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( 57 ) ABSTRACT 
In one embodiment , an apparatus comprises a processor to : 
identify a workload comprising a plurality of tasks ; generate 
a workload graph based on the workload , wherein the 
workload graph comprises information associated with the 
plurality of tasks ; identify a device connectivity graph , 
wherein the device connectivity graph comprises device 
connectivity information associated with a plurality of pro 
cessing devices ; identify a privacy policy associated with the 
workload ; identify privacy level information associated with 
the plurality of processing devices ; identify a privacy con 
straint based on the privacy policy and the privacy level 
information , and determine a workload schedule , wherein 
the workload schedule comprises a mapping of the workload 
onto the plurality of processing devices , and wherein the 
workload schedule is determined based on the privacy 
constraint , the workload graph , and the device connectivity 
graph . The apparatus further comprises a communication 
interface to send the workload schedule to the plurality of 
processing devices . 
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PRIVACY - PRESERVING DISTRIBUTED 
VISUAL DATA PROCESSING 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This patent application is a continuation ( and 
claims the benefit under 35 U.S.C. $ 120 ) of U.S. application 
Ser . No. 15 / 859,324 , filed Dec. 29 , 2017 , which claims the 
benefit of the filing date of U.S. Provisional Patent Appli 
cation Ser . No. 62 / 611,536 , filed on Dec. 28 , 2017 , and 
entitled “ VISUAL FOG , ” the content of which is hereby 
expressly incorporated by reference . 

FIELD OF THE SPECIFICATION 
[ 0002 ] This disclosure relates in general to the field of 
computing systems , and more particularly , though not exclu 
sively , to visual computing . 

BACKGROUND 

[ 0003 ] Advancements in modern computing have led to an 
increased use of visual computing for a variety of main 
stream computing applications . In particular , rapid deploy 
ments of cameras have been leveraged for numerous visual 
computing applications that rely on large - scale video ana 
lytics and visual data processing . Existing approaches to 
large - scale visual computing , however , suffer from numer 
ous limitations . For example , existing visual computing 
approaches are implemented using rigid designs that utilize 
resources inefficiently and provide limited functionality , 
privacy , and security . As a result , existing approaches often 
suffer from high latency and are inaccurate , unreliable , 
inflexible , and incapable of scaling efficiently . 

[ 0013 ] FIG . 18 illustrates an example embodiment of a 
visual data storage architecture . 
[ 0014 ] FIG . 19 illustrates an example of a vision process 
ing pipeline that leverages metadata for searching visual 
data . 
[ 0015 ] FIGS . 20 and 21 illustrate examples of representing 
visual metadata using a property graph . 
[ 0016 ] FIG . 22 illustrates an example embodiment of an 
analytic image format designed to aid in visual data pro 
cessing . 
[ 0017 ] FIG . 23 illustrates a performance graph for various 
image formats . 
[ 0018 ] FIGS . 24A , 24B , and 24C illustrate an example 
embodiment of a multi - domain cascade convolutional neu 
ral network ( CNN ) . 
[ 0019 ] FIGS . 25A - B , 26 , 27 , 28 , 29 , 30 , and 31A - B 
illustrate the use of butterfly operations for a multi - domain 
convolutional neural network ( CNN ) . 
[ 0020 ] FIGS . 32 and 33 illustrate an example embodiment 
of a three - dimensional ( 3D ) CNN for processing com 
pressed visual data . 
[ 0021 ] FIG . 34 illustrates an example of a pixel - domain 
CNN . 
[ 0022 ] FIG . 35 illustrates an example of a pixel - domain 
visual analytics pipeline . 
[ 0023 ] FIGS . 36 and 37 illustrate example embodiments 
of compressed - domain visual analytics pipelines . 
[ 0024 ] FIG . 38 illustrates a performance graph showing 
the precision of a CNN trained using compressed visual 
data . 
[ 0025 ] FIG . 39 illustrates a flowchart for an example 
embodiment of context - aware image compression . 
[ 0026 ] FIGS . 40A , 40B , and 40C illustrate an example 
embodiment of a privacy - preserving demographic identifi 
cation system . 
[ 0027 ] FIGS . 41 , 42 , and 43 illustrate an example embodi 
ment of privacy - preserving distributed visual data process 
ing . 
[ 0028 ] FIGS . 44 , 45 , and 46 illustrate example embodi 
ments of self - sovereign device identification for distributed 
computing networks . 
[ 0029 ] FIG . 47 illustrates an example of device onboard 
ing / commissioning in a visual fog network without conflict 
resolution . 
[ 0030 ] FIGS . 48 and 49 illustrate example embodiments 
of algorithm identification for distributed computing using a 
self - sovereign blockchain . 
[ 0031 ] FIGS . 50 , 51 , and 52 illustrate example embodi 
ments for processing traditional and analytic image formats . 
[ 0032 ] FIG . 53 illustrates a flowchart for an example 
embodiment of privacy - preserving demographics identifica 
tion . 
[ 0033 ] FIG . 54 illustrates a flowchart for an example 
embodiment of privacy - preserving distributed visual pro 
cessing 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0004 ] The present disclosure is best understood from the 
following detailed description when read with the accom 
panying figures . It is emphasized that , in accordance with 
the standard practice in the industry , various features are not 
necessarily drawn to scale , and are used for illustration 
purposes only . Where a scale is shown , explicitly or implic 
itly , it provides only one illustrative example . In other 
embodiments , the dimensions of the various features may be 
arbitrarily increased or reduced for clarity of discussion . 
[ 0005 ] FIG . 1 illustrates an example embodiment of a 
visual fog system in accordance with certain embodiments . 
[ 0006 ] FIGS . 2 , 3 , 4 , and 5 illustrate examples of Internet 
of - Things ( IoT ) networks and architectures that can be used 
in accordance with certain embodiments . 
[ 0007 ] FIGS . 6 and 7 illustrate example computer archi 
tectures that can be used in accordance with certain embodi 
ments . 
[ 0008 ] FIG . 8 illustrates an example embodiment of an 
architecture for visual fog nodes . 
[ 0009 ] FIGS . 9 , 10 , 11 , and 12A - B illustrate example 
embodiments of a visual fog architecture . 
[ 0010 ] FIGS . 13 and 14 illustrate example embodiments 
associated with a visual question answering ( VQA ) frame 
work . 
[ 0011 ] FIGS . 15 and 16 illustrate example embodiments of 
device - centric scheduling for visual fog computing . 
[ 0012 ] FIG . 17 illustrates an example embodiment of a 
runtime processing pipeline for a visual fog architecture . 

EMBODIMENTS OF THE DISCLOSURE 

[ 0034 ] This patent application claims the benefit of the 
filing date of U.S. Provisional Patent Application Ser . No. 
62 / 611,536 , filed on Dec. 28 , 2017 , and entitled “ VISUAL 
FOG , ” the content of which is hereby expressly incorporated 
by reference . 
[ 0035 ] The following disclosure provides many different 
embodiments , or examples , for implementing different fea 
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tures of the present disclosure . Specific examples of com 
ponents and arrangements are described below to simplify 
the present disclosure . These are , of course , merely 
examples and are not intended to be limiting . Further , the 
present disclosure may repeat reference numerals and / or 
letters in the various examples . This repetition is for the 
purpose of simplicity and clarity and does not in itself dictate 
a relationship between the various embodiments and / or 
configurations discussed . Different embodiments may have 
different advantages , and no particular advantage is neces 
sarily required of any embodiment . 
[ 0036 ] Example embodiments that may be used to imple 
ment the features and functionality of this disclosure will 
now be described with more particular reference to the 
attached FIGURES . 
[ 0037 ] Visual Fog Introduction 
[ 0038 ] FIG . 1 illustrates an example embodiment of a 
visual fog system 100 in accordance with certain embodi 
ments . Advancements in modern computing have led to an 
increased use of computer vision technologies and large 
scale visual computing for a variety of mainstream comput 
ing applications . In particular , rapid deployments of cameras 
and other types of computer vision technologies have been 
leveraged for a variety of visual computing applications that 
rely on large - scale video analytics and visual data process 
ing . For example , large - scale visual computing can be 
leveraged for security and surveillance , transportation ( e.g. , 
traffic monitoring , navigation , parking , infrastructure plan 
ning , security or amber alerts ) , retail ( e.g. , customer analyt 
ics ) , enterprise applications , and so forth . 
[ 0039 ] Existing approaches to large - scale visual comput 
ing , however , suffer from numerous limitations . In particu 
lar , existing visual computing approaches are implemented 
using rigid designs that utilize resources inefficiently ( e.g. , 
processing , bandwidth , and storage resources ) and provide 
limited functionality . For example , using existing 
approaches , visual data is typically captured by devices at 
the edge of a network and simply funneled to the cloud for 
processing and storage , thus relying heavily on the cloud 
infrastructure . Due to the large size of visual data , however , this approach typically consumes significant network band 
width and requires substantial processing and storage 
resources in the cloud . As a result , existing approaches often 
suffer from high latency and inefficient resource utilization , 
and may also be inaccurate , unreliable , inflexible , and inca 
pable of scaling efficiently . 
[ 0040 ] Accordingly , this disclosure describes various 
embodiments of a visual fog computing system 100 for 
performing large - scale visual computing in an efficient and 
reliable manner . For example , rather than relying exclu 
sively or primarily on cloud resources 130 for visual com 
puting tasks , visual fog system 100 leverages both cloud 130 
and edge 110 resources , which may be collectively referred 
to as the “ fog . ” In this manner , visual fog system 100 can 
leverage all available “ fog ” resources to perform visual 
computing tasks more efficiently , thus improving resource 
utilization , latency , accuracy , precision , and reliability . 
Moreover , as described further throughout this disclosure , 
visual fog system 100 can be implemented using a flexible 
design that supports ad - hoc queries and is highly scalable , 
thus rendering it suitable for many visual computing appli 
cations and use cases . 
[ 0041 ] In the illustrated embodiment of FIG . 1 , visual fog 
system 100 includes edge resources 110 and a plurality of 

associated visual sensors 120 , cloud resources 130 , and 
communication networks 150 , which are respectively dis 
cussed further below . Moreover , in various embodiments , 
these components of visual fog system 100 may be imple 
mented some or all aspects of the visual computing func 
tionality described throughout this disclosure in connection 
with the remaining FIGURES . 
[ 0042 ] Edge resources 110 may include any equipment , 
devices , and / or components deployed or connected near the 
" edge ” of a communication network . In the illustrated 
embodiment , for example , edge resources 110 include end 
user devices 112a , b ( e.g. , desktops , laptops , mobile 
devices ) , Internet - of - Things ( IoT ) devices 114 , and gate 
ways or routers 116 , as described further below . Edge 
resources 110 may communicate with each other and / or with 
other remote networks and resources ( e.g. , cloud resources 
130 ) through one or more communication networks 150 , 
such as local area network 150a and / or wide area network 
150b . Moreover , in the illustrated embodiment , edge 
resources 110 collectively include a plurality of visual 
sensors 120 ( e.g. , cameras ) for capturing visual representa 
tions and data associated with their surroundings . In some 
embodiments , for example , certain end - user devices 112 
and / or IoT devices 114 may include one or more cameras 
and / or other types of visual sensors 120. Visual sensors 120 
may include any type of visual or optical sensors , such as 
cameras , ultraviolet ( UV ) sensors , laser rangefinders ( e.g. , 
light detection and ranging ( LIDAR ) ) , infrared ( IR ) sensors , 
electro - optical / infrared ( EO / IR ) sensors , and so forth . 
[ 0043 ] End - user devices 112 may include any device that 
enables or facilitates interaction with a user in visual fog 
system 100 , including , for example , desktop computers , 
laptops , tablets , mobile phones and other mobile devices , 
and wearable devices ( e.g. , smart watches , smart glasses , 
headsets ) , among other examples . 
[ 0044 ] IoT devices 114 may include any device capable of 
communicating and / or participating in an Internet - of - Things 
( IoT ) system or network . IoT systems may refer to new or 
improved ad - hoc systems and networks composed of a 
variety of different devices ( e.g. , IoT devices 114 ) interop 
erating and synergizing for a particular application or use 
case . Such ad - hoc systems are emerging as more and more 
products and equipment evolve to become “ smart , ” meaning 
they are controlled or monitored by computer processors and 
are capable of communicating with other devices . For 
example , an IoT device 114 may include a computer pro 
cessor and / or communication interface to allow interopera 
tion with other components of visual fog system 100 , such 
as with cloud resources 130 and / or other edge resources 110 . 
IoT devices 114 may be “ greenfield ” devices that are devel 
oped with IoT capabilities from the ground - up , or “ brown 
field ” devices that are created by integrating IoT capabilities 
into existing legacy devices that were initially developed 
without IoT capabilities . For example , in some cases , IoT 
devices 114 may be built from sensors and communication 
modules integrated in or attached to “ things , ” such as 
equipment , toys , tools , vehicles , living things ( e.g. , plants , 
animals , humans ) , and so forth . Alternatively , or addition 
ally , certain IoT devices 114 may rely on intermediary 
components , such as edge gateways or routers 116 , to 
communicate with the various components of system 100 . 
[ 0045 ] IoT devices 114 may include various types of 
sensors for monitoring , detecting , measuring , and generating 
sensor data and signals associated with characteristics of 
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their environment . In some embodiments , for example , 
certain IoT devices 114 may include visual sensors 120 ( e.g. , 
cameras ) for capturing visual representations and data asso 
ciated with their surroundings . IoT devices 114 may also 
include other types of sensors configured to detect charac 
teristics such as movement , weight , physical contact , tem 
perature , wind , noise , light , position , humidity , radiation , 
liquid , specific chemical compounds , battery life , wireless 
signals , computer communications , and bandwidth , among 
other examples . Sensors can include physical sensors ( e.g. , 
physical monitoring components ) and virtual sensors ( e.g. , 
software - based monitoring components ) . IoT devices 114 
may also include actuators to perform various actions in 
their respective environments . For example , an actuator may 
be used to selectively activate certain functionality , such as 
toggling the power or operation of a security system ( e.g. , 
alarm , camera , locks ) or household appliance ( e.g. , audio 
system , lighting , HVAC appliances , garage doors ) , among 
other examples . 
[ 0046 ] Indeed , this disclosure contemplates use of a poten 
tially limitless universe of IoT devices 114 and associated 
sensors / actuators . IoT devices 114 may include , for 
example , any type of equipment and / or devices associated 
with any type of system 100 and / or industry , including 
transportation ( e.g. , automobile , airlines ) , industrial manu 
facturing , energy ( e.g. , power plants ) , telecommunications 
( e.g. , Internet , cellular , and television service providers ) , 
retail , medical ( e.g. , healthcare , pharmaceutical ) , and / or 
food and beverage , among others . In the transportation 
industry , for example , IoT devices 114 may include equip 
ment and devices associated with aircrafts , automobiles , or 
vessels , such as navigation systems , autonomous flight or 
driving systems , traffic monitoring and / or planning systems , 
parking systems , and / or any internal mechanical or electrical 
components that are monitored by sensors ( e.g. , engines ) . 
IoT devices 114 may also include equipment , devices , 
and / or infrastructure associated with industrial manufactur 
ing and production , shipping ( e.g. , cargo tracking ) , commu 
nications networks ( e.g. , gateways , routers , servers , cellular 
towers ) , server farms , electrical power plants , wind farms , 
oil and gas pipelines , water treatment and distribution , 
wastewater collection and treatment , and weather monitor 
ing ( e.g. , temperature , wind , and humidity sensors ) , among 
other examples . IoT devices 114 may also include , for 
example , any type of “ smart ” device or system , such as 
smart entertainment systems ( e.g. , televisions , audio sys 
tems , videogame systems ) , smart household or office appli 
ances ( e.g. , heat - ventilation - air - conditioning ( HVAC ) appli 
ances , refrigerators , washers and dryers , coffee brewers ) , 
power control systems ( e.g. , automatic electricity , light , and 
HVAC controls ) , security systems ( e.g. , alarms , locks , cam 
eras , motion detectors , fingerprint scanners , facial recogni 
tion systems ) , and other home automation systems , among 
other examples . IoT devices 114 can be statically located , 
such as mounted on a building , wall , floor , ground , lamp 
post , sign , water tower , or any other fixed or static structure . 
IoT devices 114 can also be mobile , such as devices in 
vehicles or aircrafts , drones , packages ( e.g. , for tracking 
cargo ) , mobile devices , and wearable devices , among other 
examples . Moreover , any type of edge resource 110 may 
also be considered as an IoT device 114 , including end - user 
devices 112 and edge gateways 116 , among other examples . 
[ 0047 ] Edge gateways and / or routers 116 may be used to 
facilitate communication to and from edge resources 110 . 

For example , gateways 116 may provide communication 
capabilities to existing legacy devices that were initially 
developed without any such capabilities ( e.g. , " brownfield " 
IoT devices 114 ) . Gateways 116 can also be utilized to 
extend the geographical reach of edge resources 110 with 
short - range , proprietary , or otherwise limited communica 
tion capabilities , such as IoT devices 114 with Bluetooth or 
ZigBee communication capabilities . For example , gateways 
116 can serve as intermediaries between IoT devices 114 and 
remote networks or services , by providing a front - haul to the 
IoT devices 114 using their native communication capabili 
ties ( e.g. , Bluetooth , ZigBee ) , and providing a back - haul to 
other networks 150 and / or cloud resources 130 using 
another wired or wireless communication medium ( e.g. , 
Ethernet , Wi - Fi , cellular ) . In some embodiments , a gateway 
116 may be implemented by a dedicated gateway device , or 
by a general - purpose device , such as another IoT device 114 , 
end - user device 112 , or other type of edge resource 110. In 
some instances , gateways 116 may also implement certain 
network management and / or application functionality ( e.g. , 
visual computing functionality , IoT application and man 
agement functionality ) , either separately or in conjunction 
with other components , such as cloud resources 130 and / or 
other edge resources 110 . 
[ 0048 ] Cloud resources 130 may include any resources or 
services that are hosted remotely over a network , which may 
otherwise be referred to as in the “ cloud . ” In some embodi 
ments , for example , cloud resources 130 may be remotely 
hosted on servers in a datacenter ( e.g. , application servers , 
database servers ) . Cloud resources 130 may include any 
resources , services , and / or functionality that can be utilized 
by or for edge resources 110 , including but not limited to , 
visual computing applications and services , IoT application 
and management services , data storage , computational ser 
vices ( e.g. , data analytics , searching , diagnostics and fault 
management ) , security services ( e.g. , surveillance , alarms , 
user authentication ) , mapping and navigation , geolocation 
services , network or infrastructure management , payment 
processing , audio and video streaming , messaging , social 
networking , news , and weather , among other examples . 
[ 0049 ] Communication networks 150a , b may be used to 
facilitate communication between components of system 
100. In the illustrated embodiment , for example , edge 
resources 110 are connected to local area network ( LAN ) 
150a in order to facilitate communication with each other 
and / or other remote networks or resources , such as wide area 
network ( WAN ) 150b and / or cloud resources 130. In various 
embodiments , visual fog system 100 may be implemented 
using any number or type of communication network ( s ) 150 , 
ing ding local area networks , wide area networks , public 
networks , the Internet , cellular networks , Wi - Fi networks , 
short - range networks ( e.g. , Bluetooth or ZigBee ) , and / or any 
other wired or wireless communication networks or medi 
ums . 

[ 0050 ] In general , edge resources 110 ( and in particular 
IoT devices 114 ) may generate an extremely large volume 
and variety of data . As one example , edge resources 110 with 
visual sensors 120 may generate large volumes of visual 
data , such as video and / or images . Edge resources 110 
typically offload this data to the cloud 130 for processing 
and / or storage . Cloud resources 130 , however , may not 
necessarily be suited to handle the rapidly growing volume , 
variety , and velocity of data generated by IoT devices 114 
and other edge resources 110. For example , cloud - based 
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processing may not be ideal in certain circumstances , such 
as processing time - sensitive or highly confidential data , 
when faced with network bandwidth constraints , among 
other examples . Accordingly , in some embodiments , visual 
fog system 100 may leverage " edge ” processing to augment 
the performance and capabilities of the cloud 130 using edge 
resources 110. Edge processing is an approach that involves 
processing certain data at the network edge ( e.g. , using edge 
resources 110 ) , near where the data is generated , rather than 
simply funneling large volumes of data to the cloud for 
processing and storage . Certain data may still be sent to the 
cloud , as appropriate , such as for deeper analysis and / or 
long - term storage . Edge processing may be used to comple 
ment the shortcomings of cloud - based processing ( e.g. , 
when cloud - based processing is inefficient , ineffective , and / 
or unsecure ) , and thus improve the handling of the growing 
volume , variety , and velocity of data generated by IoT 
devices 114 and / or other edge resources 110. For example , 
in some cases , processing data near its source ( e.g. , in the 
network edge ) rather than in the cloud may improve per 
formance and / or avoid system failures or disasters . Edge 
processing may also conserve network bandwidth , which 
may be particularly beneficial when facing bandwidth con 
straints and / or limited network connectivity . 
[ 0051 ] In some cases , the collective use of both edge 110 
and cloud 130 resources may be referred to as “ fogº com 
puting , as functionality of the “ cloud ” 130 is effectively 
extended by the edge resources 110 , thus forming a “ fog ” 
over the network edge . Moreover , in some embodiments , 
devices 110 in the " fog ” may connect and / or communicate 
with each other using an interconnection standard or proto 
col , such as the open interconnect consortium ( OIC ) stan 
dard specification 1.0 , released by the Open Connectivity 
FoundationTM ( OCF ) on Dec. 23 , 2015 , which enables 
devices to discover and connect with each other ; Thread , a 
networking protocol for Internet - of - Things ( IoT ) devices 
used in “ smart ” home automation and similar deployments , 
developed by an alliance of organizations named the 
“ Thread Group ” ; the optimized link state routing ( OLSR ) 
protocol ; and / or the better approach to mobile ad - hoc net 
working ( B.A.T.M.A.N. ) , among other examples . 
[ 0052 ] Moreover , in some embodiments , fog computing 
may be leveraged by visual fog system 100 for large - scale 
visual computing applications . For example , in some 
embodiments , the components of visual fog system 100 
( e.g. , edge resources 110 , cloud resources 130 ) may be 
implemented with some or all aspects of the visual comput 
ing functionality described throughout this disclosure in 
connection with the remaining FIGURES . 
[ 0053 ] Any , all , or some of the computing devices of 
system 100 may be adapted to execute any operating system , 
including Linux or other UNIX - based operating systems , 
Microsoft Windows , Windows Server , MacOS , Apple iOS , 
Google Android , or any customized and / or proprietary oper 
ating system , along with virtual machines adapted to virtu 
alize execution of a particular operating system . 
[ 0054 ] While FIG . 1 is described as containing or being 
associated with a plurality of elements , not all elements 
illustrated within system 100 of FIG . 1 may be utilized in 
each alternative implementation of the present disclosure . 
Additionally , one or more of the elements described in 
connection with the examples of FIG . 1 may be located 
external to system 100 , while in other instances , certain 
elements may be included within or as a portion of one or 

more of the other described elements , as well as other 
elements not described in the illustrated implementation . 
Further , certain elements illustrated in FIG . 1 may be 
combined with other components , as well as used for 
alternative or additional purposes in addition to those pur 
poses described herein . 
[ 0055 ] Additional embodiments associated with the 
implementation of a visual fog computing system 100 are 
described further in connection with the remaining FIG 
URES . Accordingly , it should be appreciated that visual fog 
system 100 of FIG . 1 may be implemented with any aspects 
of the embodiments described throughout this disclosure . 
[ 0056 ] Example Internet - of - Things ( IoT ) Implementa 
tions 
[ 0057 ] FIGS . 2-5 illustrate examples of Internet - of - Things 
( IoT ) networks and devices that can be used in accordance 
with embodiments disclosed herein . For example , the opera 
tions and functionality described throughout this disclosure 
may be embodied by an IoT device or machine in the 
example form of an electronic processing system , within 
which a set or sequence of instructions may be executed to 
cause the electronic processing system to perform any one of 
the methodologies discussed herein , according to 
example embodiment . The machine may be an IoT device or 
an IoT gateway , including a machine embodied by aspects of 
a personal computer ( PC ) , a tablet PC , a personal digital 
assistant ( PDA ) , a mobile telephone or smartphone , or any 
machine capable of executing instructions ( sequential or 
otherwise ) that specify actions to be taken by that machine . 
Further , while only a single machine may be depicted and 
referenced in the example above , such machine shall also be 
taken to include any collection of machines that individually 
or jointly execute a set ( or multiple sets ) of instructions to 
perform any one or more of the methodologies discussed 
herein . Further , these and like examples to a processor - based 
system shall be taken to include any set of one or more 
machines that are controlled by or operated by a processor 
( e.g. , a computer ) to individually or jointly execute instruc 
tions to perform any one or more of the methodologies 
discussed herein . 
[ 0058 ] FIG . 2 illustrates an example domain topology for 
respective internet - of - things ( IoT ) networks coupled 
through links to respective gateways . The internet of things 
( IoT ) is a concept in which a large number of computing 
devices are interconnected to each other and to the Internet 
to provide functionality and data acquisition at very low 
levels . Thus , as used herein , an IoT device may include a 
semiautonomous device performing a function , such as 
sensing or control , among others , in communication with 
other IoT devices and a wider network , such as the Internet . 
[ 0059 ] Often , IoT devices are limited in memory , size , or 
functionality , allowing larger numbers to be deployed for a 
similar cost to smaller numbers of larger devices . However , 
an IoT device may be a smart phone , laptop , tablet , or PC , 
or other larger device . Further , an IoT device may be a 
virtual device , such as an application on a smart phone or 
other computing device . IoT devices may include IoT gate 
ways , used to couple IoT devices to other IoT devices and 
to cloud applications , for data storage , process control , and 
the like . 
[ 0060 ] Networks of IoT devices may include commercial 
and home automation devices , such as water distribution 
systems , electric power distribution systems , pipeline con 
trol systems , plant control systems , light switches , thermo 
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stats , locks , cameras , alarms , motion sensors , and the like . 
The IoT devices may be accessible through remote comput 
ers , servers , and other systems , for example , to control 
systems or access data . 
[ 0061 ] The future growth of the Internet and like networks 
may involve very large numbers of IoT devices . Accord 
ingly , in the context of the techniques discussed herein , a 
number of innovations for such future networking will 
address the need for all these layers to grow unhindered , to 
discover and make accessible connected resources , and to 
support the ability to hide and compartmentalize connected 
resources . Any number of network protocols and commu 
nications standards may be used , wherein each protocol and 
standard is designed to address specific objectives . Further , 
the protocols are part of the fabric supporting human acces 
sible services that operate regardless of location , time or 
space . The innovations include service delivery and associ 
ated infrastructure , such as hardware and software ; security 
enhancements ; and the provision of services based on Qual 
ity of Service ( QoS ) terms specified in service level and 
service delivery agreements . As will be understood , the use 
of IoT devices and networks , such as those introduced in 
FIGS . 2-5 , present a number of new challenges in a hetero 
geneous network of connectivity comprising a combination 
of wired and wireless technologies . 
[ 0062 ] FIG . 2 specifically provides a simplified drawing of 
a domain topology that may be used for a number of 
internet - of - things ( IoT ) networks comprising IoT devices 
204 , with the IoT networks 256 , 258 , 260 , 262 , coupled 
through backbone links 202 to respective gateways 254. For 
example , a number of IoT devices 204 may communicate 
with a gateway 254 , and with each other through the 
gateway 254. To simplify the drawing , not every IoT device 
204 , or communications link ( e.g. , link 216 , 222 , 228 , or 
232 ) is labeled . The backbone links 202 may include any 
number of wired or wireless technologies , including optical 
networks , and may be part of a local area network ( LAN ) , 
a wide area network ( WAN ) , or the Internet . Additionally , 
such communication links facilitate optical signal paths 
among both IoT devices 204 and gateways 254 , including 
the use of MUXing / deMUXing components that facilitate 
interconnection of the various devices . 
[ 0063 ] The network topology may include any number of 
types of IoT networks , such as a mesh network provided 
with the network 256 using Bluetooth low energy ( BLE ) 
links 222. Other types of IoT networks that may be present 
include a wireless local area network ( WLAN ) network 258 
used to communicate with IoT devices 204 through IEEE 
802.11 ( Wi - Fi® ) links 228 , a cellular network 260 used to 
communicate with IoT devices 204 through an LTE / LTE - A 
( 4G ) or 5G cellular network , and a low - power wide area 
( LPWA ) network 262 , for example , a LPWA network com 
patible with the LoRaWan specification promulgated by the 
LoRa alliance , or a IPv6 over Low Power Wide - Area 
Networks ( LPWAN ) network compatible with a specifica 
tion promulgated by the Internet Engineering Task Force 
( IETF ) . Further , the respective IoT networks may commu 
nicate with an outside network provider ( e.g. , a tier 2 or tier 
3 provider ) using any number of communications links , such 
as an LTE cellular link , an LPWA link , or a link based on the 
IEEE 802.15.4 standard , such as Zigbee . The respective IoT 
networks may also operate with use of a variety of network 
and internet application protocols such as Constrained 
Application Protocol ( COAP ) . The respective IoT networks 

may also be integrated with coordinator devices that provide 
a chain of links that forms cluster tree of linked devices and 
networks . 
[ 0064 ] Each of these IoT networks may provide opportu 
nities for new technical features , such as those as described 
herein . The improved technologies and networks may 
enable the exponential growth of devices and networks , 
including the use of IoT networks into as fog devices or 
systems . As the use of such improved technologies grows , 
the IoT networks may be developed for self - management , 
functional evolution , and collaboration , without needing 
direct human intervention . The improved technologies may 
even enable IoT networks to function without centralized 
controlled systems . Accordingly , the improved technologies 
described herein may be used to automate and enhance 
network management and operation functions far beyond 
current implementations . 
[ 0065 ] In an example , communications between IoT 
devices 204 , such as over the backbone links 202 , may be 
protected by a decentralized system for authentication , 
authorization , and accounting ( AAA ) . In a decentralized 
AAA system , distributed payment , credit , audit , authoriza 
tion , and authentication systems may be implemented across 
interconnected heterogeneous network infrastructure . This 
allows systems and networks to move towards autonomous 
operations . In these types of autonomous operations , 
machines may even contract for human resources and nego 
tiate partnerships with other machine networks . This may 
allow the achievement of mutual objectives and balanced 
service delivery against outlined , planned service level 
agreements as well as achieve solutions that provide meter 
ing , measurements , traceability and trackability . The cre 
ation of new supply chain structures and methods may 
enable a multitude of services to be created , mined for value , 
and collapsed without any human involvement . 
[ 0066 ] Such IoT networks may be further enhanced by the 
integration of sensing technologies , such as sound , light , 
electronic traffic , facial and pattern recognition , smell , vibra 
tion , into the autonomous organizations among the IoT 
devices . The integration of sensory systems may allow 
systematic and autonomous communication and coordina 
tion of service delivery against contractual service objec 
tives , orchestration and quality of service ( QoS ) based 
swarming and fusion of resources . Some of the individual 
examples of network - based resource processing include the 
following 
[ 0067 ] The mesh network 256 , for instance , may be 
enhanced by systems that perform inline data - to - information 
transforms . For example , self - forming chains of processing 
resources comprising a multi - link network may distribute 
the transformation of raw data to information in an efficient 
manner , and the ability to differentiate between assets and 
resources and the associated management of each . Further 
more , the proper components of infrastructure and resource 
based trust and service indices may be inserted to improve 
the data integrity , quality , assurance and deliver a metric of 
data confidence . 
[ 0068 ] The WLAN network 258 , for instance , may use 
systems that perform standards conversion to provide multi 
standard connectivity , enabling IoT devices 204 using dif 
ferent protocols to communicate . Further systems may pro 
vide seamless interconnectivity across a multi - standard 
infrastructure comprising visible Internet resources and hid 
den Internet resources . 
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[ 0075 ] The fog 320 provided from these IoT devices 302 
may be presented to devices in the cloud 300 , such as a 
server 306 , as a single device located at the edge of the cloud 
300 , e.g. , a fog device . In this example , the alerts coming 
from the fog device may be sent without being identified as 
coming from a specific IoT device 302 within the fog 320 . 
In this fashion , the fog 320 may be considered a distributed 
platform that provides computing and storage resources to 
perform processing or data - intensive tasks such as data 
analytics , data aggregation , and machine learning , among 
others . 

[ 0069 ] Communications in the cellular network 260 , for 
instance , may be enhanced by systems that offload data , 
extend communications to more remote devices , or both . 
The LPWA network 262 may include systems that perform 
non - Internet protocol ( IP ) to IP interconnections , address 
ing , and routing . Further , each of the IoT devices 204 may 
include the appropriate transceiver for wide area communi 
cations with that device . Further , each IoT device 204 may 
include other transceivers for communications using addi 
tional protocols and frequencies . 
[ 0070 ] Finally , clusters of IoT devices may be equipped to 
communicate with other IoT devices as well as with a cloud 
network . This may allow the IoT devices to form an ad - hoc 
network between the devices , allowing them to function as 
a single device , which may be termed a fog device . This 
configuration is discussed further with respect to FIG . 3 
below . 
[ 0071 ] FIG . 3 illustrates a cloud computing network in 
communication with a mesh network of IoT devices ( de 
vices 302 ) operating as a fog device at the edge of the cloud 
computing network . The mesh network of IoT devices may 
be termed a fog 320 , operating at the edge of the cloud 300 . 
To simplify the diagram , not every IoT device 302 is labeled . 
[ 0072 ] The fog 320 may be considered to be a massively 
interconnected network wherein a number of IoT devices 
302 are in communications with each other , for example , by 
radio links 322. As an example , this interconnected network 
may be facilitated using an interconnect specification 
released by the Open Connectivity FoundationTM ( OCF ) . 
This standard allows devices to discover each other and 
establish communications for interconnects . Other intercon 
nection protocols may also be used , including , for example , 
the optimized link state routing ( OLSR ) Protocol , the better 
approach to mobile ad - hoc networking ( B.A.T.M.A.N. ) 
routing protocol , or the OMA Lightweight M2M ( LWM2M ) 
protocol , among others . 
[ 0073 ] Three types of IoT devices 302 are shown in this 
example , gateways 304 , data aggregators 326 , and sensors 
328 , although any combinations of IoT devices 302 and 
functionality may be used . The gateways 304 may be edge 
devices that provide communications between the cloud 300 
and the fog 320 , and may also provide the backend process 
function for data obtained from sensors 328 , such as motion 
data , flow data , temperature data , and the like . The data 
aggregators 326 may collect data from any number of the 
sensors 328 , and perform the back - end processing function 
for the analysis . The results , raw data , or both may be passed 
along to the cloud 300 through the gateways 304. The 
sensors 328 may be full IoT devices 302 , for example , 
capable of both collecting data and processing the data . In 
some cases , the sensors 328 may be more limited in func 
tionality , for example , collecting the data and allowing the 
data aggregators 326 or gateways 304 to process the data . 
[ 0074 ] Communications from any IoT device 302 may be 
passed along a convenient path ( e.g. , a most convenient 
path ) between any of the IoT devices 302 to reach the 
gateways 304. In these networks , the number of intercon 
nections provide substantial redundancy , allowing commu 
nications to be maintained , even with the loss of a number 
of IoT devices 302. Further , the use of a mesh network may 
allow IoT devices 302 that are very low power or located at 
a distance from infrastructure to be used , as the range to 
connect to another IoT device 302 may be much less than the 
range to connect to the gateways 304 . 

[ 0076 ] In some examples , the IoT devices 302 may be 
configured using an imperative programming style , e.g. , 
with each IoT device 302 having a specific function and 
communication partners . However , the IoT devices 302 
forming the fog device may be configured in a declarative 
programming style , allowing the IoT devices 302 to recon 
figure their operations and communications , such as to 
determine needed resources in response to conditions , que 
ries , and device failures . As an example , a query from a user 
located at a server 306 about the operations of a subset of 
equipment monitored by the IoT devices 302 may result in 
the fog 320 device selecting the IoT devices 302 , such as 
particular sensors 328 , needed to answer the query . The data 
from these sensors 328 may then be aggregated and ana 
lyzed by any combination of the sensors 328 , data aggre 
gators 326 , or gateways 304 , before being sent on by the fog 
320 device to the server 306 to answer the query . In this 
example , IoT devices 302 in the fog 320 may select the 
sensors 328 used based on the query , such as adding data 
from flow sensors or temperature sensors . Further , if some of 
the IoT devices 302 are not operational , other IoT devices 
302 in the fog 320 device may provide analogous data , if 
available . 

[ 0077 ] FIG . 4 illustrates a drawing of a cloud computing 
network , or cloud 400 , in communication with a number of 
Internet of Things ( IoT ) devices . The cloud 400 may rep 
resent the Internet , or may be a local area network ( LAN ) , 
or a wide area network ( WAN ) , such as a proprietary 
network for a company . The IoT devices may include any 
number of different types of devices , grouped in various 
combinations . For example , a traffic control group 406 may 
include IoT devices along streets in a city . These IoT devices 
may include stoplights , traffic flow monitors , cameras , 
weather sensors , and the like . The traffic control group 406 , 
or other subgroups , may be in communication with the cloud 
400 through wired or wireless links 408 , such as LPWA 
links , optical links , and the like . Further , a wired or wireless 
sub - network 412 may allow the IoT devices to communicate 
with each other , such as through a local area network , a 
wireless local area network , and the like . The IoT devices 
may use another device , such as a gateway 510 or 528 to 
communicate with remote locations such as the cloud 500 ; 
the IoT devices may also use one or more servers 530 to 
facilitate communication with the cloud 500 or with the 
gateway 510. For example , the one or more servers 530 may 
operate as an intermediate network node to support a local 
edge cloud or fog implementation among a local area 
network . Further , the gateway 528 that is depicted may 
operate in a cloud - to - gateway - to - many edge devices con 
figuration , such as with the various IoT devices 514 , 520 , 
524 being constrained or dynamic to an assignment and use 
of resources in the cloud 500 . 
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[ 0078 ] Other example groups of IoT devices may include 
remote weather stations 414 , local information terminals 
416 , alarm systems 418 , automated teller machines 420 , 
alarm panels 422 , or moving vehicles , such as emergency 
vehicles 424 or other vehicles 426 , among many others . 
Each of these IoT devices may be in communication with 
other IoT devices , with servers 404 , with another IoT fog 
device or system ( not shown , but depicted in FIG . 3 ) , or a 
combination therein . The groups of IoT devices may be 
deployed in various residential , commercial , and industrial 
settings ( including in both private or public environments ) . 
[ 0079 ] As can be seen from FIG . 4 , a large number of IoT 
devices may be communicating through the cloud 400. This 
may allow different IoT devices to request or provide 
information to other devices autonomously . For example , a 
group of IoT devices ( e.g. , the traffic control group 406 ) may 
request a current weather forecast from a group of remote 
weather stations 414 , which may provide the forecast with 
out human intervention . Further , an emergency vehicle 424 
may be alerted by an automated teller machine 420 that a 
burglary is in progress . As the emergency vehicle 424 
proceeds towards the automated teller machine 420 , it may 
access the traffic control group 406 to request clearance to 
the location , for example , by lights turning red to block cross 
traffic at an intersection in sufficient time for the emergency 
vehicle 424 to have unimpeded access to the intersection . 
[ 0080 ] Clusters of IoT devices , such as the remote weather 
stations 414 or the traffic control group 406 , may be 
equipped to communicate with other IoT devices as well as 
with the cloud 400. This may allow the IoT devices to form 
an ad - hoc network between the devices , allowing them to 
function as a single device , which may be termed a fog 
device or system ( e.g. , as described above with reference to 
FIG . 3 ) . 
[ 0081 ] FIG . 5 is a block diagram of an example of 
components that may be present in an IoT device 550 for 
implementing the techniques described herein . The IoT 
device 550 may include any combinations of the compo 
nents shown in the example or referenced in the disclosure 
above . The components may be implemented as ICs , por 
tions thereof , discrete electronic devices , or other modules , 
logic , hardware , software , firmware , or a combination 
thereof adapted in the IoT device 550 , or as components 
otherwise incorporated within a chassis of a larger system . 
Additionally , the block diagram of FIG . 5 is intended to 
depict a high - level view of components of the IoT device 
550. However , some of the components shown may be 
omitted , additional components may be present , and differ 
ent arrangement of the components shown may occur in 
other implementations . 
[ 0082 ] The IoT device 550 may include a processor 552 , 
which may be a microprocessor , a multi - core processor , a 
multithreaded processor , an ultra - low voltage processor , an 
embedded processor , or other known processing element . 
The processor 552 may be a part of a system on a chip ( SOC ) 
in which the processor 552 and other components are 
formed into a single integrated circuit , or a single package , 
such as the EdisonTM or GalileoTM SoC boards from Intel . As 
an example , the processor 552 may include an Intel® 
Architecture CoreTM based processor , such as a QuarkTM , an 
AtomTM , an i3 , an i5 , an i7 , or an MCU - class processor , or 
another such processor available from Intel® Corporation , 
Santa Clara , Calif . However , any number other processors 
may be used , such as available from Advanced Micro 

Devices , Inc. ( AMD ) of Sunnyvale , Calif . , a MIPS - based 
design from MIPS Technologies , Inc. of Sunnyvale , Calif . , 
an ARM - based design licensed from ARM Holdings , Ltd. or 
customer thereof , or their licensees or adopters . The proces 
sors may include units such as an A5 - A10 processor from 
Apple® Inc. , a SnapdragonTM processor from Qualcomm® 
Technologies , Inc. , or an OMAPTM processor from Texas 
Instruments , Inc. 
[ 0083 ] The processor 552 may communicate with a sys 
tem memory 554 over an interconnect 556 ( e.g. , a bus ) . Any 
number of memory devices may be used to provide for a 
given amount of system memory . As examples , the memory 
may be random access memory ( RAM ) in accordance with 
a Joint Electron Devices Engineering Council ( JEDEC ) 
design such as the DDR or mobile DDR standards ( e.g. , 
LPDDR , LPDDR2 , LPDDR3 , or LPDDR4 ) . In various 
implementations , the individual memory devices may be of 
any number of different package types such as single die 
package ( SDP ) , dual die package ( DDP ) or quad die package 
( Q17P ) . These devices , in some examples , may be directly 
soldered onto a motherboard to provide a lower profile 
solution , while in other examples the devices are configured 
as one or more memory modules that in turn couple to the 
motherboard by a given connector . Any number of other 
memory implementations may be used , such as other types 
of memory modules , e.g. , dual inline memory modules 
( DIMMs ) of different varieties including but not limited to 
microDIMMs or MiniDIMMs . 
[ 0084 ] To provide for persistent storage of information 
such as data , applications , operating systems and so forth , a 
storage 558 may also couple to the processor 552 via the 
interconnect 556. In an example , the storage 558 may be 
implemented via a solid state disk drive ( SSDD ) . Other 
devices that may be used for the storage 558 include flash 
memory cards , such as SD cards , microSD cards , xD picture 
cards , and the like , and USB flash drives . In low power 
implementations , the storage 558 may be on - die memory or 
registers associated with the processor 552. However , in 
some examples , the storage 558 may be implemented using 
a micro hard disk drive ( HDD ) . Further , any number of new 
technologies may be used for the storage 558 in addition to , 
or instead of , the technologies described , such resistance change memories , phase change memories , holographic 
memories , or chemical memories , among others . 
[ 0085 ] The components may communicate over the inter 
connect 556. The interconnect 556 may include any number 
of technologies , including industry standard architecture 
( ISA ) , extended ISA ( EISA ) , peripheral component inter 
connect ( PCI ) , peripheral component interconnect extended 
( PCIx ) , PCI express ( PCIe ) , or any number of other tech 
nologies . The interconnect 556 may be a proprietary bus , for 
example , used in a SoC based system . Other bus systems 
may be included , such as an 12C interface , an SPI interface , 
point to point interfaces , and a power bus , among others . 
[ 0086 ] The interconnect 556 may couple the processor 552 
to a mesh transceiver 562 , for communications with other 
mesh devices 564. The mesh transceiver 562 may use any 
number of frequencies and protocols , such as 2.4 Gigahertz 
( GHz ) transmissions under the IEEE 802.15.4 standard , 
using the Bluetooth® low energy ( BLE ) standard , as defined 
by the Bluetooth® Special Interest Group , or the ZigBee © 
standard , among others . Any number of radios , configured 
for a particular wireless communication protocol , may be 
used for the connections to the mesh devices 564. For 
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example , a WLAN unit may be used to implement Wi - FiTM 
communications in accordance with the Institute of Electri 
cal and Electronics Engineers ( IEEE ) 802.11 standard . In 
addition , wireless wide area communications , e.g. , accord 
ing to a cellular or other wireless wide area protocol , may 
occur via a WWAN unit . 
[ 0087 ] The mesh transceiver 562 may communicate using 
multiple standards or radios for communications at different 
range . For example , the IoT device 550 may communicate 
with close devices , e.g. , within about 10 meters , using a 
local transceiver based on BLE , or another low power radio , 
to save power . More distant mesh devices 564 , e.g. , within 
about 50 meters , may be reached over ZigBee or other 
intermediate power radios . Both communications tech 
niques may take place over a single radio at different power 
levels , or may take place over separate transceivers , for 
example , a local transceiver using BLE and a separate mesh 
transceiver using ZigBee . 
[ 0088 ] A wireless network transceiver 566 may 
included to communicate with devices or services in the 
cloud 500 via local or wide area network protocols . The 
wireless network transceiver 566 may be a LPWA trans 
ceiver that follows the IEEE 802.15.4 , or IEEE 802.15.4g 
standards , among others . The IoT device 550 may commu 
nicate over a wide area using LoRaWANTM ( Long Range 
Wide Area Network ) developed by Semtech and the LoRa 
Alliance . The techniques described herein are not limited to 
these technologies , but may be used with any number of 
other cloud transceivers that implement long range , low 
bandwidth communications , such as Sigfox , and other tech 
nologies . Further , other communications techniques , such as 
time - slotted channel hopping , described in the IEEE 802 . 
15.4e specification may be used . 
[ 0089 ] Any number of other radio communications and 
protocols may be used in addition to the systems mentioned 
for the mesh transceiver 562 and wireless network trans 
ceiver 566 , as described herein . For example , the radio 
transceivers 562 and 566 may include an LTE or other 
cellular transceiver that uses spread spectrum ( SPA / SAS ) 
communications for implementing high peed communica 
tions . Further , any number of other protocols may be used , 
such as Wi - Fi® networks for medium speed communica 
tions and provision of network communications . 
[ 0090 ] The radio transceivers 562 and 566 may include 
radios that are compatible with any number of 3GPP ( Third 
Generation Partnership Project ) specifications , notably Long 
Term Evolution ( LTE ) , Long Term Evolution - Advanced 
( LTE - A ) , and Long Term Evolution - Advanced Pro ( LTE - A 
Pro ) . It can be noted that radios compatible with any number 
of other fixed , mobile , or satellite communication technolo 
gies and standards may be selected . These may include , for 
example , any Cellular Wide Area radio communication 
technology , which may include e.g. a 5th Generation ( 56 ) 
communication systems , a Global System for Mobile Com 
munications ( GSM ) radio communication technology , a 
General Packet Radio Service ( GPRS ) radio communication 
technology , or an Enhanced Data Rates for GSM Evolution 
( EDGE ) radio communication technology , a UMTS ( Uni 
versal Mobile Telecommunications System ) communication 
technology , In addition to the standards listed above , any 
number of satellite uplink technologies may be used for the 
wireless network transceiver 566 , including , for example , 
radios compliant with standards issued by the ITU ( Inter 
national Telecommunication Union ) , or the ETSI ( European 

Telecommunications Standards Institute ) , among others . 
The examples provided herein are thus understood as being 
applicable to various other communication technologies , 
both existing and not yet formulated . 
[ 0091 ] A network interface controller ( NIC ) 568 may be 
included to provide a wired communication to the cloud 500 
or to other devices , such as the mesh devices 564. The wired 
communication may provide an Ethernet connection , or may 
be based on other types of networks , such as Controller Area 
Network ( CAN ) , Local Interconnect Network ( LIN ) , Devi 
ceNet , ControlNet , Data Highway + , PROFIBUS , or PROFI 
NET , among many others . An additional NIC 568 may be 
included to allow connect to a second network , for example , 
a NIC 568 providing communications to the cloud over 
Ethernet , and a second NIC 568 providing communications 
to other devices over another type of network . 
[ 0092 ] The interconnect 556 may couple the processor 552 
to an external interface 570 that is used to connect external 
devices or subsystems . The external devices may include 
sensors 572 , such as accelerometers , level sensors , flow 
sensors , optical light sensors , camera sensors , temperature 
sensors , a global positioning system ( GPS ) sensors , pressure 
sensors , barometric pressure sensors , and the like . The 
external interface 570 further may be used to connect the IoT 
device 550 to actuators 574 , such as power switches , valve 
actuators , an audible sound generator , a visual warning 
device , and the like . 
[ 0093 ] In some optional examples , various input / output 
( I / O ) devices may be present within , or connected to , the IoT 
device 550. For example , a display or other output device 
584 may be included to show information , such as sensor 
readings or actuator position . An input device 586 , such as 
a touch screen or keypad may be included to accept input . 
An output device 584 may include any number of forms of 
audio or visual display , including simple visual outputs such 
as binary status indicators ( e.g. , LEDs ) and multi - character 
visual outputs , or more complex outputs such as display 
screens ( e.g. , LCD screens ) , with the output of characters , 
graphics , multimedia objects , and the like being generated or 
produced from the operation of the IoT device 550 . 
[ 0094 ] A battery 576 may power the IoT device 550 , 
although in examples in which the IoT device 550 is 
mounted in a fixed location , it may have a power supply 
coupled to an electrical grid . The battery 576 may be a 
lithium ion battery , or a metal - air battery , such as a zinc - air 
battery , an aluminum - air battery , a lithium - air battery , and 
the like . 
[ 0095 ] A battery monitor / charger 578 may be included in 
the IoT device 550 to track the state of charge ( SoCh ) of the 
battery 576. The battery monitor / charger 578 may be used to 
monitor other parameters of the battery 576 to provide 
failure predictions , such as the state of health ( SoH ) and the 
state of function ( SoF ) of the battery 576. The battery 
monitor / charger 578 may include a battery monitoring inte 
grated circuit , such as an LTC4020 or an LTC2990 from 
Linear Technologies , an ADT7488A from ON Semiconduc 
tor of Phoenix Ariz . , or an IC from the UCD90xxx family 
from Texas Instruments of Dallas , Tex . The battery monitor / 
charger 578 may communicate the information on the bat 
tery 576 to the processor 552 over the interconnect 556. The 
battery monitor / charger 578 may also include an analog - to 
digital ( ADC ) convertor that allows the processor 552 to 
directly monitor the voltage of the battery 576 or the current 
flow from the battery 576. The battery parameters may be 
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used to determine actions that the IoT device 550 may 
perform , such as transmission frequency , mesh network 
operation , sensing frequency , and the like . 
[ 0096 ] A power block 580 , or other power supply coupled 
to a grid , may be coupled with the battery monitor / charger 
578 to charge the battery 576. In some examples , the power 
block 580 may be replaced with a wireless power receiver to 
obtain the power wirelessly , for example , through a loop 
antenna in the IoT device 550. A wireless battery charging 
circuit , such as an LTC4020 chip from Linear Technologies 
of Milpitas , Calif . , among others , may be included in the 
battery monitor / charger 578. The specific charging circuits 
chosen depend on the size of the battery 576 , and thus , the 
current required . The charging may be performed using the 
Airfuel standard promulgated by the Airfuel Alliance , the Qi 
wireless charging standard promulgated by the Wireless 
Power Consortium , or the Rezence charging standard , pro 
mulgated by the Alliance for Wireless Power , among others . 
[ 0097 ] The storage 558 may include instructions 582 in 
the form of software , firmware , or hardware commands to 
implement the techniques described herein . Although such 
instructions 582 are shown as code blocks included in the 
memory 554 and the storage 558 , it may be understood that 
any of the code blocks may be replaced with hardwired 
circuits , for example , built into an application specific 
integrated circuit ( ASIC ) . 
[ 0098 ] In an example , the instructions 582 provided via 
the memory 554 , the storage 558 , or the processor 552 may 
be embodied as a non - transitory , machine readable medium 
560 including code to direct the processor 552 to perform 
electronic operations in the IoT device 550. The processor 
552 may access the non - transitory , machine readable 
medium 560 over the interconnect 556. For instance , the 
non - transitory , machine readable medium 560 may include 
storage units such as optical disks , flash drives , or any 
number of other hardware devices . The non - transitory , 
machine readable medium 560 may include instructions to 
direct the processor 552 to perform a specific sequence or 
flow of actions , for example , as described with respect to the 
flowchart ( s ) and diagram ( s ) of operations and functionality 
described throughout this disclosure . 
[ 0099 ] Example Computing Architectures 
[ 0100 ] FIGS . 6 and 7 illustrate example computer proces 
sor architectures that can be used in accordance with 
embodiments disclosed herein . For example , in various 
embodiments , the computer architectures of FIGS . 6 and 7 
may be used to implement the visual fog functionality 
described throughout this disclosure . Other embodiments 
may use other processor and system designs and configu 
rations known in the art , for example , for laptops , desktops , 
handheld PCs , personal digital assistants , engineering work 
stations , servers , network devices , network hubs , switches , 
embedded processors , digital signal processors ( DSPs ) , 
graphics devices , video game devices , set - top boxes , micro 
controllers , cell phones , portable media players , hand held 
devices , and various other electronic devices , are also suit 
able . In general , a huge variety of systems or electronic 
devices capable of incorporating a processor and / or other 
execution logic as disclosed herein are generally suitable . 
[ 0101 ] FIG . 6 illustrates a block diagram for an example 
embodiment of a processor 600. Processor 600 is an 
example of a type of hardware device that can be used in 
connection with the embodiments described throughout this 
disclosure . Processor 600 may be any type of processor , 

such as a microprocessor , an embedded processor , a digital 
signal processor ( DSP ) , a network processor , a multi - core 
processor , a single core processor , or other device to execute 
code . Although only one processor 600 is illustrated in FIG . 
6 , a processing element may alternatively include more than 
one of processor 600 illustrated in FIG . 6. Processor 600 
may be a single - threaded core or , for at least one embodi 

processor 600 may be multithreaded in that it may 
include more than one hardware thread context ( or “ logical 
processor ” ) per core . 
[ 0102 ] FIG . 6 also illustrates a memory 602 coupled to 
processor 600 in accordance with an embodiment . Memory 
602 may be any of a wide variety of memories ( including 
various layers of memory hierarchy ) as are known or 
otherwise available to those of skill in the art . Such memory 
elements can include , but are not limited to , random access 
memory ( RAM ) , read only memory ( ROM ) , logic blocks of 
a field programmable gate array ( FPGA ) , erasable program 
mable read only memory ( EPROM ) , and electrically eras 
able programmable ROM ( EEPROM ) . 
[ 0103 ] Processor 600 can execute any type of instructions 
associated with algorithms , processes , or operations detailed 
herein . Generally , processor 600 can transform an element 
or an article ( e.g. , data ) from one state or thing to another 
state or thing . 
[ 0104 ] Code 604 , which may be one or more instructions 
to be executed by processor 600 , may be stored in memory 
602 , or may be stored in software , hardware , firmware , or 
any suitable combination thereof , or in any other internal or 
external component , device , element , or object where appro 
priate and based on particular needs . In one example , 
processor 600 can follow a program sequence of instructions 
indicated by code 604. Each instruction enters a front - end 
logic 606 and is processed by one or more decoders 608. The 
decoder may generate , as its output , a micro operation such 
as a fixed width micro operation in a predefined format , or 
may generate other instructions , microinstructions , or con 
trol signals that reflect the original code instruction . Front 
end logic 606 may also include register renaming logic and 
scheduling logic , which generally allocate resources and 
queue the operation corresponding to the instruction for 
execution . 
[ 0105 ] Processor 600 can also include execution logic 614 
having a set of execution units 616a , 616b , 616n , etc. Some 
embodiments may include a number of execution units 
dedicated to specific functions or sets of functions . Other 
embodiments may include only one execution unit or one 
execution unit that can perform a particular function . Execu 
tion logic 614 performs the operations specified by code 
instructions . 
[ 0106 ] After completion of execution of the operations 
specified by the code instructions , back - end logic 618 can 
retire the instructions of code 604. In one embodiment , 
processor 600 allows out of order execution but requires in 
order retirement of instructions . Retirement logic 620 may 
take a variety of known forms ( e.g. , re - order buffers or the 
like ) . In this manner , processor 600 is transformed during 
execution of code 604 , at least in terms of the output 
generated by the decoder , hardware registers and tables 
utilized by register renaming logic 610 , and any registers 
( not shown ) modified by execution logic 614 . 
[ 0107 ] Although not shown in FIG . 6 , a processing ele 
ment may include other elements on a chip with processor 
600. For example , a processing element may include 
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memory control logic along with processor 600. The pro 
cessing element may include I / O control logic and / or may 
include I / O control logic integrated with memory control 
logic . The processing element may also include one or more 
caches . In some embodiments , non - volatile memory ( such 
as flash memory or fuses ) may also be included on the chip 
with processor 600 . 
[ 0108 ] FIG . 7 illustrates a block diagram for an example 
embodiment of a multiprocessor 700. As shown in FIG . 7 , 
multiprocessor system 700 is a point - to - point interconnect 
system , and includes a first processor 770 and a second 
processor 780 coupled via a point - to - point interconnect 750 . 
In some embodiments , each of processors 770 and 780 may 
be some version of processor 600 of FIG . 6 . 
[ 0109 ] Processors 770 and 780 are shown including inte 
grated memory controller ( IMC ) units 772 and 782 , respec 
tively . Processor 770 also includes as part of its bus con 
troller units point - to - point ( P - P ) interfaces 776 and 778 ; 
similarly , second processor 780 includes P - P interfaces 786 
and 788. Processors 770 , 780 may exchange information via 
a point - to - point ( P - P ) interface 750 using P - P interface 
circuits 778 , 788. As shown in FIG . 7 , IMCs 772 and 782 
couple the processors to respective memories , namely a 
memory 732 and a memory 734 , which may be portions of 
main memory locally attached to the respective processors . 
[ 0110 ] Processors 770 , 780 may each exchange informa 
tion with a chipset 790 via individual P - P interfaces 752 , 754 
using point to point interface circuits 776 , 794 , 786 , 798 . 
Chipset 790 may optionally exchange information with the 
coprocessor 738 via a high - performance interface 739. In 
one embodiment , the coprocessor 738 is a special - purpose 
processor , such as , for example , a high - throughput MIC 
processor , a network or communication processor , compres 
sion engine , graphics processor , GPGPU , embedded proces 
sor , matrix processor , or the like . 
[ 0111 ] A shared cache ( not shown ) may be included in 
either processor or outside of both processors , yet connected 
with the processors via P - P interconnect , such that either or 
both processors ' local cache information may be stored in 
the shared cache if a processor is placed into a low power 
mode . 
[ 0112 ] Chipset 790 may be coupled to a first bus 716 via 
an interface 796. In one embodiment , first bus 716 may be 
a Peripheral Component Interconnect ( PCI ) bus , or a bus 
such as a PCI Express bus or another third generation I / O 
interconnect bus , although the scope of this disclosure is not 
so limited . 
[ 0113 ] As shown in FIG . 7 , various I / O devices 714 may 
be coupled to first bus 716 , along with a bus bridge 718 
which couples first bus 716 to a second bus 720. In one 
embodiment , one or more additional processor ( s ) 715 , such 

coprocessors , high - throughput MIC processors , 
GPGPU's , accelerators ( such as , e.g. , graphics accelerators 
or digital signal processing ( DSP ) units ) , matrix processors , 
field programmable gate arrays , or any other processor , are 
coupled to first bus 716. In one embodiment , second bus 720 
may be a low pin count ( LPC ) bus . Various devices may be 
coupled to a second bus 720 including , for example , a 
keyboard and / or mouse 722 , communication devices 727 
and a storage unit 728 such as a disk drive or other mass 
storage device which may include instructions / code and data 
730 , in one embodiment . Further , an audio I / O 724 may be 
coupled to the second bus 720. Note that other architectures 
are possible . For example , instead of the point - to - point 

architecture of FIG . 7 , a system may implement a multi - drop 
bus or other such architecture . 
[ 0114 ] All or part of any component of FIG . 7 may be 
implemented as a separate or stand - alone component or 
chip , or may be integrated with other components or chips , 
such as a system - on - a - chip ( SOC ) that integrates various 
computer components into a single chip . 
[ 0115 ] Embodiments of the mechanisms disclosed herein 
may be implemented in hardware , software , firmware , or a 
combination of such implementation approaches . Certain 
embodiments may be implemented as computer programs or 
program code executing on programmable systems compris 
ing at least one processor , a storage system ( including 
volatile and non - volatile memory and / or storage elements ) , 
at least one input device , and at least one output device . 
[ 0116 ] Program code , such as code 730 illustrated in FIG . 
7 , may be applied to input instructions to perform the 
functions described herein and generate output information . 
The output information may be applied to one or more 
output devices , in known fashion . For purposes of this 
application , a processing system includes any system that 
has a processor , such as , for example ; a digital signal 
processor ( DSP ) , a microcontroller , an application specific 
integrated circuit ( ASIC ) , or a microprocessor . 
[ 0117 ] The program code may be implemented in a high 
level procedural or object oriented programming language to 
communicate with a processing system . The program code 
may also be implemented in assembly or machine language , 
if desired . In fact , the mechanisms described herein are not 
limited in scope to any particular programming language . In 
any case , the language may be a compiled or interpreted 
language . 
[ 0118 ] One or more aspects of at least one embodiment 
may be implemented by representative instructions stored on 
a machine - readable medium which represents various logic 
within the processor , which when read by a machine causes 
the machine to fabricate logic to perform the techniques 
described herein . Such representations , known as “ IP cores ” 
may be stored on a tangible , machine readable medium and 
supplied to various customers or manufacturing facilities to 
load into the fabrication machines that actually make the 
logic or processor . 
[ 0119 ] Such machine - readable storage media may include , 
without limitation , non - transitory , tangible arrangements of 
articles manufactured or formed by a machine or device , 
including storage media such as hard disks , any other type 
of disk including floppy disks , optical disks , compact disk 
read - only memories ( CD - ROMs ) , compact disk rewritable’s 
( CD - RWs ) , and magneto - optical disks , semiconductor 
devices such as read - only memories ( ROMs ) , random 
access memories ( RAMs ) such as dynamic random access 
memories ( DRAMs ) , static random access memories 
( SRAMs ) , erasable programmable read - only memories 
( EPROMs ) , flash memories , electrically erasable program 
mable read - only memories ( EEPROMs ) , phase change 
memory ( PCM ) , magnetic or optical cards , or any other type 
of media suitable for storing electronic instructions . 
[ 0120 ] Accordingly , embodiments of this disclosure also 
include non - transitory , tangible machine - readable media 
containing instructions or containing design data , such as 
Hardware Description Language ( HDL ) , which defines 
structures , circuits , apparatuses , processors and / or system 
features described herein . Such embodiments may also be 
referred to as program products . 

as 
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[ 0121 ] Visual Fog Architecture 
[ 0122 ] FIG . 8 illustrates an example embodiment of an 
architecture 800 for visual fog nodes . In some embodiments , 
for example , fog node architecture 800 may be used to 
implement the functionality of fog nodes 810 in a visual fog 
network or system ( e.g. , visual fog system 100 of FIG . 1 ) . 
A fog node 810 , for example , can include any node or 
component that ranges from the edge of a network to the 
cloud , inclusively . 
[ 0123 ] In the illustrated embodiment , fog node 810 
includes various application programming interfaces ( APIs ) 
that provide fundamental capabilities for fog node 810 , such 
as auxiliary API 820 , primitive vision API 830 , and storage 
API 840. In some embodiments , for example , these APIs 
may be used or implemented by lower - level algorithm 
developers . 
[ 0124 ] Auxiliary API 820 provides various fundamental 
functionality for fog node 810 , such as security 8220 , 
communication 822b , compression 8220 ( e.g. , codecs ) , and 
so forth . 
[ 0125 ] Primitive vision API 830 provides fundamental 
vision processing capabilities for fog node 810. For 
example , primitive vision API 830 provides access to a 
plurality of vision kernels 832 that can be used to perform 
primitive vision operations ( e.g. , person or object detection , 
facial recognition ) . Primitive vision API 830 may also 
provide access to various machine learning and / or neural 
network frameworks ( e.g. , Caffe , OpenCV , TensorFlow ) . 
[ 0126 ] Storage API 840 provides storage capabilities for 
fog node 810. In some embodiments , for example , storage 
API 840 may include a variety of databases 842 for storing 
different types of visual data , such as graph databases , 
relational databases , array - based databases ( e.g. , TileDB ) , 
and so forth . In some embodiments , for example , the par 
ticular database used to store certain visual data may depend 
on the type of data , such as raw visual data or pixels , 
compressed visual data , visual metadata , and so forth . 
[ 0127 ] Moreover , fog node 810 further includes a vision 
application API 850 that provides higher - level vision func 
tionality , which may be used or implemented by developers 
of vision applications . For example , vision application API 
850 may include a privacy policy 852 that defines the 
requisite privacy treatment for all data and devices associ 
ated with a visual fog network . Vision application API 850 
may also include a vision kernel management service 854 
that provides access to a variety of primitive vision opera 
tions or vision kernels . In some embodiments , for example , 
vision kernel management service 854 may retrieve vision 
kernels from a vision kernel repository . For example , if a 
particular vision application employs person detection func 
tionality , vision kernel management service 854 may 
retrieve the appropriate vision kernel for performing person 
detection using the available hardware of the particular fog 
node 810 . 
[ 0128 ] Fog node 810 further includes a vision analytics 
API 860 and query API 870 , which may be used by 
end - users or operators to perform visual analytics and visual 
queries . For example , vision analytics API 860 may perform 
inline ( e.g. real - time ) and / or offline processing of visual 
data , application launching , scheduling , resource monitor 
ing , and so forth . Vision analytics API 860 may also include 
a vision application management service 862 that provides 
access to a variety of vision applications ( e.g. , people 
searching / tracking , object detection / tracking , and so forth ) . 

In some embodiments , for example , vision application man 
agement service 862 may retrieve vision applications from 
a vision application repository . In this manner , if an end - user 
wants to perform a people search , vision application man 
agement service 862 may retrieve an appropriate vision 
application for people searching . In some embodiments , for 
example , a people search vision application may use vision 
kernels that perform person detection followed by facial 
recognition . The end - user , however , can utilize the people 
search vision application without any knowledge of the 
underlying vision kernels or vision operations used to imple 
ment the application . 
[ 0129 ] Moreover , query API 870 provides an interface that 
enables end - users to submit visual search requests or que 
ries . In some embodiments , for example , query API 870 may 
support flexible visual queries in a variety of syntaxes , such 
as natural language , functional syntax ( e.g. , using logical 
operators ) , relational syntax , and so forth . In some embodi 
ments , query API 870 may further include a query primitive 
repository 874 that contains the primitive operations that are 
supported for visual queries . Moreover , query API 870 may 
include a query compiler 872 for compiling the visual 
queries into visual processing dataflows that can be executed 
by visual fog nodes . 
[ 0130 ] FIG . 9-12 illustrate example embodiments of 
visual fog architectures . 
[ 0131 ] For example , FIG . 9 illustrates an example visual 
fog architecture 900 that includes cameras 902 , sensors 904 , 
local analytics framework 906 , inline analytics framework 
908 , offline analytics framework 910 , storage 912 , and 
presentation / interpretation framework 914. In the illustrated 
embodiment , for example , cameras 902 and / or sensors 904 
may generate visual data , such as images and / or video . The 
visual data may then be provided to local analytics frame 
work 906 , which may be used to perform preliminary 
processing and analytics at the network edge ( e.g. , near the 
cameras 902 or sensors 904 that captured the visual data ) . 
The partially processed visual data may then be provided to 
inline analytics framework 908 for further processing in 
real - time . In various embodiments , for example , inline ana 
lytics may be performed by and / or distributed across any 
combination of fog devices or resources ( e.g. , mobile 
devices , IoT devices , gateways , and / or the cloud ) . The 
resulting visual data and / or metadata from inline analytics 
framework 908 may then be stored in data storage 912 . 
Moreover , a visual search query may be subsequently 
received by presentation / interpretation framework 914 ( e.g. , 
from an end - user ) . Accordingly , presentation / interpretation 
framework 914 may interact with data storage 912 and / or 
inline analytics framework 908 to determine whether a 
response to the query can be formulated based on the visual 
data and / or metadata that has already been processed or 
generated . If further processing needs to be performed to 
respond to the query , however , presentation / interpretation 
framework 914 may interact with offline analytics frame 
work 910 to perform further offline processing of the visual 
data . In various embodiments , for example , offline analytics 
may be performed by and / or distributed across any combi 
nation of fog devices or resources ( e.g. , mobile devices , IoT 
devices , gateways , and / or the cloud ) . Accordingly , based on 
the information obtained either from data storage 912 , inline 
analytics framework 908 , and / or offline analytics framework 
910 , presentation / interpretation framework 914 may then 
respond to the visual query . 
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[ 0132 ] FIG . 10 illustrates an example visual processing 
pipeline 1000 associated with a visual fog architecture . In 
the illustrated example , visual data 1002 may first be cap 
tured by cameras and / or visual sensors , and the visual data 
1002 may then be processed to perform certain visual 
functions 1004 ( e.g. , face detection ) and / or other analytics , 
resulting in a set of visual metadata 1012 that may be stored 
in data storage 1010. Moreover , an end - user may subse 
quently submit an ad hoc search query 1006 associated with 
the visual data 1002 , and a query compiler / interpreter 1008 
may then compile the query into a visual processing data 
flow that can be executed ( e.g. , using available fog nodes or 
resources ) in order to respond to the query . In some cases , 
for example , it may be possible to formulate a query result 
1016 based on the processing that has already been com 
pleted . For example , in some cases , the query result 1016 
may be formulated by applying appropriate logic operations 
1014 on the existing visual metadata 1012 that has already 
been generated . In other cases , however , further visual 
processing and / or functions 1004 may need to be performed 
on the visual data 1002 in order to formulate the query result 
1016. In either case , the compiler / interpreter 1008 may 
generate a requisite vision processing dataflow for respond 
ing to the query , and the resulting vision processing dataflow 
may then be executed in order to formulate the query result 
1016 . 
[ 0133 ] FIG . 11 illustrates another example visual fog 
architecture 1100. In the illustrated embodiment , visual data 
captured by cameras 1140b is provided to a distributed 
runtime environment 1120 , which performs initial pre - pro 
cessing on the visual data in real - time ( e.g. , when the visual 
data is first captured rather than in response to a query ) . The 
resulting visual data or metadata generated by the distributed 
runtime environment 1120 is then stored in data storage 
1130 . 
[ 0134 ] Separately , visual search queries containing user 
defined vision functions ( UVFs ) 1104a - c are received from 
end - users 1102 of visual fog 1100. A UVF 1104 received 
from an end - user 1102 is first processed by a compiler 1110 
in order to generate a vision dataflow graph for executing the 
UVF . Accordingly , the vision dataflow graph is then 
executed by the distributed runtime environment 1120 in 
order to generate a result for the UVF 1104. In some 
embodiments , for example , the distributed runtime environ 
ment 1120 may determine the result using existing visual 
metadata that has already been generated ( e.g. , from the 
initial or real - time processing of the original visual data ) , 
and / or by performing further analysis on the visual data 
( e.g. , by executing a particular vision application 1150 ) . The 
result obtained from execution of the UVF 1104 may then be 
provided back to the requesting end - user 1102 . 
[ 0135 ] Further , in various embodiments , the distributed 
runtime environment 1120 may perform the described visual 
data processing ( e.g. , initial pre - processing and / or UVF 
processing ) by scheduling or distributing vision workloads 
across the available fog devices or resources 1140 ( e.g. , 
cloud servers 1140a , cameras 1140b , mobile devices , IoT 
devices , gateways , and / or other fog / edge devices ) . 
[ 0136 ] FIGS . 12A - B illustrate another example visual fog 
architecture 1200. In the illustrated embodiment , visual fog 
architecture 1200 includes a network of fog devices 1216 , 
including cameras or visual sensors 1216a , gateways 1216b , 
and cloud servers 1216c . The cameras or visual sensors 
1216a , for example , are used to capture visual data 1217 . 

Moreover , a computer vision expert 1202 can develop an 
imperative vision program 1203 that leverages the captured 
visual data 1217. The vision program 1203 , for example , 
may be implemented using programming and composability 
frameworks 1208 and 1210 to define vision processing 
dataflows 1209 and generate vision processing workloads 
1211 . 

[ 0137 ] In the illustrated embodiment , for example , the 
vision program 1203 leverages a distributed runtime envi 
ronment 1214 to process visual data 1217 captured in visual 
fog 1200. The distributed runtime environment 1214 , for 
example , can perform visual data processing using the 
collection of available fog devices 1216 in visual fog 1200 . 
[ 0138 ] In some embodiments , for example , the distributed 
runtime environment 1214 may be used to perform initial 
pre - processing on captured visual data 1217 in real - time 
( e.g. , when the visual data is first captured rather than in 
response to a query ) . The resulting visual data or metadata 
1217 generated by the distributed runtime environment 1214 
may then be stored in a database or data storage 1218 . 
[ 0139 ] Moreover , a layperson or end - user 1204 may sub 
sequently submit a declarative query 1205 associated with 
visual data 1217 captured by visual fog 1200. The declara 
tive query 1205 is processed by a visual question answering 
( VQA ) system 1206 , which uses a compiler or interpreter to 
generate a dataflow 1209 for responding to the query . In 
some cases , for example , it may be possible to respond to 
query 1205 using existing visual metadata 1217 that has 
already been generated ( e.g. , during the initial or real - time 
processing of the original visual data 1217 and / or during the 
processing associated with prior queries 1205 ) . In other 
cases , however , further processing may need to be per 
formed on the visual data 1217 in order to respond to the 
query 1205. In either case , an appropriate dataflow 1209 for 
responding to the query 1205 may be generated , and the 
resulting dataflow 1209 may be further partitioned into one 
or more underlying vision processing workloads 1211 . 
Moreover , based on the resource availability 1215 of fog 
devices 1216 in the distributed runtime environment 1214 , 
a schedule 1213 for distributing the workloads 1211 across 
the available fog devices 1216 may be generated . Accord 
ingly , the respective workloads 1211 may then be distributed 
across the fog devices 1216 based on the generated schedule 
1213 , and each fog device 1216 may execute its respective 
workload ( s ) 1211. In this manner , the dataflow 1209 for 
responding to the query 1205 is executed by the various fog 
devices 1216 using a distributed approach . A response to the 
query 1205 may then be provided to the end - user 1204 , and 
the resulting visual metadata 1217 may be stored in database 
1218 for responding to subsequent queries . 
[ 0140 ] Visual Question Answering ( VQA ) 
[ 0141 ] FIG . 13-14 illustrate example embodiments asso 
ciated with a visual question answering ( VQA ) framework . 
In some embodiments , for example , a visual fog architecture 
may implement a VQA framework to provide a flexible and 
efficient interface for end - users to submit ad hoc visual 
search queries . In visual processing systems , for example , 
the ability to submit a query to search large data sets in an 
efficient manner ( e.g. , millions of images ) and identify a 
subset of relevant images or related information is impor 
tant . Existing visual processing solutions are implemented 
using rigid or inflexible approaches , however , and are unable 
to search visual data efficiently . Accordingly , the visual 
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question answering ( VQA ) framework of FIGS . 13 and 14 
can be used to alleviate the deficiencies of existing solutions . 
[ 0142 ] In some embodiments , for example , a VQA frame 
work may support flexible or ad hoc visual search queries 
using a variety of syntaxes , such as natural language , 
functional syntax ( e.g. , using logical operators ) , relational 
syntax , and so forth . Accordingly , when a visual search 
query is received from a user , the query may be compiled 
into a visual processing dataflow that can be distributed 
across and executed by the various fog nodes in a visual fog 
architecture . In this manner , end - users can perform complex 
searches on large sets of visual data without any knowledge 
of the underlying architecture or processing required to 
execute the searches . 
[ 0143 ] Moreover , in some embodiments , users or devel 
opers may be capable of defining custom vision functions 
that can be used in visual search queries , referred to as 
user - defined vision functions ( UVFs ) . As an example , a 
UVF could be defined for visually equivalency , or perform 
ing “ equal operations on visual data . Many ad hoc visual 
queries , for example , require information related to the same 
object or person to be identified or grouped together . Iden 
tifying the same object or person across different images or 
video streams , however , can be challenging . In some 
embodiments , for example , this task may require feature 
extraction to be performed across multiple cameras . The 
respective features extracted from each camera often differ , 
however , and not all cameras have the same field of view , 
and thus certain features may be successfully extracted from 
some cameras but not others . Accordingly , in some embodi 
ments , a user may implement a UVF to define how visual 
equivalency or “ equal ” operations are to be performed on 
visual data . In some embodiments , for example , a UVF for 
visual equivalency may define objects as " equal ” if their 
feature vectors are “ close enough ” to each other , meaning 
the feature vectors must be sufficiently similar but do not 
have to be an exact match . Further , if feature vectors from 
different cameras are missing certain features , only the 
partial features will be compared and the " close enough " 
definition will be scaled accordingly . 
[ 0144 ] FIG . 13 illustrates an example embodiment of a 
visual question answering ( VQA ) pipeline 1300. In the 
illustrated example , a visual query 1302 is first received 
from an end - user , and a dataflow compiler 1304 is then used 
to compile the visual query 1302 into a visual processing 
pipeline or dataflow 1308. In some embodiments , for 
example , the dataflow compiler 1304 may use a library of 
vision kernel modules 1306 ( e.g. , face recognition , pose 
recognition , object recognition , and so forth ) to generate the 
resulting visual processing dataflow 1308 . 
[ 0145 ] In some cases , for example , the visual processing 
dataflow 1308 may leverage existing visual metadata that 
has already been generated and stored on data storage 1314 . 
For example , an inline analytics framework 1310 may be 
used to perform initial visual data processing in real - time 
( e.g. , when visual data is first captured rather than in 
response to a query ) , and an offline analytics framework 
1312 may be used to perform further visual data processing 
required for responding to search queries . Moreover , both 
the inline and offline analytics frameworks 1310 , 1312 may 
store their resulting visual metadata on data storage 1314 for 
use in responding to subsequent visual search queries . 
Accordingly , in some cases , the visual processing dataflow 
1308 for a particular query 1302 may leverage existing 

visual metadata that has already been generated and stored 
on data storage 1314. In other cases , however , further 
processing may be required to respond to the query 1302 , 
and thus the visual processing dataflow 1308 may leverage 
the offline analytics framework 1312 to perform additional 
processing . In either case , the visual processing pipeline or 
dataflow 1308 generated by compiler 1304 is executed by 
the runtime environment in order to generate a response to 
the visual query 1302 . 
[ 0146 ] FIG . 14 illustrates an example embodiment of a 
visual question answering ( VQA ) compiler 1400. In some 
embodiments , for example , compiler 1400 may be used to 
compile VQA queries and / or user - defined vision functions 
( UVFs ) 1402 into visual dataflow graphs 1417 that can be 
distributed across and executed by the various fog nodes in 
a visual fog architecture . 
[ 0147 ] In the illustrated embodiment , for example , UVFs 
1402 are provided to the compiler 1400 via a declarative API 
1412. The compiler 1400 may then generate a graph of 
high - level vision operations 1415 that are required to 
execute the UVFs 1402 , which may in turn be used to 
generate a vision dataflow graph 1417. In some embodi 
ments , for example , the vision dataflow graph 1417 may 
a directed acyclic graph ( DAG ) that represents the visual 
processing pipeline required to execute the particular UVFs 
1402. Moreover , the compiler 1400 may use dataflow de 
duplication to optimize the vision dataflow graph 1417 , for 
example , by merging redundant portions of the dataflows of 
multiple UVFs 1402 to eliminate the redundancies . 
[ 0148 ] In some embodiments , for example , compiler 1400 
may generate the vision dataflow graph 1417 using infor 
mation from the underlying vision modules 1418 ( e.g. , 
hardware - specific information required for scheduling 
workloads on heterogeneous hardware ) . The compiler 1400 
may also generate a number of database API calls to obtain 
visual data and / or metadata required to execute the UVFs 
1402. In various embodiments , these database API calls may 
either be part of , or separate from , the vision dataflow graph 
1417. Moreover , in some embodiments , the compiler 1400 
may generate different results depending on the available 
visual metadata . 
[ 0149 ] In this manner , the resulting vision dataflow graph 
1417 generated by compiler 1400 can subsequently be 
executed by the runtime environment in order to generate 
the results for responding to UVFs 1402 . 
[ 0150 ] Runtime 
[ 0151 ] The visual fog paradigm envisions tens of thou 
sands ( or more ) heterogeneous , camera - enabled edge 
devices distributed across the Internet and / or other large 
scale networks , providing live sensing for a myriad of 
different visual processing applications , given task parallel 
ism and data parallelism . The scale , computational demands , 
and bandwidth needed for visual computing pipelines neces 
sitates intelligent offloading to distributed computing infra 
structure , including the cloud , Internet gateway devices , and 
the edge devices themselves . 
[ 0152 ] In some embodiments , for example , visual process 
ing may be scheduled or distributed across available fog 
devices based on various criteria , including device connec 
tivity , device resource capabilities , device resource avail 
ability , workload type , privacy constraints , and so forth . 
Further , machine learning can be leveraged to optimize 
scheduling decisions . 
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[ 0153 ] Workload deployment and / or migration can be 
implemented using a hot - pluggable runtime environment 
with universal plugin APIs . For example , conventional 
workload deployment / migration can be expensive , as it may 
require sending the runtime environment and toolchains to 
the assigned nodes . With hot - pluggable runtimes , however , 
workloads are hot - swappable ( e.g. , stop runtime , replace 
plugin , start runtime ) . 
[ 0154 ] Moreover , a plugin or vision kernel repository can 
be used to facilitate workload deployment . For example , a 
cloud - based or distributed repository may be used to manage 
a collection of device and implementation abstractions for 
each supported vision capability . In this manner , the reposi 
tory can distribute the appropriate plugins or vision kernels 
to fog nodes based on their respective workload assign 
ments . 
[ 0155 ] Incremental processing may be leveraged by a 
visual fog runtime to maintain the state of any prior pro 
cessing that has already been performed on visual data , 
enabling the results of the prior processing to be leveraged 
for subsequent visual processing and queries . For example , 
the results of any processing performed on visual data may 
be represented as visual metadata , which may be stored for 
later use to avoid performing duplicative processing for 
subsequent visual queries . In this manner , when a visual 
query or UVF is received , the dataflow generated by a 
compiler may vary depending on the available metadata that 
has already been generated and can be reused . 
[ 0156 ] Metadata pre - provisioning can be used to reduce 
vision query latency by pre - processing visual data to com 
plete common or frequent types of processing in advance . In 
some embodiments , for example , a machine learning model 
may be used to optimize the types of pre - processing that is 
performed . For example , based on patterns of queries of the 
same type or that involve similar types of processing , 
machine learning may be used to model the relationships of 
diverse queries , while also taking other modalities into 
account ( e.g. , weather , traffic ) . For example , metadata can be 
pre - provisioned by pre - scheduling certain types of process 
ing in advance based on the recent history of vision queries 
and UVFs . In this manner , patterns of common or similar 
vision workloads can trigger pre - processing on newly cap 
tured visual data for those types of workloads to reduce 
query latency . 
[ 0157 ] Similarly , stream prioritization or prefetching can 
be used to perform low - latency visual data loading or 
fetching based on historical trends and / or workflows . For 
example , the vision processing history can be used to 
prioritize certain data streams and / or pre - fetch data from memory for a particular application to improve query 
latency . Compared to metadata pre - provisioning , which 
involves expedited processing that is performed in advance , 
stream prioritization involves obtaining or moving visual 
data to a location where it will likely be needed ( e.g. , from 
a camera to certain processing nodes ) . 
[ 0158 ] Cached visual analytics can be used to optimize 
visual processing using cached workflows , similar to incre 
mental processing . For example , based on cached informa 
tion regarding particular visual streams that have already 
been obtained and processed , along with the type of pro 
cessing or workloads performed on those streams , subse 
quent vision processing dataflows may omit certain process 
ing steps that have previously been performed and whose 
results have been cached . For example , a visual analytics 

application involves a number of primitive vision opera 
tions . The volume of computation can be reduced , however , 
by caching visual analytics results and reusing them for 
subsequent operations when possible . For example , when 
executing a visual analytics application , cached visual meta 
data resulting from prior processing can be searched to avoid 
duplicative computation . In some embodiments , for 
example , cached visual analytics may be implemented as 
follows : 
[ 0159 ] 1. Each primitive vision operation is tagged or 
labeled using a cache tag ; 
[ 0160 ] 2. For each instance or stream of visual data ( e.g. , 
each stored video ) , any corresponding visual metadata that 
has already been generated is stored in a metadata database 
or cache ; 
[ 0161 ] 3. If there is a cache tag hit for a particular 
primitive vision operation with respect to a particular 
instance or stream of visual data , then the particular primi 
tive vision operation can be omitted and instead the existing 
visual metadata can be used ; and 
[ 0162 ] 4. If there is a cache tag miss , however , the 
particular primitive vision operation is executed and the 
resulting metadata is cached in the metadata database for 
subsequent use . 
[ 0163 ] Tensor factorization can also be used for distrib 
uted neural network inferencing in order to address the 
overfitting problem . For example , representative weights of 
consecutive neural network layers can utilize tensor factor 
ization to " smooth out ” the model . 
[ 0164 ] FIGS . 15 and 16 illustrate example embodiments 
of device - centric scheduling for visual fog computing . In 
some embodiments , for example , visual fog scheduling may 
depend on ( 1 ) device resource capacities , and ( 2 ) workload 
resource requirements . While the former remains constant 
and consistent , the latter can vary depending on a device's 
hardware specifications and software toolchains . For 
example , in some embodiments , there may be multiple 
implementations of a facial recognition capability that are 
respectively optimized for different types of hardware , such 
as CPUs , GPUs , FPGAs , ASICs , and so forth . In this 
manner , multiple implementations of a single vision capa 
bility can be leveraged to create an opportunity for further 
optimization in visual fog computing . 
[ 0165 ] Accordingly , in order to address the heterogeneity 
of devices with different types of hardware and / or software , 
the illustrated embodiments implement device - centric 
scheduling using a vision capabilities repository . In some 
embodiments , for example , the vision capabilities repository 
may include multiple implementations of a particular vision 
capability that are optimized for different hardware and / or 
software environments . In this manner , vision workloads 
can be scheduled or distributed across fog devices based on 
their respective types of resources and capabilities , along 
with per - resource telemetry information that identifies 
resource availability . 
[ 0166 ] The basic principle is to abstract capabilities ( e.g. , 
face detection , gesture recognition ) from their underlying 
kernels / implementations ( e.g. , SIFT - based implementations , 
deep neural network implementations ) . This type of abstrac 
tion provides the flexibility to deploy an arbitrary vision 
capability on a per - device basis . For example , using 
resource - based scheduling , heterogeneous resource types of 
different fog devices can be considered as a whole in order 
to determine the optimal task - to - device mapping across the 
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various fog devices , and also identify the corresponding 
vision capability implementations that each device should 
use for its assigned tasks . Moreover , resource telemetry can 
be used to monitor resource availability of fog devices on a 
per - resource basis ( e.g. , CPU , GPU , FPGA , ASIC , and so 
forth ) to further facilitate intelligent scheduling decisions . 
Further , the vision capability repository hosts collections of 
implementations of different vision capabilities , and may 
also provide a request - response service that allows a device 
to request an available implementation of a particular vision 
capability . 
[ 0167 ] In this manner , device - centric scheduling can be 
used to improve end - to - end ( E2E ) performance ( e.g. , 
latency and bandwidth efficiency ) and scalability for visual 
fog computing 
[ 0168 ] FIG . 15 illustrates an example architecture 1500 
for implementing device - centric scheduling in a visual com 
puting system . In the illustrated embodiment , for example , 
visual computing architecture 1500 includes users 1502 , 
scheduling server 1504 , vision kernel repository 1506 , and 
various types of fog devices 1510. A fog device 1510 , for 
example , can include any device ranging from the edge of a 
network to the cloud , inclusively . In the illustrated embodi 
ment , for example , fog devices 1510 include cameras 1510a , 
gateways 1510b , and cloud servers 1510c . 
[ 0169 ] In some embodiments , users 1502 may submit 
search queries for visual data captured by cameras 1510a . 
Moreover , in order to respond to those queries efficiently , 
scheduling server 1504 may schedule or distribute vision 
processing workloads across the various fog devices 1510 . 
In some embodiments , for example , scheduling server 1504 
may perform intelligent scheduling decisions based on vari 
ous criteria , such as the types of resources in the fog ( e.g. , 
the heterogeneous types of resources of the various fog 
devices 1510 ) , resource telemetry information ( e.g. , the 
availability of fog resources on a per - resource - type basis ) , 
and the implementations of vision capabilities that are 
available in the vision capability repository 1506 . 
[ 0170 ] An example embodiment of the scheduling pro 
cess , for example , is described below in connection with 
FIG . 16 . 

[ 0171 ] FIG . 16 illustrates a flowchart 1600 for an example 
embodiment of device - centric scheduling in a visual com 
puting system . In some embodiments , for example , flow 
chart 1600 may be implemented using visual computing 
architecture 1500 of FIG . 15 . 
[ 0172 ] The flowchart may begin at block 1602 by collect 
ing the available vision capability implementations . In some 
embodiments , for example , the scheduling server continu 
ously synchronizes the collection of available implementa 
tions of vision capabilities from the vision capability reposi 
tory . 
[ 0173 ] The flowchart may then proceed to block 1604 to 
collect the resource telemetry of fog devices . In some 
embodiments , for example , the scheduling server may col 
lect the resource availability of all fog devices on a per 
resource - type basis . For example , the scheduling server may 
collect information regarding the resource availability of 
CPUs , GPUs , FPGAs , ASICs , and / or any other resource 
type across all fog devices . 
[ 0174 ] In this manner , based on the available vision capa 
bility implementations collected at block 1602 , and the 
resource telemetry information collected at block 1604 , the 

scheduling server can subsequently schedule vision work 
loads based on the optimal task - to - device mapping in the 
visual fog paradigm . 
[ 0175 ] For example , the flowchart may then proceed to 
block 1606 to determine whether a new vision workload has 
been received from a user . In some embodiments , for 
example , a user may submit a new visual query , which may 
require a new vision workload to be scheduled or distributed 
across the fog devices . 
[ 0176 ] If it is determined at block 1606 that a new vision 
workload has NOT been received , the flowchart may then 
proceed back to block 1602 to continue synchronizing the 
available vision capability implementations and collecting 
resource telemetry information until a new vision workload 
is received . 
[ 0177 ] If it is determined at block 1606 that a new vision 
workload has been received , the flowchart may then proceed 
to block 1608 to re - schedule all pending workloads . In some 
embodiments , for example , receiving a new vision workload 
for a user may trigger the scheduling server to re - schedule 
all pending workloads to ensure the collective workloads are 
distributed across the fog devices in the most efficient 
manner possible ( e.g. , based on the optimal task - to - device 
mapping ) . 
[ 0178 ] In some embodiments , for example , scheduling 
may be performed based on various criteria , such as the 
types of fog resources that are available , telemetry informa 
tion for those resources , and the vision capability imple 
mentations that are available for those fog resources . 
[ 0179 ] In some embodiments , for example , a schedule that 
adheres to the constraints of multiple resource types can be 
determined using integer linear programming ( ILP ) . Integer 
linear programming ( ILP ) is a mathematical optimization or 
feasibility technique for solving or optimizing a mathemati 
cal model represented by linear relationships . In particular , 
ILP can be used to optimize a linear objective function , 
subject to additional linear equality and linear inequality 
constraints . As an example , an ILP problem can be 
expressed as follows : 

[ 0180 ] minimize : cx ( objective term ) 
[ 0181 ] subject to : Axsb inequality constraint ) 

[ 0182 ] Cx = d ( equality constraint ) 
[ 0183 ] and : xE { 0 , 1 } ( binary constraint ) . 

[ 0184 ] Moreover , this ILP model can be used to determine 
an optimal schedule fthat satisfies a specified objective ( e.g. , 
total network utilization ) , while also adhering to other 
additional constraints ( e.g. , device resource constraints ) . In 
the above ILP model , for example , x presents the collection 
of possible schedules f , K is the length of x , the objective 
term presents a scheduling objective to be minimized ( e.g. , 
total network utilization ) , and the inequality / equality con 
straints present any additional constraints ( e.g. , device , 
resource , network , mapping , and / or privacy constraints ) . A 
device resource constraint , for example , can be presented as 
an inequality constraint of the ILP model . For example , in 
order to take into account constraints of multiple resource 
types , they can be expended into multiple inequalities in the 
form of Ax b in the ILP model above . 
[ 0185 ] Accordingly , based on the scheduling decisions , 
the scheduling server assigns each fog device zero or more 
tasks . In some embodiments , for example , a task may be 
specified in a tuple of the form t = ( p , r ) , where p denotes the 
vision capability and r denotes resource type ( e.g. , p = face 
detection , r = Movidius processor ) . 
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[ 0186 ] The flowchart may then proceed to block 1610 to 
determine if an updated workload schedule is available . For 
example , after a new vision workload is received and the 
pending workloads are re - scheduled , the scheduling server 
may have an updated or improved workload schedule that 
needs to be distributed to the fog devices . In some embodi 
ments , however , the scheduling server may only update the 
workload schedule if the newly generated schedule is better 
or more efficient than the current workload schedule . 
[ 0187 ] If it is determined at block 1610 that the workload 
schedule has NOT been updated , the flowchart may then 
proceed back to block 1602 to continue synchronizing the 
available vision capability implementations and collecting 
resource telemetry until the current workload schedule is 
eventually updated . 
[ 0188 ] However , if it is determined at block 1610 that an 
updated workload schedule is available , the flowchart may 
then proceed to block 1612 to push the updated schedule to 
all fog devices . 
[ 0189 ] The flowchart may then proceed to block 1614 to 
receive requests from fog devices for vision capability 
implementations . For example , each fog device may query 
the vision capability repository to request implementations 
of vision capabilities for the tasks assigned to the particular 
fog device . In some embodiments , for example , the request 
from a particular fog device may identify each of its 
assigned tasks t . 
[ 0190 ] The flowchart may then proceed to block 1616 to 
identify the appropriate vision capability implementations 
for each fog device . In some embodiments , for example , the 
vision capability repository may be a dictionary of key - value 
pairs in the form of ( task t , implementation i ) , where an 
implementation i can be distributed in various forms ( e.g. , a 
dynamic linking library in C / C ++ ) . Accordingly , based on 
the task ( s ) t specified in the request from a particular fog 
device , the vision capability repository identifies the corre 
sponding implementation ( s ) i for that fog device . In some 
embodiments , for example , the vision capability repository 
identifies the optimal implementation of each vision capa 
bility requested by a fog device based on the available 
resources of that fog device . 
[ 0191 ] The flowchart may then proceed to block 1618 to 
distribute the identified vision capability implementations to 
each fog device . In this manner , each fog device can then 
perform its assigned tasks using the appropriate vision 
capability implementations . 
[ 0192 ] At this point , the flowchart may be complete . In 
some embodiments , however , the flowchart may restart 
and / or certain blocks may be repeated . For example , in some 
embodiments , the flowchart may restart at block 1602 to 
continue scheduling vision workloads . 
[ 0193 ] FIG . 17 illustrates an example embodiment of a 
runtime processing pipeline 1700 for a visual fog architec 
ture . In the illustrated embodiment , for example , a raw 
stream of visual data 1701 ( e.g. , video or images ) captured 
by cameras or visual sensors in a visual fog architecture is 
provided as input to a stream ingress framework 1702. The 
stream ingress framework 1702 decodes the raw stream of 
visual data 1701 , and a decoded stream 1703 is then pro 
vided as input to a distributed pre - processing framework 
1704. The distributed pre - processing framework 1704 then 
performs some preliminary processing using certain fog 
resources at the network edge ( e.g. , near the cameras or 
sensors that captured the visual data ) , such as data pre 

processing , filtering , and / or aggregation . The resulting fil 
tered stream 1705 may then be stored in data storage 1706 
for subsequent use in responding to visual search queries 
and / or user - defined vision functions ( UVFs ) 1709 from 
end - users . 
[ 0194 ] For example , end - users may subsequently submit 
visual search queries and / or user - defined vision functions 
( UVFs ) 1709 associated with the visual data captured by the 
visual fog system . Accordingly , the UVFs 1709 are provided 
to a UVF compiler 1710 , which compiles the UVFS 1709 
into a vision dataflow graph 1711 that can be used to execute 
the UVFs . For example , the vision dataflow graph 1711 is 
provided to a distributed UVF execution framework 1712 , 
which distributes or schedules workloads associated with the 
vision dataflow graph 1711 across the available fog nodes in 
the visual fog architecture . 
[ 0195 ] After the workloads finish executing , the distrib 
uted UVF execution framework 1712 generates an output 
1713 resulting from execution of the UVFS 1709. For 
example , the output 1713 may include , or may be derived 
from , a filtered stream of visual data and / or metadata 1707 
generated by execution of the UVFs 1709. Moreover , in 
some embodiments , the resulting stream of visual data 
and / or metadata 1707 may then be stored in data storage 
1706 for responding to subsequent visual search queries or 
UVFs . 
[ 0196 ] Storage 
[ 0197 ] As the volume of visual data generated in the 
real - world continues to grow , it is becoming increasingly 
common for visual data to be processed automatically by 
computers rather than manually reviewed by humans . Due 
to the increasing volume of visual data , however , data access 
has become a bottleneck in visual data processing , as 
existing visual data storage approaches suffer from various 
deficiencies . 
[ 0198 ] To illustrate , image classification is a common 
visual data operation that uses a neural network to identify 
the contents of an image . For example , in machine learning , 
a convolutional neural network ( CNN ) is a type of feed 
forward artificial neural network where the input is generally 
assumed to be an image . CNNs are commonly used for 
image classification , where the goal is to determine the 
contents of an image with some level of confidence . For 
example , a CNN is first trained for a specific classification 
task using a set of images whose object classes or features 
have been labeled , and the CNN can then be used to 
determine the probability of whether other images contain 
the respective object classes . 
[ 0199 ] Visual data ( e.g. , images , video ) must first be 
loaded from a storage system before it can be processed by 
a CNN . In the past , the data access latency has typically been 
less than the CNN vision processing latency , allowing the 
data access to be performed during the CNN processing . 
However , as hardware and software optimizations continue 
to improve the performance of CNN vision processing 
algorithms , the data access latency of existing solutions has 
become the bottleneck . Moreover , existing solutions typi 
cally store visual data in its original format rather than a 
format designed to aid with visual data processing , which 
further hinders performance . 
[ 0200 ] Existing solutions are also unable to efficiently 
search visual data . For example , given a large data set ( e.g. , 
millions of images ) , the ability to efficiently identify a subset 
of relevant images using a query is important . The output of 
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a CNN used for image classification typically includes a 
vector of values corresponding to the probability of various 
objects existing in an image . However , existing solutions 
typically use this information for the task at hand and then 
discard it , requiring the processing to be repeated for sub 
sequent use . For example , a CNN used to process an image 
with a dog and a cat may provide a probability for both , but 
if the goal was to find images with dogs , the information 
about cats is typically lost or discarded , thus preventing 
future use . In this manner , a subsequent search for images 
that contain cats would typically require the CNN to be run 
again on each image . 
[ 0201 ] Accordingly , FIG . 18 illustrates an example 
embodiment of a visual data storage architecture 1800 
designed to provide efficient access to visual data and 
eliminate the deficiencies of existing storage solutions used 
for visual data processing . In particular , storage architecture 
1800 provides efficient metadata storage for searching visual 
data , as well as analysis - friendly formats for storing visual 
data . 
[ 0202 ] In the illustrated embodiment , for example , storage 
architecture 1800 includes a request server 1802 for receiv 
ing visual search queries from a client API 1801 , a metadata 
database 1804 , a visual compute library 1806 , and a persis 
tent data storage 1810 , as explained further below . 
[ 0203 ] In some embodiments , for example , storage archi 
tecture 1800 may provide a unified API 1801 for visual data 
access ( e.g. , for both visual data and metadata ) . For 
example , visual data is commonly stored directly as files or 
in various types of databases ( e.g. , key - value , relational , 
and / or graph databases ) . Visual metadata is typically stored 
in databases , for example , while images and videos are 
typically stored as files . Moreover , different types of file 
systems and databases provide API functions in various 
programming and / or query languages in order to enable 
users to access and store data . Accordingly , in some embodi 
ments , visual storage architecture 1800 may be implemented 
with a unified API ( e.g. , JSON - based ) that supports multi 
modal queries for retrieving any type of visual data from any 
storage source . In some embodiments , for example , the 
unified API could be used to retrieve and / or combine visual 
metadata and the original visual data from different storage 
locations . The unified API may also allow certain types of 
processing to be performed on visual data before it is 
returned to the requesting user . Further , the unified API may 
allow users to explicitly recognize visual entities such as 
images , feature vectors , and videos , and may simplify access 
to those visual entities based on their relationship with each 
other and with other entities associated with a particular 
vision application . 
[ 0204 ] Moreover , in some embodiments , a multi - tier lazy 
data storage approach may be used to store visual data more 
efficiently ( e.g. , using long - or short - term storage in different 
portions of the distributed edge - to - cloud network ) . For 
example , multiple storage tiers may be used to store visual 
data in different locations and for varying amounts of time 
based on the type or importance of the visual data . In some 
embodiments , for example , video cameras may store all 
video captured within the past day , gateways may store 
video with motion activities within the past week , and the 
cloud may store video associated with certain significant 
events within the past year . 
[ 0205 ] Similarly , intelligent placement and aging of visual 
data across the storage tiers may further improve the data 

storage efficiency ( e.g. , determining where to store the visual 
data within the distributed edge - to - cloud system , when the 
data should be moved from hot to warm to cold storage , and 
so forth ) . For example , visual data and metadata can be 
distinguished and segregated based on data access patterns . 
Moreover , analysis friendly storage formats can be used to 
enable data to be read faster when needed for vision pro 
cessing . These various data formats may be used to form the 
hot , warm , and cold tiers of data that can be mapped to 
various heterogeneous memory and storage technologies , 
based on the intended use and lifetime of the data . For 
example , storage tiers can be used to represent hot , cold , and 
optionally warm data . Hot data is accessed frequently ; warm 
data is accessed occasionally ; and cold data is accessed 
rarely ( if ever ) . Accordingly , cold data may be stored on 
slower hardware since low access latency for retrieval of the 
data is less important . In this manner , intelligent decisions 
can be used to determine when and which portions of visual 
data should remain in the hot tiers and when it should be 
migrated to colder tiers , and which storage format should be 
used . For example , regions of interest may remain in hot 
storage in the analysis friendly format much longer than the 
entire image / video . 
[ 0206 ] Metadata database 1804 is used to store metadata 
in a manner that facilitates efficient searches of visual data . 
For example , when performing image classification using a 
CNN , the resulting image - object relationships or probabili 
ties can be stored as metadata , and the metadata can be used 
for subsequent searches of the images , thus eliminating the 
need repeatedly process the images for each search . For 
example , FIG . 19 illustrates an example of a vision process 
ing pipeline 1900 that leverages metadata for searching 
visual data . In the illustrated example , a stream of incoming 
visual data is received from a network or file system at block 
1902 , vision processing is performed on the visual data to 
derive metadata ( e.g. , using a CNN ) at block 1904 , the 
metadata is stored at block 1906 , search queries for relevant 
visual data are received at block 1908 , and the search queries 
are then satisfied using either the metadata obtained at block 
1906 or additional vision processing performed at block 
1904 . 

[ 0207 ] In some embodiments , storage architecture 1800 
may store visual metadata as a property graph to identify 
relationships between visual data , such as images that con 
tain the same object or person , images taken in the same 
location , and so forth . For example , FIGS . 20 and 21 
illustrate examples of representing visual metadata using a 
property graph . In this manner , visual metadata can be easily 
searched to identify these relationships , thus enabling flex 
ible search queries such as “ find all images taken at location 
Y that contain person A. ” 
[ 0208 ] Moreover , in some embodiments , metadata data 
base 1804 of storage architecture 1800 may be implemented 
as a persistent memory graph database ( PMGD ) to enable 
visual metadata to be searched more efficiently . For 
example , using persistent memory ( PM ) technology , a graph 
database containing the visual metadata can be stored both 
in - memory and persistently . In this manner , a persistent 
memory graph database ( PMGD ) can be designed to lever 
age a memory hierarchy with data structures and transac 
tional semantics that work with the PM caching architecture , 
reduce write requests ( addressing PM's lower write band 
width compared to DRAM ) , and reduce the number of 
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flushes and memory commits . This approach enables a graph 
database of visual metadata to be searched efficiently to 
identify relevant visual data . 
[ 0209 ] Further , feature vector storage optimizations may 
be used to achieve fast searching of visual metadata . For 
example , feature vectors can be generated by various vision 
algorithms to identify regions or features of interest in visual 
data ( e.g. , faces , people , objects ) , and they are typically 
represented as vectors of n - dimensional floating - point val 
ues . Finding the nearest neighbor for a given feature vector 
is a common operation that is computationally expensive , 
especially at the cloud scale due to billions of potential 
feature vectors ( e.g. , a feature vector for each interesting 
region of each image or video frame ) . Accordingly , in some 
embodiments , feature vectors may be represented and stored 
as visual metadata using an efficient format . For example , 
visual metadata may be stored using an analysis - friendly 
array format that indicates where the feature vectors reside , 
and an index may be built on interesting dimensions within 
the metadata storage to narrow the search space . 
[ 0210 ] Storage architecture 1800 also includes a separate 
data storage 1810 for storing the visual data itself , such as 
images or videos . Segregating the metadata and visual data 
in this manner enables each type of data to be mapped to the 
most suitable hardware in a heterogeneous system , thus 
providing flexibility for the request server 1802 to identify 
the most efficient way to handle a visual data request . 
[ 0211 ] Moreover , storage architecture 1800 is also capable 
of storing visual data on data storage 1810 using an analytic 
image format designed to aid in visual processing . In the 
illustrated embodiment , for example , visual compute library 
( VCL ) 1806 of storage architecture 1800 is designed to 
handle processing on analytic image formats 1807 in addi 
tion to traditional formats 1808. For example , visual com 
pute library 1806 can implement an analytic image format 
1807 using an array - based data management system such as 
TileDB , as described further with respect to FIG . 22. The 
analytic image format 1807 provides fast access to image 
data and regions of interest within an image . Moreover , 
since the analytic image format 1807 stores image data as an 
array , the analytic image format 1807 enables visual com 
pute library 1806 to perform computations directly on the 
array of image data . Visual compute library 1806 can also 
convert images between the analytic image format 1807 and 
traditional image formats 1808 ( e.g. , JPEG and PNG ) . 
Similarly , videos may be stored using a machine - friendly 
video format designed to facilitate machine - based analysis . 
For example , videos are typically encoded , compressed , and 
stored under the assumption that they will be consumed by 
humans . That assumption is often leveraged for video 
encoding by eliminating information that human eyes and 
brains cannot process . Videos intended for machine - based 
processing , however , may benefit from alternative storage 
methods designed to speed up the time required to retrieve 
full images or regions of interest within a video or video 
frame , and even enhance the accuracy of machine - learning 
video processing mechanisms . 
[ 0212 ] FIG . 22 illustrates an example embodiment of an 
analytic image format 2200 designed to aid in visual data 
processing . In some embodiments , for example , storage 
architecture 1800 may use analytic image format 2200 to 
store images in a format that facilitates visual data process 
ing and analysis . 

[ 0213 ] Deep learning neural networks , such as CNNs , are 
frequently used for image processing , including object / edge 
detection , segmentation , and classification , among other 
examples . Images are typically read from disk during both 
training and inferencing , for example , using background 
threads to pre - fetch images from disk and overlap the disk 
fetch and decode times with the other compute threads . 
However , compute cycles may still be wasted reading the 
images from disk and decompressing / decoding the images 
to prepare them for processing , thus reducing the overall 
throughput ( e.g. , images / second ) of an image processing 
system . 
[ 0214 ] Moreover , traditional lossy image formats ( e.g. , 
JPEG ) are designed to compress image data by discarding 
high - frequency information that is not perceptible by 
humans . While the discarded information may be meaning 
less to humans , however , it can improve the accuracy and 
performance of deep learning neural networks used for 
image processing . 
[ 0215 ] For example , images can be compressed either in a 
lossless or lossy manner . Lossless image compression pre 
serves all the information in the image , while lossy com 
pression takes advantage of visual perception and statistical 
properties to achieve better compression rates , but results in 
some data being lost . The JPEG compression algorithm is a 
commonly used lossy algorithm that is often used for images 
on the web . The JPEG algorithm is based on discrete cosine 
transforms ( DCT ) , and discards high - frequency details that 
are not perceptible to the human eye , which results in much 
smaller image file sizes . However , in cases where exact 
image reproduction is required , or when the image will be 
edited multiple times , lossless compression is preferred . For 
example , PNG is an image file format that supports lossless 
compression using a bitmap image . With PNG , images are 
transformed using a filter type on a per - line basis , and then 
compressed using the DEFLATE algorithm . There are 
numerous other image formats with similar technologies 
behind them that are suitable for different applications and 
use cases . While a traditional lossless image format ( e.g. , 
PNG ) could be used to retain all image data for image 
processing purposes , that comes at the cost of a lower 
compression rate . 
[ 0216 ] Further , images stored using traditional formats 
( e.g. , JPEG and PNG ) must be converted into an internal 
array format before any processing can begin . For example , 
before any operations can be performed on images stored 
using traditional formats , the entire image file must be read 
from disk and decoded into an internal array format . In 
analytics , however , operations such as resizing and cropping 
are often performed before any sort of learning or under 
standing happens , thus rendering traditional image formats 
inefficient for image processing and analytics . 
[ 0217 ] Accordingly , traditional image formats ( e.g. , JPEG 
and PNG ) are designed for human consumption , and per 
forming operations on them is often time - consuming and 
inefficient . Moreover , lossy image formats ( e.g. , JPEG ) 
discard information that may be useful in machine learning , 
and thus are not well - suited for image processing . Moreover , 
while existing database management systems could be used 
to store images , they are not designed for image data and 
thus do not store image data efficiently . 
[ 0218 ] The analytic image format 2200 of FIG . 22 is 
designed to aid in image processing and alleviate the defi 
ciencies of existing image formats . For example , image 
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may be selected and then processed using different tile sizes 
and compression algorithms in order to determine the ideal 
tile size and compression for that image . Moreover , since 
image processing operations are often postponed until the 
data is actually needed , there is a period of time available to 
carry out the experimentation without impacting perfor 
mance . 

format 2200 is implemented using an array - based data 
storage format that is lossless and eliminates the expensive 
decoding process that is required for processing traditional 
image formats . In some embodiments , for example , analytic 
image format 2200 could be implemented using an array 
based data storage manager such as TileDB . TileDB is a data 
management system designed for efficiently managing large 
volumes of scientific data represented using arrays . While 
TileDB is not specific to images , it is designed to provide 
fast access to array - based data . Accordingly , in some 
embodiments , image format 2200 can be implemented using 
TileDB to achieve the performance boost of TileDB for 
image processing purposes . 
[ 0219 ] In some embodiments , for example , analytic image 
format 2200 can be implemented by defining how the pixel 
data of an image is stored and accessed in an array - based 
format ( e.g. , using an array - based data storage manager such 
as TileDB ) . In this manner , image format 2200 enables 
efficiency in processing large images , which reduces the 
overall time for image analytics . As visual understanding 
algorithms get faster and the hardware to perform the 
algorithms gets better , the time to retrieve and process the 
images is becoming more and more significant . However , by 
using analytic image format 2200 , storage and retrieval of 
images does not become a bottleneck in the visual process 
ing pipeline . 
[ 0220 ] For example , analytic image format 2200 allows an 
image to be stored as a lossless compressed array of pixel 
values . Accordingly , when image data is needed for pro 
cessing , the image data does not need to be decoded before 
being processed , as required for traditional image formats . 
This improves the speed at which data is retrieved and made 
usable , yet still provides some level of compression . While 
this approach requires images to be written to the analytic 
image format 2200 prior to training or inference , the addi 
tional write overhead is minimal . 
[ 0221 ] Moreover , because TileDB outperforms many 
array database managers for both sparse and dense data 
access , it is an ideal choice for implementing analytic image 
format 2200. In other embodiments , however , analytic 
image format 2200 can be implemented using any other type 
of array - based data manager or data format . The use of a 
fast , enhanced array storage system such as TileDB enables 
image format 2200 to eliminate slow reads of images from 
disk , and remove the in - loop conversion of traditional image 
formats to arrays . 
[ 0222 ] Image format 2200 is also beneficial in applications 
where subarray accesses are common , such as accessing 
regions of interest in an image . For example , an array data 
manager such as TileDB can be used to improve the speed 
of common operations that are needed for image analytics , 
such as resize and crop , by enabling fast subarray accesses . 
[ 0223 ] FIG . 22 illustrates the process of converting an 
image into an analytic image format 2200 using an array 
based data manager such as TileDB . In the illustrated 
example , the original image is first received 2202 and is then 
divided into a plurality of tiles 2204 using an optimal tile 
size , and the tiles are then compressed and written to 
memory on a per - tile basis 2206 using an array - based 
storage format . 
[ 0224 ] In some embodiments , the optimal tile size for 
analytic operations can be dynamically determined for each 
image . For example , in order to determine the optimal tile 
size for a particular image , a random portion of the image 

[ 0225 ] An image that does not fit perfectly into tiles of the 
selected tile size will have partially empty tiles that are 
padded with empty characters , as depicted in FIG . 22. In this 
manner , the original size of the image may be stored as 
metadata ( e.g. , height , width , and number of channels ) , and 
when the image is subsequently read from storage , the 
metadata can be checked to determine the actual dimensions 
of the image to avoid reading the empty characters or 
padding . 
[ 0226 ] For high - resolution images , image format 2200 
improves the speed of common operations such as reading 
and writing , as well as the speed of operations used in image 
analytics , such as cropping and resizing . For example , 
storing images using image format 2200 improves read 
performance , as the images are compressed but not encoded , 
and thus do not need to be decoded when they are read from 
the file system . In addition , image format 2200 enables fast 
access to subarrays of image pixels , making cropping a 
simple matter of reading a particular subarray rather than 
reading the entire image and then cropping it to the appro 
priate size . 
[ 0227 ] For example , FIG . 23 illustrates a graph 2300 
comparing the performance of analytic image format 2200 
from FIG . 22 with the PNG image format , which is a 
traditional lossless image format . As shown by FIG . 23 , the 
analytic image format provides better performance than 
PNG for writes , reads , crops , and resizes . The largest 
improvement is seen in cropping , as the analytic image 
format allows only the pertinent information to be read from 
the file , rather than reading the entire image file and then 
cropping to the desired size . Accordingly , the performance 
improvement for common data access and analytic opera 
tions demonstrates that analytic image format 2200 is highly 
beneficial for image processing purposes . 
[ 0228 ] FIG . 50 illustrates an example write processing 
flow 5000 for traditional and analytic image formats . In the 
illustrated processing flow 5000 , for example , raw pixel data 
5002 can be written to disk 5010 using either a traditional 
image format or an analytic image format . The top path of 
processing flow 5000 illustrates the flow for writing tradi 
tional image formats ( e.g. , PNG ) , while the bottom path 
illustrates the flow for writing analytic image formats . 
[ 0229 ] With respect to traditional image formats , for 
example , raw pixel data 5002 is encoded 5004 , compressed 
5006 , and then stored 5010. With respect to analytic image 
formats , however , raw pixel data 5002 is compressed 5008 
and then stored 5010 , but the encoding step is omitted . 
While the resulting analytic image format may result in a 
larger file size on disk , the latency of data access operations 
( e.g. , writes ) and other image operations may be reduced . 
[ 0230 ] Moreover , the read processing flow for traditional 
and analytic image formats may be implemented as the 
reverse of the write processing flow 5000. For example , with 
respect to traditional image formats , the encoded / com 
pressed data is read from disk , decompressed , and then 
decoded into the original image . With respect to analytic 
image formats , the compressed data is read from disk and 
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then decompressed into the original image , but the decoding 
step is omitted since the encoding step was omitted during 
the write processing flow 5000 . 
[ 0231 ] TABLE 1 illustrates an example analytic image 
format schema . In some embodiments , for example , the 
analytic image format schema of TABLE 1 could be imple 
mented using an array - based database manager ( e.g. , 
TileDB ) to store images as dense arrays . 

TABLE 1 

example analytic image format 

PARAMETER TYPE EXAMPLE VALUE 

row major 
row major 

cell order 
tile order 
number of dimensions 
dimension names 
number of attributes 
compression 
array height 

fixed 
fixed 
fixed 
fixed 
fixed 
fixed 
variable 
variable 
variable 
variable 
variable 

" height " , " width ” 
1 

LZ4 
3534 
5299 

[ 0 , 3533 , 0 , 5298 ] 
589 
757 

array width 
domain 
tile height 
tile width 

[ 0232 ] The schema of TABLE 1 specifies parameters 
about the array that can be used to arrange the image data . 
Moreover , some parameters of the analytic image format are 
fixed , while others are determined on a per - image basis . For 
example , images have only two dimensions , a height and a 
width , thus fixing the number of dimensions as well as the 
names of the dimensions . The number of attributes is set to 
one , which means each cell holds the blue , green , and red 
( BGR ) values for the corresponding pixel . All three values 
are generally read together , as a pixel is defined by all three 
values . In other embodiments , however , the color values 
may be stored separately . The intra - tile and array - level tile 
ordering is fixed to be row major . Row major order means 
that data is written and read from left to right in rows within 
a tile , and tiles are written and read in the same manner . This 
information allows the array database to efficiently perform 
subarray reads . 
[ 0233 ] The dimensions and domain of the array depend on 
the resolution of the original image and therefore are cal 
culated dynamically on a per - image basis . Since images 
often do not have an evenly divisible number of pixels in one 
or both dimensions , this occasionally results in the dimen 
sions of an array not matching the original resolution of the 
image . This is reflected in TABLE 1 , where the array height 
is one pixel larger than the image height . To make up the 
difference between an image dimension and an array 
domain , the image is padded with empty characters . An 
example of this can be seen in FIG . 22 , where the white 
space within certain tiles corresponds to empty characters . In 
the actual array , the size of the array domain is increased by 
a single pixel when needed . The original size of the image 
( height , width , and number of channels ) is stored as meta 
data by default . When an image in the analytic format is 
read , the metadata is read first in order to determine the 
dimensions of the image , thus avoiding reading the empty 
characters . 
[ 0234 ] Tile extents depend on the array dimensions and 
are calculated once the array dimensions are known . All tiles 
have the same height and width . The optimal number of tiles 
may vary based on image content and resolution , and thus in 

some embodiments , the optimal number of tiles may be 
determined on a per - image basis . For example , in order to 
determine the best tile size , a portion of the image may be 
randomly selected and tested using different tile sizes and 
compression algorithms to determine the best combination 
for that image . Since all operations are postponed until the 
data is actually needed , there is a period of time to carry out 
the experimentation that does not affect the performance . In 
other embodiments , however , a predefined minimum num 
ber of tiles per dimension ( e.g. , 4 tiles per dimension ) may 
be used as a basis to determine tile height and width . 
[ 0235 ] The compression algorithm used to compress the 
analytic image data has a fixed default ( e.g. , the LZ4 
compression algorithm ) , but other compression algorithms 
can be set manually . 
[ 0236 ] FIG . 51 illustrates an example embodiment of a 
visual compute library ( VCL ) 5100 for traditional and 
analytic image formats . For example , VCL 5100 provides an 
interface through which a user can interact with the analytic 
image format as well as traditional image formats . 
[ 0237 ] When a user creates an analytic image using VCL 
5100 , the analytic image schema is automatically set using 
the parameters described above in TABLE 1. VCL 5100 then 
creates a layer of abstraction with function calls of TileDB 
5102 ( e.g. , the array - database manager used in the illustrated 
embodiment ) combined with specialized transformation 
operations to provide an interface to the analytic image . 
VCL 5100 also extends the abstraction layer to OpenCV 
5104 , providing support for PNG and JPEG image formats . 
VCL 5100 uses OpenCV 5104 to perform both I / O and 
transformation operations on images that are stored in either 
PNG or JPEG format . For images stored in the analytic 
format , VCL 5100 handles the transformation operations 
and uses TileDB 5102 for I / O operations . 
[ 0238 ] To initially store an image in the analytic format , 
the raw pixel data of an image is passed to VCL 5100 in 
some manner ( e.g. , as a path to a PNG or JPEG file stored 
on disk , an OpenCV matrix , a buffer of encoded pixel data , 
a buffer of raw pixel data , and so forth ) . This data is 
converted to a raw pixel buffer in order to write to the 
analytic format . Since the TileDB array schema for images 
has already been set at this point ( e.g. , using the parameters 
of TABLE 1 ) , the TileDB functions can be used to write the 
data to disk . 
[ 0239 ] Reading an image in the analytic format requires 
the metadata to be read first to determine the original image 
resolution . This ensures that only image data is read and that 
empty characters are ignored . The raw analytic - format or 
TileDB data is read into a buffer , keeping the data in the 
order in which it was written , which is referred to as “ tile 
order ” ( e.g. , as illustrated in FIG . 52 ) . This is because if the 
data never needs to be returned to the user ( e.g. , if the user 
just wants to manipulate it and write it out again ) , it is faster 
to use the tile order buffer . In cases where the data is to be 
returned to the user , however , the buffer is re - ordered into 
image order , which results in a buffer that has each row of 
the image sequentially ( e.g. , as illustrated in FIG . 52 ) . Image 
order , for example , is typically expected by other programs 
such as OpenCV 5104 . 
[ 0240 ) Crop , another frequently used operation in image 
processing , is used to retrieve a region of interest within an 
image for processing . Rather than reading the entire image 
and then selecting a sub - region ( as is required for traditional 
image formats ) , the analytic or TileDB crop function uses 
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the crop parameters to specify a subarray of the analytic 
image data . The subarray is then the only portion of the 
image that is read . 
[ 0241 ] Resize , another frequently used operation in image 
processing , is used to resize the dimensions of an image 
( e.g. , to either a smaller or larger size ) . The TileDB resize 
occurs after the image has been read , but while the data is 
still in tile order . VCL 5100 implements a version of resize 
for TileDB that uses a bilinear interpolation , following the 
OpenCV default . For example , in a linear interpolation , a 
new value is calculated based on two points ; bilinear inter 
polation does this in two different directions and then takes 
a linear interpolation of the results . These points are iden 
tified by ( row , column ) in the original image . Given the data 
is in tile order , it is necessary to identify which tile each 
point is part of in order to locate the value of that point in 
the buffer . The resulting resized image buffer is in image 
order , although other approaches may be used to keep it in 
tile order . 
[ 0242 ] Compression / Compressive Learning 
[ 0243 ] The performance of large - scale visual processing 
systems can be improved using efficient compression algo 
rithms and techniques for storing and processing visual data . 
The compression approaches of existing visual processing 
solutions , however , suffer from various deficiencies . For 
example , existing solutions require visual data to be fully 
decompressed before any processing can be performed ( e.g. , 
using deep learning neural networks ) . Moreover , existing 
solutions typically compress and store images individually , 
thus failing to leverage the potential compressive benefits of 
collections of similar or related images with redundant 
visual data . 
[ 0244 ] Accordingly , this disclosure presents various 
embodiments for compressing and processing visual data 
more efficiently . In some embodiments , for example , neural 
networks can be designed to operate on compressed visual 
data directly , thus eliminating the need to decompress visual 
data before it can be processed . Moreover , context - aware 
compression techniques can be used to compress visual data 
and / or visual metadata more efficiently . For example , con 
text - aware compression can be used to compress distinct 
instances of redundant visual data more efficiently , such as 
a group of images taken close in time , at the same location , 
and / or of the same object . Similarly , context - aware com 
pression can be used to compress visual metadata more 
efficiently ( e.g. , using a context - aware lossless compression 
codec ) . In some embodiments , for example , visual metadata 
could be compressed by pre - training a convolutional neural 
network ( CNN ) to classify visual metadata , replacing long 
strings of visual metadata with shorter symbols ( e.g. , pre 
defined human codes ) , performing multi - scale de - duplica 
tion on the visual metadata , and finally compressing the 
resulting visual metadata using a compression algorithm 
( e.g. , the LZ77 lossless compression algorithm or another 
similar alternative ) . 
[ 0245 ] FIGS . 24A - C illustrate an example embodiment of 
a multi - domain cascade convolutional neural network 
( CNN ) 2400 . 
[ 0246 ] In distributed visual analytics systems , image and 
video is often compressed before transmission ( e.g. , from 
the pixel domain to a compressed domain ) , and subse 
quently decompressed after transmission ( e.g. , back to the 
pixel domain ) before any processing can be performed , such 
as deep learning using neural networks . As an example , 

image and video captured by edge devices may be com 
pressed and transmitted to the cloud , and then decompressed 
by the cloud before any further processing begins . 
[ 0247 ] This approach suffers from various disadvantages . 
First , extra computation is required to fully decompress the 
visual data before it can be processed , thus significantly 
increasing the total processing time ( e.g. , by up to 100 % in 
some cases ) . For example , before processing can be per 
formed , the visual data must be fully decompressed back to 
the pixel domain using hardware or software decoding . 
Accordingly , given that not all processors include built - in 
video decompression accelerators , decompression may 
incur an additional cost for video analytics . 
[ 0248 ] Next , extra bandwidth is required to transmit the 
decompressed data between separate processing compo 
nents ( e.g. , between a decompression engine and an analysis 
engine ) , thus significantly increasing bandwidth usage ( e.g. , 
by up to 20 times in some cases ) . 
[ 0249 ] Moreover , the requirement to fully decompress 
visual data prior to processing precludes the ability to 
leverage a fully distributed neural network in the edge - to 
cloud sense . For example , the use of distributed analytics to 
process visual data exclusively in the pixel domain requires 
the visual data to be analyzed at multiple scales . 
[ 0250 ] Further , relying on the cloud to perform processing 
on visual data captured by edge devices often results in 
wasted transmission bandwidth , as many images or videos 
transmitted from the edge to the cloud may not contain any 
objects or features of interest . In many cases , for example , 
it could be possible to perform object detection and classi 
fication closer to the network edge ( e.g. , near the sensors that 
capture the visual data ) using lower complexity analytics 
algorithms , potentially saving the transmission cost of insig 
nificant or unimportant data . 
[ 0251 ] Accordingly , FIGS . 24A - C illustrate an example 
embodiment of a multi - domain cascade CNN 2400 that can 
be used to process visual data in the compressed and pixel 
domains , thus eliminating the requirement to decompress 
visual data before it can be processed . In this manner , 
multi - domain cascade CNN 2400 can be used to perform 
distributed visual analytics in a visual fog system using 
compressed domain data as input . 
[ 0252 ] In some embodiments , for example , multi - domain 
cascade CNN 2400 may be a cascaded CNN that includes 
multiple decision stages . For example , in a first or early 
decision stage , a subset of the compressed domain visual 
data or features may be used ( e.g. , motion vectors ) to 
attempt to generate an early decision . If the visual data 
cannot be detected or classified in the early stage , additional 
compressed domain data ( e.g. , motion prediction residuals ) 
may be provided as input to a subsequent or late decision 
stage . Finally , for improved accuracy and / or in the event the 
late decision stage is unsuccessful , the visual data may be 
fully decompressed and a final decision stage may be 
performed using the decompressed visual data . 
[ 0253 ] In the illustrated embodiment , for example , CNN 
2400 includes an early decision stage ( illustrated in FIG . 
24A ) , a late decision stage ( illustrated in FIG . 24B ) , and a 
final decision stage ( illustrated in FIG . 24C ) . Moreover , 
CNN 2400 is designed to process compressed visual data 
2402 as input ( e.g. , video sequence data compressed with a 
motion - compensated predictive coding scheme such as 
H.264 ) . 
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[ 0254 ] In some embodiments , for example , compressed 
visual data 2402 provided as input to CNN 2400 may first be 
partially decoded to separate and extract different syntax 
elements ( e.g. , motion vectors , macroblock ( MB ) coding 
modes , quantized prediction residuals ) , thus producing a 
subset of partial compression data 2404 . 
[ 0255 ] As shown in FIG . 24A , in the early decision stage , 
the partial compression data 2404 ( e.g. , motion vectors ) is 
provided as input to a first stage CNN 2405a to attempt to 
identify an early decision 2406. In some embodiments , the 
CNN processing may then terminate if an early decision can 
be made . For example , in some embodiments , the early 
decision stage may be performed by a fog or edge node near 
the sensor that captured the visual data . Accordingly , if an 
early decision can be made , it may be unnecessary to 
transmit additional visual data to another node ( e.g. , in the cloud ) for a subsequent processing stage , thus saving band 
width and / or resources ( e.g. , energy ) that would otherwise 
be required for the later stage . For example , assuming the 
goal is to detect moving pedestrians using traffic cameras , if 
there is no motion detected , there likely are no moving 
objects . Accordingly , an early decision can be made , and any 
further transmission or processing of the visual data can be 
aborted . In other embodiments , however , the subsequent 
CNN processing stages of CNN 2400 may still be performed 
even if an early decision can be made . Moreover , the 
complexity of the first stage CNN 2405a may vary based on 
different use cases , resource availability , and so forth . 
[ 0256 ] If the early decision stage is unable to detect or 
classify the partial compression data 2404 using the first 
stage CNN 2405a , CNN 2400 may proceed to a late decision 
stage , as shown in FIG . 24B . In the late decision stage of 
FIG . 24B , for example , additional compression data 2410 
( e.g. , motion prediction residuals ) is evaluated using a 
second stage CNN 2405b to attempt to determine a late 
decision 2408 . 
[ 0257 ] Finally , for improved accuracy and / or in the event 
the late decision stage is unsuccessful ( e.g. , the late decision 
stage is unable to detect or classify the additional compres 
sion data 2410 using the second stage CNN 2405b ) , CNN 
2400 may proceed to a final decision stage , as shown in FIG . 
24C . In the final decision stage of FIG . 24C , for example , the 
compressed visual data 2402 may be fully decompressed 
using a decompression engine 2412 , and the decompressed 
visual data 2414 ( e.g. , pixel domain data ) may then be 
evaluated using a final stage CNN 2405c to determine a final 
decision 2416 . 
[ 0258 ] Accordingly , the collective stages of multi - domain 
cascade CNN 2400 are depicted in FIG . 24C , where an early 
stage is used to generate an early decision based on an initial 
subset of compressed domain data , and later stages are used 
to generate re - fined or final decisions based on additional 
compressed domain data and eventually pixel domain data . 
[ 0259 ] The described embodiments of multi - domain cas 
cade CNN 2400 provide numerous advantages . First , visual 
data ( e.g. , images or video ) does not need to be fully 
decompressed before its contents can be analyzed using 
deep learning neural networks , thus reducing memory usage 
and computation typically required for decoding or decom 
pressing the visual data . Next , the cascading approach of 
CNN 2400 avoids the need to transmit certain compressed 
data to the cloud , such as when an early decision can be 
reached by an edge or fog node , thus improving bandwidth 
usage . Finally , a large portion of the overall analysis often 

occurs in the early decision stage , which typically involves 
a simplified CNN or machine learning model , thus reducing 
the overall computational complexity . 
[ 0260 ] FIGS . 25-31 illustrate the use of butterfly opera 
tions to implement a multi - domain convolutional neural 
network ( CNN ) that is capable of processing both raw and 
compressed visual data . 
[ 0261 ] As discussed above , many visual analytics systems 
require visual data to be fully decompressed before any 
visual processing can be performed ( e.g. , using deep learn 
ing neural networks ) , which is an approach that suffers from 
various inefficiencies , including higher processing latency , 
additional transmission bandwidth , and so forth . Accord 
ingly , this disclosure presents various embodiments of a 
deep learning neural network that is capable of analyzing 
compressed visual data directly . In particular , the described 
embodiments present a multi - domain CNN that uses butter 
fly operations to enable visual data processing in either the 
pixel domain or the compressed domain . 
[ 0262 ] To illustrate , existing deep learning CNNs ( e.g. , 
inception or ResNet CNN models ) typically repeat an inner 
module multiple times , and the inner module aggregates the 
results from multiple convolution layers and / or the original 
input at the end ( analogous to a bottleneck ) . For example , 
FIGS . 25A - B illustrate a traditional 27 - layer inception 
model CNN 2500 , and FIGS . 26 and 27 illustrate example 
inner modules 2600 and 2700 for an inception model CNN . 
In particular , FIG . 26 illustrates an inner module 2600 
implemented without dimension reduction , while FIG . 27 
illustrates an inner module 2700 implemented with dimen 
sion reduction . These CNN implementations are designed to 
process visual data in the pixel domain ( e.g. , raw or uncom 
pressed visual data ) . 
[ 0263 ] FIGS . 28 and 29 , however , illustrate example CNN 
inner modules 2800 and 2900 that use butterfly operations to 
enable multi - domain visual data processing in either the 
pixel domain or the compressed domain . Butterfly opera 
tions , for example , are operations that can be used to 
transform compressed domain data ( e.g. , DCT domain data ) 
back to the pixel domain . Accordingly , by incorporating 
butterfly layers into a CNN , the CNN can be provided with 
compressed visual data as its original input , and as the 
compressed data is processed by the successive CNN layers , 
the compressed data is at least partially transformed or 
decompressed back to the pixel domain using the butterfly 
layers in the CNN . 
[ 0264 ] FIG . 28 illustrates an inner CNN module 2800 
implemented without dimension reduction , while FIG . 29 
illustrates an inner CNN module 2900 implemented with 
dimension reduction . Moreover , as shown in these 
examples , additional butterfly layers or filters are added in 
parallel to the regular convolution layers . In some embodi 
ments , for example , 2x2 and / or 4x4 butterfly operations can 
be added in parallel to the regular convolution and pooling 
layers . For example , in some embodiments , the butterfly 
operations could be implemented similar to the example 
butterfly operation illustrated in FIGS . 31A - B . 
[ 0265 ] With respect to inner module 2800 of FIG . 28 , for 
example , butterfly layers 2830a , b are added in parallel to 
convolution layers 2810a - c and pooling layer 2820 , and the 
butterfly layers 2830 include vertical N - point butterfly 
operations 2830a and horizontal N - point butterfly opera 
tions 2830b . For example , in some embodiments , the but 
terfly operations may be performed for both the vertical 
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pixels and the horizontal pixels . Similarly , with respect to 
inner module 2900 of FIG . 29 , butterfly layers 2930a , b are 
added in parallel to convolution layers 2910a - e and pooling 
layers 2920a - b , and the butterfly layers 2930 include vertical 
N - point butterfly operations 2930a and horizontal N - point 
butterfly operations 2930b . 
[ 0266 ] Note that this approach , however , does not require 
multiple butterfly layers to be stacked within a single inner 
module , as the CNN does not have to perform a complete 
inverse DCT . For example , the goal of multiple convolution 
layers is to extract / transform the input data to a feature space 
where the fully connected layers can easily separate different 
clusters . Accordingly , the butterfly layers do not have to 
perform a complete inverse DCT , and instead , they can 
simply be designed to aid in extracting and transforming the 
input data into the feature space . In this manner , a complete 
or entire stack or organized butterfly layers does not need to 
be included in the CNN . 
[ 0267 ] Moreover , the weights of each butterfly can be 
adjusted during the training phase , and thus the decision of 
whether to use the butterfly layers and / or how much to rely 
on them will be adjusted automatically . 
[ 0268 ] FIG . 30 illustrates an alternative embodiment of a 
multi - domain CNN 3000 with butterfly layers 3002 and 
normal layers 3004 arranged sequentially rather than in 
parallel . 
[ 0269 ] FIGS . 31A - B illustrate an example of a one - dimen 
sional ( 1D ) N - point butterfly operation . In particular , the 
illustrated example is a 4 - point butterfly operation , meaning 
the butterfly operation is performed using four data points 
3110a - d . In other embodiments , however , butterfly opera 
tions may be implemented using any number of data points . 
Moreover , in some embodiments , data points 3110a - d may 
represent compressed pixel data , such as DCT coefficients . 
[ 0270 ] In some embodiments , the butterfly operation may 
be performed in multiple stages . In each stage , for example , 
the butterfly operation may generate two outputs or channels 
using separate addition and subtraction operations ( e.g. , by 
computing the sum of two points over a large distance and 
the difference of two points over a large distance ) . For 
example , during a particular stage , the 1st and 4th points may 
be added together to compute their sum ( 1st point + 4th point ) , 
and also subtracted to compute their difference ( 1st point - 4th 
point ) . The points may then be shifted up cyclically and the 
process may be repeated for the next stage . For example , 
after each stage , the 4th point becomes the 3rd point , the 3rd 
point becomes the 2nd point , the 2nd point becomes the 1st 
point , and the 1st point becomes the 4th point . After the points 
are shifted , the next stage of the butterfly operation is 
performed by repeating the addition and subtraction on the 
1st on 4th points ( e.g. , using the new ordering of points ) . 
[ 0271 ] In FIGS . 31A - B , for example , the addition and 
subtraction operations for the first stage of a butterfly 
operation are shown . In particular , FIG . 31A illustrates the 
addition operation , and FIG . 31B illustrates the subtraction 
operation . In FIG . 31A , for example , the 1st point ( 3110a ) 
and the 4th point ( 3110d ) are added together to compute a 
new point ( 3120a ) that represents their sum . Similarly , in 
FIG . 31B , the 4th point ( 3110d ) is subtracted from the 1st 
point ( 3110a ) to compute a new point ( 3130d ) that repre 
sents their difference . The points are then shifted in the 
manner described above to perform the subsequent stages of 
the butterfly operation . 

[ 0272 ] Accordingly , the butterfly operations can be incor 
porated into a CNN in this manner in order to enable 
processing of visual data in both the pixel domain and 
compressed domain ( e.g. , DCT domain ) , thus eliminating 
the requirement of fully decompressing visual data before 
analyzing its contents using a deep learning neural network . 
For example , rather than explicitly performing an inverse 
DCT transform to fully decompress visual data before 
processing it using a CNN , the CNN can instead be imple 
mented using butterfly layers to inherently incorporate 
decompression functionality into the CNN , thus enabling the 
CNN to be provided with compressed data as input . 
[ 0273 ] FIGS . 32 and 33 illustrate an example embodiment 
of a three - dimensional ( 3D ) CNN 3200 that is capable of 
processing compressed visual data . In some embodiments , 
for example , 3D CNN 3200 could be used in the implemen 
tation of , or in conjunction with , the compression - based 
CNN embodiments described throughout this disclosure 
( e.g. , the CNNs of FIGS . 24 and 28-31 ) . 
[ 0274 ) Many visual analytics systems require visual data 
to be decompressed before any processing can be performed , 
such as processing by a deep learning neural network . To 
illustrate , FIG . 34 illustrates an example of a pixel - domain 
CNN 3400 , and FIG . 35 illustrates an example of an 
associated pixel - domain visual analytics pipeline 3500. In 
the illustrated example , pixel - domain CNN 3400 performs 
object detection and classification for visual analytics using 
data in the pixel or image domain ( e.g. , using decompressed 
visual data ) . For example , the convolutional kernels in the 
early layers of the CNN implement two - dimensional ( 2D ) 
convolutions on the image data , and multiple layers of 
convolutions , pooling , and rectified linear unit ( ReLU ) 
operations are repeated in order to successively extract 
combinations of features from the earlier layers . Moreover , 
because CNN 3400 operates on pixel - domain data , com 
pressed visual data must be fully decompressed before it can 
be processed by CNN 3400. For example , as shown by 
visual analytics pipeline 3500 of FIG . 35 , the original pixel 
domain data 3502 is first compressed by a video encoder 
3510 ( e.g. , prior to transmission over a network ) , and the 
compressed data 3504 is subsequently decompressed by a 
video decoder 3520 before performing video analytics 3540 
( e.g. , using a CNN ) . 
[ 0275 ] In the illustrated embodiment of FIGS . 32 and 33 , 
however , 3D CNN 3200 processes compressed visual data 
directly using a 3D format designed to improve processing 
efficiency . For example , the input image may be transformed 
into the DCT domain and reshaped into a 3D format in order 
to separate the DCT transform coefficients into different 
channels . In this manner , the reshaped DCT transform data 
is arranged in a manner that provides better correlation 
between the spatial and transform domain coefficients . The 
reshaped DCT transform data can then be processed directly 
by a CNN ( e.g. , using 3D convolutions to perform feature 
extraction ) , which ultimately enables the CNN to be trained 
faster . For example , by eliminating the decompression step 
required by existing approaches , processing efficiency is 
improved , particularly for computing environments that do 
not include built - in hardware video decompression accel 
erators . 
[ 0276 ] In some embodiments , for example , 3D CNN 3200 
may be designed to operate directly on compressed visual 
data ( e.g. , video frames ) represented in the DCT domain 
using a 3D matrix . For example , in some embodiments , the 
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[ 0281 ] FIGS . 36 and 37 illustrate example embodiments 
of visual analytics pipelines 3600 and 3700 that perform 
visual analytics on compressed visual data ( e.g. , using the 
compression - based CNN embodiments described through 
out this disclosure ) . As shown by these FIGURES , the 
decoding or decompression step in the visual analytics 
pipeline is optional and / or may be omitted entirely . For 
example , as shown by visual analytics pipeline 3600 of FIG . 
36 , the original pixel domain data 3602 is first compressed 
by a video encoder 3610 ( e.g. , prior to transmission over a 
network ) , and the compressed data 3604 may optionally be 
partially decompressed by a video decoder 3620 before 
performing visual analytics 3630 on the fully or partially 
compressed data 3606. Similarly , as shown by visual ana 
lytics pipeline 3700 of FIG . 37 , the original pixel domain 
data 3702 is first compressed by a video encoder 3710 ( e.g. , 
prior to transmission over a network ) , and visual analytics 
( e.g. , image classification ) 3720 is then directly performed 
on the compressed data 3704 . 
[ 0282 ] FIG . 38 illustrates a performance graph 3800 
showing the precision of a CNN trained using compressed 
visual data ( e.g. , 4x4 transform DCT inputs ) , such as the 
compression - based CNNs described throughout this disclo 
sure . 

DCT block indices may be represented by the x and y 
dimensions of the 3D matrix , while the DCT transform 
magnitude vectors may be organized along the z dimension . 
In this manner , the convolutional kernels in the first layer of 
the new CNN architecture can be implemented using 3D 
filters designed to better capture the spatial and frequency 
domain correlations and features of the compressed data , 
thus improving the performance of the CNN operation in the 
DCT domain . 
[ 0277 ] The majority of common video and image encod 
ing schemes use discrete cosine transforms ( DCT ) to convert 
spatial pixel intensities to frequency domain representations . 
The illustrated embodiment is based on the observation that 
once image data is split into 4x4 pixel blocks and passed 
through a transform such as DCT , the transformed data has 
different correlation properties than the original data . For 
example , with respect to a DCT transform , the DC coeffi 
cients of adjacent blocks are often strongly correlated , while 
the corresponding higher frequency AC coefficients of adja 
cent blocks may be similarly correlated . 
[ 0278 ] Accordingly , FIG . 32 illustrates an approach for 
transforming a 2D image into a 3D matrix of DCT data , 
which is arranged in a manner that allows the DCT data to 
be processed more efficiently by a CNN . In the illustrated 
example , an input image of size NxN ( reference numeral 
3210 ) is first broken up into 4x4 pixel blocks ( example 
reference numeral 3212 ) , and each 4x4 pixel block is passed 
through a DCT transform . The resulting DCT transform 
domain data ( reference numeral 3220 ) is then stored in a 3D 
matrix , where the x and y dimensions correspond to the 
spatial block indices and the z dimension contains vectors of 
DCT coefficients ( reference numeral 3222 ) , which include 
16 coefficients per vector . Accordingly , the resulting trans 
form domain data ( reference label 3220 ) has dimensions of 
size KxKx16 , where K = N / 4 . 
[ 0279 ] Next , as shown in FIG . 33 , the transform domain 
data represented using the 3D matrix ( reference label 3220 ) 
is input into the CNN ( reference label 3200 ) , which includes 
a first layer of 3D convolutional kernels that use 3D filters . 
This layer extracts both spatially correlated features in the 
X - y plane along with any specific signatures in the frequency 
axis ( z dimension ) , which can be used as input to succeeding 
layers . 
[ 0280 ] The illustrated embodiment provides numerous 
advantages , including the ability to directly process com 
pressed visual data in an efficient manner , thus eliminating 
the need to decompress the data before analyzing its con 
tents ( e.g. , using a deep learning neural network ) . In this 
manner , the overall computational complexity of visual 
analytics can be reduced . Moreover , because compressed or 
DCT domain data is quantized and thus represented using a 
more compact form than the original visual data ( e.g. , video 
frame ) , the overall CNN complexity may be further reduced 
compared to a conventional pixel - domain CNN . For 
example , with respect to visual data ( e.g. , images or video ) 
compressed in certain compression formats such as JPEG or 
M - JPEG , the DCT coefficients are quantized , and typically 
the highest frequency components may be zeroed out by the 
quantization . Thus , the total volume of non - zero data pro 
cessed by the CNN is reduced compared to the original 
image data . Accordingly , based on the data volume reduc 
tion of the compressed data ( e.g. , due to DCT coefficient 
quantization ) , the CNN complexity may be further reduced , 
and the training speed of convergence may improve . 

[ 0283 ] FIG . 39 illustrates a flowchart 3900 for an example 
embodiment of context - aware image compression . In some 
embodiments , flowchart 3900 may be implemented using 
the embodiments and functionality described throughout 
this disclosure . 
[ 0284 ] Today , many people rely on the cloud for storing or 
backing up their photos . Typically , photos are stored as 
individually compressed files or units . In the current com 
puting era , however , that approach is often inefficient . For 
example , people increasingly use their mobile devices to 
take photos , and each new generation of mobile devices are 
updated with cameras that support more and more mega 
pixels , which results in larger volumes of photos that require 
more storage space . Moreover , people often capture multiple 
photos of the same object or scene during a single occasion , 
which often results in a close ral correlation among 
those photos , along with substantial redundancy . Accord 
ingly , due to the redundancy across similar photos , individu 
ally compressing and storing each photo can be an inefficient 
approach . For example , traditionally , each photo is com 
pressed and saved independently using a particular image 
compression format , such as JPEG . By compressing each 
photo individually , however , current approaches fail to 
leverage the inter - picture correlations between groups of 
similar photos , and thus more storage space is required to 
store the photos . For example , two photos that are nearly 
identical would still require double the storage of a single 
photo . 
[ 0285 ] Accordingly , in the illustrated embodiment , groups 
of similar or related photos are compressed and stored more 
efficiently . For example , context information associated with 
photos is extracted and used to identify similar or related 
photos , and similar photos are then compressed jointly as a 
group . The contextual information , for example , could be 
used to identify a group of pictures from a single user that 
were taken very close in time and / or at the same location . As 
another example , the contextual information could be used 
to identify a group of pictures taken by different users but at 
the same location . Accordingly , the identified group of 
similar photos may be compressed using video coding in 
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order to leverage the inter - photo correlations and ultimately 
compress the photos more efficiently . In this manner , com 
pressing related or correlated images using video compres 
sion rather than standard image compression can signifi 
cantly reduce the storage space required for the photos ( e.g. , 
2-5 times less storage space in some cases ) . Accordingly , 
this approach can be used to save or reduce storage in the 
cloud . 
[ 0286 ] The flowchart may begin at block 3902 by first 
obtaining a new photo . In some cases , for example , the new 
photo could be captured by the camera of a mobile device . 
In other cases , however , any type of device or camera may 
be used to capture the photo . 
[ 0287 ] The flowchart may then proceed to block 3904 to 
collect context information associated with the new photo . 
For example , when a photo is newly captured ( e.g. , by a 
mobile device ) , corresponding context information associ 
ated with the photo is collected , such as a timestamp , GPS 
coordinates , device orientation and motion states , and so 
forth . 
[ 0288 ] The flowchart may then proceed to block 3906 to 
determine if a matching master photo can be identified for 
the new photo . In some embodiments , for example , the 
context information of the new photo is compared to the 
context information of other previously captured master 
photos to determine whether the new photo is closely 
correlated to any of the existing master photos . For example , 
if the photo is taken in the same location , within a certain 
amount of time , and with little phone movement compared 
to a master photo , it is likely that the new photo is highly 
correlated with the master photo . Further , in some embodi 
ments , image feature matching techniques can then be 
applied to confirm the photo correlation . In some embodi 
ments , for example , a scale - invariant feature transform 
( SIFT ) may be used to determine whether a pair of photos 
are sufficiently correlated or matching . 
[ 0289 ] If a matching master photo is identified at block 
3906 , the flowchart may then proceed to block 3908 to 
encode the new photo with the matching master photo . In 
some embodiments , for example , a video codec ( e.g. , H.264 ) 
may be used to compress the new photo as an inter - frame 
associated with the master photo . For example , video codecs 
typically provide inter - frame encoding , which effectively 
utilizes the temporal correlation between similar images to 
improve the coding efficiency . 
[ 0290 ] In some embodiments , a master photo may include 
any photo that is compressed without reference to other 
parent or related images , while a slave photo may include 
any photo that is compressed with reference to a master or 
parent image ( e.g. , using inter - frame mode of a video 
codec ) . Accordingly , a slave photo must efficiently record or 
correlate relevant information of its master photo , so that 
when the slave photo needs to be decoded for display of the 
entire image , the associated master photo can be quickly 
identified . 
[ 0291 ] If a matching master photo is NOT identified at 
block 3906 , the flowchart may then proceed to block 3910 
to encode the new photo by itself . For example , when the 
new photo does not match any of the existing master photos , 
the new photo is encoded without referencing any other 
photos , and the flowchart may then proceed to block 3912 to 
designate the new photo as a master photo , allowing it to 
potentially be compressed with other subsequently captured 
photos . 

[ 0292 ] At this point , the flowchart may be complete . In 
some embodiments , however , the flowchart may restart 
and / or certain blocks may be repeated . For example , in some 
embodiments , the flowchart may restart at block 3902 to 
continue obtaining and compressing newly captured photos . 
[ 0293 ] Privacy / Security 
[ 0294 ] In distributed visual processing systems , it is 
important to implement effective privacy and security poli 
cies to protect sensitive visual data of underlying users or 
subjects ( e.g. , images or video with people's faces ) . Accord 
ingly , in some embodiments , the visual fog architecture 
described throughout this disclosure may be implemented 
using a variety of privacy and security safeguards . 
[ 0295 ] In some embodiments , for example , privacy - pre 
serving distributed visual processing may be used in order to 
schedule or distribute vision workloads across available fog 
nodes in an efficient manner , while also adhering to any 
applicable privacy and / or security constraints . 
[ 0296 ] Similarly , a multi - tiered storage approach may be 
used to store visual data in different locations and / or for 
different durations of time , depending on the particular level 
of sensitivity of the data . For example , the cloud may be 
used for long term storage of less sensitive or high - level 
visual data or metadata , while edge devices ( e.g. , on premise 
gateways ) may be used for storage of highly sensitive visual 
data . 
[ 0297 ] Moreover , certain vision operations may be imple 
mented using privacy - preserving approaches . For example , 
for some vision applications ( e.g. , automated demographics 
identification ) , feature extraction and recognition may be 
implemented using cameras and sensors that capture top 
down views rather than intrusive frontal views . 
[ 0298 ] As another example , gateway cloud authentication 
may be used to securely authenticate gateways and / or other 
fog devices to the cloud using JSON web tokens . 
[ 0299 ] As another example , wallets or distributed keys , 
along with MESH or GOSSIP based communication proto 
col , can be used to provide improved and more secure key 
management solutions . 
[ 0300 ] Stream multiplexing may be used in application 
layer routing for streaming media , for example , by multi 
plexing visual sensors over multiple channels and introduc 
ing entropy to make channel prediction more difficult . For 
example , additional security can be provided by introducing 
entropy and other noise ( e.g. , chaff signals ) designed to 
complicate channel prediction , thus thwarting efforts of 
malicious actors to pick up on video feeds . 
[ 0301 ] As another example , a self - sovereign blockchain 
can be used to provide multi - tenant device identification . 
For example , the blockchain can be used to handle the 
orchestration and acceptance of device identities across 
multiple visual fog networks ( e.g. , even for legacy systems ) , 
thus allowing devices to assert their identity without relying 
on third party or centralized services . A self - sovereign 
blockchain can similarly be used for other purposes , such as 
managing a collection of distributed computing algorithms . 
[ 0302 ] As another example , blockchain lifecycle manage 
ment ( e.g. , managing the instantiation and lifecycle of 
blockchains ) can be used to provide an additional level of 
security on blockchains used in a visual fog architecture . For 
example , blockchain lifecycle management can be used to 
ensure that a particular blockchain is implemented correctly 
and behaves as expected . 
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[ 0303 ] As another example , stakeholder management can 
be used to provide a set of protocols and frameworks to 
allow self - interests to be asserted , while arbitrating against 
conflicts in an equitable way . 
[ 0304 ] FIGS . 40A - C illustrate an example embodiment of 
a privacy - preserving demographic identification system 
4000. Identifying human demographic attributes ( e.g. , age , 
gender , race , and so forth ) can be leveraged for a variety of 
use cases and applications . Example use cases include 
human - computer interaction , surveillance , business and 
consumer analytics , and so forth . In retail and healthcare 
segments , for example , defining a target audience and devel 
oping customer profiles has become a critical factor for 
successful brand strategy development . 
[ 0305 ] In some embodiments , for example , computer 
vision and / or facial recognition technology may be used to 
identify human demographics . For example , demographics 
could be identified based on frontal and / or side facial 
features extracted using computer vision facial recognition 
technology . The use of frontal facial recognition technology 
in public , however , may implicate potential privacy con 
cerns . Moreover , demographic identification is crucial 
across different domains and should not be limited to only 
frontal - based sensors and recognition techniques , particu 
larly in the Internet - of - Things ( IoT ) era , which is projected 
to have over 20 billion connected devices by year 2020 . 
Further , when limited to frontal - based vision sensors , it may 
be challenging to develop a demographics identification 
system that overcomes the person occlusion problem , while 
also providing wide processing viewing angles . 
[ 0306 ] Accordingly , in the illustrated embodiment of 
FIGS . 40A - C , privacy - preserving demographic identifica 
tion system 4000 uses one or more top - view sensors 4015 to 
identify human demographics . In some embodiments , for 
example , either a single sensor 4015 or multiple sensors 
4015 may be used to capture top - down views of humans , 
rather than conventional frontal views . Moreover , human 
demographics may then be identified based on features 
extracted from the top - down views captured by the sensors 
4015. In this manner , the use of top - view sensors 4015 
enables human demographics to be automatically identified 
while preserving privacy , providing wider sensor viewing 
angles , and reducing susceptibility to occlusion . 
[ 0307 ] FIG . 40A illustrates a high - level implementation of 
demographic identification system 4000. In the illustrated 
embodiment , edge devices 4010 include multiple sets of 
top - view sensors 4015a - c that are used for sensing humans . 
For example , each set of top - view sensors 4015a - c may 
include one or more sensors that are capable of capturing 
information about their surrounding environment . The infor 
mation captured by top - view sensors 4015a - c is then pro 
cessed in the fog 4020 to detect humans and identify their 
demographics . The contextual information extracted by the 
fog 4020 ( e.g. , human demographics ) may then be trans 
mitted to the cloud 4030 for further analytics , such as people 
profiling or generating heat maps . 
[ 0308 ] FIG . 40B illustrates an example of a set of top - view 
sensor ( s ) 4015 associated with demographic identification 
system 4000 of FIG . 40A . As shown in the illustrated 
example , top - view sensors 4015 include a collection of one 
or more sensors positioned above an area that is accessible 
to humans 4002. In some embodiments , for example , top 
view sensors 4015 could be mounted to the ceiling of a retail 
store near the entrance . Moreover , top - view sensors 4015 

can include any type and / or combination of sensor ( s ) , such 
as a vision camera , infrared camera , light detection and 
ranging ( LiDAR ) sensor , and so forth . In this manner , 
top - view sensors 4015 can be used to capture top - view 
representations of humans 4002 that pass below the sensors . 
Moreover , as described further with respect to FIG . 40C , the 
top - view representations captured by top - view sensors 4015 
can then be processed further to identify the demographics 
of humans 4002 captured by the sensors . 
[ 0309 ] FIG . 40C illustrates an example of the demograph 
ics identification process performed by the fog 4020 in 
demographic identification system 4000 of FIG . 40A . In the 
illustrated example , the demographics identification process 
involves ( i ) training a demographics classification model , 
and ( ii ) identifying demographic information using the 
trained demographics classification model with top - view 
sensor data as input . 
[ 0310 ] The process of training the demographics classifi 
cation model is illustrated by blocks 4021-4024 . At block 
4021 , a training database of top - view human data must first 
be obtained or generated . In some embodiments , for 
example , the training database may include data captured by 
top - view sensors 4015 , such as camera images , infrared 
images , point clouds , and so forth . At block 4022 , features 
that are typically representative of human demographics are 
then selected / trained from the database using feature extrac 
tion methodologies , such as principal component analysis 
( PCA ) , discrete cosine transforms ( DCT ) , machine learning 
( e.g. , deep learning using a neural network ) , and so forth . At 
block 4023 , the selected / trained features are then provided 
as input to a process used to train a demographics classifi 
cation model . At block 4024 , the trained demographics 
model is then saved in the fog 4020 for subsequent use 
during the demographics identification process , as described 
further below . 
[ 0311 ] The process of identifying human demographics is 
illustrated by blocks 4025-4029 . At block 4025 , sensor data 
is captured by edge devices 4010 using one or more top 
view sensor ( s ) 4015 , such as a vision camera , infrared 
camera , LiDAR sensor , and so forth . The raw sensor data 
( e.g. , RGB images , thermal images , point clouds ) is then 
transmitted from the edge 4010 to the fog 4020 in order to 
perform data pre - processing in the fog 4020 ( e.g. , on 
premises ) , such as data transformations , de - noising , and so 
forth . At block 4026 , person detection is then performed on 
the pre - processed input stream . In some embodiments , for 
example , the pre - processed input stream is analyzed to 
determine if a person is captured in the underlying visual 
data . As an example , pre - processed image data from a 
top - view camera may be analyzed to determine if the image 
contains a person , and if so , the portion of the image that 
contains the person may be extracted . At block 4027 , 
features that are typically representative of human demo 
graphics are then selected or extracted from the detected 
person using feature extraction / machine learning tech 
niques . At block 4028 , the extracted features from block 
4027 and the pre - trained demographics model from block 
4024 are then used by a demographics classifier to classify 
the demographic attributes of the detected person . At block 
4029 , demographic information associated with the detected 
person is then identified based on the output of the demo 
graphics classifier . 
[ 0312 ] The described embodiments of top - view demo 
graphics identification provide numerous advantages . As an 



US 2021/0020041 A1 Jan. 21 , 2021 
27 

example , the described embodiments enable demographic 
information to be accurately identified based on top - down 
views of humans captured using a single- or multi - sensor 
approach . Compared to a frontal view approach , for 
example , a top - down or aerial perspective provides a wider 
angle of view for processing , reduces the problem of block 
ing or occlusion of people captured by the sensors , and 
preserves depth information associated with people and 
features captured and processed by the system . In addition , 
the described embodiments are less privacy - intrusive , as 
they only capture top views of people rather than other more 
intrusive views , such as frontal views . The described 
embodiments also identify demographic information based 
on permanent or lasting anthropometry features rather than 
features that may change or vary . Moreover , unlike motion 
based detection approaches , the described embodiments are 
operable using only static views or images and do not 
require continuous image sequences or videos . Further , the 
described embodiments can be leveraged for a variety of use 
cases and applications , including retail , digital surveillance , 
smart buildings , and / or other any other applications involv 
ing human sensing , person identification , person re - identi 
fication ( e.g. , detecting / tracking / re - identifying people across 
multiple monitored areas ) , and so forth . 
[ 0313 ] FIG . 53 illustrates a flowchart 5300 for an example 
embodiment of privacy - preserving demographics identifica 
tion . In some embodiments , for example , flowchart 5300 
may be implemented by demographics identification system 
4000 of FIGS . 40A - C . 
[ 0314 ] The flowchart may begin at block 5302 by obtain 
ing sensor data from a top - view sensing device . A top - view 
sensing device , for example , may be used to capture sensor 
data associated with the environment below the top - view 
sensing device ( e.g. , from a top - down perspective ) . In some 
embodiments , the top - view sensing device may include a 
plurality of sensors , including a camera , infrared sensor , heat 
sensor , laser - based sensor ( e.g. , LiDAR ) , and so forth . 
[ 0315 ] The flowchart may then proceed to block 5304 to 
perform preprocessing on the sensor data , such as data 
transformations , filtering , noise reduction , and so forth . In 
some embodiments , for example , the raw sensor data may be 
transmitted to and / or obtained by a processor that is used to 
perform the preprocessing . For example , the preprocessing 
may be performed by an edge processing device at or near 
the network edge ( e.g. , near the top - view sensing device ) , 
such as an on - premise edge gateway . 
[ 0316 ] The flowchart may then proceed to block 5306 to 
generate a visual representation of the environment below 
the top - view sensing device . The visual representation , for 
example , may be generated using the sensor data captured 
by the top - view sensing device ( e.g. , camera images , infra 
red images , point clouds , and so forth ) . In some embodi 
ments , for example , the visual representation may be a 
three - dimensional ( 3D ) representation or mapping of the 
environment from a top - down perspective . Moreover , in 
some embodiments , the visual representation may be gen 
erated at or near the network edge ( e.g. , near the top - view 
sensing device ) . For example , in some embodiments , an 
edge processing device ( e.g. , an on - premise edge gateway ) 
may be used to generate the visual representation . 
[ 0317 ] The flowchart may then proceed to block 5308 to 
determine whether a person is detected in visual represen 
tation . For example , if a person was located under the 
top - view sensing device when the sensor data was captured , 

then the visual representation generated using the sensor 
data may include a representation of the person from a 
top - view perspective . Accordingly , the visual representation 
may be analyzed ( e.g. , using image processing techniques ) 
to determine whether it contains a person . In some embodi 
ments , for example , the person detection may be performed 
at or near the network edge ( e.g. , near the top - view sensing 
device ) by an edge processing device ( e.g. , an on - premise 
edge gateway ) . 
[ 0318 ] If it is determined at block 5308 that a person is 
NOT detected in the visual representation , the flowchart may 
proceed back to block 5302 to continue obtaining and 
processing sensor data until a person is detected . 
[ 0319 ] If it is determined at block 5308 that a person is 
detected in the visual representation , however , the top - view 
representation of the person may be extracted from the 
visual representation , and the flowchart may then proceed to 
block 5310 to identify one or more features associated with 
the person . In some embodiments , for example , the top - view 
representation of the person may be analyzed to identify or 
extract anthropometric features associated with the person 
( e.g. , features or measurements associated with the size and 
proportions of the person ) . For example , in some embodi 
ments , the anthropometric features may be identified by 
performing feature extraction using an image processing 
technique , such as a discrete cosine transform ( DCT ) , prin 
cipal component analysis ( PCA ) , machine learning tech 
nique , and so forth . Moreover , in some embodiments , the 
feature identification or extraction may be performed at or 
near the network edge ( e.g. , near the top - view sensing 
device ) by an edge processing device ( e.g. , an on - premise 
edge gateway ) . 
[ 0320 ] The flowchart may then proceed to block 5312 to 
identify demographic information associated with the per 
son ( e.g. , age , gender , race ) based on the identified features . 
In some embodiments , for example , a machine learning 
model may be trained to recognize demographic information 
based on human anthropometric features . In this manner , the 
machine learning model can be used to classify the identified 
features of the person to recognize the associated demo 
graphic information . 
[ 0321 ] In some embodiments , the demographics identifi 
cation may be performed at or near the network edge ( e.g. , 
near the top - view sensing device ) by an edge processing 
device ( e.g. , an on - premise edge gateway ) . Moreover , in 
some embodiments , the edge processing device may trans 
mit the demographics information ( e.g. , using a communi 
cation interface ) to a cloud processing device to perform 
further analytics , such as generating a heat map or a people 
profile . 
[ 0322 ] At this point , the flowchart may be complete . In 
some embodiments , however , the flowchart may restart 
and / or certain blocks may be repeated . For example , in some 
embodiments , the flowchart may restart at block 5302 to 
continue obtaining and processing sensor data from a top 
view sensing device . 
[ 0323 ] FIGS . 41-43 illustrate an example embodiment of 
privacy - preserving distributed visual data processing . 
[ 0324 ] In visual computing , multi - target multi - camera 
tracking ( MTMCT ) and target re - identification ( ReID ) are 
some of the most common workloads across different use 
cases . MTMCT involves tracking multiple objects across 
multiple views or cameras , while RelD involves re - identi 
fying an object ( e.g. , by extracting robust features ) even 
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after the object undergoes significant changes in appearance . 
For example , in retail , MTMCT is often used to track 
shoppers within a store , while ReID may be used to extract 
and summarize robust features of shoppers so they can later 
be re - identified ( e.g. , using MTMCT ) in different circum 
stances , such as when a shopper has a significant change in 
appearance or visits a different store . 
[ 0325 ] Currently , there are no coherent end - to - end ( E2E ) 
solutions for performing MTMCT and ReID that are scal 
able to large - scale visual computing systems ( e.g. , with tens 
of thousands of camera streams or more ) . In particular , 
bandwidth limitations render it challenging to deploy such a 
system in a conventional cloud computing paradigm where 
cameras send continuous video streams to the cloud for 
processing . For example , due to the large volume of video 
data generated by such systems , it is not feasible to funnel 
all of that data to the cloud for processing . On the other hand , 
it is unlikely that edge devices near the source of the video 
data are capable of processing a complete visual processing 
workload in real time . 
[ 0326 ] Moreover , privacy is also a challenge in scaling out 
such a system , as sending visual data to the cloud for 
processing may implicate privacy concerns . For example , in 
order to preserve customer privacy , many retailers will not 
allow any video or images to be transmitted out of their 
stores . 
[ 0327 ] Accordingly , FIGS . 41-43 illustrate an embodi 
ment that solves the problem of scaling out visual computing 
systems with MTMCT and RelD capabilities in a privacy 
preserving manner . The illustrated embodiment presents an 
edge - to - edge ( E2E ) architecture for performing MTMCT 
and ReID across edge devices , gateways , and the cloud . The 
architecture is scalable and privacy - preserving , and can be 
easily generalized to many vertical applications or use cases , 
such as shopper insights in retail , people searching in digital 
security and surveillance , player tracking and replays in 
sports , and so forth . 
[ 0328 ] In some embodiments , for example , vision work 
loads may be scheduled and executed across visual fog 
nodes based on specified privacy constraints . As an example , 
privacy constraints for an MTMCT and / or ReID workload 
may require tasks that output pictures with faces to remain 
on - premises ( e.g. , neither the tasks nor their output are 
assigned or transmitted beyond the premise or to the cloud ) , 
be anonymized ( e.g. , face - blurred ) , and / or be deployed only 
on devices with enhanced link security . 
[ 0329 ] In some embodiments , for example , rather than 
funneling every bit of visual data to the cloud for processing , 
intelligent decisions can be made regarding how visual data 
and workloads are processed and distributed across a visual 
computing system . Based on the privacy requirements of a 
particular visual application , for example , a privacy bound 
ary can be defined within the end - to - end paradigm of a 
visual computing system in order to achieve performance 
efficiency while also preserving privacy . 
[ 0330 ] In some embodiments , for example , job partition 
ing can be used to partition a visual analytics workload into 
a directed acrylic graph ( DAG ) with vertices that represent 
primitive visual operations and edges that represent their 
dependencies . In this manner , the graph can be used to 
represent the various tasks and associated dependencies for 
a particular workload . Moreover , a privacy policy can be 
defined separately for each dependency . Similarly , a device 
connectivity graph can be used to represent the various 

devices and their connectivity in the edge - to - cloud para 
digm , and a privacy level agreement ( PLA ) can be estab 
lished for each edge of connectivity in the graph . In this 
manner , the edge - to - cloud architecture can be implemented 
to include a coherent management interface that performs 
end - to - end workload distribution without compromising pri 
vacy . For example , using the job partitioning approach 
described above , workload distribution effectively becomes 
a mapping problem of assigning the tasks of a workload onto 
devices in the edge - to - cloud paradigm . In some embodi 
ments , for example , a global scheduler can be used to 
determine an optimal mapping between tasks and devices in 
order to maximize performance while preserving privacy 
constraints . 
[ 0331 ] FIG . 41 illustrates an example visual workload 
graph 4100 for performing MTMCT and RelD . Example 
workload 4100 includes a plurality of tasks , including pre 
processing 4102 , detection 4104 , tracking 4106 , matching 
4108 , and database access 4110. Further , the dependencies 
between these various tasks are represented by the solid and 
dotted lines in the illustrated example . Moreover , the solid 
lines represent unrestricted access or transmission of the 
original visual data , while the dotted lines represent 
restricted or privacy - preserving access or transmission ( e.g. , 
transmitting only visual metadata , such as feature vectors ) . 
In this manner , a privacy policy can be defined for the 
workload , for example , by specifying whether each task has 
unrestricted access or restricted access to the original visual 
data . 
[ 0332 ] FIG . 42 illustrates an example of an edge - to - cloud 
device connectivity graph 4200. In the illustrated example , 
graph 4200 illustrates the connectivity between various 
devices of a 3 - tier edge - to - cloud network , which includes 
cameras 4210a - c , gateways 4220a - b , and the cloud 4230. In 
particular , the device connectivity is illustrated for both 
edge - to - cloud communications ( e.g. , camera to gateway to 
cloud ) as well as peer - to - peer communications ( e.g. , gate 
way - to - gateway ) . Moreover , the connectivity between the 
respective devices is represented using solid and dotted 
lines . For example , the solid lines represent high - security 
connectivity links , while the dotted lines represent limited 
security connectivity links . In this manner , a privacy policy 
or privacy level agreement ( PLA ) can be defined for an 
edge - to - cloud paradigm , for example , by specifying the 
requisite security for each edge of connectivity in the graph . 
[ 0333 ] FIG . 43 illustrates a privacy - preserving workload 
deployment 4300. In particular , workload deployment 4300 
illustrates an example deployment of the workload 4100 of 
FIG . 41 on edge - to - cloud network 4200 of FIG . 42 . 
[ 0334 ] In the illustrated example , privacy is treated as an 
explicit constraint when performing task - to - device mapping 
to deploy the workload . In some embodiments , for example , 
workloads can be represented in linear forms to enable the 
mapping problem to be solved efficiently using state of the 
art integer linear programming ( ILP ) solvers . 
[ 0335 ] In some embodiments , for example , when sched 
uling a particular workload on an edge - to - cloud network , the 
workload and the edge - to - cloud network may each be rep 
resented using a graph , such as a directed acrylic graph 
( DAG ) . For example , the workload and its underlying tasks 
may be represented by a workload or task dependency graph 
G ( V1 , ET ) , where each vertex VEV - represents a task , and 
each edge ( u , v ) EE , represents a dependency between task 
u and task v . Similarly , the edge - to - cloud network may be 
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represented by a network or device connectivity graph 
GD = ( VD , ED ) , where each vertex VEV ) represents a device 
in the network , and each edge ( u , v ) EE ) represents the 
connectivity from device u to device v . 
[ 0336 ] Moreover , the privacy policy ( PP ) for each task 
dependency in the workload graph may be defined using a 
PP function p : Ez > N , such that the smaller the number ( N ) , 
the more vulnerable the data transmission . Similarly , the 
privacy level agreement ( PLA ) for each connectivity link in 
the device connectivity graph may be defined using a PLA 
function s : Ep > N , such that the smaller the number ( N ) , 
the more secure the link . 
[ 0337 ] In this manner , based on the privacy policy ( PP ) 
and privacy level agreement ( PLA ) functions , a privacy 
constraint ( PC ) can be defined as s ( d ) sp ( e ) , VeEET , def ( e ) , where f : E - X- Ey is the mapping function from a par 
ticular workload to the edge - to - cloud paradigm . Essentially , 
f maps an edge in a workload graph to a path in an 
edge - to - cloud connectivity graph . For example , in the con 
text of visual fog computing , f is a scheduling function that 
determines the particular fog devices that the tasks of a 
workload should be assigned to , along with the particular 
network connectivity links between pairs of fog devices that 
should be used for the data transmissions . Accordingly , the 
above privacy constraint ( PC ) requires the privacy level 
agreement ( PLA ) of a particular connectivity link to be 
capable of accommodating the privacy policy ( PP ) of a 
particular data transmission sent over that connectivity link . 
For example , in some embodiments , a data transmission of 
PP level 1 ( unrestricted access ) can only map to a link of 
PLA level 1 ( high security ) , while a data transmission of PP 
level 2 ( privacy - preserving ) can map to connectivity links of 
PLA level 1 ( high security ) and PLA level 2 ( limited 
security ) . 
[ 0338 ] Moreover , in some embodiments , a visual fog 
schedule that adheres to the above privacy constraint ( PC ) 
can be determined using integer linear programming ( ILP ) . 
Integer linear programming ( ILP ) is a mathematical optimi 
zation or feasibility technique for solving or optimizing a 
mathematical model represented by linear relationships . In 
particular , ILP can be used to optimize a linear objective 
function , subject to additional linear equality and linear 
inequality constraints . In some cases , for example , an ILP 
problem can be expressed as follows : 

[ 0339 ] minimize : cFx ( objective term ) 
[ 0340 ] subject to : Axsb inequality constraint ) 

[ 0341 ] Cx = d ( equality constraint ) 
[ 0342 ] and : xE { 0 , 1 } * ( binary constraint ) . 

[ 0343 ] Moreover , this ILP model can be used to determine 
an optimal schedule fthat satisfies a specified objective ( e.g. , 
total network utilization ) , while also adhering to other 
additional constraints , such as a privacy constraint and any 
other device , network , or mapping constraints . For example , 
when using the example ILP model above to perform visual 
fog scheduling , x presents the collection of possible sched 
ules f , K is the length of x , the objective term presents a 
scheduling objective to be minimized ( e.g. , total network 
utilization ) , and the inequality / equality constraints present 
any additional constraints , such as device , network , map 
ping , and / or privacy constraints . The above privacy con 
straint ( PC ) , for example , can be presented as an inequality 
constraint of the ILP problem . 
[ 0344 ] FIG . 54 illustrates a flowchart 5400 for an example 
embodiment of privacy - preserving distributed visual pro 

cessing . In some embodiments , for example , flowchart 5400 
may be implemented using the visual computing embodi 
ments described throughout this disclosure ( e.g. , the pri 
vacy - preserving distributed visual processing techniques of 
FIGS . 41-43 and / or the visual computing architecture 
described throughout this disclosure ) . 
[ 0345 ] The flowchart may begin at block 5402 by identi 
fying a new workload . In some embodiments , for example , 
the new workload may include a plurality of tasks associated 
with processing sensor data captured by one or more sen 
sors . For example , in some embodiments , the sensor data 
may be visual data captured by one or more vision - based 
sensors ( e.g. , a camera , infrared sensor , and / or laser - based 
sensor ) . 
[ 0346 ] The flowchart may then proceed to block 5404 to 
generate a workload graph based on the workload . In some 
embodiments , for example , the workload graph may include 
information associated with the underlying tasks of the 
workload , along with the task dependencies among those 
tasks . 
[ 0347 ] The flowchart may then proceed to block 5406 to 
generate or identify a device connectivity graph . In some 
embodiments , for example , the device connectivity graph 
may include device connectivity information associated 
with a plurality of processing devices , such as edge , cloud , 
and / or intermediary network processing devices . The device 
connectivity information , for example , may include infor 
mation associated with the device connectivity links among 
the plurality of processing devices . 
[ 0348 ] The flowchart may then proceed to block 5408 to 
identify a privacy policy associated with the workload 
and / or its underlying tasks . In some embodiments , for 
example , the privacy policy may comprise privacy require 
ments associated with the task dependencies among the 
workload tasks . 
[ 0349 ] The flowchart may then proceed to block 5410 to 
identify privacy level information associated with the plu 
rality of processing devices . In some embodiments , for 
example , the privacy level information may include privacy 
levels provided by the device connectivity links among the 
plurality of processing devices . Moreover , in some embodi 
ments , the privacy level information may be specified by a 
privacy level agreement . 
[ 0350 ] The flowchart may then proceed to block 5412 to 
identify a privacy constraint for workload scheduling based 
on the privacy policy and the privacy level information . In 
some embodiments , for example , the privacy constraint may 
require the privacy level of a particular connectivity link to 
be capable of accommodating the privacy policy of any task 
dependency mapped to that connectivity link for data trans 
mission . 
[ 0351 ] The flowchart may then proceed to block 5414 to 
determine a workload schedule . The workload schedule , for 
example , may include a mapping of the workload onto the 
plurality of processing devices . Moreover , in some embodi 
ments , the workload schedule may be determined based on 
the privacy constraint , the workload graph , and the device 
connectivity graph . For example , in some embodiments , the 
workload schedule may be determined by solving an integer 
linear programming model based on the privacy constraint , 
the workload graph , and the device connectivity graph ( e.g. , 
as described in connection with FIGS . 41-43 ) . In this 
manner , a resulting workload schedule is determined in a 
manner that adheres to the privacy constraint . Moreover , in 
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some embodiments , a machine learning model may be used 
to optimize privacy - constrained workload scheduling . 
[ 0352 ] In some embodiments , the resulting workload 
schedule may then be distributed to the plurality of process 
ing devices ( e.g. , via a communication interface ) in order to 
execute the workload . 
[ 0353 ] At this point , the flowchart may be complete . In 
some embodiments , however , the flowchart may restart 
and / or certain blocks may be repeated . For example , in some 
embodiments , the flowchart may restart at block 5402 to 
continue scheduling new workloads . 
[ 0354 ] FIGS . 44-46 illustrate example embodiments of 
self - sovereign device identification for distributed comput 
ing networks . In some embodiments , for example , a fog 
node ( e.g. , IoT sensor , actuator , camera , controller , gateway , 
and / or any other type of fog node ) may be a “ multi - tenant ” 
node that is capable of participating in multiple different 
distributed computing networks ( e.g. , visual fog networks ) . 
Moreover , certain networks may require a new fog node to 
be " on - boarded ” or “ commissioned ” before the fog node is 
allowed to access each network ( e.g. , using the onboarding / 
commissioning protocols of the Open Connectivity Foun 
dation ( OCF ) and / or Intel’s Secure Device Onboard ( SDO ) 
technology ) . Many visual computing solutions , however , 
may assume that ownership of a node is singular , meaning 
each node has only one owner . Accordingly , ownership 
disputes may arise from a multi - tenant fog node's partici 
pation in multiple fog networks . The true or original owner 
of a multi - tenant fog node , however , has an interest in 
avoiding these ownership disputes . Accordingly , many 
visual computing solutions are unsuitable for multi - tenant 
fog nodes , which may participate in multiple fog networks 
while also abiding by each network's onboarding or com 
missioning protocols ( e.g. , as defined by OCF or Intel SDO ) . 
[ 0355 ] Accordingly , in the illustrated embodiments , a 
multi - tenant fog node can use a self - sovereign device iden 
tity in order to allow the node owner to retain an assertion 
of ownership even when the fog node participates in , or 
roams to , other fog networks . In some embodiments , for 
example , a self - sovereign identity blockchain may be used 
to register the identities of fog nodes or devices . A block 
chain , for example , may be a dynamic list of records or 
blocks that are linked and / or secured using cryptographic 
approaches . In some embodiments , for example , each block 
in a blockchain may include a hash pointer linking to a 
previous block , a timestamp , transaction data , and so forth . 
Accordingly , in some embodiments , a blockchain can be 
used as a distributed ledger for recording transactions in an 
efficient , verifiable , and / or permanent manner . In visual 
computing , for example , before adding a device identifier 
for a new fog node , a blockchain may optionally be used to 
verify that the identifier has not been previously asserted by 
another node . Further , the public key used to verify the 
device identity of the fog node may also be contributed to 
the blockchain , allowing the device to later prove it is the 
rightful owner of its identity . 
[ 0356 ] FIG . 44 illustrates an example embodiment of a 
distributed computing architecture 4400 with multi - tenant 
device identification . In the illustrated embodiment , archi 
tecture 4400 includes fog networks A and B 4410a - b , 
self - sovereign identity blockchain 4420 , and new fog device 
4430 , as described further below . 
[ 0357 ] A new fog device 4430 that is seeking to be used 
in multiple fog networks 4410 , but is not exclusive to any 

particular fog network , may not have sufficient resources or 
capabilities to create and maintain virtual sandbox environ 
ments for each of the fog networks . Moreover , each fog 
network 4410 may have a large set of its own local fog 
devices that are exclusive to that network and do not roam 
into other fog networks . Accordingly , reusing device iden 
tifiers may not pose a significant problem of duplicative 
identifiers until a new device 4430 with a conflicting identity 
roams into a particular fog network . 
[ 0358 ] There is often a cost associated with changing the 
identity of a device , however , as credentials , access tokens , 
and application logic may be linked to the device identity . 
Moreover , the respective owners of devices with conflicting 
identifies have a self - interest in resolving the conflict ( e.g. , 
to avoid ownership disputes ) , but without bearing the cost . 
For example , the conflicting devices may respectively view 
each other as “ foreign , ” and thus each device may want the 
other “ foreign ” device to bear the cost of an identity change . 
Accordingly , to resolve the opposing self - interests of 
devices with conflicting identities , a blockchain 4420 may 
be used to provide a fair algorithm for giving preference to 
a device for its use of an identity . In some embodiments , for 
example , the device that first registered a particular identity 
with the blockchain 4420 is given preference in the event of 
a conflict . 
[ 0359 ] FIG . 45 illustrates an example call flow 4500 for 
performing name registration of a self - sovereign device 
identity . In some embodiments , for example , registration of 
a self - sovereign device identity may be performed before 
onboarding a new fog device onto a visual fog network . For 
example , prior to being on - boarded onto a visual fog net 
work , a fog device may register its choice of device identity 
with a blockchain . 
[ 0360 ] Moreover , the blockchain may have a policy for 
preventing duplicative identity registrations , for example , by 
first checking for duplicates and only allowing registration if 
no duplicates exist . For example , duplicative identity detec 

be performed by blockchain processing nodes as a 
requirement for vetting transaction blocks used for identity 
registration . In the illustrated call flow 4500 , for example , 
each node performs the following steps : 
[ 0361 ] ( 1 ) receive transaction request from new device : 
TX2 + 1 = { S1 , “ A71C3 " } , where Sl = Sign_Kalice ( " A71C3 ” ) ; 
[ 0362 ] ( 2 ) compute hash H1 = SHA256 ( “ A71C3 ” ) ; 
[ 0363 ] ( 3 ) search hash tree of transaction attributes , where 
Bx - poss = Search ( TxTree , Hl ) ; 
[ 0364 ] ( 4 ) IF B.x - poss = " HI " THEN return ERROR_DUP_ 
FOUND ; 
[ 0365 ] ( 5 ) ELSE IF Bx - poss THEN add TXn + 1 to the 
current block where CurrentBlock = [ TXn + 1 , TXn , TXn - 1 , . 
. , TX - m ] ; 
[ 0366 ] ( 6 ) compute new current block hash BH = SHA256 
( [ TX +1 , TXn , TX , -1 , ... , TX - m ] ) ; 
[ 0367 ] ( 7 ) write BH to the blockchain at Bcurr - pos ( current 
position ) ; and 
[ 0368 ] ( 8 ) insert the tuple ( H1 , BH , Bx - poss ) into TxTree . 
[ 0369 ] In some embodiments , however , a less restrictive 
policy may be used , such as a policy that does not check for 
duplicates during identity or name registration , and instead 
relies on dispute resolution to resolve duplicative identities . 
For example , at the time a device is on - boarded onto a new 
fog network , the blockchain can be consulted to determine 
if the identifier has previously been used , and if so , conflict 
resolution can be performed . The advantages of a less 

tion may 

_64 



US 2021/0020041 A1 Jan. 21 , 2021 
31 

restrictive policy include improved performance and the 
ability to support mass registration workloads , among other 
examples . 
[ 0370 ] FIG . 46 illustrates an example call flow 4600 for 
conflict resolution of self - sovereign device identities . In 
some circumstances , for example , it may be unnecessary to 
verify that a new device identifier is globally unique at the 
time of registration , and instead , conflicting identities may 
be addressed when a new device is on - boarded onto a local 
fog network and an existing device already has the same 
identity . Accordingly , in some embodiments , conflicting 
device identities on a particular fog network may be 
resolved using conflict resolution call flow 4600. In the 
illustrated call flow 4600 , for example , a blockchain is used 
to resolve conflicts based on identity registration priority 
( e.g. , the first device that registered a duplicative identity 
with the blockchain receives preference ) . Accordingly , this 
approach does not require device identifiers to be globally 
unique , but in the event multiple devices on the same fog 
network have the same identity , it requires one of the devices 
to select a different identifier when interacting with that 
particular network . Moreover , the dispute over which device 
should pay the cost of changing its identity is resolved using 
the blockchain . By way of comparison , FIG . 47 illustrates an 
example of device onboarding or commissioning in a visual 
fog network without employing conflict resolution . 
[ 0371 ] In this manner , based on the illustrated embodi 
ments of FIGS . 44-46 , device identity assertion can be 
performed at any time during manufacturing of a device , 
such as a system - on - a - chip ( SOC ) or any other type of 
computing chip , circuit , or device . Moreover , rather than an 
assertion of device " ownership , ” device identity assertion 
involves an assertion of identity ownership , where the 
device is the owner of the identity . Accordingly , any appro 
priate entity within the supply chain of a particular device 
( e.g. , an original design manufacturer ( ODM ) , original 
equipment manufacturer ( OEM ) , distributor , retailer , value 
added reseller ( VAR ) , installer , or end customer ) may assert 
the identity of a device based on the sophistication and 
capability of the particular entity . 
[ 0372 ] FIGS . 48 and 49 illustrate example embodiments 
of algorithm identification for distributed computing using a 
self - sovereign blockchain . 
[ 0373 ] Distributed computing interoperability depends on 
agreement among participating nodes regarding the particu 
lar algorithms used to process information at each node . In 
some cases , for example , algorithm agreement among nodes 
may depend on a central authority that manages a registry or 
database of algorithm identifiers . In this manner , distributed 
nodes must rely on the registry for selection of the appro 
priate algorithms , otherwise interoperability is not achieved . 
[ 0374 ] This dependence on central authorities can lead to 
service disruptions , however , such as when a registry goes 
offline , a registry is slow to publish new algorithm identifiers 
( e.g. , thus slowing the pace at which new algorithms can be 
deployed ) , a central authority becomes the target of politi 
cizations ( e.g. , registration requests are held in ransom for 
processing fees , political favors , and / or other forms of 
manipulation that are not tied to the economics of the 
distributed computing application ) , and so forth . For 
example , these approaches are often highly centralized and 
may involve international or governmental institutions , 
which may be prone to politicizations and / or government 
regulation ( e.g. , net neutrality ) . Moreover , since agreement 

on which algorithms to use is fundamental to distributed 
computing , a centralized approach for managing algorithm 
identifiers can create an artificial bottleneck or choking 
point , and entities seeking to impose regulation or control 
can effectively leverage the centralized design to restrict or 
prevent interoperability among distributed computing 
nodes . 

[ 0375 ] Accordingly , in the illustrated embodiments of 
FIGS . 48 and 49 , a blockchain is used to register a collection 
of distributed computing algorithms ( e.g. , using self - sover 
eign algorithm identifiers ) . In some embodiments , for 
example , the blockchain may process an algorithm registra 
tion request as a blockchain transaction , where the registrant 
selects a unique algorithm identifier and specifies the algo 
rithm function . In various embodiments , the algorithm func 
tion may be specified in human - readable form ( e.g. , as a 
natural language explanation or pseudocode ) , machine - read 
able form , and / or machine - executable form . Moreover , as a 
condition or prerequisite to accepting the algorithm regis 
tration , the particular algorithm may be subjected to various 
levels of “ certification ” by blockchain processing nodes . In 
this manner , an algorithm may be accepted with progressive 
levels of assurance without altering the registered algorithm 
identifier . 

[ 0376 ] Accordingly , the described embodiments allow 
anyone that discovers a useful distributed computing algo 
rithm to make that algorithm known and available to a large 
community . Blockchain networks , for example , are pre 
sumed to be large in number and open to large communities 
of users . In this manner , members of the community can 
build distributed computing systems without being hindered 
by bureaucratic roadblocks and oversight . As a result , the 
time between algorithm development and practical deploy 
ment can be minimized . 
[ 0377 ] FIG . 48 illustrates an example embodiment of a 
distributed computing architecture 4800 with self - sovereign 
algorithm identification . In the illustrated embodiment , 
architecture 4800 includes fog networks A and B 4810a - b , 
along with a self - sovereign blockchain 4820 for registering 
and identifying distributed computing algorithms 4430. In 
some embodiments , for example , architecture 4800 could be 
used to register and / or identify algorithms used for visual 
fog computing 
[ 0378 ] As an example , if a useful distributed computing 
algorithm 4430 is invented , discovered , and / or improved 
upon in a first fog network ( e.g. , fog network A 4810a ) , the 
first fog network may register the new algorithm in a 
self - sovereign blockchain 4420 used for algorithm identifi 
cation . The blockchain processing nodes of the blockchain 
4420 may then progressively vet the algorithm in order to 
provide progressively stronger assurances regarding its 
legitimacy ( e.g. , based on the computational properties and 
outcome of the algorithm ) . Moreover , a second fog network 
( e.g. , fog network B 4810b ) may subsequently be notified of 
the availability of the new algorithm , and may determine 
whether the new algorithm has been adequately vetted ( e.g. , 
by consulting the vetting status of the algorithm in the 
blockchain 4420 ) . If the second fog network is satisfied with 
the vetting of the new algorithm , the second fog network 
may agree to use the algorithm . For example , in some 
embodiments , after the algorithm has been adequately vet 
ted , the first fog network and second fog network may agree 
to begin using the new algorithm . 
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[ 0379 ] In some embodiments , the algorithm registration 
and vetting process may involve : ( 1 ) registration of a 
self - sovereign algorithm identifier ( SSAI ) ; ( 2 ) peer - review 
of a human - readable description of the algorithm ; ( 3 ) 
machine analysis of a machine - readable representation of 
the algorithm ( e.g. , analysis by a logic processor to identify 
safe behavioral properties ) ; and ( 4 ) execution of a machine 
executable implementation of the algorithm ( e.g. , execution 
in a sandbox environment used to analyze expected behav 
ior ) . Moreover , once a certain threshold ( e.g. , a majority ) of 
blockchain processing nodes or evaluators achieve similar 
vetting results , the algorithm identity and its vetting criteria / 
results are recorded in a block of the blockchain 4420 . 
[ 0380 ] FIG . 49 illustrates an example call flow 4900 for 
registering a distributed computing algorithm using a self 
sovereign blockchain . In some embodiments , for example , 
an algorithm may be registered using a self - sovereign block 
chain to facilitate use of the algorithm across one or more 
distributed or fog computing environments . Moreover , in 
some embodiments , the blockchain may leverage various 
levels of vetting to ensure the algorithm behaves as 
expected , and verify that the algorithm identifier is not 
already in use . 
[ 0381 ] In the illustrated call flow 4900 , for example , each 
blockchain processing node performs the following steps : 
[ 0382 ] ( 1 ) receive transaction request from new device : 
TXn + 1 = { S1 , “ 91E21 " } , where Sl = Sign_Kalice ( “ 91E21 ” , 
“ Human - readable - description " , " Machine - readable - descrip 
tion " , " Machine - executable - implementation " ) ; 
[ 0383 ] ( 2 ) optional algorithm vetting ( e.g. , peer - review of 
a human - readable algorithm description , logical analysis of 
a machine - readable algorithm description / representation , 
sandbox execution of a machine - executable algorithm 
form ) ; 
[ 0384 ] ( 3 ) compute hash H1 = SHA256 ( “ 91E21 ” ) ; 
[ 0385 ] ( 4 ) search hash tree of transaction attributes , where 
B , Search ( TxTree , H1 ) ; 
[ 0386 ] ( 5 ) IF B = “ H1 ” THEN return ERROR_DUP_ 
FOUND ; 
[ 0387 ] ( 6 ) ELSE IF B THEN add TX to the 
current block , where Current Block = [ TXn + 1 , TXn , TXn - 19 
TXn - m ] ; 

[ 0388 ] ( 7 ) compute new current block hash BH = SHA256 
( [ TX , + 1 , TX ,, TX , -1 , ... , TX , -m ] ) ; 
[ 0389 ] ( 8 ) write BH to the blockchain at Bcurr - pos ( current position ) ; and 
[ 0390 ] ( 9 ) insert the tuple ( H1 , BH , Bx - poss ) into TxTree . 
[ 0391 ] Once the vetting process completes , the blockchain 
contains a vetted and registered instance of the algorithm 
and its associated identifier . In this manner , distributed 
computing nodes may then begin using the algorithm ( e.g. , 
based on the algorithm identifier and optionally its machine 
readable and / or machine - executable forms ) . 
[ 0392 ] Applications 
[ 0393 ] The visual fog architecture and embodiments 
described throughout this disclosure can be used for a 
variety of large - scale visual computing applications and use 
cases , such as digital security and surveillance , business 
automation and analytics ( e.g. , retail and enterprise ) , trans 
portation ( e.g. , traffic monitoring , navigation , parking , infra 
structure planning , security or amber alerts ) , education , 
video broadcasting and playback , artificial intelligence , and 
so forth . 

[ 0394 ] As an example , the described embodiments could 
be used to implement wearable cameras for first responders 
that are capable of automatically detecting events or emer 
gency situations and performing certain responsive mea 
sures , such as notifying the appropriate personnel , triggering 
recording of the event by related or nearby cameras , and so 
forth . 
[ 0395 ] As another example , the described embodiments 
could be used to implement a digital surveillance and 
security ( DSS ) system with people search or facial recog 
nition capabilities across visual data streams from multiple 
different cameras , sensors , and / or locations . 
[ 0396 ] As another example , the described embodiments 
could be used to implement a digital surveillance and 
security ( DSS ) system with license plate identification and 
fraud detection capabilities ( e.g. , identifying a car with a 
license plate that does not match the corresponding vehicle 
record , identifying multiple cars with same license plate , and 
so forth ) . 
[ 0397 ] As another example , the described embodiments 
could be used to provide customer insights and analytics 
( e.g. , for retail shoppers ) , such as an intra - store shopper trip 
summary ( e.g. , a list of products or departments interacted 
with by a shopper ) , an inter - store shopper trip summary 
( e.g. , identifying repeat customers by differentiating 
between new and returning customers as they enter a store 
with a single or multiple locations ) , and so forth . 
[ 0398 ] Similarly , the described embodiments could be 
used to provide visualization of customer or shopper insights 
and analytics ( e.g. , visualizing a graph representation of 
visual metadata for human consumption ) . 
[ 0399 ] As another example , the described embodiments 
could be used to perform automated demographics identi 
fication in a privacy - preserving manner ( e.g. , using top - view 
cameras or sensors for demographic mapping of gender , age , 
race , and so forth ) . 
[ 0400 ] As another example , the described embodiments 
could be used to perform heat mapping in retail stores or 
other brick - and - mortar environments to generate a repre 
sentation of the crowd ( e.g. , using top - view sensors or 
cameras and / or multi - modal crowd emotion heat mapping ) . 
In some embodiments , for example , heat mapping could be 
leveraged for optimization of store layouts , among other 
examples . 
[ 0401 ] As another example , the described embodiments 
could be used to implement multi - modal real - time customer 
reviews . For example , customer reviews and / or customer 
satisfaction information could be collected and analyzed in 
real - time using multi - sensory data , which can be translated 
into quantitative customer - to - customer reviews for any 
products or in - store activities of a particular store or brick 
and - mortar environment . 
[ 0402 ] Similarly , the described embodiments could be 
used to implement multi - modal retailer - shopper double 
review , which may focus on collection and analysis of both 
product reviews from customers and customer reviews from 
retailers . 
[ 0403 ] As another example , the described embodiments 
could be used for automated customer satisfaction analysis . 
For example , visual data could be used to measure customer 
satisfaction at check - out based on non - verbal communica 
tion or body language . In this manner , customer satisfaction 
can be automatically inferred without requiring manual 
customer feedback ( e.g. , via a button or survey ) . 
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[ 0404 ] As another example , the described embodiments 
could be used to monitor the effectiveness of employee 
customer interactions . For example , visual data could be 
used to measure and track the effectiveness of communica 
tion between customers and salespeople with respect to 
finding desired products or items . In some embodiments , for 
example , visual data could be used to track users within a 
store , identify customer - employee contact and interactions , 
and monitor the employee and / or customer responses . 
[ 0405 ] As another example , the described embodiments 
could be used to provide dynamic ambience environments 
by identifying contextual information ( e.g. , relationships or 
actions ) within a group of people . For example , visual data 
could be used to identify individuals and their associated 
contextual information to determine whether they are part of 
the same group ( e.g. , based on physical proximity and / or 
corresponding movement ) , and if so , to identify various 
parameters or characteristics of the group ( e.g. , a family 
shopping together in a store ) . 
[ 0406 ] As another example , the described embodiments 
could be used to implement double auction real - time bidding 
( RTB ) . In some embodiments , for example , visual data 
could be used to implement multi - shopper , multi - bidder 
real - time bidding ( RTB ) for brick - and - mortar retailers . 
[ 0407 ] As another example , the described embodiments 
could be used to monitor and detect changes to store layouts 
based on visual data and / or sensors . 
[ 0408 ] As another example , the described embodiments 
could be used for robotic inventory tracking and logistics 
( e.g. , using stationary and / or moving cameras to track inven 
tory of retail stores , warehouses , offices , and so forth ) . 
[ 0409 ] As another example , the described embodiments 
could be used for robotic equipment inspection ( e.g. , using 
computer vision technology to inspect the safety and / or 
health of equipment in a factory , plant , warehouse , store , 
office , and so forth ) . 
[ 0410 ] As another example , the described embodiments 
could be used to provide automated tipping recommenda 
tions , for example , based on multi - sensory inputs and / or 
visual data reflective of factors that typically impact cus 
tomer tipping behavior . 
[ 0411 ] As another example , the described embodiments 
could be used for workplace automation , such as workplace 
quality control , employee monitoring , and so forth . In some 
embodiments , for example , visual data could be used to 
analyze employee emotions in order to improve productiv 
ity . 
[ 0412 ] As another example , the described embodiments 
could be used for education and / or automated learning ( e.g. , 
using visual data to analyze student behavior in the class 
room or at home in order to provide further assistance when 
appropriate ) 
[ 0413 ] As another example , the described embodiments 
could be used for video playback , such as user - centric video 
rendering , focused replays , and so forth . For example , 
user - centric video rendering could be used to perform 
focused rendering on 360 - degree video by analyzing what 
the user is focusing on , and performing no or low - resolution 
processing on portions of the video that are outside the focus 
area of the user ( e.g. , for virtual - reality ( VR ) and / or aug 
mented - reality ( AR ) applications ) . As another example , 
focused video replays could be used to automatically focus 

the rendering of a video replay on an area of interest , such 
as the portion of a sports replay where most players are 
located . 
[ 0414 ] As another example , the described embodiments 
could be used to train artificial intelligence systems . In some 
embodiments , for example , visual data could be used to 
automatically generate ground truth information that can be 
used to train artificial intelligence or machine learning 
models , such as deep learning neural networks . 
[ 0415 ] These examples are merely illustrative of the lim 
itless universe of visual applications and use cases that can 
be implemented using the visual fog architecture described 
throughout this disclosure . 
[ 0416 ] The flowcharts and block diagrams in the FIG 
URES illustrate the architecture , functionality , and operation 
of possible implementations of systems , methods and com 
puter program products according to various aspects of the 
present disclosure . In this regard , each block in the flowchart 
or block diagrams may represent a module , segment , or 
portion of code , which comprises one or more executable 
instructions for implementing the specified logical function 
( s ) . It should also be noted that , in some alternative imple 
mentations , the functions noted in the block may occur out 
of the order noted in the figures . For example , two blocks 
shown in succession may , in fact , be executed substantially 
concurrently , or the blocks may sometimes be executed in 
the reverse order or alternative orders , depending upon the 
functionality involved . It will also be noted that each block 
of the block diagrams and / or flowchart illustration , and 
combinations of blocks in the block diagrams and / or flow 
chart illustration , can be implemented by special purpose 
hardware - based systems that perform the specified functions 
or acts , or combinations of special purpose hardware and 
computer instructions . 
[ 0417 ] The foregoing disclosure outlines features of sev 
eral embodiments so that those skilled in the art may better 
understand various aspects of the present disclosure . Those 
skilled in the art should appreciate that they may readily use 
the present disclosure as a basis for designing or modifying 
other processes and structures for carrying out the same 
purposes and / or achieving the same advantages of the 
embodiments introduced herein . Those skilled in the art 
should also realize that such equivalent constructions do not 
depart from the spirit and scope of the present disclosure , 
and that they may make various changes , substitutions , and 
alterations herein without departing from the spirit and 
scope of the present disclosure . 
[ 0418 ] All or part of any hardware element disclosed 
herein may readily be provided in a system - on - a - chip ( SOC ) , 
including a central processing unit ( CPU ) package . An SoC 
represents an integrated circuit ( IC ) that integrates compo 
nents of a computer or other electronic system into a single 
chip . The SoC may contain digital , analog , mixed - signal , 
and radio frequency functions , all of which may be provided 
on a single chip substrate . Other embodiments may include 
a multi - chip - module ( MCM ) , with a plurality of chips 
located within a single electronic package and configured to 
interact closely with each other through the electronic pack 
age . In various other embodiments , the computing function 
alities disclosed herein may be implemented in one or more 
silicon cores in Application Specific Integrated Circuits 
( ASICs ) , Field Programmable Gate Arrays ( FPGAs ) , and 
other semiconductor chips . 
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[ 0419 ] As used throughout this specification , the term 
" processor " or " microprocessor " should be understood to 
include not only a traditional microprocessor ( such as 
Intel's® industry - leading x86 and x64 architectures ) , but 
also graphics processors , matrix processors , and any ASIC , 
FPGA , microcontroller , digital signal processor ( DSP ) , pro 
grammable logic device , programmable logic array ( PLA ) , 
microcode , instruction set , emulated or virtual machine 
processor , or any similar “ Turing - complete ” device , combi 
nation of devices , or logic elements ( hardware or software ) 
that permit the execution of instructions . 
[ 0420 ] Note also that in certain embodiments , some of the 
components may be omitted or consolidated . In a general 
sense , the arrangements depicted in the figures should be 
understood as logical divisions , whereas a physical archi 
tecture may include various permutations , combinations , 
and / or hybrids of these elements . It is imperative to note that 
countless possible design configurations can be used to 
achieve the operational objectives outlined herein . Accord 
ingly , the associated infrastructure has a myriad of substitute 
arrangements , design choices , device possibilities , hardware 
configurations , software implementations , and equipment 
options . 
[ 0421 ] In a general sense , any suitably - configured proces 
sor can execute instructions associated with data or micro 
code to achieve the operations detailed herein . Any proces 
sor disclosed herein could transform an element or an article 
( for example , data ) from one state or thing to another state 
or thing . In another example , some activities outlined herein 
may be implemented with fixed logic or programmable logic 
( for example , software and / or computer instructions 
executed by a processor ) and the elements identified herein 
could be some type of a programmable processor , program 
mable digital logic ( for example , a field programmable gate 
array ( FPGA ) , an erasable programmable read only memory 
( EPROM ) , an electrically erasable programmable read only 
memory ( EEPROM ) ) , an ASIC that includes digital logic , 
software , code , electronic instructions , flash memory , opti 
cal disks , CD - ROMs , DVD ROMs , magnetic or optical 
cards , other types of machine - readable mediums suitable for 
storing electronic instructions , or any suitable combination 
thereof . 
[ 0422 ] In operation , a storage may store information in 
any suitable type of tangible , non - transitory storage medium 
( for example , random access memory ( RAM ) , read only 
memory ( ROM ) , field programmable gate array ( FPGA ) , 
erasable programmable read only memory ( EPROM ) , elec 
trically erasable programmable ROM ( EEPROM ) , or micro 
code ) , software , hardware ( for example , processor instruc 
tions or microcode ) , or in any other suitable component , 
device , element , or object where appropriate and based on 
particular needs . Furthermore , the information being 
tracked , sent , received , or stored in a processor could be 
provided in any database , register , table , cache , queue , 
control list , or storage structure , based on particular needs 
and implementations , all of which could be referenced in 
any suitable timeframe . Any of the memory or storage 
elements disclosed herein should be construed as being 
encompassed within the broad terms ‘ memory ' and ' stor 
age , ' as appropriate . A non - transitory storage medium herein 
is expressly intended to include any non - transitory special 
purpose or programmable hardware configured to provide 
the disclosed operations , or to cause a processor to perform 
the disclosed operations . A non - transitory storage medium 

also expressly includes a processor having stored thereon 
hardware - coded instructions , and optionally microcode 
instructions or sequences encoded in hardware , firmware , or 
software . 
[ 0423 ] Computer program logic implementing all or part 
of the functionality described herein is embodied in various 
forms , including , but in no way limited to , hardware descrip 
tion language , a source code form , a computer executable 
form , machine instructions or microcode , programmable 
hardware , and various intermediate forms ( for example , 
forms generated by an HDL processor , assembler , compiler , 
linker , or locator ) . In an example , source code includes a 
series of computer program instructions implemented in 
various programming languages , such as an object code , an 
assembly language , or a high - level language such as 
OpenCL , FORTRAN , C , C ++ , JAVA , or HTML for use with 
various operating systems or operating environments , or in 
hardware description languages such as Spice , Verilog , and 
VHDL . The source code may define and use various data 
structures and communication messages . The source code 
may be in a computer executable form ( e.g. , via an inter 
preter ) , or the source code may be converted ( e.g. , via a 
translator , assembler , or compiler ) into a computer execut 
able form , or converted to an intermediate form such as byte 
code . Where appropriate , any of the foregoing may be used 
to build or describe appropriate discrete or integrated cir 
cuits , whether sequential , combinatorial , state machines , or 
otherwise . 
[ 0424 ] In one example , any number of electrical circuits of 
the FIGURES may be implemented on a board of an 
associated electronic device . The board can be a general 
circuit board that can hold various components of the 
internal electronic system of the electronic device and , 
further , provide connectors for other peripherals . More spe 
cifically , the board can provide the electrical connections by 
which the other components of the system can communicate 
electrically . Any suitable processor and memory can be 
suitably coupled to the board based on particular configu 
ration needs , processing demands , and computing designs . 
Other components such as external storage , additional sen 
sors , controllers for audio / video display , and peripheral 
devices may be attached to the board as plug - in cards , via 
cables , or integrated into the board itself . In another 
example , the electrical circuits of the FIGURES may be 
implemented as stand - alone modules ( e.g. , a device with 
associated components and circuitry configured to perform 
a specific application or function ) or implemented as plug - in 
modules into application specific hardware of electronic 
devices . 
[ 0425 ] Note that with the numerous examples provided 
herein , interaction may be described in terms of two , three , 
four , or more electrical components . However , this has been 
done for purposes of clarity and example only . It should be 
appreciated that the system can be consolidated or recon 
figured in any suitable manner . Along similar design alter 
natives , any of the illustrated components , modules , and 
elements of the FIGURES may be combined in various 
possible configurations , all of which are within the broad 
scope of this specification . In certain cases , it may be easier 
to describe one or more of the functionalities of a given set 
of flows by only referencing a limited number of electrical 
elements . It should be appreciated that the electrical circuits 
of the FIGURES and its teachings are readily scalable and 
can accommodate a large number of components , as well as 
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more complicated / sophisticated arrangements and configu 
rations . Accordingly , the examples provided should not limit 
the scope or inhibit the broad teachings of the electrical 
circuits as potentially applied to a myriad of other architec 
tures . 

[ 0426 ] Numerous other changes , substitutions , variations , 
alterations , and modifications may be ascertained to one 
skilled in the art and it is intended that the present disclosure 
encompass all such changes , substitutions , variations , altera 
tions , and modifications as falling within the scope of the 
appended claims . 

Example Implementations 
[ 0427 ] The following examples pertain to embodiments 
described throughout this disclosure . 
[ 0428 ] One or more embodiments may include an appa 
ratus , comprising : a processor to : identify a workload com 
prising a plurality of tasks , generate a workload graph based 
on the workload , wherein the workload graph comprises 
information associated with the plurality of tasks ; identify a 
device connectivity graph , wherein the device connectivity 
graph comprises device connectivity information associated 
with a plurality of processing devices ; identify a privacy 
policy associated with the workload ; identify privacy level 
information associated with the plurality of processing 
devices ; identify a privacy constraint based on the privacy 
policy and the privacy level information ; and determine a 
workload schedule , wherein the workload schedule com 
prises a mapping of the workload onto the plurality of 
processing devices , and wherein the workload schedule is 
determined based on the privacy constraint , the workload 
graph , and the device connectivity graph ; and a communi 
cation interface to send the workload schedule to the plu 
rality of processing devices . 
[ 0429 ] In one example embodiment of an apparatus , the 
processor to determine the workload schedule is further to 
solve an integer linear programming model based on the 
privacy constraint . 
[ 0430 ] In one example embodiment of an apparatus , the 
plurality of tasks is associated with processing sensor data 
from one or more sensors . 
[ 0431 ] In one example embodiment of an apparatus , the 
one or more sensors comprise one or more of : a camera ; an 
infrared sensor ; or a laser - based sensor . 
[ 0432 ] In one example embodiment of an apparatus , the 
sensor data comprises visual data . 
[ 0433 ] In one example embodiment of an apparatus , the 
workload graph further comprises information associated 
with a plurality of task dependencies among the plurality of 
tasks . 
[ 0434 ] In one example embodiment of an apparatus , the 
privacy policy comprises a plurality of privacy requirements 
associated with the plurality of task dependencies . 
[ 0435 ] In one example embodiment of an apparatus , the 
device connectivity information comprises information 
associated with a plurality of device connectivity links 
among the plurality of processing devices . 
[ 0436 ] In one example embodiment of an apparatus , the 
privacy level information comprises a plurality of privacy 
levels associated with the plurality of device connectivity 
links . 
[ 0437 ] One or more embodiments may include a system , 
comprising : a plurality of sensors to capture sensor data 
associated with an environment ; a plurality of processing 

devices , wherein the plurality of processing devices com 
prises a plurality of edge processing devices and a plurality 
of cloud processing devices , and wherein the plurality of 
processing devices is to : identify a workload , wherein the 
workload comprises a plurality of tasks associated with 
processing the sensor data captured by the plurality of 
sensors ; generate a workload graph based on the workload , 
wherein the workload graph comprises information associ 
ated with the plurality of tasks ; identify a device connec 
tivity graph , wherein the device connectivity graph com 
prises device connectivity information associated with the 
plurality of processing devices ; identify a privacy policy 
associated with the workload ; identify privacy level infor 
mation associated with the plurality of processing devices ; 
identify a privacy constraint based on the privacy policy and 
the privacy level information ; determine a workload sched 
ule , wherein the workload schedule comprises a mapping of 
the workload onto the plurality of processing devices , and 
wherein the workload schedule is determined based on the 
privacy constraint , the workload graph , and the device 
connectivity graph ; and distribute the workload schedule to 
the plurality of processing devices . 
[ 0438 ] In one example embodiment of a system , the 
plurality of processing devices to determine the workload 
schedule is further to solve an integer linear programming 
model based on the privacy constraint . 
[ 0439 ] In one example embodiment of a system , the 
plurality of sensors comprises one or more of : a camera ; an 
infrared sensor ; or a laser - based sensor . 
[ 0440 ] In one example embodiment of a system , the 
workload graph further comprises information associated 
with a plurality of task dependencies among the plurality of 
tasks . 
[ 0441 ] In one example embodiment of a system , the 
privacy policy comprises a plurality of privacy requirements 
associated with the plurality of task dependencies . 
( 0442 ] In one example embodiment of a system , the 
device connectivity information comprises information 
associated with a plurality of device connectivity links 
among the plurality of processing devices . 
[ 0443 ] In one example embodiment of a system , the 
privacy level information comprises a plurality of privacy 
levels associated with the plurality of device connectivity 
links . 
[ 0444 ] One or more embodiments may include at least one 
machine accessible storage medium having instructions 
stored thereon , wherein the instructions , when executed on 
a machine , cause the machine to : identify a workload 
comprising a plurality of tasks ; generate a workload graph 
based on the workload , wherein the workload graph com 
prises information associated with the plurality of tasks ; 
identify a device connectivity graph , wherein the device 
connectivity graph comprises device connectivity informa 
tion associated with a plurality of processing devices ; iden 
tify a privacy policy associated with the workload ; identify 
privacy level information associated with the plurality of 
processing devices ; identify a privacy constraint based on 
the privacy policy and the privacy level information ; deter 
mine a workload schedule , wherein the workload schedule 
comprises a mapping of the workload onto the plurality of 
processing devices , and wherein the workload schedule is 
determined based on the privacy constraint , the workload 
graph , and the device connectivity graph ; and distribute the 
workload schedule to the plurality of processing devices . 
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[ 0445 ] In one example embodiment of a storage medium , 
the instructions that cause the machine to determine the 
workload schedule further cause the machine to solve an 
integer linear programming model based on the privacy 
constraint . 
[ 0446 ] In one example embodiment of a storage medium , 
the plurality of tasks is associated with processing sensor 
data from one or more sensors . 
[ 0447 ] In one example embodiment of a storage medium : 
the workload graph further comprises information associ 
ated with a plurality of task dependencies among the plu 
rality of tasks , and the privacy policy comprises a plurality 
of privacy requirements associated with the plurality of task 
dependencies . 
[ 0448 ] In one example embodiment of a storage medium : 
the device connectivity information comprises information 
associated with a plurality of device connectivity links 
among the plurality of processing devices , and the privacy 
level information comprises a plurality of privacy levels 
associated with the plurality of device connectivity links . 
[ 0449 ] One or more embodiments may include a method , 
comprising : identifying a workload , wherein the workload 
comprises a plurality of tasks associated with processing 
sensor data from one or more sensors ; generating a workload 
graph based on the workload , wherein the workload graph 
comprises information associated with the plurality of tasks ; 
identifying a device connectivity graph , wherein the device 
connectivity graph comprises device connectivity informa 
tion associated with a plurality of processing devices ; iden 
tifying a privacy policy associated with the workload ; iden 
tifying privacy level information associated with the 
plurality of processing devices ; identifying a privacy con 
straint based on the privacy policy and the privacy level 
information ; determining a workload schedule , wherein the 
workload schedule comprises a mapping of the workload 
onto the plurality of processing devices , and wherein the 
workload schedule is determined based on the privacy 
constraint , the workload graph , and the device connectivity 
graph ; and distributing the workload schedule to the plural 
ity of processing devices . 
[ 0450 ] In one example embodiment of a method , deter 
mining the workload schedule comprises solving an integer 
linear programming model based on the privacy constraint . 
[ 0451 ] In one example embodiment of a method : the 
workload graph further comprises information associated 
with a plurality of task dependencies among the plurality of 
tasks ; and the privacy policy comprises a plurality of privacy 
requirements associated with the plurality of task dependen 
cies . 
[ 0452 ] In one example embodiment of a method : the 
device connectivity information comprises information 
associated with a plurality of device connectivity links 
among the plurality of processing devices ; and the privacy 
level information comprises a plurality of privacy levels 
associated with the plurality of device connectivity links . 

processing circuitry to : 
receive , via the network interface circuitry , a request to 

schedule a workload for execution across the comput 
ing infrastructure ; 

access a privacy policy associated with the workload , 
wherein the privacy policy indicates a plurality of 
privacy requirements for execution of the workload ; 

access a privacy level agreement associated with the 
computing infrastructure , wherein the privacy level 
agreement indicates a plurality of privacy levels pro 
vided across the computing infrastructure ; 

determine , based at least in part on the privacy policy and 
the privacy level agreement , a workload schedule for 
executing the workload , wherein the workload sched 
ule assigns execution of the workload across a portion 
of the computing infrastructure ; and 

send , via the network interface circuitry , the workload 
schedule to the portion of the computing infrastructure 
assigned to execute the workload . 

27. The computing device of claim 3 , wherein : 
the workload comprises a plurality of tasks and a plurality 

of task dependencies among the plurality of tasks ; and 
the computing infrastructure comprises a plurality of 

processing devices and a plurality of device connec 
tivity links among the plurality of processing devices . 

28. The computing device of claim 27 , wherein : 
the plurality of privacy requirements are required across 

the plurality of task dependencies of the workload ; and 
the plurality of privacy levels are provided across the 

plurality of device connectivity links of the computing 
infrastructure . 

29. The computing device of claim 28 , wherein the 
workload schedule assigns execution of the plurality of tasks 
of the workload across a subset of the plurality of processing 
devices of the computing infrastructure . 

30. The computing device of claim 29 , wherein the 
workload schedule maps the plurality of task dependencies 
of the workload across a subset of the plurality of device 
connectivity links of the computing infrastructure . 

31. The computing device of claim 4 , wherein the pro 
cessing circuitry to send , via the network interface circuitry , 
the workload schedule to the portion of the computing 
infrastructure assigned to execute the workload is further to : 

send , via the network interface circuitry , the workload 
schedule to the subset of the plurality of processing 
devices of the computing infrastructure assigned to 
execute the plurality of tasks of the workload . 

32. The computing device of claim 27 , wherein at least 
some of the plurality of tasks of the workload are to process 
sensor data captured by one or more sensors . 

33. The computing device of claim 32 , wherein : 
the one or more sensors comprise one or more cameras ; 

and 
the sensor data comprises visual data captured by the one 

or more cameras . 

34. The computing device of claim 33 , wherein at least 
some of the plurality of privacy requirements are associated 
with processing the visual data captured by the one or more 
cameras . 

1. - 25 . ( canceled ) 
26. A computing device to perform privacy - preserving 

workload scheduling across a computing infrastructure , 
comprising : 

network interface circuitry to communicate over a net 
work ; and 

35. The computing device of claim 26 , wherein the 
processing circuitry to determine , based at least in part on 
the privacy policy and the privacy level agreement , the 
workload schedule for executing the workload is further to : 
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solve an integer linear programming model based on the 
privacy policy associated with the workload and the 
privacy level agreement associated with the computing 
infrastructure ; and 

map the workload across the computing infrastructure 
based on a solution to the integer linear programming 
model . 

36. At least one non - transitory machine - readable storage 
medium having instructions stored thereon , wherein the 
instructions , when executed on processing circuitry , cause the processing circuitry to : 

receive , via network interface circuitry , a request to 
schedule a workload for execution across a computing 
infrastructure ; 

access a privacy policy associated with the workload , 
wherein the privacy policy indicates a plurality of 
privacy requirements for execution of the workload ; 

access a privacy level agreement associated with the 
computing infrastructure , wherein the privacy level 
agreement indicates a plurality of privacy levels pro 
vided across the computing infrastructure ; 

determine , based at least in part on the privacy policy and 
the privacy level agreement , a workload schedule for 
executing the workload , wherein the workload sched 
ule assigns execution of the workload across a portion 
of the computing infrastructure ; and 

send , via the network interface circuitry , the workload 
schedule to the portion of the computing infrastructure 
assigned to execute the workload . 

37. The storage medium of claim 36 , wherein : 
the workload comprises a plurality of tasks and a plurality 

of task dependencies among the plurality of tasks ; and 
the computing infrastructure comprises a plurality of 

processing devices and a plurality of device connec 
tivity links among the plurality of processing devices . 

38. The storage medium of claim 7 , wherein : 
the plurality of privacy requirements are required across 

the plurality of task dependencies of the workload ; and 
the plurality of privacy levels are provided across the 

plurality of device connectivity links of the computing 
infrastructure . 

39. The storage medium of claim 38 , wherein the work 
load schedule assigns execution of the plurality of tasks of 
the workload across a subset of the plurality of processing 
devices of the computing infrastructure . 

40. The storage medium of claim 39 , wherein the work 
load schedule maps the plurality of task dependencies of the 
workload across a subset of the plurality of device connec 
tivity links of the computing infrastructure . 

41. The storage medium of claim 39 , wherein the instruc 
tions that cause the processing circuitry to send , via the 
network interface circuitry , the workload schedule to the 
portion of the computing infrastructure assigned to execute 
the workload further cause the processing circuitry to : 

send , via the network interface circuitry , the workload 
schedule to the subset of the plurality of processing 
devices of the computing infrastructure assigned to 
execute the plurality of tasks of the workload . 

42. The storage medium of claim 8 , wherein : 
at least some of the plurality of tasks of the workload are 

to process visual data captured by one or more cameras ; 
and 

at least some of the plurality of privacy requirements are 
associated with processing the visual data captured by 
the one or more cameras . 

43. The storage medium of claim 36 , wherein the instruc 
tions that cause the processing circuitry to determine , based 
at least in part on the privacy policy and the privacy level 
agreement , the workload schedule for executing the work 
load further cause the processing circuitry to : 

solve an integer linear programming model based on the 
privacy policy associated with the workload and the 
privacy level agreement associated with the computing 
infrastructure ; and 

map the workload across the computing infrastructure 
based on a solution to the integer linear programming 
model . 

44. A method of performing privacy - preserving workload 
scheduling across a computing infrastructure , comprising : 

receiving , via network interface circuitry , a request to 
schedule a workload for execution across the comput 
ing infrastructure ; 

accessing a privacy policy associated with the workload , 
wherein the privacy policy indicates a plurality of 
privacy requirements for execution of the workload ; 

accessing a privacy level agreement associated with the 
computing infrastructure , wherein the privacy level 
agreement indicates a plurality of privacy levels pro 
vided across the computing infrastructure ; 

determining , based at least in part on the privacy policy 
and the privacy level agreement , a workload schedule 
for executing the workload , wherein the workload 
schedule assigns execution of the workload across a 
portion of the computing infrastructure ; and 

sending , via the network interface circuitry , the workload 
schedule to the portion of the computing infrastructure 
assigned to execute the workload . 

45. The method of claim 44 , wherein : 
the workload comprises a plurality of tasks and a plurality 

of task dependencies among the plurality of tasks ; and 
the computing infrastructure comprises a plurality of 

processing devices and a plurality of device connec 
tivity links among the plurality of processing devices . 

46. The method of claim 45 , wherein : 
the plurality of privacy requirements are required across 

the plurality of task dependencies of the workload ; and 
the plurality of privacy levels are provided across the 

plurality of device connectivity links of the computing 
infrastructure . 

47. The method of claim 46 , wherein : 
the workload schedule assigns execution of the plurality 

of tasks of the workload across a subset of the plurality 
of processing devices of the computing infrastructure ; 
and 

the workload schedule maps the plurality of task depen 
dencies of the workload across a subset of the plurality 
of device connectivity links of the computing infra 
structure . 

48. The method of claim 45 , wherein : 
at least some of the plurality of tasks of the workload are 

to process visual data captured by one or more cameras ; 
and 

at least some of the plurality of privacy requirements are 
associated with processing the visual data captured by 
the one or more cameras . 
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49. The method of claim 11 , wherein determining , based 
at least in part on the privacy policy and the privacy level 
agreement , the workload schedule for executing the work 
load comprises : 

solving an integer linear programming model based on the 
privacy policy associated with the workload and the 
privacy level agreement associated with the computing 
infrastructure ; and 

mapping the workload across the computing infrastruc 
ture based on a solution to the integer linear program 
ming model . 

50. A system for performing privacy - preserving workload 
scheduling across a computing infrastructure , comprising : 
means for receiving a request to schedule a workload for 

execution across the computing infrastructure ; 

means for accessing a privacy policy associated with the 
workload , wherein the privacy policy indicates a plu 
rality of privacy requirements for execution of the 
workload ; 

means for accessing a privacy level agreement associated 
with the computing infrastructure , wherein the privacy 
level agreement indicates a plurality of privacy levels 
provided across the computing infrastructure ; 

means for determining , based at least in part on the 
privacy policy and the privacy level agreement , a 
workload schedule for executing the workload , wherein 
the workload schedule assigns execution of the work 
load across a portion of the computing infrastructure ; 
and 

means for sending the workload schedule to the portion of 
the computing infrastructure assigned to execute the 
workload . 


