA
(US)

(21) Appl . No .: 16 / 835,193

(22) Filed : Mar. 30 , 2020

Related U.S. Application Data
(63) Continuation of application No. 15 / 859,324 , filed on

Dec. 29 , 2017 , now Pat . No. 10,607,484 .
(60) Provisional application No. 62 / 611,536 , filed on Dec.

28 , 2017 .

Publication Classification
(51) Int . Ci .

GO8G 1/09 (2006.01)
G06F 9/50 (2006.01)
G06F 21/60 (2006.01)
GO6K 9/00 (2006.01)
G06F 9/48 (2006.01)
G06F 21/62 (2006.01)
GO6K 9/62 (2006.01)
G06K 9/46 (2006.01)

(57) ABSTRACT
In one embodiment , an apparatus comprises a processor to :
identify a workload comprising a plurality of tasks ; generate
a workload graph based on the workload , wherein the
workload graph comprises information associated with the
plurality of tasks ; identify a device connectivity graph ,
wherein the device connectivity graph comprises device
connectivity information associated with a plurality of pro
cessing devices ; identify a privacy policy associated with the
workload ; identify privacy level information associated with
the plurality of processing devices ; identify a privacy con
straint based on the privacy policy and the privacy level
information , and determine a workload schedule , wherein
the workload schedule comprises a mapping of the workload
onto the plurality of processing devices , and wherein the
workload schedule is determined based on the privacy
constraint , the workload graph , and the device connectivity
graph . The apparatus further comprises a communication
interface to send the workload schedule to the plurality of
processing devices .

1502 1506 1504 1500

C VISION CAPABILITY
REPOSITORY

SCHEDULING TO
SERVER

$

$
3

do ob
.

8
.
1

1
$

8
.

1 }
{

3
$
3
3
$

3
3
3
{

}

0 D 3
{
3
3
1

}
}
3 15100 1510a 1510c

3
3
1
}

}

Patent Application Publication Jan. 21 , 2021 Sheet 1 of 56 US 2021/0020041 A1

$ 100
www www VY ? namn

EDGE RESOURCES
VURU

PR

2000000000

?

O 1122 1126

VISUAL SENSORS
1

LOCAL AREA NETWORK
150a

}
}

WIDE AREA NETWORK
1506

*

Moto
w

CLOUD RESOURCES 130

FIG . 1

Patent Application Publication Jan. 21 , 2021 Sheet 2 of 56 US 2021/0020041 A1

260
256 204

222 222
D 254 . 216

0
254 202

W **

202

258 254 D. 254
G G

262

D 232

228
204

204
D

FIG . 2

302

322

302

326

322

Patent Application Publication

328

306

328

GATEWAY
322

302

CLOUD

322 X 3221

-322 322

w

304

302

um

328

1

302

GATEWAY

322

Jan. 21 , 2021 Sheet 3 of 56

322 ,

*

322

326

322

300

302

302

326

328

US 2021/0020041 A1

FIG . 3

Patent Application Publication Jan. 21 , 2021 Sheet 4 of 56 US 2021/0020041 A1

420

414 424 " SE 406

422 428 10T TOT
404 GATEWAY 410 430

b 408
CLOUD GATEWAY- > SERVER (S) 498 SERVER

412

JOT

416

426

FIG . 4

Patent Application Publication Jan. 21 , 2021 Sheet 5 of 56 US 2021/0020041 A1

550

lot Processing Device
564

552
PROCESSOR 562

MESH
TRANSCEIVER

MESH DEVICES
FOG

C 570
INSTRUCTIONS

560
566

WIRELESS
NETWORK

TRANSCEIVER
554 CLOUD

MEMORY
582 568 500

INSTRUCTIONS NETWORK
INTERFACE 572

558 - 570 SENSORS
STORAGE

582
EXTERNAL
INTERFACE

pe 576
ACTUATORS

INSTRUCTIONS
574

BATTERY

586
580

INPUT DEVICE
578

BATTERY
MONITORI
CHARGER

POWER BLOCK
584

OUTPUT DEVICE

FIG . 5

Patent Application Publication Jan. 21 , 2021 Sheet 6 of 56 US 2021/0020041 A1

CODE 604 602

FRONT - END LOGIC 606

1

EXECUTION
UNIT

EXECUTION
UNIT

EXECUTION
UNIT

616A 6168 616N

EXECUTION LOGIC 614

RETIREMENT LOGIC 620

BACK - END LOGIC618

PROCESSOR CORE 600

FIG . 6

PROCESSOR

PROCESSORI COPROCESSOR

MEMORY 732

MEMORY 734

IMC

Patent Application Publication

782

772

788

786
780

752 794

754

P.

CHIPSET 790

Pup

798

COPROCESSOR 738

792

796

Jan. 21 , 2021 Sheet 7 of 56

BUS BRIDGE 718

VO DEVICES 714

AUDIO I / O
724

DATA STORAGE

KEYBOARDI MOUSE

722

COMM DEVICES

727

730

CODE AND DATA

728

US 2021/0020041 A1

FIG . 7

END - USERS OPERATORS

Patent Application Publication

VISION ANALYTICS API 860

QUERY API 870

VISION APPLICATION MANAGEMENT SERVICE

QUERY COMPILER 872

VISION APPLICATION API

APPLICATION DEVELOPERS

QUERY PRIMITIVE REPOSITORY 874

PRIVACY POLICY

VISION KERNEL MANAGEMENT SERVICE

Jan. 21 , 2021 Sheet 8 of 56

PRIMITIVE VISION API

ALGORITHM £ DEVELOPERS

AUXILIARY API 820

STORAGE API 840

VISION KERNELS 832

DATABASES 842

SECURITY 822a

OOO

OOO
}

FOG NODE

B

COMMUNICATION 8225

COMPRESSION 822c

US 2021/0020041 A1

FIG . 8

900

RUNTIME

Patent Application Publication

ANALYTICS 908

DATA

RUNTIME

CAMERAS

STORAGE

LOCAL ANALYTICS * PREPROCESSING FILTERING AGGREGATION 906
DATA STORAGE 912

PRESENTATION AND INTERPRETATION 914

0

DATA

VOA

SENSORS 904

Jan. 21 , 2021 Sheet 9 of 56

OFFLINE ANALYTICS 910
RUNTIME

US 2021/0020041 A1

FIG . 9

QUERIES 1006

Patent Application Publication

COMPILERI INTERPRETER

VISUAL FUNCTIONS (E.G. , FACE DETECTION) 1004

VISUAL DATA 1002

METADATA 1012

LOGIC OPERATIONS 1014

QUERY RESULT

Jan. 21 , 2021 Sheet 10 of 56

}

STORAGE
} }

} } 3

3

US 2021/0020041 A1

FIG . 10

1100

1102

1104C

11045

1104a

RESULTS FROM UVF EXECUTION

&

UVE2H
UVFI

Patent Application Publication

DECLARATIVE ANALYTICS API

COMPILER 1110

STORAGE 1130

VISION MODULES

STREAMS + METADATA

* MOTION DETECTION * FACE DETECTION * FACE RECOGNITION

VISION DATAFLOW

STREAM MANAGER

VISION DATAFLOW GRAPH

STREAM API

DATAFLOW AP

DISTRIBUTED RUNTIME 1120

Jan. 21 , 2021 Sheet 11 of 56

DATAFLOW ENGINE

DISTRIBUTED UVF EXECUTION

DISTRIBUTED PRE - PROCESSING

SCHEDULER API DISTRIBUTED SCHEDULER

DECODER CAMERA API

W 40 W 4

Y

W

Y Y Y W

1400 W

1140a

1140b

** RR RR * W NW W NWR WRRR R RR W NW NW WARRRRR

US 2021/0020041 A1

APPLICATION 1150
FIG . 11

1200

COMPUTER VISION EXPERT 1202

LAYPERSON END - USER 1204

Patent Application Publication

1203

1205

IMPERATIVE PROGRAM

DECLARATIVE QUERY
PROGRAMMING FRAMEWORK 1208 -STATIC PLATFORM

INDEPENDENCE (HW)

~ INTEROPERABILITY

COMPOSABILITY FRAMEWORK 1210 EASE - OF - USE USER INTERFACE - DYNAMIC PLATFORM INDEPENDENCE (SW)

DATABASE 1218 - DISTRIBUTED DATABASE - GRAPH DATABASE - 3D XPOINT OPTIMIZED DATABASE

Jan. 21 , 2021 Sheet 12 of 56

DATAFLOW
1209

WORKLOAD

A

C

1211

US 2021/0020041 A1

FIG . 12A

VISUAL QUESTION ANSWERING SYSTEM 1206

RESOURCE MANAGER 1212 - OPTIMAL SCHEDULER - LATENCY - TOLERATE SCHEDULER - REACTIVE SCHEDULER - PROACTIVE SCHEDULER

Patent Application Publication

- VISUAL QUERY SYNTAX

INCREMENTAL SCHEDULER
RESOURCE AVAILABILITY
1215

SCHEDULE
1213

12170

DATA AND METADATA

**

&
. --

W
1

3

+

1

Jan. 21 , 2021 Sheet 13 of 56

2

DATA AND METADATA

DATA AND METADATA

1217a

12176

GATEWAY 1216b

CAMERAS 1216a

RUNTIME ENVIRONMENT 1214
SERVERS 12160

-- COMPRESSION , COMPRESSIVE LEARNING - LIGHTWEIGHT RUNTIME ; PORTABLE RUNTIME
- PLUG - N - PLAYABLEVISION KERNELS - METADATA SCHEMA - FOG EXPANSION / SHRINKING - PROFILING

US 2021/0020041 A1

FIG . 12B

1300

RUNTIME
INLINE ANALYTICS 1310

Patent Application Publication

STORAGE

PROCESSING PIPELINE CONFIGURATION

STORAGE 1314

DATAFLOW COMPILER 1304

VISUAL QUERY 1302

1308

VISION KERNEL MODULE LIBRARY 1306

Jan. 21 , 2021 Sheet 14 of 56

FACE RECOGNITION

RUNTIMEY
OFFLINE ANALYTICS 1312

POSERECOGNITION OBJECT RECOGNITION

FIG . 13

US 2021/0020041 A1

VISION OPERATIONS GRAPH 1415

3 3 3 { { { { 3 3 3

USER - DEFINED VISION FUNCTIONS 1402
UVFq : streams.time (now) .alert (face_match (" Scott "))

UVF2 : streams.time (now) .alert (hotspot_detection ()) UVFz : streams.time (now - 24h) .process (count_people) ? DECLARATIVE API 1412

PREDECODE

OBJECT DETECTION
DETECTION

STORED STREAM

Patent Application Publication

STREAM
UVF1 UVF2

FACE RECOGNITION
DETECTION

COMPILER

HOTSPOT DETECTION

DO

WC

GENERATE VISION OPERATIONS GRAPH 1414

UVF3

STREAM It - 24h , V

FACE DETECTION

OBJECT COUNTER

Jan. 21 , 2021 Sheet 15 of 56

GENERATE VISION DATAFLOW GRAPH 1416

NOY

VISION MODULES ENCODE HARDWARE - SPECIFIC SCHEDULING INFORMATION 1418

Pogogogoax

9999999999

OpenCV
Intel extensions

OpenVX

US 2021/0020041 A1

VISION DATAFLOW GRAPH

1417

FIG . 14

1502

1506

1504

1500

I

Patent Application Publication

VISION CAPABILITY REPOSITORY

SCHEDULING SERVER
8 $ 8

og Xox got 99

Xox one 190 X 90 90 gor 90 XX Por o o o 90 X X 90

999 190 ** 999 * 190 XX en

100 XX go o xx xx 99 90 Yox DOM 90 xx 2X 90 x

PX 298 99 100 20 9

8

8

8 :

X 8

8 3 8

8 X 8

8 8 X

8 8

} }

8

:

8

Jan. 21 , 2021 Sheet 16 of 56

X

3

8 8

} 3

8 X

} }

0

8

3 3 3 } 3 } 3 3 3 3 3

15105

1510a

} 3 $

15100

} } 3

}

US 2021/0020041 A1

FIG . 15

Patent Application Publication Jan. 21 , 2021 Sheet 17 of 56 US 2021/0020041 A1

START

COLLECT AVAILABLE VISION CAPABILITY IMPLEMENTATIONS
1602

COLLECT RESOURCE TELEMETRY OF FOG DEVICES
1604

NO NEW VISION
WORKLOAD RECEIVED ?

YES

RE - SCHEDULE PENDING WORKLOADS
1608

UUUUUUUUUUUU

NO SCHEDULE
UPDATED ?

1610
YES

PUSH SCHEDULE TO FOG DEVICES
1612

T
RECEIVE VISION CAPABILITY REQUESTS FROM FOG DEVICES

1614

IDENTIFY APPROPRIATE VISION CAPABILITY IMPLEMENTATION
FOR EACH FOG DEVICE

DISTRIBUTE VISION CAPABILITY IMPLEMENTATIONS
TO FOG DEVICES

1618

FIG . 16

1700

Patent Application Publication

DECODED STREAM 1703

FILTERED STREAM 1705

STREAM 1701
STREAM INGRESS 1702

DISTRIBUTED PRE - PROCESSING

STREAMS * METADATA 1706

FILTERED STREAM + METADATA 1707

UVFT

VISION DATAFLOW GRAPH 1711

Jan. 21 , 2021 Sheet 18 of 56

DISTRIBUTED

UVF2

COMPILER 1710

OUTPUT 1713

EXECUTION 1712

UVF3

FIG . 17

US 2021/0020041 A1

Patent Application Publication Jan. 21 , 2021 Sheet 19 of 56 US 2021/0020041 A1

CLIENT APS
1801 3

3 {

REQUEST
SERVER
1802

METADATA
DATABASE

VISUAL
COMPUTE

LIBRARY (VCL)

ANALYSIS
FRIENDLY MEDIA
FORMAT (S)

1807

RAW MEDIA
FORMAT (S)

DATA STORAGE

FIG . 18

Patent Application Publication

STREAM OF INCOMING VISUAL DATA 1902

?

VISION PROCESSING TO EXTRACT METADATA 1904

STORE METADATA FOR FUTURE USE 1906

RECEIVE QUERIES FOR RELEVANT VISUAL DATA 1908

Jan. 21 , 2021 Sheet 20 of 56

FIG . 19

US 2021/0020041 A1

2000

2003

- 2002

-2004

Frame

Video

Image

Patent Application Publication

Name : ***
Frameld : < int >

Size : < int >
Date : « datatime >

Composed of Name : "
Size : < int >

Date : < datetime >
Duration : < time >

Name : * Size : < int >
Date : < datetime > Type : jpg / png / ..

At

Contains X1 : < float > X2 : sfloat > Y1 : < float > Y2 : < float >

Contains X1 : < float > X2 : < float > Y1 : < float > Y2 : < float >

Jan. 21 , 2021 Sheet 21 of 56

Subsetor

Person

Object

Location Name : *

Name : Age : < int >
DOB : " datetime >

Name :
Color : (RGB > Type : < chair ... >

: Lat1 : « double > Lat2 : double > Long1 : « double > Long2 : < double >

FIG . 20

US 2021/0020041 A1

2006

2008

2010

2100

2104a

Patent Application Publication

Person

2106a

Photo

Name : Jane Doe DOB : 4/15/1974

Contains
Person

Name : Hawaii 1.jpg

Location

21065

Date : 4/15/14 Size : 2MB

Name : Maui

LocatedAt

Name : John Doe DOB : 11/1/1975

Type : Island State : Hawaii
Population : 20000

Jan. 21 , 2021 Sheet 22 of 56

Person

2106C

Photo Name : Hawaii2.jpg Date : 4/16/14 Size : 2.5MB

Contains
Name : Alice Doe DOB : 8/15/2000

21046 FIG . 21

US 2021/0020041 A1

2200

Patent Application Publication

COMPRESS AND WRITE TO MEMORY ON PER - TILE BASIS 2206

Jan. 21 , 2021 Sheet 23 of 56

RECEIVE IMAGE 2202

DETERMINE OPTIMAL TILE SIZE AND SPLIT IMAGE INTO TILES 2204

FIG . 22

US 2021/0020041 A1

Patent Application Publication Jan. 21 , 2021 Sheet 24 of 56 US 2021/0020041 A1

2300

Time for Operation (Average over 100 images)
1200

A11 Analytic image format
PNG

800

Time in Milliseconds
600

400

200

Resize

FIG . 23

2402

2400

BSS3dd WOD

Patent Application Publication

EARLY DECISION 2406

2405a

PARTIAL COMPRESSION DATA 2404

FIG . 24A

2402

2400

Jan. 21 , 2021 Sheet 25 of 56

ADDITIONAL COMPRESSION DATA 2410

--24050

COMPRESSED

HUKO
LATEDECISION 2408

EARLY DECISION 2406

2405a

PARTIAL COMPRESSION DATA 2404

US 2021/0020041 A1

FIG . 24B

2400

Patent Application Publication

DECOMPRESSED VISUAL DATA 2414

COMPRESSION DATA 2410
2402

2412

24050

DECOMPRESSION
24050

DOMAIN DATA
QSS ddWOO

Jan. 21 , 2021 Sheet 26 of 56

LATE DECISION 2408

FINAL DECISION 2416

- EARLY DECISION
2406

2405a

PARTIAL COMPRESSION DATA 2404

FIG . 24C

US 2021/0020041 A1

Patent Application Publication Jan. 21 , 2021 Sheet 27 of 56 US 2021/0020041 A1

2500

nominatin POOLING
SOFTMAX OHHHH OTHER

FIG . 25A

Patent Application Publication Jan. 21 , 2021 Sheet 28 of 56 US 2021/0020041 A1

2500

CONVOLUTION

cm POOLING
SOFTMAX

HHHO 2

H - 10
FIG . 25B

Patent Application Publication Jan. 21 , 2021 Sheet 29 of 56 US 2021/0020041 A1

2600

concatenation

1x1 conv 3x3 cony 5x5 conv 3x3 max
pooling

Previous
layer FIG . 26

2700

Filter
concatenation

3x3 conv 5x5 conv 1x1 max
pooling

1x1 conv

1x1 conv 1x1 conv 3x3 max
pooling

Previous
layer

FIG . 27

2800

Patent Application Publication

concatenation

2830b

Horizontal N - point butterflies

1x1 conv 2810a

3x3 conv 28106

5x5 conv 28100

3x3 max pooling 2820

Vertical N - point butterflies

Jan. 21 , 2021 Sheet 30 of 56

2830a

Previous layer FIG . 28

US 2021/0020041 A1

2900

Patent Application Publication

concatenation

2930b

3x3 conv

5x5 conv

1x1 max pooling 29206

Horizontal N - point butterflies

1x1 conv 29102

1x1 conv 29106

1x1 conv 2910c

3x3 max pooling 2920a

Vertical N - point butterflies

Jan. 21 , 2021 Sheet 31 of 56

2930a

Previous layer FIG . 29

US 2021/0020041 A1

Patent Application Publication Jan. 21 , 2021 Sheet 32 of 56 US 2021/0020041 A1

: NORMAL LAYERS 3004

FIG . 30

A

BUTTERFLY LAYERS 3002

Patent Application Publication

31000

3110a

3120a

3110a

3130a

31100

31200

31100

3130b

3110c

31200

3110c

3130c

Jan. 21 , 2021 Sheet 33 of 56

nu

31100

31200

31100

FIG . 31A

FIG . 31B

US 2021/0020041 A1

Patent Application Publication Jan. 21 , 2021 Sheet 34 of 56 US 2021/0020041 A1

3220

? Transform domain data (KxKx16)
K = N / 4

Input image (NxN)
3210 X

3212 4x4 DCT

16 transform
coefficients

3222
K

FIG . 32

CNN 3200

4:14 TRANSFORM DOMAIN
DATA
3220

FIG . 33

CNN

3400

Input image (NXN)
N 4K

convolutions

Convolutions

Pooling

Concatenation

Patent Application Publication

80

3500

FIG . 34

Jan. 21 , 2021 Sheet 35 of 56

PLAY VIDEO 3530

PIXEL DOMAIN DATA (SIZEN) 3502

COMPRESSED DOMAIN DATA (SIZE << N) 3504

PIXEL DOMAIN DATA (SIZEN) 3502

ENCODER

DECODER 3520

VIDEO ANALYTICS 3540

US 2021/0020041 A1

FIG . 35

Patent Application Publication

3600

COMPRESSED DOMAIN DATA (SIZE « N)

PARTIAL COMPRESSED DOMAIN DATA (VARIABLE SIZE) 3606

PIXEL DOMAIN DATA (SIZEN) 3602

2 1

ENCODER 3610

VIDEO DECODER 3620

MACHINE CONSUMPTION ! VIDEO ANALYTICS 3630

5 $

5 3

OPTIONAL

Jan. 21 , 2021 Sheet 36 of 56

FIG . 36

US 2021/0020041 A1

3700

Patent Application Publication Jan. 21 , 2021 Sheet 37 of 56

PIXEL DOMAIN DATA (SIZEN) 3702

VIDEO ENCODER 3710

COMPRESSED DOMAIN DATA (SIZE < N) 3704

MACHINE CONSUMPTION / MAGE CLASSIFICATION 3720

DCT

QUANTIZATION
FIG . 37

US 2021/0020041 A1

Patent Application Publication Jan. 21 , 2021 Sheet 38 of 56 US 2021/0020041 A1

3800

Precision

1.00

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

10.00K

FIG . 38

Patent Application Publication Jan. 21 , 2021 Sheet 39 of 56 US 2021/0020041 A1

3900

START

OBTAIN NEW PHOTO
3902

COLLECT CONTEXT INFORMATION
OF NEW PHOTO

NO

ENCODE NEW PHOTO BY ITSELF MATCHING MASTER
PHOTO IDENTIFIED ?

3906
wwwwwwwwww

YES

ENCODE NEW PHOTO WITH
MASTER PHOTO

3908

DESIGNATE NEW PHOTO AS A
MASTER PHOTO

FIG . 39

EDGE DEVICES

4000

TOP - VIEW SENSORS 4015a

Patent Application Publication

www

4015b

FOG 4020

PERSON DETECTION

DEMOGRAPHICS IDENTIFICATION

Jan. 21 , 2021 Sheet 40 of 56

40150

CLOUD 4030

PEOPLE PROFILING
HEAT MAP GENERATION

FIG . 40A

US 2021/0020041 A1

Patent Application Publication Jan. 21 , 2021 Sheet 41 of 56 US 2021/0020041 A1

TOP VIEW SENSORS

M ***

$

Mi
4002

FIG . 40B

Patent Application Publication

4020

4021

4022

4023

4024

PERSON DATABASE

DEMOGRAPHICS FEATURES EXTRACTION

DEMOGRAPHICS CLASSIFIER TRAINING

TRAINED DEMOGRAPHICS MODEL

SENSOR DATA PRE PROCESSING
PERSON DETECTION

DEMOGRAPHICS FEATURE EXTRACTION

DEMOGRAPHICS CLASSIFICATION
DEMOGRAPHICS IDENTIFICATION 4029

Jan. 21 , 2021 Sheet 42 of 56

4025

4026

4027

4028

FIG . 40C

US 2021/0020041 A1

Patent Application Publication Jan. 21 , 2021 Sheet 43 of 56 US 2021/0020041 A1

41 ReID DATABASE 4110

MATCHER 4108 FIG . 41

TRACKER 4106

DETECTOR

HOSS08ddd 4102

4200

Patent Application Publication

42100

11
ODS

$
3 }

CAMERA

GATEWAY 4220a

A

4210b

?]

D HD

Jan. 21 , 2021 Sheet 44 of 56

CAMERA

GATEWAY 42205

42100

CLOUD 4230

CAMERA

FIG . 42

US 2021/0020041 A1

4300

RECEIVER

Patent Application Publication

PROCESSOR DETECTOR

TRACKER
MATCHER

SENDER

3 }

CAMERA1

RECEIVER

PRE
PROCESSOR DETECTOR

TRACKER
MATCHER

SENDER

RelD DATABASE

CAMERA2

RECEIVER

Jan. 21 , 2021 Sheet 45 of 56

.

PRE
PROCESSOR DETECTOR

TRACKER
MATCHER

SENDER

un

CAMERA3

IBBI

CAMERA

GATEWAY

CLOUD

US 2021/0020041 A1

FIG . 43

44100

Patent Application Publication

4410a

(2) DEVICE ONBOARDING

(4) DEVICE ONBOARDING

FOG NETWORK

FOG NETWORK

NEW DEVICE
(1) REGISTER

SELF - SOVERIGN DENTITY

(3) VERIFY OWNERSHIP OF SELF - SOVERIGN

(5) VERIFY OWNERSHIP OF SELF - SOVERIGN IDENTITY

Jan. 21 , 2021 Sheet 46 of 56

SELF SOVEREIGN IDENTITY BLOCKCHAIN FIG . 44

US 2021/0020041 A1

4500

New Device " A71C3

Owner Device " D025X "

Credential Service " C85xx "

Blockchain

Patent Application Publication

S1 - Sign_Kalice (" A71C3 ") : UPDATE Blockchain [" S1 " , " PKalice " , " A71C3 " }

< RET > Success RETRIEVEdoxm

-Verify " A71C3 " Isn't in a prior

Block

RETRIEVE Blockchain ? " di "

- " A71C3 "

S2 - Sign_Kalice (" A71C3 ") : < RET >
[" deviceuuid " - " A71C3 " , " S2 ")

- Add " A71C3 " to New Block

< RET > [" S1 " , " PKalice " , " A71C3]

Jan. 21 , 2021 Sheet 47 of 56

Verity_PKalice (S2) Verify_PKalice (S1)

UPDATE / doxm " devowner " - " D025x "

CREATE / cmsdevices ' childnamesema
" Alice

UPDATE Alice " dim A71C3 "

UPDATE cred credowner . " C85xx "

US 2021/0020041 A1

FIG . 45

4600

New Device " A71C3 "

Owner Device " D025X

Existing Device " A71C3 "

Blockchain

Patent Application Publication

RETRIEVEdoxm
$ 1 = Sign_Kalice1 (" A71C3 ") : < RET >
[" deviceuuid " . " A71C3 " , " S1 "]

RETRIEVEdoxm
$ 2 = Sign_Kalice (" A71C3 ") : < RET >
(" deviceuuid " . " A71C3 " , " S2 "

RETRIEVE Blockchain ? " oj "

- " A71C3 "

Verify " A71C3 " Isn't in a prior

Block

< RET > [" S3 " , " PKalice " , " A71C3

")

Verity_PKalice (83) Verify_PKalice (S2) ! = Verify_PKalice (S1)

Jan. 21 , 2021 Sheet 48 of 56

UPDATE / doxm " devowner " " D025x

US 2021/0020041 A1

FIG . 46

4700

New Device " A71C3 "

RETRIEVE doxm

Owner Device * D025X "

Credential Service " C85xx "

Access Service " A85xx "

Patent Application Publication

< RET » { " deviceuuid " " A71C31

Verity " A71C3 " isn't already in

use by Owner

UPDATE Idoxm " devowner " D025x "

CREATE / cmsdevices " childname
" Alice "

Jan. 21 , 2021 Sheet 49 of 56

UPDATE Alice " di " - " A71C3 "

UPDATE / cred ' credowner " " C85xx

CREATE / cmsdevices " childname " Alice "
UPDATE Alice " di " . " A71C3 "

UPDATE cred " accessowner . " A85xx

US 2021/0020041 A1

FIG . 47

4800

4810b

Patent Application Publication

4810a

(3) NOTIFY AVAILABILITY OF ALGORITHM

FOG NETWORK

(5) AGREE TO USE ALGORITHM

FOG NETWORK B

(1) REGISTER ALGORITHM DEVICE

(4) READ VETTING STATUS

Jan. 21 , 2021 Sheet 50 of 56

4430

SELFSOVEREIGN BLOCKCHAIN

(2) ALGORITHM VETTING
(AUTHENTICITY , SAFETY , BEHAVIOR , ETC.)

4420
FIG . 48

US 2021/0020041 A1

4900

Patent Application Publication

New Algorithm

Distributed

Distributed

ID from Alice

Computing

Computing

Blockchain

" 91E21 "

Node N1

Node N2

$ 1 = Sign_Kalice (" 91E21 ") : UPDATE Blockchain [" S1 " , " PKalice " , " 91E21 " , " Computes Pi to 21 digits " , Pi21 - app)

< RET > Success

m Apply vetting for " 91E21 "

NOTIFY " 91621 " is available for use Notify " 91E21 " is available for use

- Verify " 91E21 " isn't already

RETRIEVE Blockchain ? " Algid " = " 91021 "

assigned -Add " 91821 " to

< RET > [" S1 " , " PKalice " , " 91E21 " , " Computes Pi to 21 digits " , Pi21 - app) a transaction

Verity_PKalice (81) ;

Retrieve Blockchain ? " Algid "

191E21 "

PIN1 - Execute (Pi21 - app)

< RET > [" S1 " , " PKalice " , " 91E21 " " Computes Pi to 21 digits " .

Pi21 - app)

Verity_PKalice (S1) ;

SEND ' 91E21 " results as PIN ?

PiN2 - Execute (Pi21 - app)

Jan. 21 , 2021 Sheet 51 of 56 US 2021/0020041 A1

Verity (PiN1

w

PIN2)

FIG . 49

Patent Application Publication Jan. 21 , 2021 Sheet 52 of 56 US 2021/0020041 A1

5000

TRADITIONAL IMAGE FORMAT

ENCODE COMPRESS
5006

RAW PIXEL
DATA
5002

STORE
5010

COMPRESS

ANALYTIC MAGE FORMAT

FIG . 50

Patent Application Publication Jan. 21 , 2021 Sheet 53 of 56 US 2021/0020041 A1

5100

Visual Compute Library

Analytic Format JPEG
PNG

Transformations

OpenCV
TileDB

Transformations

5102

FIG . 51

5200

1

2

1

Z

Patent Application Publication

Tile A

1 2

5210

Tile C

1 2

Jan. 21 , 2021 Sheet 54 of 56

Tile Order 5220

A 0,0

A0,1

A 0,2

A 1,0

A 1,1

A 1,2

B0,0

B 0,1

B 0,2

Image Order 5230

A 0,0

A0,1

A 0,2

B 0,1

B 0,2

A 1,0

A 1,1

A 1,2

B 1,1

US 2021/0020041 A1

FIG . 52

Patent Application Publication Jan. 21 , 2021 Sheet 55 of 56 US 2021/0020041 A1

5300

START

OBTAIN SENSOR DATA FROM TOP - VIEW SENSING DEVICE
5302

wwwwwwwwwwwwwwwwww

PERFORM PRE - PROCESSING ON SENSOR DATA
5304

GENERATE VISUAL REPRESENTATION BASED ON SENSOR
DATA

PERSON DETECTED
IN VISUAL REPRESENTATION ?

5308

YES

DENTIFY FEATURES ASSOCIATED WITH THE PERSON
5310

IDENTIFY DEMOGRAPHIC INFORMATION BASED ON THE
IDENTIFIED FEATURES

5312

FIG . 53

Patent Application Publication Jan. 21. 2021 Sheet 56 of 56 US 2021/0020041 A1

START

IDENTIFY NEW WORKLOAD
5402

GENERATE WORKLOAD GRAPH
5404

GENERATE DEVICE CONNECTIVITY GRAPH
5406

IDENTIFY PRIVACY POLICIES ASSOCIATES WITH
WORKLOAD TASKS

5408

IDENTIFY PRIVACY LEVELS ASSOCIATED WITH DEVICE
CONNECTIVITY

5410

IDENTIFY PRIVACY CONSTRAINT FOR WORKLOAD
SCHEDULING

5412

DETERMINE WORKLOAD SCHEDULE BASED ON
PRIVACY CONSTRAINT

5414

FIG . 54

US 2021/0020041 A1 Jan. 21 , 2021
1

PRIVACY - PRESERVING DISTRIBUTED
VISUAL DATA PROCESSING

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This patent application is a continuation (and
claims the benefit under 35 U.S.C. $ 120) of U.S. application
Ser . No. 15 / 859,324 , filed Dec. 29 , 2017 , which claims the
benefit of the filing date of U.S. Provisional Patent Appli
cation Ser . No. 62 / 611,536 , filed on Dec. 28 , 2017 , and
entitled “ VISUAL FOG , ” the content of which is hereby
expressly incorporated by reference .

FIELD OF THE SPECIFICATION
[0002] This disclosure relates in general to the field of
computing systems , and more particularly , though not exclu
sively , to visual computing .

BACKGROUND

[0003] Advancements in modern computing have led to an
increased use of visual computing for a variety of main
stream computing applications . In particular , rapid deploy
ments of cameras have been leveraged for numerous visual
computing applications that rely on large - scale video ana
lytics and visual data processing . Existing approaches to
large - scale visual computing , however , suffer from numer
ous limitations . For example , existing visual computing
approaches are implemented using rigid designs that utilize
resources inefficiently and provide limited functionality ,
privacy , and security . As a result , existing approaches often
suffer from high latency and are inaccurate , unreliable ,
inflexible , and incapable of scaling efficiently .

[0013] FIG . 18 illustrates an example embodiment of a
visual data storage architecture .
[0014] FIG . 19 illustrates an example of a vision process
ing pipeline that leverages metadata for searching visual
data .
[0015] FIGS . 20 and 21 illustrate examples of representing
visual metadata using a property graph .
[0016] FIG . 22 illustrates an example embodiment of an
analytic image format designed to aid in visual data pro
cessing .
[0017] FIG . 23 illustrates a performance graph for various
image formats .
[0018] FIGS . 24A , 24B , and 24C illustrate an example
embodiment of a multi - domain cascade convolutional neu
ral network (CNN) .
[0019] FIGS . 25A - B , 26 , 27 , 28 , 29 , 30 , and 31A - B
illustrate the use of butterfly operations for a multi - domain
convolutional neural network (CNN) .
[0020] FIGS . 32 and 33 illustrate an example embodiment
of a three - dimensional (3D) CNN for processing com
pressed visual data .
[0021] FIG . 34 illustrates an example of a pixel - domain
CNN .
[0022] FIG . 35 illustrates an example of a pixel - domain
visual analytics pipeline .
[0023] FIGS . 36 and 37 illustrate example embodiments
of compressed - domain visual analytics pipelines .
[0024] FIG . 38 illustrates a performance graph showing
the precision of a CNN trained using compressed visual
data .
[0025] FIG . 39 illustrates a flowchart for an example
embodiment of context - aware image compression .
[0026] FIGS . 40A , 40B , and 40C illustrate an example
embodiment of a privacy - preserving demographic identifi
cation system .
[0027] FIGS . 41 , 42 , and 43 illustrate an example embodi
ment of privacy - preserving distributed visual data process
ing .
[0028] FIGS . 44 , 45 , and 46 illustrate example embodi
ments of self - sovereign device identification for distributed
computing networks .
[0029] FIG . 47 illustrates an example of device onboard
ing / commissioning in a visual fog network without conflict
resolution .
[0030] FIGS . 48 and 49 illustrate example embodiments
of algorithm identification for distributed computing using a
self - sovereign blockchain .
[0031] FIGS . 50 , 51 , and 52 illustrate example embodi
ments for processing traditional and analytic image formats .
[0032] FIG . 53 illustrates a flowchart for an example
embodiment of privacy - preserving demographics identifica
tion .
[0033] FIG . 54 illustrates a flowchart for an example
embodiment of privacy - preserving distributed visual pro
cessing

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The present disclosure is best understood from the
following detailed description when read with the accom
panying figures . It is emphasized that , in accordance with
the standard practice in the industry , various features are not
necessarily drawn to scale , and are used for illustration
purposes only . Where a scale is shown , explicitly or implic
itly , it provides only one illustrative example . In other
embodiments , the dimensions of the various features may be
arbitrarily increased or reduced for clarity of discussion .
[0005] FIG . 1 illustrates an example embodiment of a
visual fog system in accordance with certain embodiments .
[0006] FIGS . 2 , 3 , 4 , and 5 illustrate examples of Internet
of - Things (IoT) networks and architectures that can be used
in accordance with certain embodiments .
[0007] FIGS . 6 and 7 illustrate example computer archi
tectures that can be used in accordance with certain embodi
ments .
[0008] FIG . 8 illustrates an example embodiment of an
architecture for visual fog nodes .
[0009] FIGS . 9 , 10 , 11 , and 12A - B illustrate example
embodiments of a visual fog architecture .
[0010] FIGS . 13 and 14 illustrate example embodiments
associated with a visual question answering (VQA) frame
work .
[0011] FIGS . 15 and 16 illustrate example embodiments of
device - centric scheduling for visual fog computing .
[0012] FIG . 17 illustrates an example embodiment of a
runtime processing pipeline for a visual fog architecture .

EMBODIMENTS OF THE DISCLOSURE

[0034] This patent application claims the benefit of the
filing date of U.S. Provisional Patent Application Ser . No.
62 / 611,536 , filed on Dec. 28 , 2017 , and entitled “ VISUAL
FOG , ” the content of which is hereby expressly incorporated
by reference .
[0035] The following disclosure provides many different
embodiments , or examples , for implementing different fea

US 2021/0020041 A1 Jan. 21 , 2021
2

tures of the present disclosure . Specific examples of com
ponents and arrangements are described below to simplify
the present disclosure . These are , of course , merely
examples and are not intended to be limiting . Further , the
present disclosure may repeat reference numerals and / or
letters in the various examples . This repetition is for the
purpose of simplicity and clarity and does not in itself dictate
a relationship between the various embodiments and / or
configurations discussed . Different embodiments may have
different advantages , and no particular advantage is neces
sarily required of any embodiment .
[0036] Example embodiments that may be used to imple
ment the features and functionality of this disclosure will
now be described with more particular reference to the
attached FIGURES .
[0037] Visual Fog Introduction
[0038] FIG . 1 illustrates an example embodiment of a
visual fog system 100 in accordance with certain embodi
ments . Advancements in modern computing have led to an
increased use of computer vision technologies and large
scale visual computing for a variety of mainstream comput
ing applications . In particular , rapid deployments of cameras
and other types of computer vision technologies have been
leveraged for a variety of visual computing applications that
rely on large - scale video analytics and visual data process
ing . For example , large - scale visual computing can be
leveraged for security and surveillance , transportation (e.g. ,
traffic monitoring , navigation , parking , infrastructure plan
ning , security or amber alerts) , retail (e.g. , customer analyt
ics) , enterprise applications , and so forth .
[0039] Existing approaches to large - scale visual comput
ing , however , suffer from numerous limitations . In particu
lar , existing visual computing approaches are implemented
using rigid designs that utilize resources inefficiently (e.g. ,
processing , bandwidth , and storage resources) and provide
limited functionality . For example , using existing
approaches , visual data is typically captured by devices at
the edge of a network and simply funneled to the cloud for
processing and storage , thus relying heavily on the cloud
infrastructure . Due to the large size of visual data , however , this approach typically consumes significant network band
width and requires substantial processing and storage
resources in the cloud . As a result , existing approaches often
suffer from high latency and inefficient resource utilization ,
and may also be inaccurate , unreliable , inflexible , and inca
pable of scaling efficiently .
[0040] Accordingly , this disclosure describes various
embodiments of a visual fog computing system 100 for
performing large - scale visual computing in an efficient and
reliable manner . For example , rather than relying exclu
sively or primarily on cloud resources 130 for visual com
puting tasks , visual fog system 100 leverages both cloud 130
and edge 110 resources , which may be collectively referred
to as the “ fog . ” In this manner , visual fog system 100 can
leverage all available “ fog ” resources to perform visual
computing tasks more efficiently , thus improving resource
utilization , latency , accuracy , precision , and reliability .
Moreover , as described further throughout this disclosure ,
visual fog system 100 can be implemented using a flexible
design that supports ad - hoc queries and is highly scalable ,
thus rendering it suitable for many visual computing appli
cations and use cases .
[0041] In the illustrated embodiment of FIG . 1 , visual fog
system 100 includes edge resources 110 and a plurality of

associated visual sensors 120 , cloud resources 130 , and
communication networks 150 , which are respectively dis
cussed further below . Moreover , in various embodiments ,
these components of visual fog system 100 may be imple
mented some or all aspects of the visual computing func
tionality described throughout this disclosure in connection
with the remaining FIGURES .
[0042] Edge resources 110 may include any equipment ,
devices , and / or components deployed or connected near the
" edge ” of a communication network . In the illustrated
embodiment , for example , edge resources 110 include end
user devices 112a , b (e.g. , desktops , laptops , mobile
devices) , Internet - of - Things (IoT) devices 114 , and gate
ways or routers 116 , as described further below . Edge
resources 110 may communicate with each other and / or with
other remote networks and resources (e.g. , cloud resources
130) through one or more communication networks 150 ,
such as local area network 150a and / or wide area network
150b . Moreover , in the illustrated embodiment , edge
resources 110 collectively include a plurality of visual
sensors 120 (e.g. , cameras) for capturing visual representa
tions and data associated with their surroundings . In some
embodiments , for example , certain end - user devices 112
and / or IoT devices 114 may include one or more cameras
and / or other types of visual sensors 120. Visual sensors 120
may include any type of visual or optical sensors , such as
cameras , ultraviolet (UV) sensors , laser rangefinders (e.g. ,
light detection and ranging (LIDAR)) , infrared (IR) sensors ,
electro - optical / infrared (EO / IR) sensors , and so forth .
[0043] End - user devices 112 may include any device that
enables or facilitates interaction with a user in visual fog
system 100 , including , for example , desktop computers ,
laptops , tablets , mobile phones and other mobile devices ,
and wearable devices (e.g. , smart watches , smart glasses ,
headsets) , among other examples .
[0044] IoT devices 114 may include any device capable of
communicating and / or participating in an Internet - of - Things
(IoT) system or network . IoT systems may refer to new or
improved ad - hoc systems and networks composed of a
variety of different devices (e.g. , IoT devices 114) interop
erating and synergizing for a particular application or use
case . Such ad - hoc systems are emerging as more and more
products and equipment evolve to become “ smart , ” meaning
they are controlled or monitored by computer processors and
are capable of communicating with other devices . For
example , an IoT device 114 may include a computer pro
cessor and / or communication interface to allow interopera
tion with other components of visual fog system 100 , such
as with cloud resources 130 and / or other edge resources 110 .
IoT devices 114 may be “ greenfield ” devices that are devel
oped with IoT capabilities from the ground - up , or “ brown
field ” devices that are created by integrating IoT capabilities
into existing legacy devices that were initially developed
without IoT capabilities . For example , in some cases , IoT
devices 114 may be built from sensors and communication
modules integrated in or attached to “ things , ” such as
equipment , toys , tools , vehicles , living things (e.g. , plants ,
animals , humans) , and so forth . Alternatively , or addition
ally , certain IoT devices 114 may rely on intermediary
components , such as edge gateways or routers 116 , to
communicate with the various components of system 100 .
[0045] IoT devices 114 may include various types of
sensors for monitoring , detecting , measuring , and generating
sensor data and signals associated with characteristics of

US 2021/0020041 A1 Jan. 21 , 2021
3

their environment . In some embodiments , for example ,
certain IoT devices 114 may include visual sensors 120 (e.g. ,
cameras) for capturing visual representations and data asso
ciated with their surroundings . IoT devices 114 may also
include other types of sensors configured to detect charac
teristics such as movement , weight , physical contact , tem
perature , wind , noise , light , position , humidity , radiation ,
liquid , specific chemical compounds , battery life , wireless
signals , computer communications , and bandwidth , among
other examples . Sensors can include physical sensors (e.g. ,
physical monitoring components) and virtual sensors (e.g. ,
software - based monitoring components) . IoT devices 114
may also include actuators to perform various actions in
their respective environments . For example , an actuator may
be used to selectively activate certain functionality , such as
toggling the power or operation of a security system (e.g. ,
alarm , camera , locks) or household appliance (e.g. , audio
system , lighting , HVAC appliances , garage doors) , among
other examples .
[0046] Indeed , this disclosure contemplates use of a poten
tially limitless universe of IoT devices 114 and associated
sensors / actuators . IoT devices 114 may include , for
example , any type of equipment and / or devices associated
with any type of system 100 and / or industry , including
transportation (e.g. , automobile , airlines) , industrial manu
facturing , energy (e.g. , power plants) , telecommunications
(e.g. , Internet , cellular , and television service providers) ,
retail , medical (e.g. , healthcare , pharmaceutical) , and / or
food and beverage , among others . In the transportation
industry , for example , IoT devices 114 may include equip
ment and devices associated with aircrafts , automobiles , or
vessels , such as navigation systems , autonomous flight or
driving systems , traffic monitoring and / or planning systems ,
parking systems , and / or any internal mechanical or electrical
components that are monitored by sensors (e.g. , engines) .
IoT devices 114 may also include equipment , devices ,
and / or infrastructure associated with industrial manufactur
ing and production , shipping (e.g. , cargo tracking) , commu
nications networks (e.g. , gateways , routers , servers , cellular
towers) , server farms , electrical power plants , wind farms ,
oil and gas pipelines , water treatment and distribution ,
wastewater collection and treatment , and weather monitor
ing (e.g. , temperature , wind , and humidity sensors) , among
other examples . IoT devices 114 may also include , for
example , any type of “ smart ” device or system , such as
smart entertainment systems (e.g. , televisions , audio sys
tems , videogame systems) , smart household or office appli
ances (e.g. , heat - ventilation - air - conditioning (HVAC) appli
ances , refrigerators , washers and dryers , coffee brewers) ,
power control systems (e.g. , automatic electricity , light , and
HVAC controls) , security systems (e.g. , alarms , locks , cam
eras , motion detectors , fingerprint scanners , facial recogni
tion systems) , and other home automation systems , among
other examples . IoT devices 114 can be statically located ,
such as mounted on a building , wall , floor , ground , lamp
post , sign , water tower , or any other fixed or static structure .
IoT devices 114 can also be mobile , such as devices in
vehicles or aircrafts , drones , packages (e.g. , for tracking
cargo) , mobile devices , and wearable devices , among other
examples . Moreover , any type of edge resource 110 may
also be considered as an IoT device 114 , including end - user
devices 112 and edge gateways 116 , among other examples .
[0047] Edge gateways and / or routers 116 may be used to
facilitate communication to and from edge resources 110 .

For example , gateways 116 may provide communication
capabilities to existing legacy devices that were initially
developed without any such capabilities (e.g. , " brownfield "
IoT devices 114) . Gateways 116 can also be utilized to
extend the geographical reach of edge resources 110 with
short - range , proprietary , or otherwise limited communica
tion capabilities , such as IoT devices 114 with Bluetooth or
ZigBee communication capabilities . For example , gateways
116 can serve as intermediaries between IoT devices 114 and
remote networks or services , by providing a front - haul to the
IoT devices 114 using their native communication capabili
ties (e.g. , Bluetooth , ZigBee) , and providing a back - haul to
other networks 150 and / or cloud resources 130 using
another wired or wireless communication medium (e.g. ,
Ethernet , Wi - Fi , cellular) . In some embodiments , a gateway
116 may be implemented by a dedicated gateway device , or
by a general - purpose device , such as another IoT device 114 ,
end - user device 112 , or other type of edge resource 110. In
some instances , gateways 116 may also implement certain
network management and / or application functionality (e.g. ,
visual computing functionality , IoT application and man
agement functionality) , either separately or in conjunction
with other components , such as cloud resources 130 and / or
other edge resources 110 .
[0048] Cloud resources 130 may include any resources or
services that are hosted remotely over a network , which may
otherwise be referred to as in the “ cloud . ” In some embodi
ments , for example , cloud resources 130 may be remotely
hosted on servers in a datacenter (e.g. , application servers ,
database servers) . Cloud resources 130 may include any
resources , services , and / or functionality that can be utilized
by or for edge resources 110 , including but not limited to ,
visual computing applications and services , IoT application
and management services , data storage , computational ser
vices (e.g. , data analytics , searching , diagnostics and fault
management) , security services (e.g. , surveillance , alarms ,
user authentication) , mapping and navigation , geolocation
services , network or infrastructure management , payment
processing , audio and video streaming , messaging , social
networking , news , and weather , among other examples .
[0049] Communication networks 150a , b may be used to
facilitate communication between components of system
100. In the illustrated embodiment , for example , edge
resources 110 are connected to local area network (LAN)
150a in order to facilitate communication with each other
and / or other remote networks or resources , such as wide area
network (WAN) 150b and / or cloud resources 130. In various
embodiments , visual fog system 100 may be implemented
using any number or type of communication network (s) 150 ,
ing ding local area networks , wide area networks , public
networks , the Internet , cellular networks , Wi - Fi networks ,
short - range networks (e.g. , Bluetooth or ZigBee) , and / or any
other wired or wireless communication networks or medi
ums .

[0050] In general , edge resources 110 (and in particular
IoT devices 114) may generate an extremely large volume
and variety of data . As one example , edge resources 110 with
visual sensors 120 may generate large volumes of visual
data , such as video and / or images . Edge resources 110
typically offload this data to the cloud 130 for processing
and / or storage . Cloud resources 130 , however , may not
necessarily be suited to handle the rapidly growing volume ,
variety , and velocity of data generated by IoT devices 114
and other edge resources 110. For example , cloud - based

US 2021/0020041 A1 Jan. 21 , 2021
4

or

an

processing may not be ideal in certain circumstances , such
as processing time - sensitive or highly confidential data ,
when faced with network bandwidth constraints , among
other examples . Accordingly , in some embodiments , visual
fog system 100 may leverage " edge ” processing to augment
the performance and capabilities of the cloud 130 using edge
resources 110. Edge processing is an approach that involves
processing certain data at the network edge (e.g. , using edge
resources 110) , near where the data is generated , rather than
simply funneling large volumes of data to the cloud for
processing and storage . Certain data may still be sent to the
cloud , as appropriate , such as for deeper analysis and / or
long - term storage . Edge processing may be used to comple
ment the shortcomings of cloud - based processing (e.g. ,
when cloud - based processing is inefficient , ineffective , and /
or unsecure) , and thus improve the handling of the growing
volume , variety , and velocity of data generated by IoT
devices 114 and / or other edge resources 110. For example ,
in some cases , processing data near its source (e.g. , in the
network edge) rather than in the cloud may improve per
formance and / or avoid system failures or disasters . Edge
processing may also conserve network bandwidth , which
may be particularly beneficial when facing bandwidth con
straints and / or limited network connectivity .
[0051] In some cases , the collective use of both edge 110
and cloud 130 resources may be referred to as “ fogº com
puting , as functionality of the “ cloud ” 130 is effectively
extended by the edge resources 110 , thus forming a “ fog ”
over the network edge . Moreover , in some embodiments ,
devices 110 in the " fog ” may connect and / or communicate
with each other using an interconnection standard or proto
col , such as the open interconnect consortium (OIC) stan
dard specification 1.0 , released by the Open Connectivity
FoundationTM (OCF) on Dec. 23 , 2015 , which enables
devices to discover and connect with each other ; Thread , a
networking protocol for Internet - of - Things (IoT) devices
used in “ smart ” home automation and similar deployments ,
developed by an alliance of organizations named the
“ Thread Group ” ; the optimized link state routing (OLSR)
protocol ; and / or the better approach to mobile ad - hoc net
working (B.A.T.M.A.N.) , among other examples .
[0052] Moreover , in some embodiments , fog computing
may be leveraged by visual fog system 100 for large - scale
visual computing applications . For example , in some
embodiments , the components of visual fog system 100
(e.g. , edge resources 110 , cloud resources 130) may be
implemented with some or all aspects of the visual comput
ing functionality described throughout this disclosure in
connection with the remaining FIGURES .
[0053] Any , all , or some of the computing devices of
system 100 may be adapted to execute any operating system ,
including Linux or other UNIX - based operating systems ,
Microsoft Windows , Windows Server , MacOS , Apple iOS ,
Google Android , or any customized and / or proprietary oper
ating system , along with virtual machines adapted to virtu
alize execution of a particular operating system .
[0054] While FIG . 1 is described as containing or being
associated with a plurality of elements , not all elements
illustrated within system 100 of FIG . 1 may be utilized in
each alternative implementation of the present disclosure .
Additionally , one or more of the elements described in
connection with the examples of FIG . 1 may be located
external to system 100 , while in other instances , certain
elements may be included within or as a portion of one or

more of the other described elements , as well as other
elements not described in the illustrated implementation .
Further , certain elements illustrated in FIG . 1 may be
combined with other components , as well as used for
alternative or additional purposes in addition to those pur
poses described herein .
[0055] Additional embodiments associated with the
implementation of a visual fog computing system 100 are
described further in connection with the remaining FIG
URES . Accordingly , it should be appreciated that visual fog
system 100 of FIG . 1 may be implemented with any aspects
of the embodiments described throughout this disclosure .
[0056] Example Internet - of - Things (IoT) Implementa
tions
[0057] FIGS . 2-5 illustrate examples of Internet - of - Things
(IoT) networks and devices that can be used in accordance
with embodiments disclosed herein . For example , the opera
tions and functionality described throughout this disclosure
may be embodied by an IoT device or machine in the
example form of an electronic processing system , within
which a set or sequence of instructions may be executed to
cause the electronic processing system to perform any one of
the methodologies discussed herein , according to
example embodiment . The machine may be an IoT device or
an IoT gateway , including a machine embodied by aspects of
a personal computer (PC) , a tablet PC , a personal digital
assistant (PDA) , a mobile telephone or smartphone , or any
machine capable of executing instructions (sequential or
otherwise) that specify actions to be taken by that machine .
Further , while only a single machine may be depicted and
referenced in the example above , such machine shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein . Further , these and like examples to a processor - based
system shall be taken to include any set of one or more
machines that are controlled by or operated by a processor
(e.g. , a computer) to individually or jointly execute instruc
tions to perform any one or more of the methodologies
discussed herein .
[0058] FIG . 2 illustrates an example domain topology for
respective internet - of - things (IoT) networks coupled
through links to respective gateways . The internet of things
(IoT) is a concept in which a large number of computing
devices are interconnected to each other and to the Internet
to provide functionality and data acquisition at very low
levels . Thus , as used herein , an IoT device may include a
semiautonomous device performing a function , such as
sensing or control , among others , in communication with
other IoT devices and a wider network , such as the Internet .
[0059] Often , IoT devices are limited in memory , size , or
functionality , allowing larger numbers to be deployed for a
similar cost to smaller numbers of larger devices . However ,
an IoT device may be a smart phone , laptop , tablet , or PC ,
or other larger device . Further , an IoT device may be a
virtual device , such as an application on a smart phone or
other computing device . IoT devices may include IoT gate
ways , used to couple IoT devices to other IoT devices and
to cloud applications , for data storage , process control , and
the like .
[0060] Networks of IoT devices may include commercial
and home automation devices , such as water distribution
systems , electric power distribution systems , pipeline con
trol systems , plant control systems , light switches , thermo

US 2021/0020041 A1 Jan. 21 , 2021
5

stats , locks , cameras , alarms , motion sensors , and the like .
The IoT devices may be accessible through remote comput
ers , servers , and other systems , for example , to control
systems or access data .
[0061] The future growth of the Internet and like networks
may involve very large numbers of IoT devices . Accord
ingly , in the context of the techniques discussed herein , a
number of innovations for such future networking will
address the need for all these layers to grow unhindered , to
discover and make accessible connected resources , and to
support the ability to hide and compartmentalize connected
resources . Any number of network protocols and commu
nications standards may be used , wherein each protocol and
standard is designed to address specific objectives . Further ,
the protocols are part of the fabric supporting human acces
sible services that operate regardless of location , time or
space . The innovations include service delivery and associ
ated infrastructure , such as hardware and software ; security
enhancements ; and the provision of services based on Qual
ity of Service (QoS) terms specified in service level and
service delivery agreements . As will be understood , the use
of IoT devices and networks , such as those introduced in
FIGS . 2-5 , present a number of new challenges in a hetero
geneous network of connectivity comprising a combination
of wired and wireless technologies .
[0062] FIG . 2 specifically provides a simplified drawing of
a domain topology that may be used for a number of
internet - of - things (IoT) networks comprising IoT devices
204 , with the IoT networks 256 , 258 , 260 , 262 , coupled
through backbone links 202 to respective gateways 254. For
example , a number of IoT devices 204 may communicate
with a gateway 254 , and with each other through the
gateway 254. To simplify the drawing , not every IoT device
204 , or communications link (e.g. , link 216 , 222 , 228 , or
232) is labeled . The backbone links 202 may include any
number of wired or wireless technologies , including optical
networks , and may be part of a local area network (LAN) ,
a wide area network (WAN) , or the Internet . Additionally ,
such communication links facilitate optical signal paths
among both IoT devices 204 and gateways 254 , including
the use of MUXing / deMUXing components that facilitate
interconnection of the various devices .
[0063] The network topology may include any number of
types of IoT networks , such as a mesh network provided
with the network 256 using Bluetooth low energy (BLE)
links 222. Other types of IoT networks that may be present
include a wireless local area network (WLAN) network 258
used to communicate with IoT devices 204 through IEEE
802.11 (Wi - Fi®) links 228 , a cellular network 260 used to
communicate with IoT devices 204 through an LTE / LTE - A
(4G) or 5G cellular network , and a low - power wide area
(LPWA) network 262 , for example , a LPWA network com
patible with the LoRaWan specification promulgated by the
LoRa alliance , or a IPv6 over Low Power Wide - Area
Networks (LPWAN) network compatible with a specifica
tion promulgated by the Internet Engineering Task Force
(IETF) . Further , the respective IoT networks may commu
nicate with an outside network provider (e.g. , a tier 2 or tier
3 provider) using any number of communications links , such
as an LTE cellular link , an LPWA link , or a link based on the
IEEE 802.15.4 standard , such as Zigbee . The respective IoT
networks may also operate with use of a variety of network
and internet application protocols such as Constrained
Application Protocol (COAP) . The respective IoT networks

may also be integrated with coordinator devices that provide
a chain of links that forms cluster tree of linked devices and
networks .
[0064] Each of these IoT networks may provide opportu
nities for new technical features , such as those as described
herein . The improved technologies and networks may
enable the exponential growth of devices and networks ,
including the use of IoT networks into as fog devices or
systems . As the use of such improved technologies grows ,
the IoT networks may be developed for self - management ,
functional evolution , and collaboration , without needing
direct human intervention . The improved technologies may
even enable IoT networks to function without centralized
controlled systems . Accordingly , the improved technologies
described herein may be used to automate and enhance
network management and operation functions far beyond
current implementations .
[0065] In an example , communications between IoT
devices 204 , such as over the backbone links 202 , may be
protected by a decentralized system for authentication ,
authorization , and accounting (AAA) . In a decentralized
AAA system , distributed payment , credit , audit , authoriza
tion , and authentication systems may be implemented across
interconnected heterogeneous network infrastructure . This
allows systems and networks to move towards autonomous
operations . In these types of autonomous operations ,
machines may even contract for human resources and nego
tiate partnerships with other machine networks . This may
allow the achievement of mutual objectives and balanced
service delivery against outlined , planned service level
agreements as well as achieve solutions that provide meter
ing , measurements , traceability and trackability . The cre
ation of new supply chain structures and methods may
enable a multitude of services to be created , mined for value ,
and collapsed without any human involvement .
[0066] Such IoT networks may be further enhanced by the
integration of sensing technologies , such as sound , light ,
electronic traffic , facial and pattern recognition , smell , vibra
tion , into the autonomous organizations among the IoT
devices . The integration of sensory systems may allow
systematic and autonomous communication and coordina
tion of service delivery against contractual service objec
tives , orchestration and quality of service (QoS) based
swarming and fusion of resources . Some of the individual
examples of network - based resource processing include the
following
[0067] The mesh network 256 , for instance , may be
enhanced by systems that perform inline data - to - information
transforms . For example , self - forming chains of processing
resources comprising a multi - link network may distribute
the transformation of raw data to information in an efficient
manner , and the ability to differentiate between assets and
resources and the associated management of each . Further
more , the proper components of infrastructure and resource
based trust and service indices may be inserted to improve
the data integrity , quality , assurance and deliver a metric of
data confidence .
[0068] The WLAN network 258 , for instance , may use
systems that perform standards conversion to provide multi
standard connectivity , enabling IoT devices 204 using dif
ferent protocols to communicate . Further systems may pro
vide seamless interconnectivity across a multi - standard
infrastructure comprising visible Internet resources and hid
den Internet resources .

US 2021/0020041 A1 Jan. 21 , 2021
6

[0075] The fog 320 provided from these IoT devices 302
may be presented to devices in the cloud 300 , such as a
server 306 , as a single device located at the edge of the cloud
300 , e.g. , a fog device . In this example , the alerts coming
from the fog device may be sent without being identified as
coming from a specific IoT device 302 within the fog 320 .
In this fashion , the fog 320 may be considered a distributed
platform that provides computing and storage resources to
perform processing or data - intensive tasks such as data
analytics , data aggregation , and machine learning , among
others .

[0069] Communications in the cellular network 260 , for
instance , may be enhanced by systems that offload data ,
extend communications to more remote devices , or both .
The LPWA network 262 may include systems that perform
non - Internet protocol (IP) to IP interconnections , address
ing , and routing . Further , each of the IoT devices 204 may
include the appropriate transceiver for wide area communi
cations with that device . Further , each IoT device 204 may
include other transceivers for communications using addi
tional protocols and frequencies .
[0070] Finally , clusters of IoT devices may be equipped to
communicate with other IoT devices as well as with a cloud
network . This may allow the IoT devices to form an ad - hoc
network between the devices , allowing them to function as
a single device , which may be termed a fog device . This
configuration is discussed further with respect to FIG . 3
below .
[0071] FIG . 3 illustrates a cloud computing network in
communication with a mesh network of IoT devices (de
vices 302) operating as a fog device at the edge of the cloud
computing network . The mesh network of IoT devices may
be termed a fog 320 , operating at the edge of the cloud 300 .
To simplify the diagram , not every IoT device 302 is labeled .
[0072] The fog 320 may be considered to be a massively
interconnected network wherein a number of IoT devices
302 are in communications with each other , for example , by
radio links 322. As an example , this interconnected network
may be facilitated using an interconnect specification
released by the Open Connectivity FoundationTM (OCF) .
This standard allows devices to discover each other and
establish communications for interconnects . Other intercon
nection protocols may also be used , including , for example ,
the optimized link state routing (OLSR) Protocol , the better
approach to mobile ad - hoc networking (B.A.T.M.A.N.)
routing protocol , or the OMA Lightweight M2M (LWM2M)
protocol , among others .
[0073] Three types of IoT devices 302 are shown in this
example , gateways 304 , data aggregators 326 , and sensors
328 , although any combinations of IoT devices 302 and
functionality may be used . The gateways 304 may be edge
devices that provide communications between the cloud 300
and the fog 320 , and may also provide the backend process
function for data obtained from sensors 328 , such as motion
data , flow data , temperature data , and the like . The data
aggregators 326 may collect data from any number of the
sensors 328 , and perform the back - end processing function
for the analysis . The results , raw data , or both may be passed
along to the cloud 300 through the gateways 304. The
sensors 328 may be full IoT devices 302 , for example ,
capable of both collecting data and processing the data . In
some cases , the sensors 328 may be more limited in func
tionality , for example , collecting the data and allowing the
data aggregators 326 or gateways 304 to process the data .
[0074] Communications from any IoT device 302 may be
passed along a convenient path (e.g. , a most convenient
path) between any of the IoT devices 302 to reach the
gateways 304. In these networks , the number of intercon
nections provide substantial redundancy , allowing commu
nications to be maintained , even with the loss of a number
of IoT devices 302. Further , the use of a mesh network may
allow IoT devices 302 that are very low power or located at
a distance from infrastructure to be used , as the range to
connect to another IoT device 302 may be much less than the
range to connect to the gateways 304 .

[0076] In some examples , the IoT devices 302 may be
configured using an imperative programming style , e.g. ,
with each IoT device 302 having a specific function and
communication partners . However , the IoT devices 302
forming the fog device may be configured in a declarative
programming style , allowing the IoT devices 302 to recon
figure their operations and communications , such as to
determine needed resources in response to conditions , que
ries , and device failures . As an example , a query from a user
located at a server 306 about the operations of a subset of
equipment monitored by the IoT devices 302 may result in
the fog 320 device selecting the IoT devices 302 , such as
particular sensors 328 , needed to answer the query . The data
from these sensors 328 may then be aggregated and ana
lyzed by any combination of the sensors 328 , data aggre
gators 326 , or gateways 304 , before being sent on by the fog
320 device to the server 306 to answer the query . In this
example , IoT devices 302 in the fog 320 may select the
sensors 328 used based on the query , such as adding data
from flow sensors or temperature sensors . Further , if some of
the IoT devices 302 are not operational , other IoT devices
302 in the fog 320 device may provide analogous data , if
available .

[0077] FIG . 4 illustrates a drawing of a cloud computing
network , or cloud 400 , in communication with a number of
Internet of Things (IoT) devices . The cloud 400 may rep
resent the Internet , or may be a local area network (LAN) ,
or a wide area network (WAN) , such as a proprietary
network for a company . The IoT devices may include any
number of different types of devices , grouped in various
combinations . For example , a traffic control group 406 may
include IoT devices along streets in a city . These IoT devices
may include stoplights , traffic flow monitors , cameras ,
weather sensors , and the like . The traffic control group 406 ,
or other subgroups , may be in communication with the cloud
400 through wired or wireless links 408 , such as LPWA
links , optical links , and the like . Further , a wired or wireless
sub - network 412 may allow the IoT devices to communicate
with each other , such as through a local area network , a
wireless local area network , and the like . The IoT devices
may use another device , such as a gateway 510 or 528 to
communicate with remote locations such as the cloud 500 ;
the IoT devices may also use one or more servers 530 to
facilitate communication with the cloud 500 or with the
gateway 510. For example , the one or more servers 530 may
operate as an intermediate network node to support a local
edge cloud or fog implementation among a local area
network . Further , the gateway 528 that is depicted may
operate in a cloud - to - gateway - to - many edge devices con
figuration , such as with the various IoT devices 514 , 520 ,
524 being constrained or dynamic to an assignment and use
of resources in the cloud 500 .

US 2021/0020041 A1 Jan. 21 , 2021
7

[0078] Other example groups of IoT devices may include
remote weather stations 414 , local information terminals
416 , alarm systems 418 , automated teller machines 420 ,
alarm panels 422 , or moving vehicles , such as emergency
vehicles 424 or other vehicles 426 , among many others .
Each of these IoT devices may be in communication with
other IoT devices , with servers 404 , with another IoT fog
device or system (not shown , but depicted in FIG . 3) , or a
combination therein . The groups of IoT devices may be
deployed in various residential , commercial , and industrial
settings (including in both private or public environments) .
[0079] As can be seen from FIG . 4 , a large number of IoT
devices may be communicating through the cloud 400. This
may allow different IoT devices to request or provide
information to other devices autonomously . For example , a
group of IoT devices (e.g. , the traffic control group 406) may
request a current weather forecast from a group of remote
weather stations 414 , which may provide the forecast with
out human intervention . Further , an emergency vehicle 424
may be alerted by an automated teller machine 420 that a
burglary is in progress . As the emergency vehicle 424
proceeds towards the automated teller machine 420 , it may
access the traffic control group 406 to request clearance to
the location , for example , by lights turning red to block cross
traffic at an intersection in sufficient time for the emergency
vehicle 424 to have unimpeded access to the intersection .
[0080] Clusters of IoT devices , such as the remote weather
stations 414 or the traffic control group 406 , may be
equipped to communicate with other IoT devices as well as
with the cloud 400. This may allow the IoT devices to form
an ad - hoc network between the devices , allowing them to
function as a single device , which may be termed a fog
device or system (e.g. , as described above with reference to
FIG . 3) .
[0081] FIG . 5 is a block diagram of an example of
components that may be present in an IoT device 550 for
implementing the techniques described herein . The IoT
device 550 may include any combinations of the compo
nents shown in the example or referenced in the disclosure
above . The components may be implemented as ICs , por
tions thereof , discrete electronic devices , or other modules ,
logic , hardware , software , firmware , or a combination
thereof adapted in the IoT device 550 , or as components
otherwise incorporated within a chassis of a larger system .
Additionally , the block diagram of FIG . 5 is intended to
depict a high - level view of components of the IoT device
550. However , some of the components shown may be
omitted , additional components may be present , and differ
ent arrangement of the components shown may occur in
other implementations .
[0082] The IoT device 550 may include a processor 552 ,
which may be a microprocessor , a multi - core processor , a
multithreaded processor , an ultra - low voltage processor , an
embedded processor , or other known processing element .
The processor 552 may be a part of a system on a chip (SOC)
in which the processor 552 and other components are
formed into a single integrated circuit , or a single package ,
such as the EdisonTM or GalileoTM SoC boards from Intel . As
an example , the processor 552 may include an Intel®
Architecture CoreTM based processor , such as a QuarkTM , an
AtomTM , an i3 , an i5 , an i7 , or an MCU - class processor , or
another such processor available from Intel® Corporation ,
Santa Clara , Calif . However , any number other processors
may be used , such as available from Advanced Micro

Devices , Inc. (AMD) of Sunnyvale , Calif . , a MIPS - based
design from MIPS Technologies , Inc. of Sunnyvale , Calif . ,
an ARM - based design licensed from ARM Holdings , Ltd. or
customer thereof , or their licensees or adopters . The proces
sors may include units such as an A5 - A10 processor from
Apple® Inc. , a SnapdragonTM processor from Qualcomm®
Technologies , Inc. , or an OMAPTM processor from Texas
Instruments , Inc.
[0083] The processor 552 may communicate with a sys
tem memory 554 over an interconnect 556 (e.g. , a bus) . Any
number of memory devices may be used to provide for a
given amount of system memory . As examples , the memory
may be random access memory (RAM) in accordance with
a Joint Electron Devices Engineering Council (JEDEC)
design such as the DDR or mobile DDR standards (e.g. ,
LPDDR , LPDDR2 , LPDDR3 , or LPDDR4) . In various
implementations , the individual memory devices may be of
any number of different package types such as single die
package (SDP) , dual die package (DDP) or quad die package
(Q17P) . These devices , in some examples , may be directly
soldered onto a motherboard to provide a lower profile
solution , while in other examples the devices are configured
as one or more memory modules that in turn couple to the
motherboard by a given connector . Any number of other
memory implementations may be used , such as other types
of memory modules , e.g. , dual inline memory modules
(DIMMs) of different varieties including but not limited to
microDIMMs or MiniDIMMs .
[0084] To provide for persistent storage of information
such as data , applications , operating systems and so forth , a
storage 558 may also couple to the processor 552 via the
interconnect 556. In an example , the storage 558 may be
implemented via a solid state disk drive (SSDD) . Other
devices that may be used for the storage 558 include flash
memory cards , such as SD cards , microSD cards , xD picture
cards , and the like , and USB flash drives . In low power
implementations , the storage 558 may be on - die memory or
registers associated with the processor 552. However , in
some examples , the storage 558 may be implemented using
a micro hard disk drive (HDD) . Further , any number of new
technologies may be used for the storage 558 in addition to ,
or instead of , the technologies described , such resistance change memories , phase change memories , holographic
memories , or chemical memories , among others .
[0085] The components may communicate over the inter
connect 556. The interconnect 556 may include any number
of technologies , including industry standard architecture
(ISA) , extended ISA (EISA) , peripheral component inter
connect (PCI) , peripheral component interconnect extended
(PCIx) , PCI express (PCIe) , or any number of other tech
nologies . The interconnect 556 may be a proprietary bus , for
example , used in a SoC based system . Other bus systems
may be included , such as an 12C interface , an SPI interface ,
point to point interfaces , and a power bus , among others .
[0086] The interconnect 556 may couple the processor 552
to a mesh transceiver 562 , for communications with other
mesh devices 564. The mesh transceiver 562 may use any
number of frequencies and protocols , such as 2.4 Gigahertz
(GHz) transmissions under the IEEE 802.15.4 standard ,
using the Bluetooth® low energy (BLE) standard , as defined
by the Bluetooth® Special Interest Group , or the ZigBee ©
standard , among others . Any number of radios , configured
for a particular wireless communication protocol , may be
used for the connections to the mesh devices 564. For

US 2021/0020041 A1 Jan. 21 , 2021
8

be

example , a WLAN unit may be used to implement Wi - FiTM
communications in accordance with the Institute of Electri
cal and Electronics Engineers (IEEE) 802.11 standard . In
addition , wireless wide area communications , e.g. , accord
ing to a cellular or other wireless wide area protocol , may
occur via a WWAN unit .
[0087] The mesh transceiver 562 may communicate using
multiple standards or radios for communications at different
range . For example , the IoT device 550 may communicate
with close devices , e.g. , within about 10 meters , using a
local transceiver based on BLE , or another low power radio ,
to save power . More distant mesh devices 564 , e.g. , within
about 50 meters , may be reached over ZigBee or other
intermediate power radios . Both communications tech
niques may take place over a single radio at different power
levels , or may take place over separate transceivers , for
example , a local transceiver using BLE and a separate mesh
transceiver using ZigBee .
[0088] A wireless network transceiver 566 may
included to communicate with devices or services in the
cloud 500 via local or wide area network protocols . The
wireless network transceiver 566 may be a LPWA trans
ceiver that follows the IEEE 802.15.4 , or IEEE 802.15.4g
standards , among others . The IoT device 550 may commu
nicate over a wide area using LoRaWANTM (Long Range
Wide Area Network) developed by Semtech and the LoRa
Alliance . The techniques described herein are not limited to
these technologies , but may be used with any number of
other cloud transceivers that implement long range , low
bandwidth communications , such as Sigfox , and other tech
nologies . Further , other communications techniques , such as
time - slotted channel hopping , described in the IEEE 802 .
15.4e specification may be used .
[0089] Any number of other radio communications and
protocols may be used in addition to the systems mentioned
for the mesh transceiver 562 and wireless network trans
ceiver 566 , as described herein . For example , the radio
transceivers 562 and 566 may include an LTE or other
cellular transceiver that uses spread spectrum (SPA / SAS)
communications for implementing high peed communica
tions . Further , any number of other protocols may be used ,
such as Wi - Fi® networks for medium speed communica
tions and provision of network communications .
[0090] The radio transceivers 562 and 566 may include
radios that are compatible with any number of 3GPP (Third
Generation Partnership Project) specifications , notably Long
Term Evolution (LTE) , Long Term Evolution - Advanced
(LTE - A) , and Long Term Evolution - Advanced Pro (LTE - A
Pro) . It can be noted that radios compatible with any number
of other fixed , mobile , or satellite communication technolo
gies and standards may be selected . These may include , for
example , any Cellular Wide Area radio communication
technology , which may include e.g. a 5th Generation (56)
communication systems , a Global System for Mobile Com
munications (GSM) radio communication technology , a
General Packet Radio Service (GPRS) radio communication
technology , or an Enhanced Data Rates for GSM Evolution
(EDGE) radio communication technology , a UMTS (Uni
versal Mobile Telecommunications System) communication
technology , In addition to the standards listed above , any
number of satellite uplink technologies may be used for the
wireless network transceiver 566 , including , for example ,
radios compliant with standards issued by the ITU (Inter
national Telecommunication Union) , or the ETSI (European

Telecommunications Standards Institute) , among others .
The examples provided herein are thus understood as being
applicable to various other communication technologies ,
both existing and not yet formulated .
[0091] A network interface controller (NIC) 568 may be
included to provide a wired communication to the cloud 500
or to other devices , such as the mesh devices 564. The wired
communication may provide an Ethernet connection , or may
be based on other types of networks , such as Controller Area
Network (CAN) , Local Interconnect Network (LIN) , Devi
ceNet , ControlNet , Data Highway + , PROFIBUS , or PROFI
NET , among many others . An additional NIC 568 may be
included to allow connect to a second network , for example ,
a NIC 568 providing communications to the cloud over
Ethernet , and a second NIC 568 providing communications
to other devices over another type of network .
[0092] The interconnect 556 may couple the processor 552
to an external interface 570 that is used to connect external
devices or subsystems . The external devices may include
sensors 572 , such as accelerometers , level sensors , flow
sensors , optical light sensors , camera sensors , temperature
sensors , a global positioning system (GPS) sensors , pressure
sensors , barometric pressure sensors , and the like . The
external interface 570 further may be used to connect the IoT
device 550 to actuators 574 , such as power switches , valve
actuators , an audible sound generator , a visual warning
device , and the like .
[0093] In some optional examples , various input / output
(I / O) devices may be present within , or connected to , the IoT
device 550. For example , a display or other output device
584 may be included to show information , such as sensor
readings or actuator position . An input device 586 , such as
a touch screen or keypad may be included to accept input .
An output device 584 may include any number of forms of
audio or visual display , including simple visual outputs such
as binary status indicators (e.g. , LEDs) and multi - character
visual outputs , or more complex outputs such as display
screens (e.g. , LCD screens) , with the output of characters ,
graphics , multimedia objects , and the like being generated or
produced from the operation of the IoT device 550 .
[0094] A battery 576 may power the IoT device 550 ,
although in examples in which the IoT device 550 is
mounted in a fixed location , it may have a power supply
coupled to an electrical grid . The battery 576 may be a
lithium ion battery , or a metal - air battery , such as a zinc - air
battery , an aluminum - air battery , a lithium - air battery , and
the like .
[0095] A battery monitor / charger 578 may be included in
the IoT device 550 to track the state of charge (SoCh) of the
battery 576. The battery monitor / charger 578 may be used to
monitor other parameters of the battery 576 to provide
failure predictions , such as the state of health (SoH) and the
state of function (SoF) of the battery 576. The battery
monitor / charger 578 may include a battery monitoring inte
grated circuit , such as an LTC4020 or an LTC2990 from
Linear Technologies , an ADT7488A from ON Semiconduc
tor of Phoenix Ariz . , or an IC from the UCD90xxx family
from Texas Instruments of Dallas , Tex . The battery monitor /
charger 578 may communicate the information on the bat
tery 576 to the processor 552 over the interconnect 556. The
battery monitor / charger 578 may also include an analog - to
digital (ADC) convertor that allows the processor 552 to
directly monitor the voltage of the battery 576 or the current
flow from the battery 576. The battery parameters may be

US 2021/0020041 A1 Jan. 21 , 2021
9

ment , the

used to determine actions that the IoT device 550 may
perform , such as transmission frequency , mesh network
operation , sensing frequency , and the like .
[0096] A power block 580 , or other power supply coupled
to a grid , may be coupled with the battery monitor / charger
578 to charge the battery 576. In some examples , the power
block 580 may be replaced with a wireless power receiver to
obtain the power wirelessly , for example , through a loop
antenna in the IoT device 550. A wireless battery charging
circuit , such as an LTC4020 chip from Linear Technologies
of Milpitas , Calif . , among others , may be included in the
battery monitor / charger 578. The specific charging circuits
chosen depend on the size of the battery 576 , and thus , the
current required . The charging may be performed using the
Airfuel standard promulgated by the Airfuel Alliance , the Qi
wireless charging standard promulgated by the Wireless
Power Consortium , or the Rezence charging standard , pro
mulgated by the Alliance for Wireless Power , among others .
[0097] The storage 558 may include instructions 582 in
the form of software , firmware , or hardware commands to
implement the techniques described herein . Although such
instructions 582 are shown as code blocks included in the
memory 554 and the storage 558 , it may be understood that
any of the code blocks may be replaced with hardwired
circuits , for example , built into an application specific
integrated circuit (ASIC) .
[0098] In an example , the instructions 582 provided via
the memory 554 , the storage 558 , or the processor 552 may
be embodied as a non - transitory , machine readable medium
560 including code to direct the processor 552 to perform
electronic operations in the IoT device 550. The processor
552 may access the non - transitory , machine readable
medium 560 over the interconnect 556. For instance , the
non - transitory , machine readable medium 560 may include
storage units such as optical disks , flash drives , or any
number of other hardware devices . The non - transitory ,
machine readable medium 560 may include instructions to
direct the processor 552 to perform a specific sequence or
flow of actions , for example , as described with respect to the
flowchart (s) and diagram (s) of operations and functionality
described throughout this disclosure .
[0099] Example Computing Architectures
[0100] FIGS . 6 and 7 illustrate example computer proces
sor architectures that can be used in accordance with
embodiments disclosed herein . For example , in various
embodiments , the computer architectures of FIGS . 6 and 7
may be used to implement the visual fog functionality
described throughout this disclosure . Other embodiments
may use other processor and system designs and configu
rations known in the art , for example , for laptops , desktops ,
handheld PCs , personal digital assistants , engineering work
stations , servers , network devices , network hubs , switches ,
embedded processors , digital signal processors (DSPs) ,
graphics devices , video game devices , set - top boxes , micro
controllers , cell phones , portable media players , hand held
devices , and various other electronic devices , are also suit
able . In general , a huge variety of systems or electronic
devices capable of incorporating a processor and / or other
execution logic as disclosed herein are generally suitable .
[0101] FIG . 6 illustrates a block diagram for an example
embodiment of a processor 600. Processor 600 is an
example of a type of hardware device that can be used in
connection with the embodiments described throughout this
disclosure . Processor 600 may be any type of processor ,

such as a microprocessor , an embedded processor , a digital
signal processor (DSP) , a network processor , a multi - core
processor , a single core processor , or other device to execute
code . Although only one processor 600 is illustrated in FIG .
6 , a processing element may alternatively include more than
one of processor 600 illustrated in FIG . 6. Processor 600
may be a single - threaded core or , for at least one embodi

processor 600 may be multithreaded in that it may
include more than one hardware thread context (or “ logical
processor ”) per core .
[0102] FIG . 6 also illustrates a memory 602 coupled to
processor 600 in accordance with an embodiment . Memory
602 may be any of a wide variety of memories (including
various layers of memory hierarchy) as are known or
otherwise available to those of skill in the art . Such memory
elements can include , but are not limited to , random access
memory (RAM) , read only memory (ROM) , logic blocks of
a field programmable gate array (FPGA) , erasable program
mable read only memory (EPROM) , and electrically eras
able programmable ROM (EEPROM) .
[0103] Processor 600 can execute any type of instructions
associated with algorithms , processes , or operations detailed
herein . Generally , processor 600 can transform an element
or an article (e.g. , data) from one state or thing to another
state or thing .
[0104] Code 604 , which may be one or more instructions
to be executed by processor 600 , may be stored in memory
602 , or may be stored in software , hardware , firmware , or
any suitable combination thereof , or in any other internal or
external component , device , element , or object where appro
priate and based on particular needs . In one example ,
processor 600 can follow a program sequence of instructions
indicated by code 604. Each instruction enters a front - end
logic 606 and is processed by one or more decoders 608. The
decoder may generate , as its output , a micro operation such
as a fixed width micro operation in a predefined format , or
may generate other instructions , microinstructions , or con
trol signals that reflect the original code instruction . Front
end logic 606 may also include register renaming logic and
scheduling logic , which generally allocate resources and
queue the operation corresponding to the instruction for
execution .
[0105] Processor 600 can also include execution logic 614
having a set of execution units 616a , 616b , 616n , etc. Some
embodiments may include a number of execution units
dedicated to specific functions or sets of functions . Other
embodiments may include only one execution unit or one
execution unit that can perform a particular function . Execu
tion logic 614 performs the operations specified by code
instructions .
[0106] After completion of execution of the operations
specified by the code instructions , back - end logic 618 can
retire the instructions of code 604. In one embodiment ,
processor 600 allows out of order execution but requires in
order retirement of instructions . Retirement logic 620 may
take a variety of known forms (e.g. , re - order buffers or the
like) . In this manner , processor 600 is transformed during
execution of code 604 , at least in terms of the output
generated by the decoder , hardware registers and tables
utilized by register renaming logic 610 , and any registers
(not shown) modified by execution logic 614 .
[0107] Although not shown in FIG . 6 , a processing ele
ment may include other elements on a chip with processor
600. For example , a processing element may include

US 2021/0020041 A1 Jan. 21 , 2021
10

memory control logic along with processor 600. The pro
cessing element may include I / O control logic and / or may
include I / O control logic integrated with memory control
logic . The processing element may also include one or more
caches . In some embodiments , non - volatile memory (such
as flash memory or fuses) may also be included on the chip
with processor 600 .
[0108] FIG . 7 illustrates a block diagram for an example
embodiment of a multiprocessor 700. As shown in FIG . 7 ,
multiprocessor system 700 is a point - to - point interconnect
system , and includes a first processor 770 and a second
processor 780 coupled via a point - to - point interconnect 750 .
In some embodiments , each of processors 770 and 780 may
be some version of processor 600 of FIG . 6 .
[0109] Processors 770 and 780 are shown including inte
grated memory controller (IMC) units 772 and 782 , respec
tively . Processor 770 also includes as part of its bus con
troller units point - to - point (P - P) interfaces 776 and 778 ;
similarly , second processor 780 includes P - P interfaces 786
and 788. Processors 770 , 780 may exchange information via
a point - to - point (P - P) interface 750 using P - P interface
circuits 778 , 788. As shown in FIG . 7 , IMCs 772 and 782
couple the processors to respective memories , namely a
memory 732 and a memory 734 , which may be portions of
main memory locally attached to the respective processors .
[0110] Processors 770 , 780 may each exchange informa
tion with a chipset 790 via individual P - P interfaces 752 , 754
using point to point interface circuits 776 , 794 , 786 , 798 .
Chipset 790 may optionally exchange information with the
coprocessor 738 via a high - performance interface 739. In
one embodiment , the coprocessor 738 is a special - purpose
processor , such as , for example , a high - throughput MIC
processor , a network or communication processor , compres
sion engine , graphics processor , GPGPU , embedded proces
sor , matrix processor , or the like .
[0111] A shared cache (not shown) may be included in
either processor or outside of both processors , yet connected
with the processors via P - P interconnect , such that either or
both processors ' local cache information may be stored in
the shared cache if a processor is placed into a low power
mode .
[0112] Chipset 790 may be coupled to a first bus 716 via
an interface 796. In one embodiment , first bus 716 may be
a Peripheral Component Interconnect (PCI) bus , or a bus
such as a PCI Express bus or another third generation I / O
interconnect bus , although the scope of this disclosure is not
so limited .
[0113] As shown in FIG . 7 , various I / O devices 714 may
be coupled to first bus 716 , along with a bus bridge 718
which couples first bus 716 to a second bus 720. In one
embodiment , one or more additional processor (s) 715 , such

coprocessors , high - throughput MIC processors ,
GPGPU's , accelerators (such as , e.g. , graphics accelerators
or digital signal processing (DSP) units) , matrix processors ,
field programmable gate arrays , or any other processor , are
coupled to first bus 716. In one embodiment , second bus 720
may be a low pin count (LPC) bus . Various devices may be
coupled to a second bus 720 including , for example , a
keyboard and / or mouse 722 , communication devices 727
and a storage unit 728 such as a disk drive or other mass
storage device which may include instructions / code and data
730 , in one embodiment . Further , an audio I / O 724 may be
coupled to the second bus 720. Note that other architectures
are possible . For example , instead of the point - to - point

architecture of FIG . 7 , a system may implement a multi - drop
bus or other such architecture .
[0114] All or part of any component of FIG . 7 may be
implemented as a separate or stand - alone component or
chip , or may be integrated with other components or chips ,
such as a system - on - a - chip (SOC) that integrates various
computer components into a single chip .
[0115] Embodiments of the mechanisms disclosed herein
may be implemented in hardware , software , firmware , or a
combination of such implementation approaches . Certain
embodiments may be implemented as computer programs or
program code executing on programmable systems compris
ing at least one processor , a storage system (including
volatile and non - volatile memory and / or storage elements) ,
at least one input device , and at least one output device .
[0116] Program code , such as code 730 illustrated in FIG .
7 , may be applied to input instructions to perform the
functions described herein and generate output information .
The output information may be applied to one or more
output devices , in known fashion . For purposes of this
application , a processing system includes any system that
has a processor , such as , for example ; a digital signal
processor (DSP) , a microcontroller , an application specific
integrated circuit (ASIC) , or a microprocessor .
[0117] The program code may be implemented in a high
level procedural or object oriented programming language to
communicate with a processing system . The program code
may also be implemented in assembly or machine language ,
if desired . In fact , the mechanisms described herein are not
limited in scope to any particular programming language . In
any case , the language may be a compiled or interpreted
language .
[0118] One or more aspects of at least one embodiment
may be implemented by representative instructions stored on
a machine - readable medium which represents various logic
within the processor , which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein . Such representations , known as “ IP cores ”
may be stored on a tangible , machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor .
[0119] Such machine - readable storage media may include ,
without limitation , non - transitory , tangible arrangements of
articles manufactured or formed by a machine or device ,
including storage media such as hard disks , any other type
of disk including floppy disks , optical disks , compact disk
read - only memories (CD - ROMs) , compact disk rewritable’s
(CD - RWs) , and magneto - optical disks , semiconductor
devices such as read - only memories (ROMs) , random
access memories (RAMs) such as dynamic random access
memories (DRAMs) , static random access memories
(SRAMs) , erasable programmable read - only memories
(EPROMs) , flash memories , electrically erasable program
mable read - only memories (EEPROMs) , phase change
memory (PCM) , magnetic or optical cards , or any other type
of media suitable for storing electronic instructions .
[0120] Accordingly , embodiments of this disclosure also
include non - transitory , tangible machine - readable media
containing instructions or containing design data , such as
Hardware Description Language (HDL) , which defines
structures , circuits , apparatuses , processors and / or system
features described herein . Such embodiments may also be
referred to as program products .

as

US 2021/0020041 A1 Jan. 21 , 2021
11

[0121] Visual Fog Architecture
[0122] FIG . 8 illustrates an example embodiment of an
architecture 800 for visual fog nodes . In some embodiments ,
for example , fog node architecture 800 may be used to
implement the functionality of fog nodes 810 in a visual fog
network or system (e.g. , visual fog system 100 of FIG . 1) .
A fog node 810 , for example , can include any node or
component that ranges from the edge of a network to the
cloud , inclusively .
[0123] In the illustrated embodiment , fog node 810
includes various application programming interfaces (APIs)
that provide fundamental capabilities for fog node 810 , such
as auxiliary API 820 , primitive vision API 830 , and storage
API 840. In some embodiments , for example , these APIs
may be used or implemented by lower - level algorithm
developers .
[0124] Auxiliary API 820 provides various fundamental
functionality for fog node 810 , such as security 8220 ,
communication 822b , compression 8220 (e.g. , codecs) , and
so forth .
[0125] Primitive vision API 830 provides fundamental
vision processing capabilities for fog node 810. For
example , primitive vision API 830 provides access to a
plurality of vision kernels 832 that can be used to perform
primitive vision operations (e.g. , person or object detection ,
facial recognition) . Primitive vision API 830 may also
provide access to various machine learning and / or neural
network frameworks (e.g. , Caffe , OpenCV , TensorFlow) .
[0126] Storage API 840 provides storage capabilities for
fog node 810. In some embodiments , for example , storage
API 840 may include a variety of databases 842 for storing
different types of visual data , such as graph databases ,
relational databases , array - based databases (e.g. , TileDB) ,
and so forth . In some embodiments , for example , the par
ticular database used to store certain visual data may depend
on the type of data , such as raw visual data or pixels ,
compressed visual data , visual metadata , and so forth .
[0127] Moreover , fog node 810 further includes a vision
application API 850 that provides higher - level vision func
tionality , which may be used or implemented by developers
of vision applications . For example , vision application API
850 may include a privacy policy 852 that defines the
requisite privacy treatment for all data and devices associ
ated with a visual fog network . Vision application API 850
may also include a vision kernel management service 854
that provides access to a variety of primitive vision opera
tions or vision kernels . In some embodiments , for example ,
vision kernel management service 854 may retrieve vision
kernels from a vision kernel repository . For example , if a
particular vision application employs person detection func
tionality , vision kernel management service 854 may
retrieve the appropriate vision kernel for performing person
detection using the available hardware of the particular fog
node 810 .
[0128] Fog node 810 further includes a vision analytics
API 860 and query API 870 , which may be used by
end - users or operators to perform visual analytics and visual
queries . For example , vision analytics API 860 may perform
inline (e.g. real - time) and / or offline processing of visual
data , application launching , scheduling , resource monitor
ing , and so forth . Vision analytics API 860 may also include
a vision application management service 862 that provides
access to a variety of vision applications (e.g. , people
searching / tracking , object detection / tracking , and so forth) .

In some embodiments , for example , vision application man
agement service 862 may retrieve vision applications from
a vision application repository . In this manner , if an end - user
wants to perform a people search , vision application man
agement service 862 may retrieve an appropriate vision
application for people searching . In some embodiments , for
example , a people search vision application may use vision
kernels that perform person detection followed by facial
recognition . The end - user , however , can utilize the people
search vision application without any knowledge of the
underlying vision kernels or vision operations used to imple
ment the application .
[0129] Moreover , query API 870 provides an interface that
enables end - users to submit visual search requests or que
ries . In some embodiments , for example , query API 870 may
support flexible visual queries in a variety of syntaxes , such
as natural language , functional syntax (e.g. , using logical
operators) , relational syntax , and so forth . In some embodi
ments , query API 870 may further include a query primitive
repository 874 that contains the primitive operations that are
supported for visual queries . Moreover , query API 870 may
include a query compiler 872 for compiling the visual
queries into visual processing dataflows that can be executed
by visual fog nodes .
[0130] FIG . 9-12 illustrate example embodiments of
visual fog architectures .
[0131] For example , FIG . 9 illustrates an example visual
fog architecture 900 that includes cameras 902 , sensors 904 ,
local analytics framework 906 , inline analytics framework
908 , offline analytics framework 910 , storage 912 , and
presentation / interpretation framework 914. In the illustrated
embodiment , for example , cameras 902 and / or sensors 904
may generate visual data , such as images and / or video . The
visual data may then be provided to local analytics frame
work 906 , which may be used to perform preliminary
processing and analytics at the network edge (e.g. , near the
cameras 902 or sensors 904 that captured the visual data) .
The partially processed visual data may then be provided to
inline analytics framework 908 for further processing in
real - time . In various embodiments , for example , inline ana
lytics may be performed by and / or distributed across any
combination of fog devices or resources (e.g. , mobile
devices , IoT devices , gateways , and / or the cloud) . The
resulting visual data and / or metadata from inline analytics
framework 908 may then be stored in data storage 912 .
Moreover , a visual search query may be subsequently
received by presentation / interpretation framework 914 (e.g. ,
from an end - user) . Accordingly , presentation / interpretation
framework 914 may interact with data storage 912 and / or
inline analytics framework 908 to determine whether a
response to the query can be formulated based on the visual
data and / or metadata that has already been processed or
generated . If further processing needs to be performed to
respond to the query , however , presentation / interpretation
framework 914 may interact with offline analytics frame
work 910 to perform further offline processing of the visual
data . In various embodiments , for example , offline analytics
may be performed by and / or distributed across any combi
nation of fog devices or resources (e.g. , mobile devices , IoT
devices , gateways , and / or the cloud) . Accordingly , based on
the information obtained either from data storage 912 , inline
analytics framework 908 , and / or offline analytics framework
910 , presentation / interpretation framework 914 may then
respond to the visual query .

US 2021/0020041 A1 Jan. 21 , 2021
12

[0132] FIG . 10 illustrates an example visual processing
pipeline 1000 associated with a visual fog architecture . In
the illustrated example , visual data 1002 may first be cap
tured by cameras and / or visual sensors , and the visual data
1002 may then be processed to perform certain visual
functions 1004 (e.g. , face detection) and / or other analytics ,
resulting in a set of visual metadata 1012 that may be stored
in data storage 1010. Moreover , an end - user may subse
quently submit an ad hoc search query 1006 associated with
the visual data 1002 , and a query compiler / interpreter 1008
may then compile the query into a visual processing data
flow that can be executed (e.g. , using available fog nodes or
resources) in order to respond to the query . In some cases ,
for example , it may be possible to formulate a query result
1016 based on the processing that has already been com
pleted . For example , in some cases , the query result 1016
may be formulated by applying appropriate logic operations
1014 on the existing visual metadata 1012 that has already
been generated . In other cases , however , further visual
processing and / or functions 1004 may need to be performed
on the visual data 1002 in order to formulate the query result
1016. In either case , the compiler / interpreter 1008 may
generate a requisite vision processing dataflow for respond
ing to the query , and the resulting vision processing dataflow
may then be executed in order to formulate the query result
1016 .
[0133] FIG . 11 illustrates another example visual fog
architecture 1100. In the illustrated embodiment , visual data
captured by cameras 1140b is provided to a distributed
runtime environment 1120 , which performs initial pre - pro
cessing on the visual data in real - time (e.g. , when the visual
data is first captured rather than in response to a query) . The
resulting visual data or metadata generated by the distributed
runtime environment 1120 is then stored in data storage
1130 .
[0134] Separately , visual search queries containing user
defined vision functions (UVFs) 1104a - c are received from
end - users 1102 of visual fog 1100. A UVF 1104 received
from an end - user 1102 is first processed by a compiler 1110
in order to generate a vision dataflow graph for executing the
UVF . Accordingly , the vision dataflow graph is then
executed by the distributed runtime environment 1120 in
order to generate a result for the UVF 1104. In some
embodiments , for example , the distributed runtime environ
ment 1120 may determine the result using existing visual
metadata that has already been generated (e.g. , from the
initial or real - time processing of the original visual data) ,
and / or by performing further analysis on the visual data
(e.g. , by executing a particular vision application 1150) . The
result obtained from execution of the UVF 1104 may then be
provided back to the requesting end - user 1102 .
[0135] Further , in various embodiments , the distributed
runtime environment 1120 may perform the described visual
data processing (e.g. , initial pre - processing and / or UVF
processing) by scheduling or distributing vision workloads
across the available fog devices or resources 1140 (e.g. ,
cloud servers 1140a , cameras 1140b , mobile devices , IoT
devices , gateways , and / or other fog / edge devices) .
[0136] FIGS . 12A - B illustrate another example visual fog
architecture 1200. In the illustrated embodiment , visual fog
architecture 1200 includes a network of fog devices 1216 ,
including cameras or visual sensors 1216a , gateways 1216b ,
and cloud servers 1216c . The cameras or visual sensors
1216a , for example , are used to capture visual data 1217 .

Moreover , a computer vision expert 1202 can develop an
imperative vision program 1203 that leverages the captured
visual data 1217. The vision program 1203 , for example ,
may be implemented using programming and composability
frameworks 1208 and 1210 to define vision processing
dataflows 1209 and generate vision processing workloads
1211 .

[0137] In the illustrated embodiment , for example , the
vision program 1203 leverages a distributed runtime envi
ronment 1214 to process visual data 1217 captured in visual
fog 1200. The distributed runtime environment 1214 , for
example , can perform visual data processing using the
collection of available fog devices 1216 in visual fog 1200 .
[0138] In some embodiments , for example , the distributed
runtime environment 1214 may be used to perform initial
pre - processing on captured visual data 1217 in real - time
(e.g. , when the visual data is first captured rather than in
response to a query) . The resulting visual data or metadata
1217 generated by the distributed runtime environment 1214
may then be stored in a database or data storage 1218 .
[0139] Moreover , a layperson or end - user 1204 may sub
sequently submit a declarative query 1205 associated with
visual data 1217 captured by visual fog 1200. The declara
tive query 1205 is processed by a visual question answering
(VQA) system 1206 , which uses a compiler or interpreter to
generate a dataflow 1209 for responding to the query . In
some cases , for example , it may be possible to respond to
query 1205 using existing visual metadata 1217 that has
already been generated (e.g. , during the initial or real - time
processing of the original visual data 1217 and / or during the
processing associated with prior queries 1205) . In other
cases , however , further processing may need to be per
formed on the visual data 1217 in order to respond to the
query 1205. In either case , an appropriate dataflow 1209 for
responding to the query 1205 may be generated , and the
resulting dataflow 1209 may be further partitioned into one
or more underlying vision processing workloads 1211 .
Moreover , based on the resource availability 1215 of fog
devices 1216 in the distributed runtime environment 1214 ,
a schedule 1213 for distributing the workloads 1211 across
the available fog devices 1216 may be generated . Accord
ingly , the respective workloads 1211 may then be distributed
across the fog devices 1216 based on the generated schedule
1213 , and each fog device 1216 may execute its respective
workload (s) 1211. In this manner , the dataflow 1209 for
responding to the query 1205 is executed by the various fog
devices 1216 using a distributed approach . A response to the
query 1205 may then be provided to the end - user 1204 , and
the resulting visual metadata 1217 may be stored in database
1218 for responding to subsequent queries .
[0140] Visual Question Answering (VQA)
[0141] FIG . 13-14 illustrate example embodiments asso
ciated with a visual question answering (VQA) framework .
In some embodiments , for example , a visual fog architecture
may implement a VQA framework to provide a flexible and
efficient interface for end - users to submit ad hoc visual
search queries . In visual processing systems , for example ,
the ability to submit a query to search large data sets in an
efficient manner (e.g. , millions of images) and identify a
subset of relevant images or related information is impor
tant . Existing visual processing solutions are implemented
using rigid or inflexible approaches , however , and are unable
to search visual data efficiently . Accordingly , the visual

US 2021/0020041 A1 Jan. 21 , 2021
13

be

question answering (VQA) framework of FIGS . 13 and 14
can be used to alleviate the deficiencies of existing solutions .
[0142] In some embodiments , for example , a VQA frame
work may support flexible or ad hoc visual search queries
using a variety of syntaxes , such as natural language ,
functional syntax (e.g. , using logical operators) , relational
syntax , and so forth . Accordingly , when a visual search
query is received from a user , the query may be compiled
into a visual processing dataflow that can be distributed
across and executed by the various fog nodes in a visual fog
architecture . In this manner , end - users can perform complex
searches on large sets of visual data without any knowledge
of the underlying architecture or processing required to
execute the searches .
[0143] Moreover , in some embodiments , users or devel
opers may be capable of defining custom vision functions
that can be used in visual search queries , referred to as
user - defined vision functions (UVFs) . As an example , a
UVF could be defined for visually equivalency , or perform
ing “ equal operations on visual data . Many ad hoc visual
queries , for example , require information related to the same
object or person to be identified or grouped together . Iden
tifying the same object or person across different images or
video streams , however , can be challenging . In some
embodiments , for example , this task may require feature
extraction to be performed across multiple cameras . The
respective features extracted from each camera often differ ,
however , and not all cameras have the same field of view ,
and thus certain features may be successfully extracted from
some cameras but not others . Accordingly , in some embodi
ments , a user may implement a UVF to define how visual
equivalency or “ equal ” operations are to be performed on
visual data . In some embodiments , for example , a UVF for
visual equivalency may define objects as " equal ” if their
feature vectors are “ close enough ” to each other , meaning
the feature vectors must be sufficiently similar but do not
have to be an exact match . Further , if feature vectors from
different cameras are missing certain features , only the
partial features will be compared and the " close enough "
definition will be scaled accordingly .
[0144] FIG . 13 illustrates an example embodiment of a
visual question answering (VQA) pipeline 1300. In the
illustrated example , a visual query 1302 is first received
from an end - user , and a dataflow compiler 1304 is then used
to compile the visual query 1302 into a visual processing
pipeline or dataflow 1308. In some embodiments , for
example , the dataflow compiler 1304 may use a library of
vision kernel modules 1306 (e.g. , face recognition , pose
recognition , object recognition , and so forth) to generate the
resulting visual processing dataflow 1308 .
[0145] In some cases , for example , the visual processing
dataflow 1308 may leverage existing visual metadata that
has already been generated and stored on data storage 1314 .
For example , an inline analytics framework 1310 may be
used to perform initial visual data processing in real - time
(e.g. , when visual data is first captured rather than in
response to a query) , and an offline analytics framework
1312 may be used to perform further visual data processing
required for responding to search queries . Moreover , both
the inline and offline analytics frameworks 1310 , 1312 may
store their resulting visual metadata on data storage 1314 for
use in responding to subsequent visual search queries .
Accordingly , in some cases , the visual processing dataflow
1308 for a particular query 1302 may leverage existing

visual metadata that has already been generated and stored
on data storage 1314. In other cases , however , further
processing may be required to respond to the query 1302 ,
and thus the visual processing dataflow 1308 may leverage
the offline analytics framework 1312 to perform additional
processing . In either case , the visual processing pipeline or
dataflow 1308 generated by compiler 1304 is executed by
the runtime environment in order to generate a response to
the visual query 1302 .
[0146] FIG . 14 illustrates an example embodiment of a
visual question answering (VQA) compiler 1400. In some
embodiments , for example , compiler 1400 may be used to
compile VQA queries and / or user - defined vision functions
(UVFs) 1402 into visual dataflow graphs 1417 that can be
distributed across and executed by the various fog nodes in
a visual fog architecture .
[0147] In the illustrated embodiment , for example , UVFs
1402 are provided to the compiler 1400 via a declarative API
1412. The compiler 1400 may then generate a graph of
high - level vision operations 1415 that are required to
execute the UVFs 1402 , which may in turn be used to
generate a vision dataflow graph 1417. In some embodi
ments , for example , the vision dataflow graph 1417 may
a directed acyclic graph (DAG) that represents the visual
processing pipeline required to execute the particular UVFs
1402. Moreover , the compiler 1400 may use dataflow de
duplication to optimize the vision dataflow graph 1417 , for
example , by merging redundant portions of the dataflows of
multiple UVFs 1402 to eliminate the redundancies .
[0148] In some embodiments , for example , compiler 1400
may generate the vision dataflow graph 1417 using infor
mation from the underlying vision modules 1418 (e.g. ,
hardware - specific information required for scheduling
workloads on heterogeneous hardware) . The compiler 1400
may also generate a number of database API calls to obtain
visual data and / or metadata required to execute the UVFs
1402. In various embodiments , these database API calls may
either be part of , or separate from , the vision dataflow graph
1417. Moreover , in some embodiments , the compiler 1400
may generate different results depending on the available
visual metadata .
[0149] In this manner , the resulting vision dataflow graph
1417 generated by compiler 1400 can subsequently be
executed by the runtime environment in order to generate
the results for responding to UVFs 1402 .
[0150] Runtime
[0151] The visual fog paradigm envisions tens of thou
sands (or more) heterogeneous , camera - enabled edge
devices distributed across the Internet and / or other large
scale networks , providing live sensing for a myriad of
different visual processing applications , given task parallel
ism and data parallelism . The scale , computational demands ,
and bandwidth needed for visual computing pipelines neces
sitates intelligent offloading to distributed computing infra
structure , including the cloud , Internet gateway devices , and
the edge devices themselves .
[0152] In some embodiments , for example , visual process
ing may be scheduled or distributed across available fog
devices based on various criteria , including device connec
tivity , device resource capabilities , device resource avail
ability , workload type , privacy constraints , and so forth .
Further , machine learning can be leveraged to optimize
scheduling decisions .

US 2021/0020041 A1 Jan. 21 , 2021
14

[0153] Workload deployment and / or migration can be
implemented using a hot - pluggable runtime environment
with universal plugin APIs . For example , conventional
workload deployment / migration can be expensive , as it may
require sending the runtime environment and toolchains to
the assigned nodes . With hot - pluggable runtimes , however ,
workloads are hot - swappable (e.g. , stop runtime , replace
plugin , start runtime) .
[0154] Moreover , a plugin or vision kernel repository can
be used to facilitate workload deployment . For example , a
cloud - based or distributed repository may be used to manage
a collection of device and implementation abstractions for
each supported vision capability . In this manner , the reposi
tory can distribute the appropriate plugins or vision kernels
to fog nodes based on their respective workload assign
ments .
[0155] Incremental processing may be leveraged by a
visual fog runtime to maintain the state of any prior pro
cessing that has already been performed on visual data ,
enabling the results of the prior processing to be leveraged
for subsequent visual processing and queries . For example ,
the results of any processing performed on visual data may
be represented as visual metadata , which may be stored for
later use to avoid performing duplicative processing for
subsequent visual queries . In this manner , when a visual
query or UVF is received , the dataflow generated by a
compiler may vary depending on the available metadata that
has already been generated and can be reused .
[0156] Metadata pre - provisioning can be used to reduce
vision query latency by pre - processing visual data to com
plete common or frequent types of processing in advance . In
some embodiments , for example , a machine learning model
may be used to optimize the types of pre - processing that is
performed . For example , based on patterns of queries of the
same type or that involve similar types of processing ,
machine learning may be used to model the relationships of
diverse queries , while also taking other modalities into
account (e.g. , weather , traffic) . For example , metadata can be
pre - provisioned by pre - scheduling certain types of process
ing in advance based on the recent history of vision queries
and UVFs . In this manner , patterns of common or similar
vision workloads can trigger pre - processing on newly cap
tured visual data for those types of workloads to reduce
query latency .
[0157] Similarly , stream prioritization or prefetching can
be used to perform low - latency visual data loading or
fetching based on historical trends and / or workflows . For
example , the vision processing history can be used to
prioritize certain data streams and / or pre - fetch data from memory for a particular application to improve query
latency . Compared to metadata pre - provisioning , which
involves expedited processing that is performed in advance ,
stream prioritization involves obtaining or moving visual
data to a location where it will likely be needed (e.g. , from
a camera to certain processing nodes) .
[0158] Cached visual analytics can be used to optimize
visual processing using cached workflows , similar to incre
mental processing . For example , based on cached informa
tion regarding particular visual streams that have already
been obtained and processed , along with the type of pro
cessing or workloads performed on those streams , subse
quent vision processing dataflows may omit certain process
ing steps that have previously been performed and whose
results have been cached . For example , a visual analytics

application involves a number of primitive vision opera
tions . The volume of computation can be reduced , however ,
by caching visual analytics results and reusing them for
subsequent operations when possible . For example , when
executing a visual analytics application , cached visual meta
data resulting from prior processing can be searched to avoid
duplicative computation . In some embodiments , for
example , cached visual analytics may be implemented as
follows :
[0159] 1. Each primitive vision operation is tagged or
labeled using a cache tag ;
[0160] 2. For each instance or stream of visual data (e.g. ,
each stored video) , any corresponding visual metadata that
has already been generated is stored in a metadata database
or cache ;
[0161] 3. If there is a cache tag hit for a particular
primitive vision operation with respect to a particular
instance or stream of visual data , then the particular primi
tive vision operation can be omitted and instead the existing
visual metadata can be used ; and
[0162] 4. If there is a cache tag miss , however , the
particular primitive vision operation is executed and the
resulting metadata is cached in the metadata database for
subsequent use .
[0163] Tensor factorization can also be used for distrib
uted neural network inferencing in order to address the
overfitting problem . For example , representative weights of
consecutive neural network layers can utilize tensor factor
ization to " smooth out ” the model .
[0164] FIGS . 15 and 16 illustrate example embodiments
of device - centric scheduling for visual fog computing . In
some embodiments , for example , visual fog scheduling may
depend on (1) device resource capacities , and (2) workload
resource requirements . While the former remains constant
and consistent , the latter can vary depending on a device's
hardware specifications and software toolchains . For
example , in some embodiments , there may be multiple
implementations of a facial recognition capability that are
respectively optimized for different types of hardware , such
as CPUs , GPUs , FPGAs , ASICs , and so forth . In this
manner , multiple implementations of a single vision capa
bility can be leveraged to create an opportunity for further
optimization in visual fog computing .
[0165] Accordingly , in order to address the heterogeneity
of devices with different types of hardware and / or software ,
the illustrated embodiments implement device - centric
scheduling using a vision capabilities repository . In some
embodiments , for example , the vision capabilities repository
may include multiple implementations of a particular vision
capability that are optimized for different hardware and / or
software environments . In this manner , vision workloads
can be scheduled or distributed across fog devices based on
their respective types of resources and capabilities , along
with per - resource telemetry information that identifies
resource availability .
[0166] The basic principle is to abstract capabilities (e.g. ,
face detection , gesture recognition) from their underlying
kernels / implementations (e.g. , SIFT - based implementations ,
deep neural network implementations) . This type of abstrac
tion provides the flexibility to deploy an arbitrary vision
capability on a per - device basis . For example , using
resource - based scheduling , heterogeneous resource types of
different fog devices can be considered as a whole in order
to determine the optimal task - to - device mapping across the

US 2021/0020041 A1 Jan. 21 , 2021
15

various fog devices , and also identify the corresponding
vision capability implementations that each device should
use for its assigned tasks . Moreover , resource telemetry can
be used to monitor resource availability of fog devices on a
per - resource basis (e.g. , CPU , GPU , FPGA , ASIC , and so
forth) to further facilitate intelligent scheduling decisions .
Further , the vision capability repository hosts collections of
implementations of different vision capabilities , and may
also provide a request - response service that allows a device
to request an available implementation of a particular vision
capability .
[0167] In this manner , device - centric scheduling can be
used to improve end - to - end (E2E) performance (e.g. ,
latency and bandwidth efficiency) and scalability for visual
fog computing
[0168] FIG . 15 illustrates an example architecture 1500
for implementing device - centric scheduling in a visual com
puting system . In the illustrated embodiment , for example ,
visual computing architecture 1500 includes users 1502 ,
scheduling server 1504 , vision kernel repository 1506 , and
various types of fog devices 1510. A fog device 1510 , for
example , can include any device ranging from the edge of a
network to the cloud , inclusively . In the illustrated embodi
ment , for example , fog devices 1510 include cameras 1510a ,
gateways 1510b , and cloud servers 1510c .
[0169] In some embodiments , users 1502 may submit
search queries for visual data captured by cameras 1510a .
Moreover , in order to respond to those queries efficiently ,
scheduling server 1504 may schedule or distribute vision
processing workloads across the various fog devices 1510 .
In some embodiments , for example , scheduling server 1504
may perform intelligent scheduling decisions based on vari
ous criteria , such as the types of resources in the fog (e.g. ,
the heterogeneous types of resources of the various fog
devices 1510) , resource telemetry information (e.g. , the
availability of fog resources on a per - resource - type basis) ,
and the implementations of vision capabilities that are
available in the vision capability repository 1506 .
[0170] An example embodiment of the scheduling pro
cess , for example , is described below in connection with
FIG . 16 .

[0171] FIG . 16 illustrates a flowchart 1600 for an example
embodiment of device - centric scheduling in a visual com
puting system . In some embodiments , for example , flow
chart 1600 may be implemented using visual computing
architecture 1500 of FIG . 15 .
[0172] The flowchart may begin at block 1602 by collect
ing the available vision capability implementations . In some
embodiments , for example , the scheduling server continu
ously synchronizes the collection of available implementa
tions of vision capabilities from the vision capability reposi
tory .
[0173] The flowchart may then proceed to block 1604 to
collect the resource telemetry of fog devices . In some
embodiments , for example , the scheduling server may col
lect the resource availability of all fog devices on a per
resource - type basis . For example , the scheduling server may
collect information regarding the resource availability of
CPUs , GPUs , FPGAs , ASICs , and / or any other resource
type across all fog devices .
[0174] In this manner , based on the available vision capa
bility implementations collected at block 1602 , and the
resource telemetry information collected at block 1604 , the

scheduling server can subsequently schedule vision work
loads based on the optimal task - to - device mapping in the
visual fog paradigm .
[0175] For example , the flowchart may then proceed to
block 1606 to determine whether a new vision workload has
been received from a user . In some embodiments , for
example , a user may submit a new visual query , which may
require a new vision workload to be scheduled or distributed
across the fog devices .
[0176] If it is determined at block 1606 that a new vision
workload has NOT been received , the flowchart may then
proceed back to block 1602 to continue synchronizing the
available vision capability implementations and collecting
resource telemetry information until a new vision workload
is received .
[0177] If it is determined at block 1606 that a new vision
workload has been received , the flowchart may then proceed
to block 1608 to re - schedule all pending workloads . In some
embodiments , for example , receiving a new vision workload
for a user may trigger the scheduling server to re - schedule
all pending workloads to ensure the collective workloads are
distributed across the fog devices in the most efficient
manner possible (e.g. , based on the optimal task - to - device
mapping) .
[0178] In some embodiments , for example , scheduling
may be performed based on various criteria , such as the
types of fog resources that are available , telemetry informa
tion for those resources , and the vision capability imple
mentations that are available for those fog resources .
[0179] In some embodiments , for example , a schedule that
adheres to the constraints of multiple resource types can be
determined using integer linear programming (ILP) . Integer
linear programming (ILP) is a mathematical optimization or
feasibility technique for solving or optimizing a mathemati
cal model represented by linear relationships . In particular ,
ILP can be used to optimize a linear objective function ,
subject to additional linear equality and linear inequality
constraints . As an example , an ILP problem can be
expressed as follows :

[0180] minimize : cx (objective term)
[0181] subject to : Axsb inequality constraint)

[0182] Cx = d (equality constraint)
[0183] and : xE { 0 , 1 } (binary constraint) .

[0184] Moreover , this ILP model can be used to determine
an optimal schedule fthat satisfies a specified objective (e.g. ,
total network utilization) , while also adhering to other
additional constraints (e.g. , device resource constraints) . In
the above ILP model , for example , x presents the collection
of possible schedules f , K is the length of x , the objective
term presents a scheduling objective to be minimized (e.g. ,
total network utilization) , and the inequality / equality con
straints present any additional constraints (e.g. , device ,
resource , network , mapping , and / or privacy constraints) . A
device resource constraint , for example , can be presented as
an inequality constraint of the ILP model . For example , in
order to take into account constraints of multiple resource
types , they can be expended into multiple inequalities in the
form of Ax b in the ILP model above .
[0185] Accordingly , based on the scheduling decisions ,
the scheduling server assigns each fog device zero or more
tasks . In some embodiments , for example , a task may be
specified in a tuple of the form t = (p , r) , where p denotes the
vision capability and r denotes resource type (e.g. , p = face
detection , r = Movidius processor) .

US 2021/0020041 A1 Jan. 21 , 2021
16

[0186] The flowchart may then proceed to block 1610 to
determine if an updated workload schedule is available . For
example , after a new vision workload is received and the
pending workloads are re - scheduled , the scheduling server
may have an updated or improved workload schedule that
needs to be distributed to the fog devices . In some embodi
ments , however , the scheduling server may only update the
workload schedule if the newly generated schedule is better
or more efficient than the current workload schedule .
[0187] If it is determined at block 1610 that the workload
schedule has NOT been updated , the flowchart may then
proceed back to block 1602 to continue synchronizing the
available vision capability implementations and collecting
resource telemetry until the current workload schedule is
eventually updated .
[0188] However , if it is determined at block 1610 that an
updated workload schedule is available , the flowchart may
then proceed to block 1612 to push the updated schedule to
all fog devices .
[0189] The flowchart may then proceed to block 1614 to
receive requests from fog devices for vision capability
implementations . For example , each fog device may query
the vision capability repository to request implementations
of vision capabilities for the tasks assigned to the particular
fog device . In some embodiments , for example , the request
from a particular fog device may identify each of its
assigned tasks t .
[0190] The flowchart may then proceed to block 1616 to
identify the appropriate vision capability implementations
for each fog device . In some embodiments , for example , the
vision capability repository may be a dictionary of key - value
pairs in the form of (task t , implementation i) , where an
implementation i can be distributed in various forms (e.g. , a
dynamic linking library in C / C ++) . Accordingly , based on
the task (s) t specified in the request from a particular fog
device , the vision capability repository identifies the corre
sponding implementation (s) i for that fog device . In some
embodiments , for example , the vision capability repository
identifies the optimal implementation of each vision capa
bility requested by a fog device based on the available
resources of that fog device .
[0191] The flowchart may then proceed to block 1618 to
distribute the identified vision capability implementations to
each fog device . In this manner , each fog device can then
perform its assigned tasks using the appropriate vision
capability implementations .
[0192] At this point , the flowchart may be complete . In
some embodiments , however , the flowchart may restart
and / or certain blocks may be repeated . For example , in some
embodiments , the flowchart may restart at block 1602 to
continue scheduling vision workloads .
[0193] FIG . 17 illustrates an example embodiment of a
runtime processing pipeline 1700 for a visual fog architec
ture . In the illustrated embodiment , for example , a raw
stream of visual data 1701 (e.g. , video or images) captured
by cameras or visual sensors in a visual fog architecture is
provided as input to a stream ingress framework 1702. The
stream ingress framework 1702 decodes the raw stream of
visual data 1701 , and a decoded stream 1703 is then pro
vided as input to a distributed pre - processing framework
1704. The distributed pre - processing framework 1704 then
performs some preliminary processing using certain fog
resources at the network edge (e.g. , near the cameras or
sensors that captured the visual data) , such as data pre

processing , filtering , and / or aggregation . The resulting fil
tered stream 1705 may then be stored in data storage 1706
for subsequent use in responding to visual search queries
and / or user - defined vision functions (UVFs) 1709 from
end - users .
[0194] For example , end - users may subsequently submit
visual search queries and / or user - defined vision functions
(UVFs) 1709 associated with the visual data captured by the
visual fog system . Accordingly , the UVFs 1709 are provided
to a UVF compiler 1710 , which compiles the UVFS 1709
into a vision dataflow graph 1711 that can be used to execute
the UVFs . For example , the vision dataflow graph 1711 is
provided to a distributed UVF execution framework 1712 ,
which distributes or schedules workloads associated with the
vision dataflow graph 1711 across the available fog nodes in
the visual fog architecture .
[0195] After the workloads finish executing , the distrib
uted UVF execution framework 1712 generates an output
1713 resulting from execution of the UVFS 1709. For
example , the output 1713 may include , or may be derived
from , a filtered stream of visual data and / or metadata 1707
generated by execution of the UVFs 1709. Moreover , in
some embodiments , the resulting stream of visual data
and / or metadata 1707 may then be stored in data storage
1706 for responding to subsequent visual search queries or
UVFs .
[0196] Storage
[0197] As the volume of visual data generated in the
real - world continues to grow , it is becoming increasingly
common for visual data to be processed automatically by
computers rather than manually reviewed by humans . Due
to the increasing volume of visual data , however , data access
has become a bottleneck in visual data processing , as
existing visual data storage approaches suffer from various
deficiencies .
[0198] To illustrate , image classification is a common
visual data operation that uses a neural network to identify
the contents of an image . For example , in machine learning ,
a convolutional neural network (CNN) is a type of feed
forward artificial neural network where the input is generally
assumed to be an image . CNNs are commonly used for
image classification , where the goal is to determine the
contents of an image with some level of confidence . For
example , a CNN is first trained for a specific classification
task using a set of images whose object classes or features
have been labeled , and the CNN can then be used to
determine the probability of whether other images contain
the respective object classes .
[0199] Visual data (e.g. , images , video) must first be
loaded from a storage system before it can be processed by
a CNN . In the past , the data access latency has typically been
less than the CNN vision processing latency , allowing the
data access to be performed during the CNN processing .
However , as hardware and software optimizations continue
to improve the performance of CNN vision processing
algorithms , the data access latency of existing solutions has
become the bottleneck . Moreover , existing solutions typi
cally store visual data in its original format rather than a
format designed to aid with visual data processing , which
further hinders performance .
[0200] Existing solutions are also unable to efficiently
search visual data . For example , given a large data set (e.g. ,
millions of images) , the ability to efficiently identify a subset
of relevant images using a query is important . The output of

US 2021/0020041 A1 Jan. 21 , 2021
17

a CNN used for image classification typically includes a
vector of values corresponding to the probability of various
objects existing in an image . However , existing solutions
typically use this information for the task at hand and then
discard it , requiring the processing to be repeated for sub
sequent use . For example , a CNN used to process an image
with a dog and a cat may provide a probability for both , but
if the goal was to find images with dogs , the information
about cats is typically lost or discarded , thus preventing
future use . In this manner , a subsequent search for images
that contain cats would typically require the CNN to be run
again on each image .
[0201] Accordingly , FIG . 18 illustrates an example
embodiment of a visual data storage architecture 1800
designed to provide efficient access to visual data and
eliminate the deficiencies of existing storage solutions used
for visual data processing . In particular , storage architecture
1800 provides efficient metadata storage for searching visual
data , as well as analysis - friendly formats for storing visual
data .
[0202] In the illustrated embodiment , for example , storage
architecture 1800 includes a request server 1802 for receiv
ing visual search queries from a client API 1801 , a metadata
database 1804 , a visual compute library 1806 , and a persis
tent data storage 1810 , as explained further below .
[0203] In some embodiments , for example , storage archi
tecture 1800 may provide a unified API 1801 for visual data
access (e.g. , for both visual data and metadata) . For
example , visual data is commonly stored directly as files or
in various types of databases (e.g. , key - value , relational ,
and / or graph databases) . Visual metadata is typically stored
in databases , for example , while images and videos are
typically stored as files . Moreover , different types of file
systems and databases provide API functions in various
programming and / or query languages in order to enable
users to access and store data . Accordingly , in some embodi
ments , visual storage architecture 1800 may be implemented
with a unified API (e.g. , JSON - based) that supports multi
modal queries for retrieving any type of visual data from any
storage source . In some embodiments , for example , the
unified API could be used to retrieve and / or combine visual
metadata and the original visual data from different storage
locations . The unified API may also allow certain types of
processing to be performed on visual data before it is
returned to the requesting user . Further , the unified API may
allow users to explicitly recognize visual entities such as
images , feature vectors , and videos , and may simplify access
to those visual entities based on their relationship with each
other and with other entities associated with a particular
vision application .
[0204] Moreover , in some embodiments , a multi - tier lazy
data storage approach may be used to store visual data more
efficiently (e.g. , using long - or short - term storage in different
portions of the distributed edge - to - cloud network) . For
example , multiple storage tiers may be used to store visual
data in different locations and for varying amounts of time
based on the type or importance of the visual data . In some
embodiments , for example , video cameras may store all
video captured within the past day , gateways may store
video with motion activities within the past week , and the
cloud may store video associated with certain significant
events within the past year .
[0205] Similarly , intelligent placement and aging of visual
data across the storage tiers may further improve the data

storage efficiency (e.g. , determining where to store the visual
data within the distributed edge - to - cloud system , when the
data should be moved from hot to warm to cold storage , and
so forth) . For example , visual data and metadata can be
distinguished and segregated based on data access patterns .
Moreover , analysis friendly storage formats can be used to
enable data to be read faster when needed for vision pro
cessing . These various data formats may be used to form the
hot , warm , and cold tiers of data that can be mapped to
various heterogeneous memory and storage technologies ,
based on the intended use and lifetime of the data . For
example , storage tiers can be used to represent hot , cold , and
optionally warm data . Hot data is accessed frequently ; warm
data is accessed occasionally ; and cold data is accessed
rarely (if ever) . Accordingly , cold data may be stored on
slower hardware since low access latency for retrieval of the
data is less important . In this manner , intelligent decisions
can be used to determine when and which portions of visual
data should remain in the hot tiers and when it should be
migrated to colder tiers , and which storage format should be
used . For example , regions of interest may remain in hot
storage in the analysis friendly format much longer than the
entire image / video .
[0206] Metadata database 1804 is used to store metadata
in a manner that facilitates efficient searches of visual data .
For example , when performing image classification using a
CNN , the resulting image - object relationships or probabili
ties can be stored as metadata , and the metadata can be used
for subsequent searches of the images , thus eliminating the
need repeatedly process the images for each search . For
example , FIG . 19 illustrates an example of a vision process
ing pipeline 1900 that leverages metadata for searching
visual data . In the illustrated example , a stream of incoming
visual data is received from a network or file system at block
1902 , vision processing is performed on the visual data to
derive metadata (e.g. , using a CNN) at block 1904 , the
metadata is stored at block 1906 , search queries for relevant
visual data are received at block 1908 , and the search queries
are then satisfied using either the metadata obtained at block
1906 or additional vision processing performed at block
1904 .

[0207] In some embodiments , storage architecture 1800
may store visual metadata as a property graph to identify
relationships between visual data , such as images that con
tain the same object or person , images taken in the same
location , and so forth . For example , FIGS . 20 and 21
illustrate examples of representing visual metadata using a
property graph . In this manner , visual metadata can be easily
searched to identify these relationships , thus enabling flex
ible search queries such as “ find all images taken at location
Y that contain person A. ”
[0208] Moreover , in some embodiments , metadata data
base 1804 of storage architecture 1800 may be implemented
as a persistent memory graph database (PMGD) to enable
visual metadata to be searched more efficiently . For
example , using persistent memory (PM) technology , a graph
database containing the visual metadata can be stored both
in - memory and persistently . In this manner , a persistent
memory graph database (PMGD) can be designed to lever
age a memory hierarchy with data structures and transac
tional semantics that work with the PM caching architecture ,
reduce write requests (addressing PM's lower write band
width compared to DRAM) , and reduce the number of

US 2021/0020041 A1 Jan. 21 , 2021
18

flushes and memory commits . This approach enables a graph
database of visual metadata to be searched efficiently to
identify relevant visual data .
[0209] Further , feature vector storage optimizations may
be used to achieve fast searching of visual metadata . For
example , feature vectors can be generated by various vision
algorithms to identify regions or features of interest in visual
data (e.g. , faces , people , objects) , and they are typically
represented as vectors of n - dimensional floating - point val
ues . Finding the nearest neighbor for a given feature vector
is a common operation that is computationally expensive ,
especially at the cloud scale due to billions of potential
feature vectors (e.g. , a feature vector for each interesting
region of each image or video frame) . Accordingly , in some
embodiments , feature vectors may be represented and stored
as visual metadata using an efficient format . For example ,
visual metadata may be stored using an analysis - friendly
array format that indicates where the feature vectors reside ,
and an index may be built on interesting dimensions within
the metadata storage to narrow the search space .
[0210] Storage architecture 1800 also includes a separate
data storage 1810 for storing the visual data itself , such as
images or videos . Segregating the metadata and visual data
in this manner enables each type of data to be mapped to the
most suitable hardware in a heterogeneous system , thus
providing flexibility for the request server 1802 to identify
the most efficient way to handle a visual data request .
[0211] Moreover , storage architecture 1800 is also capable
of storing visual data on data storage 1810 using an analytic
image format designed to aid in visual processing . In the
illustrated embodiment , for example , visual compute library
(VCL) 1806 of storage architecture 1800 is designed to
handle processing on analytic image formats 1807 in addi
tion to traditional formats 1808. For example , visual com
pute library 1806 can implement an analytic image format
1807 using an array - based data management system such as
TileDB , as described further with respect to FIG . 22. The
analytic image format 1807 provides fast access to image
data and regions of interest within an image . Moreover ,
since the analytic image format 1807 stores image data as an
array , the analytic image format 1807 enables visual com
pute library 1806 to perform computations directly on the
array of image data . Visual compute library 1806 can also
convert images between the analytic image format 1807 and
traditional image formats 1808 (e.g. , JPEG and PNG) .
Similarly , videos may be stored using a machine - friendly
video format designed to facilitate machine - based analysis .
For example , videos are typically encoded , compressed , and
stored under the assumption that they will be consumed by
humans . That assumption is often leveraged for video
encoding by eliminating information that human eyes and
brains cannot process . Videos intended for machine - based
processing , however , may benefit from alternative storage
methods designed to speed up the time required to retrieve
full images or regions of interest within a video or video
frame , and even enhance the accuracy of machine - learning
video processing mechanisms .
[0212] FIG . 22 illustrates an example embodiment of an
analytic image format 2200 designed to aid in visual data
processing . In some embodiments , for example , storage
architecture 1800 may use analytic image format 2200 to
store images in a format that facilitates visual data process
ing and analysis .

[0213] Deep learning neural networks , such as CNNs , are
frequently used for image processing , including object / edge
detection , segmentation , and classification , among other
examples . Images are typically read from disk during both
training and inferencing , for example , using background
threads to pre - fetch images from disk and overlap the disk
fetch and decode times with the other compute threads .
However , compute cycles may still be wasted reading the
images from disk and decompressing / decoding the images
to prepare them for processing , thus reducing the overall
throughput (e.g. , images / second) of an image processing
system .
[0214] Moreover , traditional lossy image formats (e.g. ,
JPEG) are designed to compress image data by discarding
high - frequency information that is not perceptible by
humans . While the discarded information may be meaning
less to humans , however , it can improve the accuracy and
performance of deep learning neural networks used for
image processing .
[0215] For example , images can be compressed either in a
lossless or lossy manner . Lossless image compression pre
serves all the information in the image , while lossy com
pression takes advantage of visual perception and statistical
properties to achieve better compression rates , but results in
some data being lost . The JPEG compression algorithm is a
commonly used lossy algorithm that is often used for images
on the web . The JPEG algorithm is based on discrete cosine
transforms (DCT) , and discards high - frequency details that
are not perceptible to the human eye , which results in much
smaller image file sizes . However , in cases where exact
image reproduction is required , or when the image will be
edited multiple times , lossless compression is preferred . For
example , PNG is an image file format that supports lossless
compression using a bitmap image . With PNG , images are
transformed using a filter type on a per - line basis , and then
compressed using the DEFLATE algorithm . There are
numerous other image formats with similar technologies
behind them that are suitable for different applications and
use cases . While a traditional lossless image format (e.g. ,
PNG) could be used to retain all image data for image
processing purposes , that comes at the cost of a lower
compression rate .
[0216] Further , images stored using traditional formats
(e.g. , JPEG and PNG) must be converted into an internal
array format before any processing can begin . For example ,
before any operations can be performed on images stored
using traditional formats , the entire image file must be read
from disk and decoded into an internal array format . In
analytics , however , operations such as resizing and cropping
are often performed before any sort of learning or under
standing happens , thus rendering traditional image formats
inefficient for image processing and analytics .
[0217] Accordingly , traditional image formats (e.g. , JPEG
and PNG) are designed for human consumption , and per
forming operations on them is often time - consuming and
inefficient . Moreover , lossy image formats (e.g. , JPEG)
discard information that may be useful in machine learning ,
and thus are not well - suited for image processing . Moreover ,
while existing database management systems could be used
to store images , they are not designed for image data and
thus do not store image data efficiently .
[0218] The analytic image format 2200 of FIG . 22 is
designed to aid in image processing and alleviate the defi
ciencies of existing image formats . For example , image

US 2021/0020041 A1 Jan. 21 , 2021
19

may be selected and then processed using different tile sizes
and compression algorithms in order to determine the ideal
tile size and compression for that image . Moreover , since
image processing operations are often postponed until the
data is actually needed , there is a period of time available to
carry out the experimentation without impacting perfor
mance .

format 2200 is implemented using an array - based data
storage format that is lossless and eliminates the expensive
decoding process that is required for processing traditional
image formats . In some embodiments , for example , analytic
image format 2200 could be implemented using an array
based data storage manager such as TileDB . TileDB is a data
management system designed for efficiently managing large
volumes of scientific data represented using arrays . While
TileDB is not specific to images , it is designed to provide
fast access to array - based data . Accordingly , in some
embodiments , image format 2200 can be implemented using
TileDB to achieve the performance boost of TileDB for
image processing purposes .
[0219] In some embodiments , for example , analytic image
format 2200 can be implemented by defining how the pixel
data of an image is stored and accessed in an array - based
format (e.g. , using an array - based data storage manager such
as TileDB) . In this manner , image format 2200 enables
efficiency in processing large images , which reduces the
overall time for image analytics . As visual understanding
algorithms get faster and the hardware to perform the
algorithms gets better , the time to retrieve and process the
images is becoming more and more significant . However , by
using analytic image format 2200 , storage and retrieval of
images does not become a bottleneck in the visual process
ing pipeline .
[0220] For example , analytic image format 2200 allows an
image to be stored as a lossless compressed array of pixel
values . Accordingly , when image data is needed for pro
cessing , the image data does not need to be decoded before
being processed , as required for traditional image formats .
This improves the speed at which data is retrieved and made
usable , yet still provides some level of compression . While
this approach requires images to be written to the analytic
image format 2200 prior to training or inference , the addi
tional write overhead is minimal .
[0221] Moreover , because TileDB outperforms many
array database managers for both sparse and dense data
access , it is an ideal choice for implementing analytic image
format 2200. In other embodiments , however , analytic
image format 2200 can be implemented using any other type
of array - based data manager or data format . The use of a
fast , enhanced array storage system such as TileDB enables
image format 2200 to eliminate slow reads of images from
disk , and remove the in - loop conversion of traditional image
formats to arrays .
[0222] Image format 2200 is also beneficial in applications
where subarray accesses are common , such as accessing
regions of interest in an image . For example , an array data
manager such as TileDB can be used to improve the speed
of common operations that are needed for image analytics ,
such as resize and crop , by enabling fast subarray accesses .
[0223] FIG . 22 illustrates the process of converting an
image into an analytic image format 2200 using an array
based data manager such as TileDB . In the illustrated
example , the original image is first received 2202 and is then
divided into a plurality of tiles 2204 using an optimal tile
size , and the tiles are then compressed and written to
memory on a per - tile basis 2206 using an array - based
storage format .
[0224] In some embodiments , the optimal tile size for
analytic operations can be dynamically determined for each
image . For example , in order to determine the optimal tile
size for a particular image , a random portion of the image

[0225] An image that does not fit perfectly into tiles of the
selected tile size will have partially empty tiles that are
padded with empty characters , as depicted in FIG . 22. In this
manner , the original size of the image may be stored as
metadata (e.g. , height , width , and number of channels) , and
when the image is subsequently read from storage , the
metadata can be checked to determine the actual dimensions
of the image to avoid reading the empty characters or
padding .
[0226] For high - resolution images , image format 2200
improves the speed of common operations such as reading
and writing , as well as the speed of operations used in image
analytics , such as cropping and resizing . For example ,
storing images using image format 2200 improves read
performance , as the images are compressed but not encoded ,
and thus do not need to be decoded when they are read from
the file system . In addition , image format 2200 enables fast
access to subarrays of image pixels , making cropping a
simple matter of reading a particular subarray rather than
reading the entire image and then cropping it to the appro
priate size .
[0227] For example , FIG . 23 illustrates a graph 2300
comparing the performance of analytic image format 2200
from FIG . 22 with the PNG image format , which is a
traditional lossless image format . As shown by FIG . 23 , the
analytic image format provides better performance than
PNG for writes , reads , crops , and resizes . The largest
improvement is seen in cropping , as the analytic image
format allows only the pertinent information to be read from
the file , rather than reading the entire image file and then
cropping to the desired size . Accordingly , the performance
improvement for common data access and analytic opera
tions demonstrates that analytic image format 2200 is highly
beneficial for image processing purposes .
[0228] FIG . 50 illustrates an example write processing
flow 5000 for traditional and analytic image formats . In the
illustrated processing flow 5000 , for example , raw pixel data
5002 can be written to disk 5010 using either a traditional
image format or an analytic image format . The top path of
processing flow 5000 illustrates the flow for writing tradi
tional image formats (e.g. , PNG) , while the bottom path
illustrates the flow for writing analytic image formats .
[0229] With respect to traditional image formats , for
example , raw pixel data 5002 is encoded 5004 , compressed
5006 , and then stored 5010. With respect to analytic image
formats , however , raw pixel data 5002 is compressed 5008
and then stored 5010 , but the encoding step is omitted .
While the resulting analytic image format may result in a
larger file size on disk , the latency of data access operations
(e.g. , writes) and other image operations may be reduced .
[0230] Moreover , the read processing flow for traditional
and analytic image formats may be implemented as the
reverse of the write processing flow 5000. For example , with
respect to traditional image formats , the encoded / com
pressed data is read from disk , decompressed , and then
decoded into the original image . With respect to analytic
image formats , the compressed data is read from disk and

US 2021/0020041 A1 Jan. 21 , 2021
20

then decompressed into the original image , but the decoding
step is omitted since the encoding step was omitted during
the write processing flow 5000 .
[0231] TABLE 1 illustrates an example analytic image
format schema . In some embodiments , for example , the
analytic image format schema of TABLE 1 could be imple
mented using an array - based database manager (e.g. ,
TileDB) to store images as dense arrays .

TABLE 1

example analytic image format

PARAMETER TYPE EXAMPLE VALUE

row major
row major

cell order
tile order
number of dimensions
dimension names
number of attributes
compression
array height

fixed
fixed
fixed
fixed
fixed
fixed
variable
variable
variable
variable
variable

" height " , " width ”
1

LZ4
3534
5299

[0 , 3533 , 0 , 5298]
589
757

array width
domain
tile height
tile width

[0232] The schema of TABLE 1 specifies parameters
about the array that can be used to arrange the image data .
Moreover , some parameters of the analytic image format are
fixed , while others are determined on a per - image basis . For
example , images have only two dimensions , a height and a
width , thus fixing the number of dimensions as well as the
names of the dimensions . The number of attributes is set to
one , which means each cell holds the blue , green , and red
(BGR) values for the corresponding pixel . All three values
are generally read together , as a pixel is defined by all three
values . In other embodiments , however , the color values
may be stored separately . The intra - tile and array - level tile
ordering is fixed to be row major . Row major order means
that data is written and read from left to right in rows within
a tile , and tiles are written and read in the same manner . This
information allows the array database to efficiently perform
subarray reads .
[0233] The dimensions and domain of the array depend on
the resolution of the original image and therefore are cal
culated dynamically on a per - image basis . Since images
often do not have an evenly divisible number of pixels in one
or both dimensions , this occasionally results in the dimen
sions of an array not matching the original resolution of the
image . This is reflected in TABLE 1 , where the array height
is one pixel larger than the image height . To make up the
difference between an image dimension and an array
domain , the image is padded with empty characters . An
example of this can be seen in FIG . 22 , where the white
space within certain tiles corresponds to empty characters . In
the actual array , the size of the array domain is increased by
a single pixel when needed . The original size of the image
(height , width , and number of channels) is stored as meta
data by default . When an image in the analytic format is
read , the metadata is read first in order to determine the
dimensions of the image , thus avoiding reading the empty
characters .
[0234] Tile extents depend on the array dimensions and
are calculated once the array dimensions are known . All tiles
have the same height and width . The optimal number of tiles
may vary based on image content and resolution , and thus in

some embodiments , the optimal number of tiles may be
determined on a per - image basis . For example , in order to
determine the best tile size , a portion of the image may be
randomly selected and tested using different tile sizes and
compression algorithms to determine the best combination
for that image . Since all operations are postponed until the
data is actually needed , there is a period of time to carry out
the experimentation that does not affect the performance . In
other embodiments , however , a predefined minimum num
ber of tiles per dimension (e.g. , 4 tiles per dimension) may
be used as a basis to determine tile height and width .
[0235] The compression algorithm used to compress the
analytic image data has a fixed default (e.g. , the LZ4
compression algorithm) , but other compression algorithms
can be set manually .
[0236] FIG . 51 illustrates an example embodiment of a
visual compute library (VCL) 5100 for traditional and
analytic image formats . For example , VCL 5100 provides an
interface through which a user can interact with the analytic
image format as well as traditional image formats .
[0237] When a user creates an analytic image using VCL
5100 , the analytic image schema is automatically set using
the parameters described above in TABLE 1. VCL 5100 then
creates a layer of abstraction with function calls of TileDB
5102 (e.g. , the array - database manager used in the illustrated
embodiment) combined with specialized transformation
operations to provide an interface to the analytic image .
VCL 5100 also extends the abstraction layer to OpenCV
5104 , providing support for PNG and JPEG image formats .
VCL 5100 uses OpenCV 5104 to perform both I / O and
transformation operations on images that are stored in either
PNG or JPEG format . For images stored in the analytic
format , VCL 5100 handles the transformation operations
and uses TileDB 5102 for I / O operations .
[0238] To initially store an image in the analytic format ,
the raw pixel data of an image is passed to VCL 5100 in
some manner (e.g. , as a path to a PNG or JPEG file stored
on disk , an OpenCV matrix , a buffer of encoded pixel data ,
a buffer of raw pixel data , and so forth) . This data is
converted to a raw pixel buffer in order to write to the
analytic format . Since the TileDB array schema for images
has already been set at this point (e.g. , using the parameters
of TABLE 1) , the TileDB functions can be used to write the
data to disk .
[0239] Reading an image in the analytic format requires
the metadata to be read first to determine the original image
resolution . This ensures that only image data is read and that
empty characters are ignored . The raw analytic - format or
TileDB data is read into a buffer , keeping the data in the
order in which it was written , which is referred to as “ tile
order ” (e.g. , as illustrated in FIG . 52) . This is because if the
data never needs to be returned to the user (e.g. , if the user
just wants to manipulate it and write it out again) , it is faster
to use the tile order buffer . In cases where the data is to be
returned to the user , however , the buffer is re - ordered into
image order , which results in a buffer that has each row of
the image sequentially (e.g. , as illustrated in FIG . 52) . Image
order , for example , is typically expected by other programs
such as OpenCV 5104 .
[0240) Crop , another frequently used operation in image
processing , is used to retrieve a region of interest within an
image for processing . Rather than reading the entire image
and then selecting a sub - region (as is required for traditional
image formats) , the analytic or TileDB crop function uses

US 2021/0020041 A1 Jan. 21 , 2021
21

the crop parameters to specify a subarray of the analytic
image data . The subarray is then the only portion of the
image that is read .
[0241] Resize , another frequently used operation in image
processing , is used to resize the dimensions of an image
(e.g. , to either a smaller or larger size) . The TileDB resize
occurs after the image has been read , but while the data is
still in tile order . VCL 5100 implements a version of resize
for TileDB that uses a bilinear interpolation , following the
OpenCV default . For example , in a linear interpolation , a
new value is calculated based on two points ; bilinear inter
polation does this in two different directions and then takes
a linear interpolation of the results . These points are iden
tified by (row , column) in the original image . Given the data
is in tile order , it is necessary to identify which tile each
point is part of in order to locate the value of that point in
the buffer . The resulting resized image buffer is in image
order , although other approaches may be used to keep it in
tile order .
[0242] Compression / Compressive Learning
[0243] The performance of large - scale visual processing
systems can be improved using efficient compression algo
rithms and techniques for storing and processing visual data .
The compression approaches of existing visual processing
solutions , however , suffer from various deficiencies . For
example , existing solutions require visual data to be fully
decompressed before any processing can be performed (e.g. ,
using deep learning neural networks) . Moreover , existing
solutions typically compress and store images individually ,
thus failing to leverage the potential compressive benefits of
collections of similar or related images with redundant
visual data .
[0244] Accordingly , this disclosure presents various
embodiments for compressing and processing visual data
more efficiently . In some embodiments , for example , neural
networks can be designed to operate on compressed visual
data directly , thus eliminating the need to decompress visual
data before it can be processed . Moreover , context - aware
compression techniques can be used to compress visual data
and / or visual metadata more efficiently . For example , con
text - aware compression can be used to compress distinct
instances of redundant visual data more efficiently , such as
a group of images taken close in time , at the same location ,
and / or of the same object . Similarly , context - aware com
pression can be used to compress visual metadata more
efficiently (e.g. , using a context - aware lossless compression
codec) . In some embodiments , for example , visual metadata
could be compressed by pre - training a convolutional neural
network (CNN) to classify visual metadata , replacing long
strings of visual metadata with shorter symbols (e.g. , pre
defined human codes) , performing multi - scale de - duplica
tion on the visual metadata , and finally compressing the
resulting visual metadata using a compression algorithm
(e.g. , the LZ77 lossless compression algorithm or another
similar alternative) .
[0245] FIGS . 24A - C illustrate an example embodiment of
a multi - domain cascade convolutional neural network
(CNN) 2400 .
[0246] In distributed visual analytics systems , image and
video is often compressed before transmission (e.g. , from
the pixel domain to a compressed domain) , and subse
quently decompressed after transmission (e.g. , back to the
pixel domain) before any processing can be performed , such
as deep learning using neural networks . As an example ,

image and video captured by edge devices may be com
pressed and transmitted to the cloud , and then decompressed
by the cloud before any further processing begins .
[0247] This approach suffers from various disadvantages .
First , extra computation is required to fully decompress the
visual data before it can be processed , thus significantly
increasing the total processing time (e.g. , by up to 100 % in
some cases) . For example , before processing can be per
formed , the visual data must be fully decompressed back to
the pixel domain using hardware or software decoding .
Accordingly , given that not all processors include built - in
video decompression accelerators , decompression may
incur an additional cost for video analytics .
[0248] Next , extra bandwidth is required to transmit the
decompressed data between separate processing compo
nents (e.g. , between a decompression engine and an analysis
engine) , thus significantly increasing bandwidth usage (e.g. ,
by up to 20 times in some cases) .
[0249] Moreover , the requirement to fully decompress
visual data prior to processing precludes the ability to
leverage a fully distributed neural network in the edge - to
cloud sense . For example , the use of distributed analytics to
process visual data exclusively in the pixel domain requires
the visual data to be analyzed at multiple scales .
[0250] Further , relying on the cloud to perform processing
on visual data captured by edge devices often results in
wasted transmission bandwidth , as many images or videos
transmitted from the edge to the cloud may not contain any
objects or features of interest . In many cases , for example ,
it could be possible to perform object detection and classi
fication closer to the network edge (e.g. , near the sensors that
capture the visual data) using lower complexity analytics
algorithms , potentially saving the transmission cost of insig
nificant or unimportant data .
[0251] Accordingly , FIGS . 24A - C illustrate an example
embodiment of a multi - domain cascade CNN 2400 that can
be used to process visual data in the compressed and pixel
domains , thus eliminating the requirement to decompress
visual data before it can be processed . In this manner ,
multi - domain cascade CNN 2400 can be used to perform
distributed visual analytics in a visual fog system using
compressed domain data as input .
[0252] In some embodiments , for example , multi - domain
cascade CNN 2400 may be a cascaded CNN that includes
multiple decision stages . For example , in a first or early
decision stage , a subset of the compressed domain visual
data or features may be used (e.g. , motion vectors) to
attempt to generate an early decision . If the visual data
cannot be detected or classified in the early stage , additional
compressed domain data (e.g. , motion prediction residuals)
may be provided as input to a subsequent or late decision
stage . Finally , for improved accuracy and / or in the event the
late decision stage is unsuccessful , the visual data may be
fully decompressed and a final decision stage may be
performed using the decompressed visual data .
[0253] In the illustrated embodiment , for example , CNN
2400 includes an early decision stage (illustrated in FIG .
24A) , a late decision stage (illustrated in FIG . 24B) , and a
final decision stage (illustrated in FIG . 24C) . Moreover ,
CNN 2400 is designed to process compressed visual data
2402 as input (e.g. , video sequence data compressed with a
motion - compensated predictive coding scheme such as
H.264) .

US 2021/0020041 A1 Jan. 21 , 2021
22

[0254] In some embodiments , for example , compressed
visual data 2402 provided as input to CNN 2400 may first be
partially decoded to separate and extract different syntax
elements (e.g. , motion vectors , macroblock (MB) coding
modes , quantized prediction residuals) , thus producing a
subset of partial compression data 2404 .
[0255] As shown in FIG . 24A , in the early decision stage ,
the partial compression data 2404 (e.g. , motion vectors) is
provided as input to a first stage CNN 2405a to attempt to
identify an early decision 2406. In some embodiments , the
CNN processing may then terminate if an early decision can
be made . For example , in some embodiments , the early
decision stage may be performed by a fog or edge node near
the sensor that captured the visual data . Accordingly , if an
early decision can be made , it may be unnecessary to
transmit additional visual data to another node (e.g. , in the cloud) for a subsequent processing stage , thus saving band
width and / or resources (e.g. , energy) that would otherwise
be required for the later stage . For example , assuming the
goal is to detect moving pedestrians using traffic cameras , if
there is no motion detected , there likely are no moving
objects . Accordingly , an early decision can be made , and any
further transmission or processing of the visual data can be
aborted . In other embodiments , however , the subsequent
CNN processing stages of CNN 2400 may still be performed
even if an early decision can be made . Moreover , the
complexity of the first stage CNN 2405a may vary based on
different use cases , resource availability , and so forth .
[0256] If the early decision stage is unable to detect or
classify the partial compression data 2404 using the first
stage CNN 2405a , CNN 2400 may proceed to a late decision
stage , as shown in FIG . 24B . In the late decision stage of
FIG . 24B , for example , additional compression data 2410
(e.g. , motion prediction residuals) is evaluated using a
second stage CNN 2405b to attempt to determine a late
decision 2408 .
[0257] Finally , for improved accuracy and / or in the event
the late decision stage is unsuccessful (e.g. , the late decision
stage is unable to detect or classify the additional compres
sion data 2410 using the second stage CNN 2405b) , CNN
2400 may proceed to a final decision stage , as shown in FIG .
24C . In the final decision stage of FIG . 24C , for example , the
compressed visual data 2402 may be fully decompressed
using a decompression engine 2412 , and the decompressed
visual data 2414 (e.g. , pixel domain data) may then be
evaluated using a final stage CNN 2405c to determine a final
decision 2416 .
[0258] Accordingly , the collective stages of multi - domain
cascade CNN 2400 are depicted in FIG . 24C , where an early
stage is used to generate an early decision based on an initial
subset of compressed domain data , and later stages are used
to generate re - fined or final decisions based on additional
compressed domain data and eventually pixel domain data .
[0259] The described embodiments of multi - domain cas
cade CNN 2400 provide numerous advantages . First , visual
data (e.g. , images or video) does not need to be fully
decompressed before its contents can be analyzed using
deep learning neural networks , thus reducing memory usage
and computation typically required for decoding or decom
pressing the visual data . Next , the cascading approach of
CNN 2400 avoids the need to transmit certain compressed
data to the cloud , such as when an early decision can be
reached by an edge or fog node , thus improving bandwidth
usage . Finally , a large portion of the overall analysis often

occurs in the early decision stage , which typically involves
a simplified CNN or machine learning model , thus reducing
the overall computational complexity .
[0260] FIGS . 25-31 illustrate the use of butterfly opera
tions to implement a multi - domain convolutional neural
network (CNN) that is capable of processing both raw and
compressed visual data .
[0261] As discussed above , many visual analytics systems
require visual data to be fully decompressed before any
visual processing can be performed (e.g. , using deep learn
ing neural networks) , which is an approach that suffers from
various inefficiencies , including higher processing latency ,
additional transmission bandwidth , and so forth . Accord
ingly , this disclosure presents various embodiments of a
deep learning neural network that is capable of analyzing
compressed visual data directly . In particular , the described
embodiments present a multi - domain CNN that uses butter
fly operations to enable visual data processing in either the
pixel domain or the compressed domain .
[0262] To illustrate , existing deep learning CNNs (e.g. ,
inception or ResNet CNN models) typically repeat an inner
module multiple times , and the inner module aggregates the
results from multiple convolution layers and / or the original
input at the end (analogous to a bottleneck) . For example ,
FIGS . 25A - B illustrate a traditional 27 - layer inception
model CNN 2500 , and FIGS . 26 and 27 illustrate example
inner modules 2600 and 2700 for an inception model CNN .
In particular , FIG . 26 illustrates an inner module 2600
implemented without dimension reduction , while FIG . 27
illustrates an inner module 2700 implemented with dimen
sion reduction . These CNN implementations are designed to
process visual data in the pixel domain (e.g. , raw or uncom
pressed visual data) .
[0263] FIGS . 28 and 29 , however , illustrate example CNN
inner modules 2800 and 2900 that use butterfly operations to
enable multi - domain visual data processing in either the
pixel domain or the compressed domain . Butterfly opera
tions , for example , are operations that can be used to
transform compressed domain data (e.g. , DCT domain data)
back to the pixel domain . Accordingly , by incorporating
butterfly layers into a CNN , the CNN can be provided with
compressed visual data as its original input , and as the
compressed data is processed by the successive CNN layers ,
the compressed data is at least partially transformed or
decompressed back to the pixel domain using the butterfly
layers in the CNN .
[0264] FIG . 28 illustrates an inner CNN module 2800
implemented without dimension reduction , while FIG . 29
illustrates an inner CNN module 2900 implemented with
dimension reduction . Moreover , as shown in these
examples , additional butterfly layers or filters are added in
parallel to the regular convolution layers . In some embodi
ments , for example , 2x2 and / or 4x4 butterfly operations can
be added in parallel to the regular convolution and pooling
layers . For example , in some embodiments , the butterfly
operations could be implemented similar to the example
butterfly operation illustrated in FIGS . 31A - B .
[0265] With respect to inner module 2800 of FIG . 28 , for
example , butterfly layers 2830a , b are added in parallel to
convolution layers 2810a - c and pooling layer 2820 , and the
butterfly layers 2830 include vertical N - point butterfly
operations 2830a and horizontal N - point butterfly opera
tions 2830b . For example , in some embodiments , the but
terfly operations may be performed for both the vertical

US 2021/0020041 A1 Jan. 21 , 2021
23

pixels and the horizontal pixels . Similarly , with respect to
inner module 2900 of FIG . 29 , butterfly layers 2930a , b are
added in parallel to convolution layers 2910a - e and pooling
layers 2920a - b , and the butterfly layers 2930 include vertical
N - point butterfly operations 2930a and horizontal N - point
butterfly operations 2930b .
[0266] Note that this approach , however , does not require
multiple butterfly layers to be stacked within a single inner
module , as the CNN does not have to perform a complete
inverse DCT . For example , the goal of multiple convolution
layers is to extract / transform the input data to a feature space
where the fully connected layers can easily separate different
clusters . Accordingly , the butterfly layers do not have to
perform a complete inverse DCT , and instead , they can
simply be designed to aid in extracting and transforming the
input data into the feature space . In this manner , a complete
or entire stack or organized butterfly layers does not need to
be included in the CNN .
[0267] Moreover , the weights of each butterfly can be
adjusted during the training phase , and thus the decision of
whether to use the butterfly layers and / or how much to rely
on them will be adjusted automatically .
[0268] FIG . 30 illustrates an alternative embodiment of a
multi - domain CNN 3000 with butterfly layers 3002 and
normal layers 3004 arranged sequentially rather than in
parallel .
[0269] FIGS . 31A - B illustrate an example of a one - dimen
sional (1D) N - point butterfly operation . In particular , the
illustrated example is a 4 - point butterfly operation , meaning
the butterfly operation is performed using four data points
3110a - d . In other embodiments , however , butterfly opera
tions may be implemented using any number of data points .
Moreover , in some embodiments , data points 3110a - d may
represent compressed pixel data , such as DCT coefficients .
[0270] In some embodiments , the butterfly operation may
be performed in multiple stages . In each stage , for example ,
the butterfly operation may generate two outputs or channels
using separate addition and subtraction operations (e.g. , by
computing the sum of two points over a large distance and
the difference of two points over a large distance) . For
example , during a particular stage , the 1st and 4th points may
be added together to compute their sum (1st point + 4th point) ,
and also subtracted to compute their difference (1st point - 4th
point) . The points may then be shifted up cyclically and the
process may be repeated for the next stage . For example ,
after each stage , the 4th point becomes the 3rd point , the 3rd
point becomes the 2nd point , the 2nd point becomes the 1st
point , and the 1st point becomes the 4th point . After the points
are shifted , the next stage of the butterfly operation is
performed by repeating the addition and subtraction on the
1st on 4th points (e.g. , using the new ordering of points) .
[0271] In FIGS . 31A - B , for example , the addition and
subtraction operations for the first stage of a butterfly
operation are shown . In particular , FIG . 31A illustrates the
addition operation , and FIG . 31B illustrates the subtraction
operation . In FIG . 31A , for example , the 1st point (3110a)
and the 4th point (3110d) are added together to compute a
new point (3120a) that represents their sum . Similarly , in
FIG . 31B , the 4th point (3110d) is subtracted from the 1st
point (3110a) to compute a new point (3130d) that repre
sents their difference . The points are then shifted in the
manner described above to perform the subsequent stages of
the butterfly operation .

[0272] Accordingly , the butterfly operations can be incor
porated into a CNN in this manner in order to enable
processing of visual data in both the pixel domain and
compressed domain (e.g. , DCT domain) , thus eliminating
the requirement of fully decompressing visual data before
analyzing its contents using a deep learning neural network .
For example , rather than explicitly performing an inverse
DCT transform to fully decompress visual data before
processing it using a CNN , the CNN can instead be imple
mented using butterfly layers to inherently incorporate
decompression functionality into the CNN , thus enabling the
CNN to be provided with compressed data as input .
[0273] FIGS . 32 and 33 illustrate an example embodiment
of a three - dimensional (3D) CNN 3200 that is capable of
processing compressed visual data . In some embodiments ,
for example , 3D CNN 3200 could be used in the implemen
tation of , or in conjunction with , the compression - based
CNN embodiments described throughout this disclosure
(e.g. , the CNNs of FIGS . 24 and 28-31) .
[0274) Many visual analytics systems require visual data
to be decompressed before any processing can be performed ,
such as processing by a deep learning neural network . To
illustrate , FIG . 34 illustrates an example of a pixel - domain
CNN 3400 , and FIG . 35 illustrates an example of an
associated pixel - domain visual analytics pipeline 3500. In
the illustrated example , pixel - domain CNN 3400 performs
object detection and classification for visual analytics using
data in the pixel or image domain (e.g. , using decompressed
visual data) . For example , the convolutional kernels in the
early layers of the CNN implement two - dimensional (2D)
convolutions on the image data , and multiple layers of
convolutions , pooling , and rectified linear unit (ReLU)
operations are repeated in order to successively extract
combinations of features from the earlier layers . Moreover ,
because CNN 3400 operates on pixel - domain data , com
pressed visual data must be fully decompressed before it can
be processed by CNN 3400. For example , as shown by
visual analytics pipeline 3500 of FIG . 35 , the original pixel
domain data 3502 is first compressed by a video encoder
3510 (e.g. , prior to transmission over a network) , and the
compressed data 3504 is subsequently decompressed by a
video decoder 3520 before performing video analytics 3540
(e.g. , using a CNN) .
[0275] In the illustrated embodiment of FIGS . 32 and 33 ,
however , 3D CNN 3200 processes compressed visual data
directly using a 3D format designed to improve processing
efficiency . For example , the input image may be transformed
into the DCT domain and reshaped into a 3D format in order
to separate the DCT transform coefficients into different
channels . In this manner , the reshaped DCT transform data
is arranged in a manner that provides better correlation
between the spatial and transform domain coefficients . The
reshaped DCT transform data can then be processed directly
by a CNN (e.g. , using 3D convolutions to perform feature
extraction) , which ultimately enables the CNN to be trained
faster . For example , by eliminating the decompression step
required by existing approaches , processing efficiency is
improved , particularly for computing environments that do
not include built - in hardware video decompression accel
erators .
[0276] In some embodiments , for example , 3D CNN 3200
may be designed to operate directly on compressed visual
data (e.g. , video frames) represented in the DCT domain
using a 3D matrix . For example , in some embodiments , the

US 2021/0020041 A1 Jan. 21 , 2021
24

[0281] FIGS . 36 and 37 illustrate example embodiments
of visual analytics pipelines 3600 and 3700 that perform
visual analytics on compressed visual data (e.g. , using the
compression - based CNN embodiments described through
out this disclosure) . As shown by these FIGURES , the
decoding or decompression step in the visual analytics
pipeline is optional and / or may be omitted entirely . For
example , as shown by visual analytics pipeline 3600 of FIG .
36 , the original pixel domain data 3602 is first compressed
by a video encoder 3610 (e.g. , prior to transmission over a
network) , and the compressed data 3604 may optionally be
partially decompressed by a video decoder 3620 before
performing visual analytics 3630 on the fully or partially
compressed data 3606. Similarly , as shown by visual ana
lytics pipeline 3700 of FIG . 37 , the original pixel domain
data 3702 is first compressed by a video encoder 3710 (e.g. ,
prior to transmission over a network) , and visual analytics
(e.g. , image classification) 3720 is then directly performed
on the compressed data 3704 .
[0282] FIG . 38 illustrates a performance graph 3800
showing the precision of a CNN trained using compressed
visual data (e.g. , 4x4 transform DCT inputs) , such as the
compression - based CNNs described throughout this disclo
sure .

DCT block indices may be represented by the x and y
dimensions of the 3D matrix , while the DCT transform
magnitude vectors may be organized along the z dimension .
In this manner , the convolutional kernels in the first layer of
the new CNN architecture can be implemented using 3D
filters designed to better capture the spatial and frequency
domain correlations and features of the compressed data ,
thus improving the performance of the CNN operation in the
DCT domain .
[0277] The majority of common video and image encod
ing schemes use discrete cosine transforms (DCT) to convert
spatial pixel intensities to frequency domain representations .
The illustrated embodiment is based on the observation that
once image data is split into 4x4 pixel blocks and passed
through a transform such as DCT , the transformed data has
different correlation properties than the original data . For
example , with respect to a DCT transform , the DC coeffi
cients of adjacent blocks are often strongly correlated , while
the corresponding higher frequency AC coefficients of adja
cent blocks may be similarly correlated .
[0278] Accordingly , FIG . 32 illustrates an approach for
transforming a 2D image into a 3D matrix of DCT data ,
which is arranged in a manner that allows the DCT data to
be processed more efficiently by a CNN . In the illustrated
example , an input image of size NxN (reference numeral
3210) is first broken up into 4x4 pixel blocks (example
reference numeral 3212) , and each 4x4 pixel block is passed
through a DCT transform . The resulting DCT transform
domain data (reference numeral 3220) is then stored in a 3D
matrix , where the x and y dimensions correspond to the
spatial block indices and the z dimension contains vectors of
DCT coefficients (reference numeral 3222) , which include
16 coefficients per vector . Accordingly , the resulting trans
form domain data (reference label 3220) has dimensions of
size KxKx16 , where K = N / 4 .
[0279] Next , as shown in FIG . 33 , the transform domain
data represented using the 3D matrix (reference label 3220)
is input into the CNN (reference label 3200) , which includes
a first layer of 3D convolutional kernels that use 3D filters .
This layer extracts both spatially correlated features in the
X - y plane along with any specific signatures in the frequency
axis (z dimension) , which can be used as input to succeeding
layers .
[0280] The illustrated embodiment provides numerous
advantages , including the ability to directly process com
pressed visual data in an efficient manner , thus eliminating
the need to decompress the data before analyzing its con
tents (e.g. , using a deep learning neural network) . In this
manner , the overall computational complexity of visual
analytics can be reduced . Moreover , because compressed or
DCT domain data is quantized and thus represented using a
more compact form than the original visual data (e.g. , video
frame) , the overall CNN complexity may be further reduced
compared to a conventional pixel - domain CNN . For
example , with respect to visual data (e.g. , images or video)
compressed in certain compression formats such as JPEG or
M - JPEG , the DCT coefficients are quantized , and typically
the highest frequency components may be zeroed out by the
quantization . Thus , the total volume of non - zero data pro
cessed by the CNN is reduced compared to the original
image data . Accordingly , based on the data volume reduc
tion of the compressed data (e.g. , due to DCT coefficient
quantization) , the CNN complexity may be further reduced ,
and the training speed of convergence may improve .

[0283] FIG . 39 illustrates a flowchart 3900 for an example
embodiment of context - aware image compression . In some
embodiments , flowchart 3900 may be implemented using
the embodiments and functionality described throughout
this disclosure .
[0284] Today , many people rely on the cloud for storing or
backing up their photos . Typically , photos are stored as
individually compressed files or units . In the current com
puting era , however , that approach is often inefficient . For
example , people increasingly use their mobile devices to
take photos , and each new generation of mobile devices are
updated with cameras that support more and more mega
pixels , which results in larger volumes of photos that require
more storage space . Moreover , people often capture multiple
photos of the same object or scene during a single occasion ,
which often results in a close ral correlation among
those photos , along with substantial redundancy . Accord
ingly , due to the redundancy across similar photos , individu
ally compressing and storing each photo can be an inefficient
approach . For example , traditionally , each photo is com
pressed and saved independently using a particular image
compression format , such as JPEG . By compressing each
photo individually , however , current approaches fail to
leverage the inter - picture correlations between groups of
similar photos , and thus more storage space is required to
store the photos . For example , two photos that are nearly
identical would still require double the storage of a single
photo .
[0285] Accordingly , in the illustrated embodiment , groups
of similar or related photos are compressed and stored more
efficiently . For example , context information associated with
photos is extracted and used to identify similar or related
photos , and similar photos are then compressed jointly as a
group . The contextual information , for example , could be
used to identify a group of pictures from a single user that
were taken very close in time and / or at the same location . As
another example , the contextual information could be used
to identify a group of pictures taken by different users but at
the same location . Accordingly , the identified group of
similar photos may be compressed using video coding in

US 2021/0020041 A1 Jan. 21 , 2021
25

order to leverage the inter - photo correlations and ultimately
compress the photos more efficiently . In this manner , com
pressing related or correlated images using video compres
sion rather than standard image compression can signifi
cantly reduce the storage space required for the photos (e.g. ,
2-5 times less storage space in some cases) . Accordingly ,
this approach can be used to save or reduce storage in the
cloud .
[0286] The flowchart may begin at block 3902 by first
obtaining a new photo . In some cases , for example , the new
photo could be captured by the camera of a mobile device .
In other cases , however , any type of device or camera may
be used to capture the photo .
[0287] The flowchart may then proceed to block 3904 to
collect context information associated with the new photo .
For example , when a photo is newly captured (e.g. , by a
mobile device) , corresponding context information associ
ated with the photo is collected , such as a timestamp , GPS
coordinates , device orientation and motion states , and so
forth .
[0288] The flowchart may then proceed to block 3906 to
determine if a matching master photo can be identified for
the new photo . In some embodiments , for example , the
context information of the new photo is compared to the
context information of other previously captured master
photos to determine whether the new photo is closely
correlated to any of the existing master photos . For example ,
if the photo is taken in the same location , within a certain
amount of time , and with little phone movement compared
to a master photo , it is likely that the new photo is highly
correlated with the master photo . Further , in some embodi
ments , image feature matching techniques can then be
applied to confirm the photo correlation . In some embodi
ments , for example , a scale - invariant feature transform
(SIFT) may be used to determine whether a pair of photos
are sufficiently correlated or matching .
[0289] If a matching master photo is identified at block
3906 , the flowchart may then proceed to block 3908 to
encode the new photo with the matching master photo . In
some embodiments , for example , a video codec (e.g. , H.264)
may be used to compress the new photo as an inter - frame
associated with the master photo . For example , video codecs
typically provide inter - frame encoding , which effectively
utilizes the temporal correlation between similar images to
improve the coding efficiency .
[0290] In some embodiments , a master photo may include
any photo that is compressed without reference to other
parent or related images , while a slave photo may include
any photo that is compressed with reference to a master or
parent image (e.g. , using inter - frame mode of a video
codec) . Accordingly , a slave photo must efficiently record or
correlate relevant information of its master photo , so that
when the slave photo needs to be decoded for display of the
entire image , the associated master photo can be quickly
identified .
[0291] If a matching master photo is NOT identified at
block 3906 , the flowchart may then proceed to block 3910
to encode the new photo by itself . For example , when the
new photo does not match any of the existing master photos ,
the new photo is encoded without referencing any other
photos , and the flowchart may then proceed to block 3912 to
designate the new photo as a master photo , allowing it to
potentially be compressed with other subsequently captured
photos .

[0292] At this point , the flowchart may be complete . In
some embodiments , however , the flowchart may restart
and / or certain blocks may be repeated . For example , in some
embodiments , the flowchart may restart at block 3902 to
continue obtaining and compressing newly captured photos .
[0293] Privacy / Security
[0294] In distributed visual processing systems , it is
important to implement effective privacy and security poli
cies to protect sensitive visual data of underlying users or
subjects (e.g. , images or video with people's faces) . Accord
ingly , in some embodiments , the visual fog architecture
described throughout this disclosure may be implemented
using a variety of privacy and security safeguards .
[0295] In some embodiments , for example , privacy - pre
serving distributed visual processing may be used in order to
schedule or distribute vision workloads across available fog
nodes in an efficient manner , while also adhering to any
applicable privacy and / or security constraints .
[0296] Similarly , a multi - tiered storage approach may be
used to store visual data in different locations and / or for
different durations of time , depending on the particular level
of sensitivity of the data . For example , the cloud may be
used for long term storage of less sensitive or high - level
visual data or metadata , while edge devices (e.g. , on premise
gateways) may be used for storage of highly sensitive visual
data .
[0297] Moreover , certain vision operations may be imple
mented using privacy - preserving approaches . For example ,
for some vision applications (e.g. , automated demographics
identification) , feature extraction and recognition may be
implemented using cameras and sensors that capture top
down views rather than intrusive frontal views .
[0298] As another example , gateway cloud authentication
may be used to securely authenticate gateways and / or other
fog devices to the cloud using JSON web tokens .
[0299] As another example , wallets or distributed keys ,
along with MESH or GOSSIP based communication proto
col , can be used to provide improved and more secure key
management solutions .
[0300] Stream multiplexing may be used in application
layer routing for streaming media , for example , by multi
plexing visual sensors over multiple channels and introduc
ing entropy to make channel prediction more difficult . For
example , additional security can be provided by introducing
entropy and other noise (e.g. , chaff signals) designed to
complicate channel prediction , thus thwarting efforts of
malicious actors to pick up on video feeds .
[0301] As another example , a self - sovereign blockchain
can be used to provide multi - tenant device identification .
For example , the blockchain can be used to handle the
orchestration and acceptance of device identities across
multiple visual fog networks (e.g. , even for legacy systems) ,
thus allowing devices to assert their identity without relying
on third party or centralized services . A self - sovereign
blockchain can similarly be used for other purposes , such as
managing a collection of distributed computing algorithms .
[0302] As another example , blockchain lifecycle manage
ment (e.g. , managing the instantiation and lifecycle of
blockchains) can be used to provide an additional level of
security on blockchains used in a visual fog architecture . For
example , blockchain lifecycle management can be used to
ensure that a particular blockchain is implemented correctly
and behaves as expected .

US 2021/0020041 A1 Jan. 21 , 2021
26

[0303] As another example , stakeholder management can
be used to provide a set of protocols and frameworks to
allow self - interests to be asserted , while arbitrating against
conflicts in an equitable way .
[0304] FIGS . 40A - C illustrate an example embodiment of
a privacy - preserving demographic identification system
4000. Identifying human demographic attributes (e.g. , age ,
gender , race , and so forth) can be leveraged for a variety of
use cases and applications . Example use cases include
human - computer interaction , surveillance , business and
consumer analytics , and so forth . In retail and healthcare
segments , for example , defining a target audience and devel
oping customer profiles has become a critical factor for
successful brand strategy development .
[0305] In some embodiments , for example , computer
vision and / or facial recognition technology may be used to
identify human demographics . For example , demographics
could be identified based on frontal and / or side facial
features extracted using computer vision facial recognition
technology . The use of frontal facial recognition technology
in public , however , may implicate potential privacy con
cerns . Moreover , demographic identification is crucial
across different domains and should not be limited to only
frontal - based sensors and recognition techniques , particu
larly in the Internet - of - Things (IoT) era , which is projected
to have over 20 billion connected devices by year 2020 .
Further , when limited to frontal - based vision sensors , it may
be challenging to develop a demographics identification
system that overcomes the person occlusion problem , while
also providing wide processing viewing angles .
[0306] Accordingly , in the illustrated embodiment of
FIGS . 40A - C , privacy - preserving demographic identifica
tion system 4000 uses one or more top - view sensors 4015 to
identify human demographics . In some embodiments , for
example , either a single sensor 4015 or multiple sensors
4015 may be used to capture top - down views of humans ,
rather than conventional frontal views . Moreover , human
demographics may then be identified based on features
extracted from the top - down views captured by the sensors
4015. In this manner , the use of top - view sensors 4015
enables human demographics to be automatically identified
while preserving privacy , providing wider sensor viewing
angles , and reducing susceptibility to occlusion .
[0307] FIG . 40A illustrates a high - level implementation of
demographic identification system 4000. In the illustrated
embodiment , edge devices 4010 include multiple sets of
top - view sensors 4015a - c that are used for sensing humans .
For example , each set of top - view sensors 4015a - c may
include one or more sensors that are capable of capturing
information about their surrounding environment . The infor
mation captured by top - view sensors 4015a - c is then pro
cessed in the fog 4020 to detect humans and identify their
demographics . The contextual information extracted by the
fog 4020 (e.g. , human demographics) may then be trans
mitted to the cloud 4030 for further analytics , such as people
profiling or generating heat maps .
[0308] FIG . 40B illustrates an example of a set of top - view
sensor (s) 4015 associated with demographic identification
system 4000 of FIG . 40A . As shown in the illustrated
example , top - view sensors 4015 include a collection of one
or more sensors positioned above an area that is accessible
to humans 4002. In some embodiments , for example , top
view sensors 4015 could be mounted to the ceiling of a retail
store near the entrance . Moreover , top - view sensors 4015

can include any type and / or combination of sensor (s) , such
as a vision camera , infrared camera , light detection and
ranging (LiDAR) sensor , and so forth . In this manner ,
top - view sensors 4015 can be used to capture top - view
representations of humans 4002 that pass below the sensors .
Moreover , as described further with respect to FIG . 40C , the
top - view representations captured by top - view sensors 4015
can then be processed further to identify the demographics
of humans 4002 captured by the sensors .
[0309] FIG . 40C illustrates an example of the demograph
ics identification process performed by the fog 4020 in
demographic identification system 4000 of FIG . 40A . In the
illustrated example , the demographics identification process
involves (i) training a demographics classification model ,
and (ii) identifying demographic information using the
trained demographics classification model with top - view
sensor data as input .
[0310] The process of training the demographics classifi
cation model is illustrated by blocks 4021-4024 . At block
4021 , a training database of top - view human data must first
be obtained or generated . In some embodiments , for
example , the training database may include data captured by
top - view sensors 4015 , such as camera images , infrared
images , point clouds , and so forth . At block 4022 , features
that are typically representative of human demographics are
then selected / trained from the database using feature extrac
tion methodologies , such as principal component analysis
(PCA) , discrete cosine transforms (DCT) , machine learning
(e.g. , deep learning using a neural network) , and so forth . At
block 4023 , the selected / trained features are then provided
as input to a process used to train a demographics classifi
cation model . At block 4024 , the trained demographics
model is then saved in the fog 4020 for subsequent use
during the demographics identification process , as described
further below .
[0311] The process of identifying human demographics is
illustrated by blocks 4025-4029 . At block 4025 , sensor data
is captured by edge devices 4010 using one or more top
view sensor (s) 4015 , such as a vision camera , infrared
camera , LiDAR sensor , and so forth . The raw sensor data
(e.g. , RGB images , thermal images , point clouds) is then
transmitted from the edge 4010 to the fog 4020 in order to
perform data pre - processing in the fog 4020 (e.g. , on
premises) , such as data transformations , de - noising , and so
forth . At block 4026 , person detection is then performed on
the pre - processed input stream . In some embodiments , for
example , the pre - processed input stream is analyzed to
determine if a person is captured in the underlying visual
data . As an example , pre - processed image data from a
top - view camera may be analyzed to determine if the image
contains a person , and if so , the portion of the image that
contains the person may be extracted . At block 4027 ,
features that are typically representative of human demo
graphics are then selected or extracted from the detected
person using feature extraction / machine learning tech
niques . At block 4028 , the extracted features from block
4027 and the pre - trained demographics model from block
4024 are then used by a demographics classifier to classify
the demographic attributes of the detected person . At block
4029 , demographic information associated with the detected
person is then identified based on the output of the demo
graphics classifier .
[0312] The described embodiments of top - view demo
graphics identification provide numerous advantages . As an

US 2021/0020041 A1 Jan. 21 , 2021
27

example , the described embodiments enable demographic
information to be accurately identified based on top - down
views of humans captured using a single- or multi - sensor
approach . Compared to a frontal view approach , for
example , a top - down or aerial perspective provides a wider
angle of view for processing , reduces the problem of block
ing or occlusion of people captured by the sensors , and
preserves depth information associated with people and
features captured and processed by the system . In addition ,
the described embodiments are less privacy - intrusive , as
they only capture top views of people rather than other more
intrusive views , such as frontal views . The described
embodiments also identify demographic information based
on permanent or lasting anthropometry features rather than
features that may change or vary . Moreover , unlike motion
based detection approaches , the described embodiments are
operable using only static views or images and do not
require continuous image sequences or videos . Further , the
described embodiments can be leveraged for a variety of use
cases and applications , including retail , digital surveillance ,
smart buildings , and / or other any other applications involv
ing human sensing , person identification , person re - identi
fication (e.g. , detecting / tracking / re - identifying people across
multiple monitored areas) , and so forth .
[0313] FIG . 53 illustrates a flowchart 5300 for an example
embodiment of privacy - preserving demographics identifica
tion . In some embodiments , for example , flowchart 5300
may be implemented by demographics identification system
4000 of FIGS . 40A - C .
[0314] The flowchart may begin at block 5302 by obtain
ing sensor data from a top - view sensing device . A top - view
sensing device , for example , may be used to capture sensor
data associated with the environment below the top - view
sensing device (e.g. , from a top - down perspective) . In some
embodiments , the top - view sensing device may include a
plurality of sensors , including a camera , infrared sensor , heat
sensor , laser - based sensor (e.g. , LiDAR) , and so forth .
[0315] The flowchart may then proceed to block 5304 to
perform preprocessing on the sensor data , such as data
transformations , filtering , noise reduction , and so forth . In
some embodiments , for example , the raw sensor data may be
transmitted to and / or obtained by a processor that is used to
perform the preprocessing . For example , the preprocessing
may be performed by an edge processing device at or near
the network edge (e.g. , near the top - view sensing device) ,
such as an on - premise edge gateway .
[0316] The flowchart may then proceed to block 5306 to
generate a visual representation of the environment below
the top - view sensing device . The visual representation , for
example , may be generated using the sensor data captured
by the top - view sensing device (e.g. , camera images , infra
red images , point clouds , and so forth) . In some embodi
ments , for example , the visual representation may be a
three - dimensional (3D) representation or mapping of the
environment from a top - down perspective . Moreover , in
some embodiments , the visual representation may be gen
erated at or near the network edge (e.g. , near the top - view
sensing device) . For example , in some embodiments , an
edge processing device (e.g. , an on - premise edge gateway)
may be used to generate the visual representation .
[0317] The flowchart may then proceed to block 5308 to
determine whether a person is detected in visual represen
tation . For example , if a person was located under the
top - view sensing device when the sensor data was captured ,

then the visual representation generated using the sensor
data may include a representation of the person from a
top - view perspective . Accordingly , the visual representation
may be analyzed (e.g. , using image processing techniques)
to determine whether it contains a person . In some embodi
ments , for example , the person detection may be performed
at or near the network edge (e.g. , near the top - view sensing
device) by an edge processing device (e.g. , an on - premise
edge gateway) .
[0318] If it is determined at block 5308 that a person is
NOT detected in the visual representation , the flowchart may
proceed back to block 5302 to continue obtaining and
processing sensor data until a person is detected .
[0319] If it is determined at block 5308 that a person is
detected in the visual representation , however , the top - view
representation of the person may be extracted from the
visual representation , and the flowchart may then proceed to
block 5310 to identify one or more features associated with
the person . In some embodiments , for example , the top - view
representation of the person may be analyzed to identify or
extract anthropometric features associated with the person
(e.g. , features or measurements associated with the size and
proportions of the person) . For example , in some embodi
ments , the anthropometric features may be identified by
performing feature extraction using an image processing
technique , such as a discrete cosine transform (DCT) , prin
cipal component analysis (PCA) , machine learning tech
nique , and so forth . Moreover , in some embodiments , the
feature identification or extraction may be performed at or
near the network edge (e.g. , near the top - view sensing
device) by an edge processing device (e.g. , an on - premise
edge gateway) .
[0320] The flowchart may then proceed to block 5312 to
identify demographic information associated with the per
son (e.g. , age , gender , race) based on the identified features .
In some embodiments , for example , a machine learning
model may be trained to recognize demographic information
based on human anthropometric features . In this manner , the
machine learning model can be used to classify the identified
features of the person to recognize the associated demo
graphic information .
[0321] In some embodiments , the demographics identifi
cation may be performed at or near the network edge (e.g. ,
near the top - view sensing device) by an edge processing
device (e.g. , an on - premise edge gateway) . Moreover , in
some embodiments , the edge processing device may trans
mit the demographics information (e.g. , using a communi
cation interface) to a cloud processing device to perform
further analytics , such as generating a heat map or a people
profile .
[0322] At this point , the flowchart may be complete . In
some embodiments , however , the flowchart may restart
and / or certain blocks may be repeated . For example , in some
embodiments , the flowchart may restart at block 5302 to
continue obtaining and processing sensor data from a top
view sensing device .
[0323] FIGS . 41-43 illustrate an example embodiment of
privacy - preserving distributed visual data processing .
[0324] In visual computing , multi - target multi - camera
tracking (MTMCT) and target re - identification (ReID) are
some of the most common workloads across different use
cases . MTMCT involves tracking multiple objects across
multiple views or cameras , while RelD involves re - identi
fying an object (e.g. , by extracting robust features) even

US 2021/0020041 A1 Jan. 21 , 2021
28

after the object undergoes significant changes in appearance .
For example , in retail , MTMCT is often used to track
shoppers within a store , while ReID may be used to extract
and summarize robust features of shoppers so they can later
be re - identified (e.g. , using MTMCT) in different circum
stances , such as when a shopper has a significant change in
appearance or visits a different store .
[0325] Currently , there are no coherent end - to - end (E2E)
solutions for performing MTMCT and ReID that are scal
able to large - scale visual computing systems (e.g. , with tens
of thousands of camera streams or more) . In particular ,
bandwidth limitations render it challenging to deploy such a
system in a conventional cloud computing paradigm where
cameras send continuous video streams to the cloud for
processing . For example , due to the large volume of video
data generated by such systems , it is not feasible to funnel
all of that data to the cloud for processing . On the other hand ,
it is unlikely that edge devices near the source of the video
data are capable of processing a complete visual processing
workload in real time .
[0326] Moreover , privacy is also a challenge in scaling out
such a system , as sending visual data to the cloud for
processing may implicate privacy concerns . For example , in
order to preserve customer privacy , many retailers will not
allow any video or images to be transmitted out of their
stores .
[0327] Accordingly , FIGS . 41-43 illustrate an embodi
ment that solves the problem of scaling out visual computing
systems with MTMCT and RelD capabilities in a privacy
preserving manner . The illustrated embodiment presents an
edge - to - edge (E2E) architecture for performing MTMCT
and ReID across edge devices , gateways , and the cloud . The
architecture is scalable and privacy - preserving , and can be
easily generalized to many vertical applications or use cases ,
such as shopper insights in retail , people searching in digital
security and surveillance , player tracking and replays in
sports , and so forth .
[0328] In some embodiments , for example , vision work
loads may be scheduled and executed across visual fog
nodes based on specified privacy constraints . As an example ,
privacy constraints for an MTMCT and / or ReID workload
may require tasks that output pictures with faces to remain
on - premises (e.g. , neither the tasks nor their output are
assigned or transmitted beyond the premise or to the cloud) ,
be anonymized (e.g. , face - blurred) , and / or be deployed only
on devices with enhanced link security .
[0329] In some embodiments , for example , rather than
funneling every bit of visual data to the cloud for processing ,
intelligent decisions can be made regarding how visual data
and workloads are processed and distributed across a visual
computing system . Based on the privacy requirements of a
particular visual application , for example , a privacy bound
ary can be defined within the end - to - end paradigm of a
visual computing system in order to achieve performance
efficiency while also preserving privacy .
[0330] In some embodiments , for example , job partition
ing can be used to partition a visual analytics workload into
a directed acrylic graph (DAG) with vertices that represent
primitive visual operations and edges that represent their
dependencies . In this manner , the graph can be used to
represent the various tasks and associated dependencies for
a particular workload . Moreover , a privacy policy can be
defined separately for each dependency . Similarly , a device
connectivity graph can be used to represent the various

devices and their connectivity in the edge - to - cloud para
digm , and a privacy level agreement (PLA) can be estab
lished for each edge of connectivity in the graph . In this
manner , the edge - to - cloud architecture can be implemented
to include a coherent management interface that performs
end - to - end workload distribution without compromising pri
vacy . For example , using the job partitioning approach
described above , workload distribution effectively becomes
a mapping problem of assigning the tasks of a workload onto
devices in the edge - to - cloud paradigm . In some embodi
ments , for example , a global scheduler can be used to
determine an optimal mapping between tasks and devices in
order to maximize performance while preserving privacy
constraints .
[0331] FIG . 41 illustrates an example visual workload
graph 4100 for performing MTMCT and RelD . Example
workload 4100 includes a plurality of tasks , including pre
processing 4102 , detection 4104 , tracking 4106 , matching
4108 , and database access 4110. Further , the dependencies
between these various tasks are represented by the solid and
dotted lines in the illustrated example . Moreover , the solid
lines represent unrestricted access or transmission of the
original visual data , while the dotted lines represent
restricted or privacy - preserving access or transmission (e.g. ,
transmitting only visual metadata , such as feature vectors) .
In this manner , a privacy policy can be defined for the
workload , for example , by specifying whether each task has
unrestricted access or restricted access to the original visual
data .
[0332] FIG . 42 illustrates an example of an edge - to - cloud
device connectivity graph 4200. In the illustrated example ,
graph 4200 illustrates the connectivity between various
devices of a 3 - tier edge - to - cloud network , which includes
cameras 4210a - c , gateways 4220a - b , and the cloud 4230. In
particular , the device connectivity is illustrated for both
edge - to - cloud communications (e.g. , camera to gateway to
cloud) as well as peer - to - peer communications (e.g. , gate
way - to - gateway) . Moreover , the connectivity between the
respective devices is represented using solid and dotted
lines . For example , the solid lines represent high - security
connectivity links , while the dotted lines represent limited
security connectivity links . In this manner , a privacy policy
or privacy level agreement (PLA) can be defined for an
edge - to - cloud paradigm , for example , by specifying the
requisite security for each edge of connectivity in the graph .
[0333] FIG . 43 illustrates a privacy - preserving workload
deployment 4300. In particular , workload deployment 4300
illustrates an example deployment of the workload 4100 of
FIG . 41 on edge - to - cloud network 4200 of FIG . 42 .
[0334] In the illustrated example , privacy is treated as an
explicit constraint when performing task - to - device mapping
to deploy the workload . In some embodiments , for example ,
workloads can be represented in linear forms to enable the
mapping problem to be solved efficiently using state of the
art integer linear programming (ILP) solvers .
[0335] In some embodiments , for example , when sched
uling a particular workload on an edge - to - cloud network , the
workload and the edge - to - cloud network may each be rep
resented using a graph , such as a directed acrylic graph
(DAG) . For example , the workload and its underlying tasks
may be represented by a workload or task dependency graph
G (V1 , ET) , where each vertex VEV - represents a task , and
each edge (u , v) EE , represents a dependency between task
u and task v . Similarly , the edge - to - cloud network may be

US 2021/0020041 A1 Jan. 21 , 2021
29

represented by a network or device connectivity graph
GD = (VD , ED) , where each vertex VEV) represents a device
in the network , and each edge (u , v) EE) represents the
connectivity from device u to device v .
[0336] Moreover , the privacy policy (PP) for each task
dependency in the workload graph may be defined using a
PP function p : Ez > N , such that the smaller the number (N) ,
the more vulnerable the data transmission . Similarly , the
privacy level agreement (PLA) for each connectivity link in
the device connectivity graph may be defined using a PLA
function s : Ep > N , such that the smaller the number (N) ,
the more secure the link .
[0337] In this manner , based on the privacy policy (PP)
and privacy level agreement (PLA) functions , a privacy
constraint (PC) can be defined as s (d) sp (e) , VeEET , def (e) , where f : E - X- Ey is the mapping function from a par
ticular workload to the edge - to - cloud paradigm . Essentially ,
f maps an edge in a workload graph to a path in an
edge - to - cloud connectivity graph . For example , in the con
text of visual fog computing , f is a scheduling function that
determines the particular fog devices that the tasks of a
workload should be assigned to , along with the particular
network connectivity links between pairs of fog devices that
should be used for the data transmissions . Accordingly , the
above privacy constraint (PC) requires the privacy level
agreement (PLA) of a particular connectivity link to be
capable of accommodating the privacy policy (PP) of a
particular data transmission sent over that connectivity link .
For example , in some embodiments , a data transmission of
PP level 1 (unrestricted access) can only map to a link of
PLA level 1 (high security) , while a data transmission of PP
level 2 (privacy - preserving) can map to connectivity links of
PLA level 1 (high security) and PLA level 2 (limited
security) .
[0338] Moreover , in some embodiments , a visual fog
schedule that adheres to the above privacy constraint (PC)
can be determined using integer linear programming (ILP) .
Integer linear programming (ILP) is a mathematical optimi
zation or feasibility technique for solving or optimizing a
mathematical model represented by linear relationships . In
particular , ILP can be used to optimize a linear objective
function , subject to additional linear equality and linear
inequality constraints . In some cases , for example , an ILP
problem can be expressed as follows :

[0339] minimize : cFx (objective term)
[0340] subject to : Axsb inequality constraint)

[0341] Cx = d (equality constraint)
[0342] and : xE { 0 , 1 } * (binary constraint) .

[0343] Moreover , this ILP model can be used to determine
an optimal schedule fthat satisfies a specified objective (e.g. ,
total network utilization) , while also adhering to other
additional constraints , such as a privacy constraint and any
other device , network , or mapping constraints . For example ,
when using the example ILP model above to perform visual
fog scheduling , x presents the collection of possible sched
ules f , K is the length of x , the objective term presents a
scheduling objective to be minimized (e.g. , total network
utilization) , and the inequality / equality constraints present
any additional constraints , such as device , network , map
ping , and / or privacy constraints . The above privacy con
straint (PC) , for example , can be presented as an inequality
constraint of the ILP problem .
[0344] FIG . 54 illustrates a flowchart 5400 for an example
embodiment of privacy - preserving distributed visual pro

cessing . In some embodiments , for example , flowchart 5400
may be implemented using the visual computing embodi
ments described throughout this disclosure (e.g. , the pri
vacy - preserving distributed visual processing techniques of
FIGS . 41-43 and / or the visual computing architecture
described throughout this disclosure) .
[0345] The flowchart may begin at block 5402 by identi
fying a new workload . In some embodiments , for example ,
the new workload may include a plurality of tasks associated
with processing sensor data captured by one or more sen
sors . For example , in some embodiments , the sensor data
may be visual data captured by one or more vision - based
sensors (e.g. , a camera , infrared sensor , and / or laser - based
sensor) .
[0346] The flowchart may then proceed to block 5404 to
generate a workload graph based on the workload . In some
embodiments , for example , the workload graph may include
information associated with the underlying tasks of the
workload , along with the task dependencies among those
tasks .
[0347] The flowchart may then proceed to block 5406 to
generate or identify a device connectivity graph . In some
embodiments , for example , the device connectivity graph
may include device connectivity information associated
with a plurality of processing devices , such as edge , cloud ,
and / or intermediary network processing devices . The device
connectivity information , for example , may include infor
mation associated with the device connectivity links among
the plurality of processing devices .
[0348] The flowchart may then proceed to block 5408 to
identify a privacy policy associated with the workload
and / or its underlying tasks . In some embodiments , for
example , the privacy policy may comprise privacy require
ments associated with the task dependencies among the
workload tasks .
[0349] The flowchart may then proceed to block 5410 to
identify privacy level information associated with the plu
rality of processing devices . In some embodiments , for
example , the privacy level information may include privacy
levels provided by the device connectivity links among the
plurality of processing devices . Moreover , in some embodi
ments , the privacy level information may be specified by a
privacy level agreement .
[0350] The flowchart may then proceed to block 5412 to
identify a privacy constraint for workload scheduling based
on the privacy policy and the privacy level information . In
some embodiments , for example , the privacy constraint may
require the privacy level of a particular connectivity link to
be capable of accommodating the privacy policy of any task
dependency mapped to that connectivity link for data trans
mission .
[0351] The flowchart may then proceed to block 5414 to
determine a workload schedule . The workload schedule , for
example , may include a mapping of the workload onto the
plurality of processing devices . Moreover , in some embodi
ments , the workload schedule may be determined based on
the privacy constraint , the workload graph , and the device
connectivity graph . For example , in some embodiments , the
workload schedule may be determined by solving an integer
linear programming model based on the privacy constraint ,
the workload graph , and the device connectivity graph (e.g. ,
as described in connection with FIGS . 41-43) . In this
manner , a resulting workload schedule is determined in a
manner that adheres to the privacy constraint . Moreover , in

US 2021/0020041 A1 Jan. 21 , 2021
30

some embodiments , a machine learning model may be used
to optimize privacy - constrained workload scheduling .
[0352] In some embodiments , the resulting workload
schedule may then be distributed to the plurality of process
ing devices (e.g. , via a communication interface) in order to
execute the workload .
[0353] At this point , the flowchart may be complete . In
some embodiments , however , the flowchart may restart
and / or certain blocks may be repeated . For example , in some
embodiments , the flowchart may restart at block 5402 to
continue scheduling new workloads .
[0354] FIGS . 44-46 illustrate example embodiments of
self - sovereign device identification for distributed comput
ing networks . In some embodiments , for example , a fog
node (e.g. , IoT sensor , actuator , camera , controller , gateway ,
and / or any other type of fog node) may be a “ multi - tenant ”
node that is capable of participating in multiple different
distributed computing networks (e.g. , visual fog networks) .
Moreover , certain networks may require a new fog node to
be " on - boarded ” or “ commissioned ” before the fog node is
allowed to access each network (e.g. , using the onboarding /
commissioning protocols of the Open Connectivity Foun
dation (OCF) and / or Intel’s Secure Device Onboard (SDO)
technology) . Many visual computing solutions , however ,
may assume that ownership of a node is singular , meaning
each node has only one owner . Accordingly , ownership
disputes may arise from a multi - tenant fog node's partici
pation in multiple fog networks . The true or original owner
of a multi - tenant fog node , however , has an interest in
avoiding these ownership disputes . Accordingly , many
visual computing solutions are unsuitable for multi - tenant
fog nodes , which may participate in multiple fog networks
while also abiding by each network's onboarding or com
missioning protocols (e.g. , as defined by OCF or Intel SDO) .
[0355] Accordingly , in the illustrated embodiments , a
multi - tenant fog node can use a self - sovereign device iden
tity in order to allow the node owner to retain an assertion
of ownership even when the fog node participates in , or
roams to , other fog networks . In some embodiments , for
example , a self - sovereign identity blockchain may be used
to register the identities of fog nodes or devices . A block
chain , for example , may be a dynamic list of records or
blocks that are linked and / or secured using cryptographic
approaches . In some embodiments , for example , each block
in a blockchain may include a hash pointer linking to a
previous block , a timestamp , transaction data , and so forth .
Accordingly , in some embodiments , a blockchain can be
used as a distributed ledger for recording transactions in an
efficient , verifiable , and / or permanent manner . In visual
computing , for example , before adding a device identifier
for a new fog node , a blockchain may optionally be used to
verify that the identifier has not been previously asserted by
another node . Further , the public key used to verify the
device identity of the fog node may also be contributed to
the blockchain , allowing the device to later prove it is the
rightful owner of its identity .
[0356] FIG . 44 illustrates an example embodiment of a
distributed computing architecture 4400 with multi - tenant
device identification . In the illustrated embodiment , archi
tecture 4400 includes fog networks A and B 4410a - b ,
self - sovereign identity blockchain 4420 , and new fog device
4430 , as described further below .
[0357] A new fog device 4430 that is seeking to be used
in multiple fog networks 4410 , but is not exclusive to any

particular fog network , may not have sufficient resources or
capabilities to create and maintain virtual sandbox environ
ments for each of the fog networks . Moreover , each fog
network 4410 may have a large set of its own local fog
devices that are exclusive to that network and do not roam
into other fog networks . Accordingly , reusing device iden
tifiers may not pose a significant problem of duplicative
identifiers until a new device 4430 with a conflicting identity
roams into a particular fog network .
[0358] There is often a cost associated with changing the
identity of a device , however , as credentials , access tokens ,
and application logic may be linked to the device identity .
Moreover , the respective owners of devices with conflicting
identifies have a self - interest in resolving the conflict (e.g. ,
to avoid ownership disputes) , but without bearing the cost .
For example , the conflicting devices may respectively view
each other as “ foreign , ” and thus each device may want the
other “ foreign ” device to bear the cost of an identity change .
Accordingly , to resolve the opposing self - interests of
devices with conflicting identities , a blockchain 4420 may
be used to provide a fair algorithm for giving preference to
a device for its use of an identity . In some embodiments , for
example , the device that first registered a particular identity
with the blockchain 4420 is given preference in the event of
a conflict .
[0359] FIG . 45 illustrates an example call flow 4500 for
performing name registration of a self - sovereign device
identity . In some embodiments , for example , registration of
a self - sovereign device identity may be performed before
onboarding a new fog device onto a visual fog network . For
example , prior to being on - boarded onto a visual fog net
work , a fog device may register its choice of device identity
with a blockchain .
[0360] Moreover , the blockchain may have a policy for
preventing duplicative identity registrations , for example , by
first checking for duplicates and only allowing registration if
no duplicates exist . For example , duplicative identity detec

be performed by blockchain processing nodes as a
requirement for vetting transaction blocks used for identity
registration . In the illustrated call flow 4500 , for example ,
each node performs the following steps :
[0361] (1) receive transaction request from new device :
TX2 + 1 = { S1 , “ A71C3 " } , where Sl = Sign_Kalice (" A71C3 ”) ;
[0362] (2) compute hash H1 = SHA256 (“ A71C3 ”) ;
[0363] (3) search hash tree of transaction attributes , where
Bx - poss = Search (TxTree , Hl) ;
[0364] (4) IF B.x - poss = " HI " THEN return ERROR_DUP_
FOUND ;
[0365] (5) ELSE IF Bx - poss THEN add TXn + 1 to the
current block where CurrentBlock = [TXn + 1 , TXn , TXn - 1 , .
. , TX - m] ;
[0366] (6) compute new current block hash BH = SHA256
([TX +1 , TXn , TX , -1 , ... , TX - m]) ;
[0367] (7) write BH to the blockchain at Bcurr - pos (current
position) ; and
[0368] (8) insert the tuple (H1 , BH , Bx - poss) into TxTree .
[0369] In some embodiments , however , a less restrictive
policy may be used , such as a policy that does not check for
duplicates during identity or name registration , and instead
relies on dispute resolution to resolve duplicative identities .
For example , at the time a device is on - boarded onto a new
fog network , the blockchain can be consulted to determine
if the identifier has previously been used , and if so , conflict
resolution can be performed . The advantages of a less

tion may

_64

US 2021/0020041 A1 Jan. 21 , 2021
31

restrictive policy include improved performance and the
ability to support mass registration workloads , among other
examples .
[0370] FIG . 46 illustrates an example call flow 4600 for
conflict resolution of self - sovereign device identities . In
some circumstances , for example , it may be unnecessary to
verify that a new device identifier is globally unique at the
time of registration , and instead , conflicting identities may
be addressed when a new device is on - boarded onto a local
fog network and an existing device already has the same
identity . Accordingly , in some embodiments , conflicting
device identities on a particular fog network may be
resolved using conflict resolution call flow 4600. In the
illustrated call flow 4600 , for example , a blockchain is used
to resolve conflicts based on identity registration priority
(e.g. , the first device that registered a duplicative identity
with the blockchain receives preference) . Accordingly , this
approach does not require device identifiers to be globally
unique , but in the event multiple devices on the same fog
network have the same identity , it requires one of the devices
to select a different identifier when interacting with that
particular network . Moreover , the dispute over which device
should pay the cost of changing its identity is resolved using
the blockchain . By way of comparison , FIG . 47 illustrates an
example of device onboarding or commissioning in a visual
fog network without employing conflict resolution .
[0371] In this manner , based on the illustrated embodi
ments of FIGS . 44-46 , device identity assertion can be
performed at any time during manufacturing of a device ,
such as a system - on - a - chip (SOC) or any other type of
computing chip , circuit , or device . Moreover , rather than an
assertion of device " ownership , ” device identity assertion
involves an assertion of identity ownership , where the
device is the owner of the identity . Accordingly , any appro
priate entity within the supply chain of a particular device
(e.g. , an original design manufacturer (ODM) , original
equipment manufacturer (OEM) , distributor , retailer , value
added reseller (VAR) , installer , or end customer) may assert
the identity of a device based on the sophistication and
capability of the particular entity .
[0372] FIGS . 48 and 49 illustrate example embodiments
of algorithm identification for distributed computing using a
self - sovereign blockchain .
[0373] Distributed computing interoperability depends on
agreement among participating nodes regarding the particu
lar algorithms used to process information at each node . In
some cases , for example , algorithm agreement among nodes
may depend on a central authority that manages a registry or
database of algorithm identifiers . In this manner , distributed
nodes must rely on the registry for selection of the appro
priate algorithms , otherwise interoperability is not achieved .
[0374] This dependence on central authorities can lead to
service disruptions , however , such as when a registry goes
offline , a registry is slow to publish new algorithm identifiers
(e.g. , thus slowing the pace at which new algorithms can be
deployed) , a central authority becomes the target of politi
cizations (e.g. , registration requests are held in ransom for
processing fees , political favors , and / or other forms of
manipulation that are not tied to the economics of the
distributed computing application) , and so forth . For
example , these approaches are often highly centralized and
may involve international or governmental institutions ,
which may be prone to politicizations and / or government
regulation (e.g. , net neutrality) . Moreover , since agreement

on which algorithms to use is fundamental to distributed
computing , a centralized approach for managing algorithm
identifiers can create an artificial bottleneck or choking
point , and entities seeking to impose regulation or control
can effectively leverage the centralized design to restrict or
prevent interoperability among distributed computing
nodes .

[0375] Accordingly , in the illustrated embodiments of
FIGS . 48 and 49 , a blockchain is used to register a collection
of distributed computing algorithms (e.g. , using self - sover
eign algorithm identifiers) . In some embodiments , for
example , the blockchain may process an algorithm registra
tion request as a blockchain transaction , where the registrant
selects a unique algorithm identifier and specifies the algo
rithm function . In various embodiments , the algorithm func
tion may be specified in human - readable form (e.g. , as a
natural language explanation or pseudocode) , machine - read
able form , and / or machine - executable form . Moreover , as a
condition or prerequisite to accepting the algorithm regis
tration , the particular algorithm may be subjected to various
levels of “ certification ” by blockchain processing nodes . In
this manner , an algorithm may be accepted with progressive
levels of assurance without altering the registered algorithm
identifier .

[0376] Accordingly , the described embodiments allow
anyone that discovers a useful distributed computing algo
rithm to make that algorithm known and available to a large
community . Blockchain networks , for example , are pre
sumed to be large in number and open to large communities
of users . In this manner , members of the community can
build distributed computing systems without being hindered
by bureaucratic roadblocks and oversight . As a result , the
time between algorithm development and practical deploy
ment can be minimized .
[0377] FIG . 48 illustrates an example embodiment of a
distributed computing architecture 4800 with self - sovereign
algorithm identification . In the illustrated embodiment ,
architecture 4800 includes fog networks A and B 4810a - b ,
along with a self - sovereign blockchain 4820 for registering
and identifying distributed computing algorithms 4430. In
some embodiments , for example , architecture 4800 could be
used to register and / or identify algorithms used for visual
fog computing
[0378] As an example , if a useful distributed computing
algorithm 4430 is invented , discovered , and / or improved
upon in a first fog network (e.g. , fog network A 4810a) , the
first fog network may register the new algorithm in a
self - sovereign blockchain 4420 used for algorithm identifi
cation . The blockchain processing nodes of the blockchain
4420 may then progressively vet the algorithm in order to
provide progressively stronger assurances regarding its
legitimacy (e.g. , based on the computational properties and
outcome of the algorithm) . Moreover , a second fog network
(e.g. , fog network B 4810b) may subsequently be notified of
the availability of the new algorithm , and may determine
whether the new algorithm has been adequately vetted (e.g. ,
by consulting the vetting status of the algorithm in the
blockchain 4420) . If the second fog network is satisfied with
the vetting of the new algorithm , the second fog network
may agree to use the algorithm . For example , in some
embodiments , after the algorithm has been adequately vet
ted , the first fog network and second fog network may agree
to begin using the new algorithm .

US 2021/0020041 A1 Jan. 21 , 2021
32

[0379] In some embodiments , the algorithm registration
and vetting process may involve : (1) registration of a
self - sovereign algorithm identifier (SSAI) ; (2) peer - review
of a human - readable description of the algorithm ; (3)
machine analysis of a machine - readable representation of
the algorithm (e.g. , analysis by a logic processor to identify
safe behavioral properties) ; and (4) execution of a machine
executable implementation of the algorithm (e.g. , execution
in a sandbox environment used to analyze expected behav
ior) . Moreover , once a certain threshold (e.g. , a majority) of
blockchain processing nodes or evaluators achieve similar
vetting results , the algorithm identity and its vetting criteria /
results are recorded in a block of the blockchain 4420 .
[0380] FIG . 49 illustrates an example call flow 4900 for
registering a distributed computing algorithm using a self
sovereign blockchain . In some embodiments , for example ,
an algorithm may be registered using a self - sovereign block
chain to facilitate use of the algorithm across one or more
distributed or fog computing environments . Moreover , in
some embodiments , the blockchain may leverage various
levels of vetting to ensure the algorithm behaves as
expected , and verify that the algorithm identifier is not
already in use .
[0381] In the illustrated call flow 4900 , for example , each
blockchain processing node performs the following steps :
[0382] (1) receive transaction request from new device :
TXn + 1 = { S1 , “ 91E21 " } , where Sl = Sign_Kalice (“ 91E21 ” ,
“ Human - readable - description " , " Machine - readable - descrip
tion " , " Machine - executable - implementation ") ;
[0383] (2) optional algorithm vetting (e.g. , peer - review of
a human - readable algorithm description , logical analysis of
a machine - readable algorithm description / representation ,
sandbox execution of a machine - executable algorithm
form) ;
[0384] (3) compute hash H1 = SHA256 (“ 91E21 ”) ;
[0385] (4) search hash tree of transaction attributes , where
B , Search (TxTree , H1) ;
[0386] (5) IF B = “ H1 ” THEN return ERROR_DUP_
FOUND ;
[0387] (6) ELSE IF B THEN add TX to the
current block , where Current Block = [TXn + 1 , TXn , TXn - 19
TXn - m] ;

[0388] (7) compute new current block hash BH = SHA256
([TX , + 1 , TX ,, TX , -1 , ... , TX , -m]) ;
[0389] (8) write BH to the blockchain at Bcurr - pos (current position) ; and
[0390] (9) insert the tuple (H1 , BH , Bx - poss) into TxTree .
[0391] Once the vetting process completes , the blockchain
contains a vetted and registered instance of the algorithm
and its associated identifier . In this manner , distributed
computing nodes may then begin using the algorithm (e.g. ,
based on the algorithm identifier and optionally its machine
readable and / or machine - executable forms) .
[0392] Applications
[0393] The visual fog architecture and embodiments
described throughout this disclosure can be used for a
variety of large - scale visual computing applications and use
cases , such as digital security and surveillance , business
automation and analytics (e.g. , retail and enterprise) , trans
portation (e.g. , traffic monitoring , navigation , parking , infra
structure planning , security or amber alerts) , education ,
video broadcasting and playback , artificial intelligence , and
so forth .

[0394] As an example , the described embodiments could
be used to implement wearable cameras for first responders
that are capable of automatically detecting events or emer
gency situations and performing certain responsive mea
sures , such as notifying the appropriate personnel , triggering
recording of the event by related or nearby cameras , and so
forth .
[0395] As another example , the described embodiments
could be used to implement a digital surveillance and
security (DSS) system with people search or facial recog
nition capabilities across visual data streams from multiple
different cameras , sensors , and / or locations .
[0396] As another example , the described embodiments
could be used to implement a digital surveillance and
security (DSS) system with license plate identification and
fraud detection capabilities (e.g. , identifying a car with a
license plate that does not match the corresponding vehicle
record , identifying multiple cars with same license plate , and
so forth) .
[0397] As another example , the described embodiments
could be used to provide customer insights and analytics
(e.g. , for retail shoppers) , such as an intra - store shopper trip
summary (e.g. , a list of products or departments interacted
with by a shopper) , an inter - store shopper trip summary
(e.g. , identifying repeat customers by differentiating
between new and returning customers as they enter a store
with a single or multiple locations) , and so forth .
[0398] Similarly , the described embodiments could be
used to provide visualization of customer or shopper insights
and analytics (e.g. , visualizing a graph representation of
visual metadata for human consumption) .
[0399] As another example , the described embodiments
could be used to perform automated demographics identi
fication in a privacy - preserving manner (e.g. , using top - view
cameras or sensors for demographic mapping of gender , age ,
race , and so forth) .
[0400] As another example , the described embodiments
could be used to perform heat mapping in retail stores or
other brick - and - mortar environments to generate a repre
sentation of the crowd (e.g. , using top - view sensors or
cameras and / or multi - modal crowd emotion heat mapping) .
In some embodiments , for example , heat mapping could be
leveraged for optimization of store layouts , among other
examples .
[0401] As another example , the described embodiments
could be used to implement multi - modal real - time customer
reviews . For example , customer reviews and / or customer
satisfaction information could be collected and analyzed in
real - time using multi - sensory data , which can be translated
into quantitative customer - to - customer reviews for any
products or in - store activities of a particular store or brick
and - mortar environment .
[0402] Similarly , the described embodiments could be
used to implement multi - modal retailer - shopper double
review , which may focus on collection and analysis of both
product reviews from customers and customer reviews from
retailers .
[0403] As another example , the described embodiments
could be used for automated customer satisfaction analysis .
For example , visual data could be used to measure customer
satisfaction at check - out based on non - verbal communica
tion or body language . In this manner , customer satisfaction
can be automatically inferred without requiring manual
customer feedback (e.g. , via a button or survey) .

X - poss

X - poss

x - poss n + 1

US 2021/0020041 A1 Jan. 21 , 2021
33

[0404] As another example , the described embodiments
could be used to monitor the effectiveness of employee
customer interactions . For example , visual data could be
used to measure and track the effectiveness of communica
tion between customers and salespeople with respect to
finding desired products or items . In some embodiments , for
example , visual data could be used to track users within a
store , identify customer - employee contact and interactions ,
and monitor the employee and / or customer responses .
[0405] As another example , the described embodiments
could be used to provide dynamic ambience environments
by identifying contextual information (e.g. , relationships or
actions) within a group of people . For example , visual data
could be used to identify individuals and their associated
contextual information to determine whether they are part of
the same group (e.g. , based on physical proximity and / or
corresponding movement) , and if so , to identify various
parameters or characteristics of the group (e.g. , a family
shopping together in a store) .
[0406] As another example , the described embodiments
could be used to implement double auction real - time bidding
(RTB) . In some embodiments , for example , visual data
could be used to implement multi - shopper , multi - bidder
real - time bidding (RTB) for brick - and - mortar retailers .
[0407] As another example , the described embodiments
could be used to monitor and detect changes to store layouts
based on visual data and / or sensors .
[0408] As another example , the described embodiments
could be used for robotic inventory tracking and logistics
(e.g. , using stationary and / or moving cameras to track inven
tory of retail stores , warehouses , offices , and so forth) .
[0409] As another example , the described embodiments
could be used for robotic equipment inspection (e.g. , using
computer vision technology to inspect the safety and / or
health of equipment in a factory , plant , warehouse , store ,
office , and so forth) .
[0410] As another example , the described embodiments
could be used to provide automated tipping recommenda
tions , for example , based on multi - sensory inputs and / or
visual data reflective of factors that typically impact cus
tomer tipping behavior .
[0411] As another example , the described embodiments
could be used for workplace automation , such as workplace
quality control , employee monitoring , and so forth . In some
embodiments , for example , visual data could be used to
analyze employee emotions in order to improve productiv
ity .
[0412] As another example , the described embodiments
could be used for education and / or automated learning (e.g. ,
using visual data to analyze student behavior in the class
room or at home in order to provide further assistance when
appropriate)
[0413] As another example , the described embodiments
could be used for video playback , such as user - centric video
rendering , focused replays , and so forth . For example ,
user - centric video rendering could be used to perform
focused rendering on 360 - degree video by analyzing what
the user is focusing on , and performing no or low - resolution
processing on portions of the video that are outside the focus
area of the user (e.g. , for virtual - reality (VR) and / or aug
mented - reality (AR) applications) . As another example ,
focused video replays could be used to automatically focus

the rendering of a video replay on an area of interest , such
as the portion of a sports replay where most players are
located .
[0414] As another example , the described embodiments
could be used to train artificial intelligence systems . In some
embodiments , for example , visual data could be used to
automatically generate ground truth information that can be
used to train artificial intelligence or machine learning
models , such as deep learning neural networks .
[0415] These examples are merely illustrative of the lim
itless universe of visual applications and use cases that can
be implemented using the visual fog architecture described
throughout this disclosure .
[0416] The flowcharts and block diagrams in the FIG
URES illustrate the architecture , functionality , and operation
of possible implementations of systems , methods and com
puter program products according to various aspects of the
present disclosure . In this regard , each block in the flowchart
or block diagrams may represent a module , segment , or
portion of code , which comprises one or more executable
instructions for implementing the specified logical function
(s) . It should also be noted that , in some alternative imple
mentations , the functions noted in the block may occur out
of the order noted in the figures . For example , two blocks
shown in succession may , in fact , be executed substantially
concurrently , or the blocks may sometimes be executed in
the reverse order or alternative orders , depending upon the
functionality involved . It will also be noted that each block
of the block diagrams and / or flowchart illustration , and
combinations of blocks in the block diagrams and / or flow
chart illustration , can be implemented by special purpose
hardware - based systems that perform the specified functions
or acts , or combinations of special purpose hardware and
computer instructions .
[0417] The foregoing disclosure outlines features of sev
eral embodiments so that those skilled in the art may better
understand various aspects of the present disclosure . Those
skilled in the art should appreciate that they may readily use
the present disclosure as a basis for designing or modifying
other processes and structures for carrying out the same
purposes and / or achieving the same advantages of the
embodiments introduced herein . Those skilled in the art
should also realize that such equivalent constructions do not
depart from the spirit and scope of the present disclosure ,
and that they may make various changes , substitutions , and
alterations herein without departing from the spirit and
scope of the present disclosure .
[0418] All or part of any hardware element disclosed
herein may readily be provided in a system - on - a - chip (SOC) ,
including a central processing unit (CPU) package . An SoC
represents an integrated circuit (IC) that integrates compo
nents of a computer or other electronic system into a single
chip . The SoC may contain digital , analog , mixed - signal ,
and radio frequency functions , all of which may be provided
on a single chip substrate . Other embodiments may include
a multi - chip - module (MCM) , with a plurality of chips
located within a single electronic package and configured to
interact closely with each other through the electronic pack
age . In various other embodiments , the computing function
alities disclosed herein may be implemented in one or more
silicon cores in Application Specific Integrated Circuits
(ASICs) , Field Programmable Gate Arrays (FPGAs) , and
other semiconductor chips .

US 2021/0020041 A1 Jan. 21 , 2021
34

[0419] As used throughout this specification , the term
" processor " or " microprocessor " should be understood to
include not only a traditional microprocessor (such as
Intel's® industry - leading x86 and x64 architectures) , but
also graphics processors , matrix processors , and any ASIC ,
FPGA , microcontroller , digital signal processor (DSP) , pro
grammable logic device , programmable logic array (PLA) ,
microcode , instruction set , emulated or virtual machine
processor , or any similar “ Turing - complete ” device , combi
nation of devices , or logic elements (hardware or software)
that permit the execution of instructions .
[0420] Note also that in certain embodiments , some of the
components may be omitted or consolidated . In a general
sense , the arrangements depicted in the figures should be
understood as logical divisions , whereas a physical archi
tecture may include various permutations , combinations ,
and / or hybrids of these elements . It is imperative to note that
countless possible design configurations can be used to
achieve the operational objectives outlined herein . Accord
ingly , the associated infrastructure has a myriad of substitute
arrangements , design choices , device possibilities , hardware
configurations , software implementations , and equipment
options .
[0421] In a general sense , any suitably - configured proces
sor can execute instructions associated with data or micro
code to achieve the operations detailed herein . Any proces
sor disclosed herein could transform an element or an article
(for example , data) from one state or thing to another state
or thing . In another example , some activities outlined herein
may be implemented with fixed logic or programmable logic
(for example , software and / or computer instructions
executed by a processor) and the elements identified herein
could be some type of a programmable processor , program
mable digital logic (for example , a field programmable gate
array (FPGA) , an erasable programmable read only memory
(EPROM) , an electrically erasable programmable read only
memory (EEPROM)) , an ASIC that includes digital logic ,
software , code , electronic instructions , flash memory , opti
cal disks , CD - ROMs , DVD ROMs , magnetic or optical
cards , other types of machine - readable mediums suitable for
storing electronic instructions , or any suitable combination
thereof .
[0422] In operation , a storage may store information in
any suitable type of tangible , non - transitory storage medium
(for example , random access memory (RAM) , read only
memory (ROM) , field programmable gate array (FPGA) ,
erasable programmable read only memory (EPROM) , elec
trically erasable programmable ROM (EEPROM) , or micro
code) , software , hardware (for example , processor instruc
tions or microcode) , or in any other suitable component ,
device , element , or object where appropriate and based on
particular needs . Furthermore , the information being
tracked , sent , received , or stored in a processor could be
provided in any database , register , table , cache , queue ,
control list , or storage structure , based on particular needs
and implementations , all of which could be referenced in
any suitable timeframe . Any of the memory or storage
elements disclosed herein should be construed as being
encompassed within the broad terms ‘ memory ' and ' stor
age , ' as appropriate . A non - transitory storage medium herein
is expressly intended to include any non - transitory special
purpose or programmable hardware configured to provide
the disclosed operations , or to cause a processor to perform
the disclosed operations . A non - transitory storage medium

also expressly includes a processor having stored thereon
hardware - coded instructions , and optionally microcode
instructions or sequences encoded in hardware , firmware , or
software .
[0423] Computer program logic implementing all or part
of the functionality described herein is embodied in various
forms , including , but in no way limited to , hardware descrip
tion language , a source code form , a computer executable
form , machine instructions or microcode , programmable
hardware , and various intermediate forms (for example ,
forms generated by an HDL processor , assembler , compiler ,
linker , or locator) . In an example , source code includes a
series of computer program instructions implemented in
various programming languages , such as an object code , an
assembly language , or a high - level language such as
OpenCL , FORTRAN , C , C ++ , JAVA , or HTML for use with
various operating systems or operating environments , or in
hardware description languages such as Spice , Verilog , and
VHDL . The source code may define and use various data
structures and communication messages . The source code
may be in a computer executable form (e.g. , via an inter
preter) , or the source code may be converted (e.g. , via a
translator , assembler , or compiler) into a computer execut
able form , or converted to an intermediate form such as byte
code . Where appropriate , any of the foregoing may be used
to build or describe appropriate discrete or integrated cir
cuits , whether sequential , combinatorial , state machines , or
otherwise .
[0424] In one example , any number of electrical circuits of
the FIGURES may be implemented on a board of an
associated electronic device . The board can be a general
circuit board that can hold various components of the
internal electronic system of the electronic device and ,
further , provide connectors for other peripherals . More spe
cifically , the board can provide the electrical connections by
which the other components of the system can communicate
electrically . Any suitable processor and memory can be
suitably coupled to the board based on particular configu
ration needs , processing demands , and computing designs .
Other components such as external storage , additional sen
sors , controllers for audio / video display , and peripheral
devices may be attached to the board as plug - in cards , via
cables , or integrated into the board itself . In another
example , the electrical circuits of the FIGURES may be
implemented as stand - alone modules (e.g. , a device with
associated components and circuitry configured to perform
a specific application or function) or implemented as plug - in
modules into application specific hardware of electronic
devices .
[0425] Note that with the numerous examples provided
herein , interaction may be described in terms of two , three ,
four , or more electrical components . However , this has been
done for purposes of clarity and example only . It should be
appreciated that the system can be consolidated or recon
figured in any suitable manner . Along similar design alter
natives , any of the illustrated components , modules , and
elements of the FIGURES may be combined in various
possible configurations , all of which are within the broad
scope of this specification . In certain cases , it may be easier
to describe one or more of the functionalities of a given set
of flows by only referencing a limited number of electrical
elements . It should be appreciated that the electrical circuits
of the FIGURES and its teachings are readily scalable and
can accommodate a large number of components , as well as

US 2021/0020041 A1 Jan. 21 , 2021
35

more complicated / sophisticated arrangements and configu
rations . Accordingly , the examples provided should not limit
the scope or inhibit the broad teachings of the electrical
circuits as potentially applied to a myriad of other architec
tures .

[0426] Numerous other changes , substitutions , variations ,
alterations , and modifications may be ascertained to one
skilled in the art and it is intended that the present disclosure
encompass all such changes , substitutions , variations , altera
tions , and modifications as falling within the scope of the
appended claims .

Example Implementations
[0427] The following examples pertain to embodiments
described throughout this disclosure .
[0428] One or more embodiments may include an appa
ratus , comprising : a processor to : identify a workload com
prising a plurality of tasks , generate a workload graph based
on the workload , wherein the workload graph comprises
information associated with the plurality of tasks ; identify a
device connectivity graph , wherein the device connectivity
graph comprises device connectivity information associated
with a plurality of processing devices ; identify a privacy
policy associated with the workload ; identify privacy level
information associated with the plurality of processing
devices ; identify a privacy constraint based on the privacy
policy and the privacy level information ; and determine a
workload schedule , wherein the workload schedule com
prises a mapping of the workload onto the plurality of
processing devices , and wherein the workload schedule is
determined based on the privacy constraint , the workload
graph , and the device connectivity graph ; and a communi
cation interface to send the workload schedule to the plu
rality of processing devices .
[0429] In one example embodiment of an apparatus , the
processor to determine the workload schedule is further to
solve an integer linear programming model based on the
privacy constraint .
[0430] In one example embodiment of an apparatus , the
plurality of tasks is associated with processing sensor data
from one or more sensors .
[0431] In one example embodiment of an apparatus , the
one or more sensors comprise one or more of : a camera ; an
infrared sensor ; or a laser - based sensor .
[0432] In one example embodiment of an apparatus , the
sensor data comprises visual data .
[0433] In one example embodiment of an apparatus , the
workload graph further comprises information associated
with a plurality of task dependencies among the plurality of
tasks .
[0434] In one example embodiment of an apparatus , the
privacy policy comprises a plurality of privacy requirements
associated with the plurality of task dependencies .
[0435] In one example embodiment of an apparatus , the
device connectivity information comprises information
associated with a plurality of device connectivity links
among the plurality of processing devices .
[0436] In one example embodiment of an apparatus , the
privacy level information comprises a plurality of privacy
levels associated with the plurality of device connectivity
links .
[0437] One or more embodiments may include a system ,
comprising : a plurality of sensors to capture sensor data
associated with an environment ; a plurality of processing

devices , wherein the plurality of processing devices com
prises a plurality of edge processing devices and a plurality
of cloud processing devices , and wherein the plurality of
processing devices is to : identify a workload , wherein the
workload comprises a plurality of tasks associated with
processing the sensor data captured by the plurality of
sensors ; generate a workload graph based on the workload ,
wherein the workload graph comprises information associ
ated with the plurality of tasks ; identify a device connec
tivity graph , wherein the device connectivity graph com
prises device connectivity information associated with the
plurality of processing devices ; identify a privacy policy
associated with the workload ; identify privacy level infor
mation associated with the plurality of processing devices ;
identify a privacy constraint based on the privacy policy and
the privacy level information ; determine a workload sched
ule , wherein the workload schedule comprises a mapping of
the workload onto the plurality of processing devices , and
wherein the workload schedule is determined based on the
privacy constraint , the workload graph , and the device
connectivity graph ; and distribute the workload schedule to
the plurality of processing devices .
[0438] In one example embodiment of a system , the
plurality of processing devices to determine the workload
schedule is further to solve an integer linear programming
model based on the privacy constraint .
[0439] In one example embodiment of a system , the
plurality of sensors comprises one or more of : a camera ; an
infrared sensor ; or a laser - based sensor .
[0440] In one example embodiment of a system , the
workload graph further comprises information associated
with a plurality of task dependencies among the plurality of
tasks .
[0441] In one example embodiment of a system , the
privacy policy comprises a plurality of privacy requirements
associated with the plurality of task dependencies .
(0442] In one example embodiment of a system , the
device connectivity information comprises information
associated with a plurality of device connectivity links
among the plurality of processing devices .
[0443] In one example embodiment of a system , the
privacy level information comprises a plurality of privacy
levels associated with the plurality of device connectivity
links .
[0444] One or more embodiments may include at least one
machine accessible storage medium having instructions
stored thereon , wherein the instructions , when executed on
a machine , cause the machine to : identify a workload
comprising a plurality of tasks ; generate a workload graph
based on the workload , wherein the workload graph com
prises information associated with the plurality of tasks ;
identify a device connectivity graph , wherein the device
connectivity graph comprises device connectivity informa
tion associated with a plurality of processing devices ; iden
tify a privacy policy associated with the workload ; identify
privacy level information associated with the plurality of
processing devices ; identify a privacy constraint based on
the privacy policy and the privacy level information ; deter
mine a workload schedule , wherein the workload schedule
comprises a mapping of the workload onto the plurality of
processing devices , and wherein the workload schedule is
determined based on the privacy constraint , the workload
graph , and the device connectivity graph ; and distribute the
workload schedule to the plurality of processing devices .

US 2021/0020041 A1 Jan. 21 , 2021
36

[0445] In one example embodiment of a storage medium ,
the instructions that cause the machine to determine the
workload schedule further cause the machine to solve an
integer linear programming model based on the privacy
constraint .
[0446] In one example embodiment of a storage medium ,
the plurality of tasks is associated with processing sensor
data from one or more sensors .
[0447] In one example embodiment of a storage medium :
the workload graph further comprises information associ
ated with a plurality of task dependencies among the plu
rality of tasks , and the privacy policy comprises a plurality
of privacy requirements associated with the plurality of task
dependencies .
[0448] In one example embodiment of a storage medium :
the device connectivity information comprises information
associated with a plurality of device connectivity links
among the plurality of processing devices , and the privacy
level information comprises a plurality of privacy levels
associated with the plurality of device connectivity links .
[0449] One or more embodiments may include a method ,
comprising : identifying a workload , wherein the workload
comprises a plurality of tasks associated with processing
sensor data from one or more sensors ; generating a workload
graph based on the workload , wherein the workload graph
comprises information associated with the plurality of tasks ;
identifying a device connectivity graph , wherein the device
connectivity graph comprises device connectivity informa
tion associated with a plurality of processing devices ; iden
tifying a privacy policy associated with the workload ; iden
tifying privacy level information associated with the
plurality of processing devices ; identifying a privacy con
straint based on the privacy policy and the privacy level
information ; determining a workload schedule , wherein the
workload schedule comprises a mapping of the workload
onto the plurality of processing devices , and wherein the
workload schedule is determined based on the privacy
constraint , the workload graph , and the device connectivity
graph ; and distributing the workload schedule to the plural
ity of processing devices .
[0450] In one example embodiment of a method , deter
mining the workload schedule comprises solving an integer
linear programming model based on the privacy constraint .
[0451] In one example embodiment of a method : the
workload graph further comprises information associated
with a plurality of task dependencies among the plurality of
tasks ; and the privacy policy comprises a plurality of privacy
requirements associated with the plurality of task dependen
cies .
[0452] In one example embodiment of a method : the
device connectivity information comprises information
associated with a plurality of device connectivity links
among the plurality of processing devices ; and the privacy
level information comprises a plurality of privacy levels
associated with the plurality of device connectivity links .

processing circuitry to :
receive , via the network interface circuitry , a request to

schedule a workload for execution across the comput
ing infrastructure ;

access a privacy policy associated with the workload ,
wherein the privacy policy indicates a plurality of
privacy requirements for execution of the workload ;

access a privacy level agreement associated with the
computing infrastructure , wherein the privacy level
agreement indicates a plurality of privacy levels pro
vided across the computing infrastructure ;

determine , based at least in part on the privacy policy and
the privacy level agreement , a workload schedule for
executing the workload , wherein the workload sched
ule assigns execution of the workload across a portion
of the computing infrastructure ; and

send , via the network interface circuitry , the workload
schedule to the portion of the computing infrastructure
assigned to execute the workload .

27. The computing device of claim 3 , wherein :
the workload comprises a plurality of tasks and a plurality

of task dependencies among the plurality of tasks ; and
the computing infrastructure comprises a plurality of

processing devices and a plurality of device connec
tivity links among the plurality of processing devices .

28. The computing device of claim 27 , wherein :
the plurality of privacy requirements are required across

the plurality of task dependencies of the workload ; and
the plurality of privacy levels are provided across the

plurality of device connectivity links of the computing
infrastructure .

29. The computing device of claim 28 , wherein the
workload schedule assigns execution of the plurality of tasks
of the workload across a subset of the plurality of processing
devices of the computing infrastructure .

30. The computing device of claim 29 , wherein the
workload schedule maps the plurality of task dependencies
of the workload across a subset of the plurality of device
connectivity links of the computing infrastructure .

31. The computing device of claim 4 , wherein the pro
cessing circuitry to send , via the network interface circuitry ,
the workload schedule to the portion of the computing
infrastructure assigned to execute the workload is further to :

send , via the network interface circuitry , the workload
schedule to the subset of the plurality of processing
devices of the computing infrastructure assigned to
execute the plurality of tasks of the workload .

32. The computing device of claim 27 , wherein at least
some of the plurality of tasks of the workload are to process
sensor data captured by one or more sensors .

33. The computing device of claim 32 , wherein :
the one or more sensors comprise one or more cameras ;

and
the sensor data comprises visual data captured by the one

or more cameras .

34. The computing device of claim 33 , wherein at least
some of the plurality of privacy requirements are associated
with processing the visual data captured by the one or more
cameras .

1. - 25 . (canceled)
26. A computing device to perform privacy - preserving

workload scheduling across a computing infrastructure ,
comprising :

network interface circuitry to communicate over a net
work ; and

35. The computing device of claim 26 , wherein the
processing circuitry to determine , based at least in part on
the privacy policy and the privacy level agreement , the
workload schedule for executing the workload is further to :

US 2021/0020041 A1 Jan. 21 , 2021
37

solve an integer linear programming model based on the
privacy policy associated with the workload and the
privacy level agreement associated with the computing
infrastructure ; and

map the workload across the computing infrastructure
based on a solution to the integer linear programming
model .

36. At least one non - transitory machine - readable storage
medium having instructions stored thereon , wherein the
instructions , when executed on processing circuitry , cause the processing circuitry to :

receive , via network interface circuitry , a request to
schedule a workload for execution across a computing
infrastructure ;

access a privacy policy associated with the workload ,
wherein the privacy policy indicates a plurality of
privacy requirements for execution of the workload ;

access a privacy level agreement associated with the
computing infrastructure , wherein the privacy level
agreement indicates a plurality of privacy levels pro
vided across the computing infrastructure ;

determine , based at least in part on the privacy policy and
the privacy level agreement , a workload schedule for
executing the workload , wherein the workload sched
ule assigns execution of the workload across a portion
of the computing infrastructure ; and

send , via the network interface circuitry , the workload
schedule to the portion of the computing infrastructure
assigned to execute the workload .

37. The storage medium of claim 36 , wherein :
the workload comprises a plurality of tasks and a plurality

of task dependencies among the plurality of tasks ; and
the computing infrastructure comprises a plurality of

processing devices and a plurality of device connec
tivity links among the plurality of processing devices .

38. The storage medium of claim 7 , wherein :
the plurality of privacy requirements are required across

the plurality of task dependencies of the workload ; and
the plurality of privacy levels are provided across the

plurality of device connectivity links of the computing
infrastructure .

39. The storage medium of claim 38 , wherein the work
load schedule assigns execution of the plurality of tasks of
the workload across a subset of the plurality of processing
devices of the computing infrastructure .

40. The storage medium of claim 39 , wherein the work
load schedule maps the plurality of task dependencies of the
workload across a subset of the plurality of device connec
tivity links of the computing infrastructure .

41. The storage medium of claim 39 , wherein the instruc
tions that cause the processing circuitry to send , via the
network interface circuitry , the workload schedule to the
portion of the computing infrastructure assigned to execute
the workload further cause the processing circuitry to :

send , via the network interface circuitry , the workload
schedule to the subset of the plurality of processing
devices of the computing infrastructure assigned to
execute the plurality of tasks of the workload .

42. The storage medium of claim 8 , wherein :
at least some of the plurality of tasks of the workload are

to process visual data captured by one or more cameras ;
and

at least some of the plurality of privacy requirements are
associated with processing the visual data captured by
the one or more cameras .

43. The storage medium of claim 36 , wherein the instruc
tions that cause the processing circuitry to determine , based
at least in part on the privacy policy and the privacy level
agreement , the workload schedule for executing the work
load further cause the processing circuitry to :

solve an integer linear programming model based on the
privacy policy associated with the workload and the
privacy level agreement associated with the computing
infrastructure ; and

map the workload across the computing infrastructure
based on a solution to the integer linear programming
model .

44. A method of performing privacy - preserving workload
scheduling across a computing infrastructure , comprising :

receiving , via network interface circuitry , a request to
schedule a workload for execution across the comput
ing infrastructure ;

accessing a privacy policy associated with the workload ,
wherein the privacy policy indicates a plurality of
privacy requirements for execution of the workload ;

accessing a privacy level agreement associated with the
computing infrastructure , wherein the privacy level
agreement indicates a plurality of privacy levels pro
vided across the computing infrastructure ;

determining , based at least in part on the privacy policy
and the privacy level agreement , a workload schedule
for executing the workload , wherein the workload
schedule assigns execution of the workload across a
portion of the computing infrastructure ; and

sending , via the network interface circuitry , the workload
schedule to the portion of the computing infrastructure
assigned to execute the workload .

45. The method of claim 44 , wherein :
the workload comprises a plurality of tasks and a plurality

of task dependencies among the plurality of tasks ; and
the computing infrastructure comprises a plurality of

processing devices and a plurality of device connec
tivity links among the plurality of processing devices .

46. The method of claim 45 , wherein :
the plurality of privacy requirements are required across

the plurality of task dependencies of the workload ; and
the plurality of privacy levels are provided across the

plurality of device connectivity links of the computing
infrastructure .

47. The method of claim 46 , wherein :
the workload schedule assigns execution of the plurality

of tasks of the workload across a subset of the plurality
of processing devices of the computing infrastructure ;
and

the workload schedule maps the plurality of task depen
dencies of the workload across a subset of the plurality
of device connectivity links of the computing infra
structure .

48. The method of claim 45 , wherein :
at least some of the plurality of tasks of the workload are

to process visual data captured by one or more cameras ;
and

at least some of the plurality of privacy requirements are
associated with processing the visual data captured by
the one or more cameras .

US 2021/0020041 A1 Jan. 21 , 2021
38

49. The method of claim 11 , wherein determining , based
at least in part on the privacy policy and the privacy level
agreement , the workload schedule for executing the work
load comprises :

solving an integer linear programming model based on the
privacy policy associated with the workload and the
privacy level agreement associated with the computing
infrastructure ; and

mapping the workload across the computing infrastruc
ture based on a solution to the integer linear program
ming model .

50. A system for performing privacy - preserving workload
scheduling across a computing infrastructure , comprising :
means for receiving a request to schedule a workload for

execution across the computing infrastructure ;

means for accessing a privacy policy associated with the
workload , wherein the privacy policy indicates a plu
rality of privacy requirements for execution of the
workload ;

means for accessing a privacy level agreement associated
with the computing infrastructure , wherein the privacy
level agreement indicates a plurality of privacy levels
provided across the computing infrastructure ;

means for determining , based at least in part on the
privacy policy and the privacy level agreement , a
workload schedule for executing the workload , wherein
the workload schedule assigns execution of the work
load across a portion of the computing infrastructure ;
and

means for sending the workload schedule to the portion of
the computing infrastructure assigned to execute the
workload .

