
(21) International Application Number: PCT/US2015/061751

(22) International Filing Date: 20 November 2015 (20.1.2015)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant: CORPAK MEDSYSTEMS, INC. [US/US]; 1001 Asbury Drive, Buffalo Grove, IL 60089 (US).

(74) Agents: HUBBARD, Nolan, R. et al; K&L Gates LLP, c/o foreign patents, P.O. Box 1135, Chicago, IL 60609-1135 (US).

(54) Title: DUAL MATERIAL Y-CONNECTOR

(57) Abstract: A dual material Y-connector for use in connection with medical tubing systems and the like includes an inner core made of a first material such as a rigid plastic material and an over-layer made of a second material such as a pliable thermoplastic elastomer. The Y-connector comprises a primary arm, a secondary arm and a convergence arm all in fluid communication with one another and may include a tubing segment bonded to the Y-connector convergence arm. The first material can be a transparent copolyester and the second material can be a translucent thermoplastic elastomer. Threaded caps having a multi-indentation configuration can be tethered to one or more arms and be configured to seal one or more Y-connector ports.
Published:

— with international search report (Art. 21(3))
DUAL MATERIAL Y-CONNECTOR

TECHNICAL FIELD

[0001] The present disclosure relates generally to apparatus, systems, methods, techniques, etc. relating to components in medical tubing systems and/or medical small bore tubing systems, and in particular for components used in systems used for feeding and medicating patients using tubular delivery.

BACKGROUND

[0002] Various medical systems utilize components that are intended to deliver one or more fluids to a patient or other person being treated. One example of such a system is an enteral feeding system in which fluid nutrient formula or the like is delivered via a series of tubing segments to a patient. In such systems it may be desirable to use one or more connectors to introduce a second fluid (e.g., a medication, flushing solution, or additional nutrient formula) into the fluid delivery apparatus. Such connectors can also be utilized in the opposite flow direction, for example, to collect stomach aspirate, reflux, or gasses escaping from the patient's GI tract. One way to do this is by using a Y-connector that has two (or more) input ports, each of which may have an input tubing segment affixed to it, and an output port that delivers any fluids introduced into the Y-connector’s input ports. Apparatus, systems, methods, techniques, etc. that provide improved fabrication, assembly, use and operation of Y-connectors would represent a significant advancement in the art.

SUMMARY

[0003] Embodiments of a Y-connector include a dual material Y-connector for use in connection with medical tubing systems and the like. A dual material Y-connector includes an inner core made of a first material such as a rigid plastic material and an over-layer made of a second material such as a pliable thermoplastic elastomer. The Y-connector comprises a primary or central arm, one or more secondary arms that branch off of the primary arm at an angle, and a convergence arm at which the primary arm and any secondary arms meet, all in fluid communication with one another. A tubing segment is bonded to the Y-connector convergence arm in some embodiments. The first material can be a transparent copolyester and the second material can be a translucent thermoplastic elastomer possessing good gripping characteristics.
Threaded caps configured to seal one or more Y-connector ports can have ridges and/or other gripping means provided on each cap's periphery. Moreover, each cap's top can be a multi-indentation configuration. The caps are tethered to each arm in some embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] Embodiments of the present disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:

[0005] Figure 1A is a perspective view of a nasogastric/nasointestinal enteral feeding system implementing one or more embodiments of a dual material Y-connector.

[0006] Figure 1B is a perspective view of a gastrostomy enteral feeding system implementing one or more embodiments of a dual material Y-connector.

[0007] Figure 2 is a detailed view of a dual material Y-connector defined by the line 2—2 of Figure 1A.

[0008] Figure 3 is a side view of a dual material Y-connector according to one or more embodiments.

[0009] Figure 4 is a side view of a dual material Y-connector according to one or more embodiments.

[0010] Figure 5 is a side view of a dual material Y-connector according to one or more embodiments.

[0011] Figure 6 is an exploded view of a dual material Y-connector according to one or more embodiments.

[0012] Figure 7 is a cross-sectional view of a dual material Y-connector according to one or more embodiments.

[0013] Figure 8 is side view of a dual material Y-connector according to one or more embodiments in which an inner core unit is illustrated along with an over-layer shown in phantom.

[0014] Figure 9 is a detailed cross-sectional view defined by the line 9—9 of Figure 7.

[0015] Figure 10 is a detailed cross-sectional view defined by the line 10—10 of Figure 7.

[0016] Figure 11 is a side view of a dual material Y-connector inner core according to one or more embodiments.

[0017] Figure 12 is a side view of a dual material Y-connector over-layer according to
one or more embodiments.

[0018] Figure 13 is a top view of a securable Y-connector cap.

DETAILED DESCRIPTION

[0019] The following detailed description of the present disclosure, including the Figures, will refer to one or more embodiments, but is not limited to such embodiments. Rather, the detailed description is intended only to be illustrative. Those skilled in the art will readily appreciate that the detailed description given with respect to the Figures is provided for explanatory purposes as the present disclosure extends beyond such specific embodiments. Embodiments of the present disclosure provide apparatus, systems, methods, techniques, etc. including and pertaining to medical tubing systems and/or medical small bore tubing systems. Specific examples will be used herein to illustrate embodiments that include (but are not limited to) Y-connectors and related apparatus and methods of making such devices. Other structures and uses will be apparent to those skilled in the art after considering the following disclosure and the Figures provided herewith. Some embodiments will be shown and explained in connection with a Y-connector used in an enteral feeding system specifically, though embodiments can be used in connection with other systems, configurations and uses.

[0020] A Y-connector typically is characterized by a housing having a primary channel defined by a generally tubular central body member having an "entry" port connected to an "exit" port via the primary channel. Each port typically can be affixed to a tubing segment or the like either removably (e.g., using friction or a mechanical engaging means) or permanently (e.g., using adhesive or solvent bonding). The Y-connector can, in use, assume a wide variety of orientations that do not require one port to be above or below another and further do not require that a given port be used as an "entry" port or an "exit" port (fluids such as liquids, gases, etc. can flow in either direction through any of the ports and the primary and secondary channels); thus such orientations in the Figures, the terminology herein, and/or the description herein are non-limiting and are used only to assist in explaining the relative structure and operation of embodiments of a Y-connector. A secondary "entry" port (e.g., for the administration of entering medication and/or to channel exiting reflux materials during enteral feeding gastric pressure relief) is provided in a secondary, offshoot tubular arm having a secondary channel that intersects the primary channel through the tubular body member. Such Y-connectors can be used in medical tubing systems or
medical small bore tubing systems (e.g., enteral feeding, respiratory, epidural, vascular, dialysis treatment, and intrathecal) and in other situations.

[0021] Figures 1A and 1B illustrate one or more embodiments of a dual material Y-connector in an enteral feeding system 30 (a nasogastric/nasointestinal system is shown in Figure 1A; a gastrostomy system is shown in Figure 1B). Nutrient formula is provided from a suspended bag 40 and is pumped using pump 42 via tubing 50. Gastric pressure relief may be provided using a reflux material container 45 that likewise is connected using tubing 50. Nutrient formula and reflux material channeling can be accomplished using one embodiment of a Y-connector 102. Moreover, if medication, flushing solution, or the like is to be supplied to the patient 55 in connection with the nutrient formula, then a second Y-connector 104 can be used as well. A detail of the second Y-connector 104 from Figure 1A is shown in Figure 2.

[0022] One or more embodiments of a dual material Y-connector 100 according to the present disclosure are shown as complete assemblies in Figures 3-5. Generally, Y-connector 100 has a primary arm 120 (e.g., a primary "entry" port) and a secondary arm 140 (e.g., a secondary "entry" port), both of which are connected to a convergence arm 160 (e.g., an "exit" port). Convergence arm 160 has a generally cylindrical stem and is the "lower part" of the "Y" shape of Y-connector 100. Some dual material Y-connector embodiments disclosed herein have an inner core unit 110 made substantially or completely of a first material, an exemplary embodiment of which is shown separately in Figure 11, and an over-layer unit 114 made substantially or completely of a second material, an exemplary embodiment of which is shown separately in Figure 12.

[0023] Core unit 110 defines the various arms, channels and connectors of the Y-connector and in some embodiments is made of a rigid material such as a suitable copolyester or the like. An amorphous copolyester product typically has suitable appearance, clarity and mold release properties (usable with injection molding, for example). It also provides appropriate toughness, hydrolytic stability, heat resistance, and chemical resistance and has been formulated for medical devices. This material (and others like it that can be used in Y-connector embodiments claimed herein) provides a strong inner core for Y-connector 100, including suitable small-bore connectors that meet appropriate standards, guidelines and/or other requirements (e.g., ISO 80369-1:2010 covering small-bore connectors for liquids and gases in healthcare applications). Also, because the rigid material in some Y-connector embodiments is clear, a user
is able to confirm visually that connections have been made, to confirm visually that administration is occurring, and to determine visually the cleanliness of the Y-connector 100 before, during and/or after use. Core unit 110 also can be made of a translucent or opaque material, including materials that can possess preselected color characteristics. Core unit 110 can be a single, unitary plastic structure or can be constructed of several components, for example by adhesive or solvent bonding.

[0024] Over-layer 114 is made of a pliable material such as a thermoplastic elastomer in some embodiments. When such an elastomer is used, it can be a medical-compliant overmold that adheres to various substrates, including the types of rigid material used in core unit 110, noted above. This type of material has a rubber feel and soft touch and is clear or translucent; it also can be used in injection molding fabrication. Over-layer 114 also can be made of an opaque material, including materials that can possess preselected color characteristics. Over-layer 114 provides a good gripping material for individuals who are handling and manipulating the Y-connector 100 (e.g., nurse, clinician, caregiver, patient, etc.) and also provides a resilient enclosure that permits the use of a rigid material for core unit 110 while protecting core unit 110 from breakage, damage, slipperiness and other undesirable characteristics. Moreover, the soft, flexible material of over-layer 114 allows Y-connector 100 to be placed in close proximity to a patient's face or other exposed skin more comfortably. The combination of core unit 110 and over-layer 114 permits an organic, smooth shape that allows for ergonomic gripping of Y-connector 100 during use.

[0025] Embodiments of a dual material Y-connector 100 herein comprise a primary arm 120 and one or more secondary arms 140 that provide fluid flow (i.e., gas flow and/or liquid flow) through the Y-connector 100. As seen in the detailed view of the core unit 110 in Figure 11, the primary arm 120 includes a generally cylindrical primary arm stem 122. A primary arm small-bore connector 124 is positioned at the outer end of primary arm stem 122. Primary arm stem 122 defines an interior primary arm channel 125. In some embodiments the primary arm stem 122 and its associated small-bore connector 124 are components of an integral core unit 110 (e.g., in the case of the entire core unit 110 being a single, unitary plastic structure). In other embodiments small-bore connector 124 can be affixed to stem 122 using adhesive, solvent bonding, radio-frequency (RF) welding and/or any other suitable means of affixing connector 124 to stem 122. Various aspects of the core unit 110 can be separately constructed and then affixed to one another in a similar manner in various embodiments.
Similarly, the secondary arm 140 includes a generally cylindrical secondary arm stem 142. A secondary arm small-bore connector 144 is positioned at the outer end of secondary arm stem 142. Additional secondary arms can be implemented in similar fashion. Secondary arm stem 142 defines an interior secondary arm channel 145. In some embodiments each secondary arm stem 142 and its associated small-bore connector 144 are components of an integral core unit 110. In other embodiments small-bore connector 144 can be affixed to stem 142 using adhesive, solvent bonding, radio-frequency (RF) welding and/or any other suitable means of affixing connector 144 to stem 142.

The convergence arm 160 also includes a convergence arm stem 162 shown in Figure 11. In some embodiments convergence arm stem 162 is a component of an integral core unit 110. In other embodiments stem 162 can be affixed to one or more components of core unit 110 using adhesive, solvent bonding, radio-frequency (RF) welding and/or any other suitable means.

Figures 7, 8 and 11 illustrate detailed information regarding one or more embodiments of the core unit 110. Primary arm 120 and convergence arm 160 are generally coaxial, providing a generally linear flow path (of varying diameters in some embodiments) for fluids flowing between (to and/or from) primary arm 120 and convergence arm 160. Secondary arm 140 is of similar construction to primary arm 120, but is oriented at an angle of approximately 60° relative to primary arm 120 and convergence arm 160 in the non-limiting exemplary embodiments of the Figures. Other angular orientations between primary and secondary arms 120, 140 are implementable as well. Generally, the likelihood of clogging or other improper flow problems increases as the angle of second feed arm 140 gets closer to 90°. In some uses performance may also be reduced or otherwise affected with changes in this angular orientation.

The inner bore diameter of interior channels 125, 145 of primary arm 120 and secondary arm 140, respectively, may be different than the inner bore diameter of convergence arm 160 in some embodiments. Interior channel diameters may be dependent upon the type of connection used between dual material Y-connector 100 and any tubing segment(s) transmitting fluid to or from the connector 100. As shown in Figures 10 and 11, an interior annular neck 173 in the interior of core unit 110 can define a linking channel 175 in some embodiments.

The interior annular neck 173 defining linking channel 175 can serve as an
anchoring point for a tubing segment or similar attachments to the convergence arm 160. In some embodiments, as seen in Figure 10 for example, tubing 50 can be solvent bonded to one or more interior surfaces of the core unit 110 (e.g., to the annular abutment of neck 173 and/or to the inner surface of interior channel 165). Other means of affixing tubing segment 50 to Y-connector 100 are well known.

[0031] The bores of arms 120, 140 typically are dictated by dimensions permitted within a given standard or other specific definition (e.g., ISO 80369-3), which can be defined for reducing misconnection potential. The bore size of convergence arm 160 may be important in relation to the size of tubing 50 that is attached to it. In some embodiments the smallest inner diameter of the convergence arm 160 is no smaller than the inner diameter of the attached tubing.

[0032] In some Y-connector embodiments usable with enteral feeding systems, for example, the interior channel 125 of primary arm 120 and the interior channel of secondary arm 140 each can have an interior bore of approximately 2.90mm and the inner bore of interior channel 165 of convergence arm 160 can be approximately 3.86mm. In some embodiments channels 125, 145 are connected to channel 165 using an even smaller diameter linking channel 175, as seen in Figures 7, 8 and 11. This linking channel 175 can have an inner bore of approximately 2.67mm and a length of -1.5 mm in some embodiments.

[0033] A portion of primary arm stem 122 is enclosed in the soft material of over-layer 114. As seen in Figures 8 and 9, a small circumferential gap 126 is provided between the primary arm small-bore connector 124 and the portion of over-layer 114 enclosing primary arm stem 122. Gap 126 allows a ring connector 128 or other suitable connector to be attached to primary arm 120 so that a small-bore connector cap 130 can be tethered or otherwise attached to primary arm 120. Gap 126 enables the ring connector 128 to swing or rotate circumferentially around small-bore connector 124, thus facilitating movement and positioning of connector 128 and cap 130 for better access by a clinician or patient to small-bore connector 124. Gap 126 also ensures that ring connector 128 remains connected to the Y-connector 100, thus preventing loss of cap 130 and allowing a nurse or other caregiver the ability to work with the Y-connector 100 without the need of a tray, table or other work surface needed to hold Y-connector parts (e.g., while changing configurations).

[0034] As with primary arm stem 122, a portion of secondary arm stem 142 is enclosed by
over-layer 114. A small circumferential gap 146 again is provided between the second feed arm portion of over-layer 114 and the secondary arm small-bore connector 144. Gap 146 allows a ring connector 148 or other suitable connector to be attached to secondary arm 140 so that a second small-bore connector cap 150 can be tethered or otherwise attached to secondary arm 140. Gap 146 enables the ring connector 148 to swing or rotate circumferentially around small-bore connector 144, thus facilitating movement and positioning of connector 148 and cap 150 for better access by a clinician or patient to small-bore connector 144. As with gap 126, cap 130 and ring connector 128, gap 146 also ensures that ring connector 148 remains with the Y-connector 100.

[0035] Caps 130, 150 are threaded covers that engage mating threads on small-bore connectors 124, 144, respectively. The configuration of each small-bore connector 124, 144 and its respective cap 130, 150 can conform to applicable national and/or international standards (e.g., ISO 80369-3 relative to connectors for enteral applications) for such connectors and the like.

[0036] The interior of caps 130, 150 can utilize whatever structure is effective to seal an inlet/outlet (e.g., one of the arms 120, 140) to prevent ingress of unwanted materials into and egress of internal materials from a system incorporating one or more Y- connectors 100 according to the disclosed embodiments. The external configuration of each cap 130, 150 enhances ease of use for a nurse, clinician, etc. The cylindrical sidewalls on the periphery of each cap 130, 150 have gripping means 133, 153 (e.g., knurling, grips, ridges or the like) to provide better gripping of the cap, especially if it is wet or has adhered material that makes disengagement from and/or securement to Y-connector 100 difficult.

[0037] Moreover, the circular top of each cap 130, 150 can have a double-D configuration 131, 151, as seen in the Figures. This type of multi-indentation cap configuration, in which the top of the cap has multiple indentations, recesses, cavities or the like, allows a nurse, clinician, etc. to use a tool 195 (e.g., a cleat or pick) to assist in dislodging a stuck cap (e.g., if a cap was encrusted with material making cap disengagement difficult). Moreover, the multi-indentation cap configuration is advantageous from a fabrication perspective, for example by reducing mold processing challenges.

[0038] Over-layer 114 can be an over-mold shot as shown in Figures 7 and 8. In addition to providing the good gripping/handling characteristics and reinforcement noted above, the over-
layer 114 also eliminates narrow joints where the secondary arm 140 meets the main body of Y-connector 100, instead providing a broader surface area that limits the amount of dirt that is allowed to accumulate and thus making Y-connector 100 easier to clean.

[0039] As noted above, the molding and/or structure of over-layer 114 leaves gaps 126, 146 for use of ring connectors 128, 148 or the like in some embodiments. Also, over-layer 114 does not enclose the small-bore connectors 124, 144 in some embodiments. However, over-layer 114 completely encloses convergence arm 160 and extends beyond the longitudinal end of convergence arm stem 162 in some embodiments. In addition to reinforcing the convergence arm component of the core unit 110, as seen in Figures 7 and 10, a pliable material extension 164 of over-layer 114 provides a pliable connection collar that functions as a stress relief extension for a tubing segment 50 or the like (e.g., in an enteral feeding system). As seen in Figure 10, as tubing 50 is pulled sideways, stress relief extension 164 provides a yielding engagement (i.e., relief of lateral stress) between tubing 50 and Y-connector 100 to reduce the likelihood of kinking in or damage to tubing 50 that might slow or stop the flow of fluids (i.e., liquids and/or gases) through tubing 50.

[0040] Aspects of the subject matter described herein may be useful alone or in combination with any one or more of the other aspect described herein. Without limiting the foregoing description, in an exemplary aspect of the present disclosure, a Y-connector apparatus for use in connection with an enteral feeding system includes a Y-connector including an inner core made of a first material and an over-layer made of a second material. The over-layer at least partially encloses the inner core. The Y-connector also includes a primary arm, a secondary arm and a convergence arm all in fluid communication with one another.

[0041] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with the preceding aspect, the Y-connector apparatus of further includes a tubing segment affixed to the Y-connector convergence arm. The tubing segment is bonded to the convergence arm using adhesive, solvent bonding, and/or radio-frequency (RF) welding.

[0042] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with one or more of the preceding aspects, the first material is a rigid plastic material.
[0043] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with one or more of the preceding aspects, the second material is a pliable material.

[0044] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with one or more of the preceding aspects, the first material is a transparent copolyester and the second material is a translucent thermoplastic elastomer.

[0045] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with one or more of the preceding aspects, the primary arm includes a primary arm stem having a primary arm small-bore connector at an outer end of the primary arm stem. The primary arm stem and primary arm small-bore connector are made of the first material. The secondary arm includes a secondary arm stem having a secondary arm small-bore connector at an outer end of the secondary arm stem. The secondary arm stem and secondary arm small-bore connector are made of the first material. The convergence arm includes a convergence arm stem having an outer end. The convergence arm stem are made of the first material. The second material encloses at least a portion of the primary arm stem, at least a portion of the secondary arm stem, and the entire convergence arm stem.

[0046] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with one or more of the preceding aspects, the Y-connector apparatus includes a first cap configured to seal the primary arm and a second cap configured to seal the secondary arm.

[0047] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with one or more of the preceding aspects, each cap includes a top and a plurality of indentations in the top of the cap.

[0048] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with one or more of the preceding aspects, each cap includes gripping means.

[0049] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with one or more of the preceding aspects, the first cap is coupled to the primary arm with a first tether configured to circumferentially rotate the first cap about the
primary arm. The second cap is coupled to the secondary arm with a second tether configured to circumferentially rotate the second cap about the secondary arm.

[0050] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with one or more of the preceding aspects, the first tether is coupled to the primary arm using a first circumferential gap between the inner core and the over-layer. The second tether is coupled to the secondary arm using a second circumferential gap between the inner core and the over-layer.

[0051] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with one or more of the preceding aspects, a Y-connector includes a hard plastic inner core and a pliable material over-layer. The inner core includes a convergence arm having a convergence arm stem, a primary arm having a primary arm stem in fluid communication with the convergence arm stem, and a secondary arm having a secondary arm stem in fluid communication with the convergence arm stem and with the primary arm stem. The pliable material over-layer encloses at least a portion of the primary arm stem, at least a portion of the secondary arm stem, and at least a portion of the convergence arm stem. The primary arm further includes a primary arm small-bore connector at an outer end of the primary arm stem. The secondary arm further includes a secondary arm small-bore connector at an outer end of the secondary arm stem.

[0052] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with one or more of the preceding aspects, the hard plastic inner core is made of a transparent plastic material.

[0053] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with one or more of the preceding aspects, the pliable material over-layer encloses the entire convergence arm stem.

[0054] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with one or more of the preceding aspects, the Y-connector further includes an over-layer stress relief extension that extends beyond an outer end of the convergence arm stem.

[0055] In accordance with another exemplary aspect of the present disclosure, which may
be used in combination with one or more of the preceding aspects, the Y-connector of further includes a primary arm cap and a secondary arm cap. The primary arm cap is tethered to the primary arm and is configured to seal the primary arm small-bore connector. The secondary arm cap is tethered to the secondary arm and is configured to seal the secondary arm small-bore connector.

[0056] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with one or more of the preceding aspects, the primary arm cap is configured to engage threading in the primary arm small-bore connector. The secondary arm cap is configured to engage threading in the secondary arm small-bore connector.

[0057] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with one or more of the preceding aspects, a Y-connector includes an inner core and an over layer. The inner core may be made of a hard material and includes a primary arm stem, a secondary arm stem, and a convergence arm stem. The primary arm stem has a small-bore connector at one end of the primary arm stem. The secondary arm stem has a secondary arm small-bore connector at one end of the secondary arm stem. The primary arm stem, secondary arm stem and convergence arm stem are all in fluid communication with one another. The over-layer encloses at least a portion of the primary arm stem, at least a portion of the secondary arm stem, and at least a portion of the convergence arm stem. The over-layer is comprised of a pliable material.

[0058] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with one or more of the preceding aspects, the over-layer encloses the entire convergence arm stem and includes a stress relief extension that extends beyond the convergence arm stem.

[0059] In accordance with another exemplary aspect of the present disclosure, which may be used in combination with one or more of the preceding aspects, the primary arm stem further includes a primary arm cap tethered to the primary arm stem and configured to seal the primary arm stem. The secondary arm stem further includes a secondary arm cap tethered to the secondary arm stem and configured to seal the secondary arm stem.

[0060] The many features and advantages of the present disclosure are apparent from the
written description, and thus, the appended claims are intended to cover all such features and advantages of the present disclosure. Further, since numerous modifications and changes will readily occur to those skilled in the art, the present disclosure is not limited to the exact construction and operation as illustrated and described. Therefore, the described embodiments should be taken as illustrative and not restrictive, and the present disclosure should not be limited to the details given herein but should be defined by the following claims and their full scope of equivalents, whether foreseeable or unforeseeable now or in the future.
CLAIMS

The invention is claimed as follows:

1. Y-connector apparatus for use in connection with an enteral feeding system, the apparatus comprising:
 a Y-connector (100, 102, 104) comprising an inner core (110) made of a first material and an over-layer (114) made of a second material, wherein
 the over-layer (114) at least partially encloses the inner core (110);
 wherein the Y-connector (100, 102, 104) comprises a primary arm (120), a secondary arm (140) and a convergence arm (160) all in fluid communication with one another.

2. The Y-connector apparatus of Claim 1 further comprising a tubing segment (50) affixed to the Y-connector convergence arm (160), wherein the tubing segment (50) is bonded to the convergence arm (160) using one of the following: adhesive, solvent bonding, and radio-frequency (RF) welding.

3. The Y-connector apparatus of Claim 2 wherein the first material is a rigid plastic material.

4. The Y-connector apparatus of Claim 3 wherein the second material is a pliable material.

5. The Y-connector apparatus of Claim 4 wherein the first material is a transparent copolyester and further wherein the second material is a translucent thermoplastic elastomer.

6. The Y-connector apparatus of Claim 1 wherein the primary arm (120) comprises a primary arm stem (122) having a primary arm small-bore connector (124) at an outer end of the primary arm stem (122), wherein the primary arm stem (122) and primary arm small-bore connector (124) are made of the first material;
 further wherein the secondary arm (140) comprises a secondary arm stem (142) having a secondary arm small-bore connector (144) at an outer end of the secondary arm stem (142), wherein the secondary arm stem (142) and secondary arm small-bore connector (144) are made of the first material;
 further wherein the convergence arm (160) comprises a convergence arm stem (162)
having an outer end, wherein the convergence arm stem (162) are made of the first material; and
further wherein the second material encloses at least a portion of the primary arm stem (122), at least a portion of the secondary arm stem (142), and the entire convergence arm stem (162).

7. The Y-connector apparatus of Claim 1 further comprising a first cap (130) configured to seal the primary arm (120) and a second cap (150) configured to seal the secondary arm (140).

8. The Y-connector apparatus of Claim 7 wherein each cap (130, 150) comprises a top and a plurality of indentations in the top of the cap.

9. The Y-connector apparatus of Claim 7 wherein each cap (130, 150) comprises gripping means (133, 153).

10. The Y-connector apparatus of Claim 7 wherein the first cap (130) is coupled to the primary arm (120) with a first tether (128) configured to circumferentially rotate the first cap (130) about the primary arm (120);
 further wherein the second cap (150) is coupled to the secondary arm (140) with a second tether (148) configured to circumferentially rotate the second cap (150) about the secondary arm (140).

11. The Y-connector apparatus of Claim 10 wherein the first tether (128) is coupled to the primary arm (120) using a first circumferential gap (126) between the inner core (110) and the over-layer (114);
 further wherein the second tether (148) is coupled to the secondary arm (140) using a second circumferential gap (146) between the inner core (110) and the over-layer (114).

12. A Y-connector (100, 102, 104) comprising:
 a hard plastic inner core (110) comprising:
 a convergence arm (160) comprising a convergence arm stem (162);
 a primary arm (120) comprising a primary arm stem (122) in fluid communication with the convergence arm stem (162); and
 a secondary arm (140) comprising a secondary arm stem (142) in fluid communication with the convergence arm stem (162) and with the primary arm stem
(122); and

a pliable material over-layer (114) enclosing at least a portion of the primary arm stem (122), enclosing at least a portion of the secondary arm stem (142), and enclosing at least a portion of the convergence arm stem (162);

wherein the primary arm (120) further comprises a primary arm small-bore connector (124) at an outer end of the primary arm stem (122); and

further wherein the secondary arm (140) further comprises a secondary arm small-bore connector (144) at an outer end of the secondary arm stem (142).

13. The Y-connector (100, 102, 104) of Claim 12 wherein the hard plastic inner core (110) is made of a transparent plastic material.

14. The Y-connector (100, 102, 104) of Claim 12 wherein the pliable material over-layer (114) encloses the entire convergence arm stem (162).

15. The Y-connector (100, 102, 104) of Claim 14 further comprising an over-layer stress relief extension (164) that extends beyond an outer end of the convergence arm stem (162).

16. The Y-connector (100, 102, 104) of Claim 12 further comprising:
a primary arm cap (130) tethered to the primary arm (120) and configured to seal the primary arm small-bore connector (124); and

a secondary arm cap (150) tethered to the secondary arm (140) and configured to seal the secondary arm small-bore connector (144).

17. The Y-connector (100, 102, 104) of Claim 16 wherein the primary arm cap (130) is configured to engage threading in the primary arm small-bore connector (124); and further wherein the secondary arm cap (150) is configured to engage threading in the secondary arm small-bore connector (144).
18. A Y-connector (100, 102, 104) comprising:
 an inner core (110) comprising a hard material and further comprising:
 a primary arm stem (122) having a primary arm small-bore connector (124) at one
 end of the primary arm stem (122);
 a secondary arm stem (142) having a secondary arm small-bore connector (144) at
 one end of the secondary arm stem (142); and
 a convergence arm stem (162);
 wherein the primary arm stem (122), secondary arm stem (142) and convergence
 arm stem (162) are all in fluid communication with one another; and
 an over-layer (114) enclosing at least a portion of the primary arm stem (122), at least a
 portion of the secondary arm stem (142), and at least a portion of the convergence arm stem
 (162), wherein the over-layer (114) is comprised of a pliable material.

19. The Y-connector (100, 102, 104) of Claim 18 wherein the over-layer (114)
 encloses the entire convergence arm stem (162) and comprises a stress relief extension (164) that
 extends beyond the convergence arm stem (162).

20. The Y-connector (100, 102, 104) of Claim 18 wherein the primary arm stem (122)
 further comprises a primary arm cap (130) tethered to the primary arm stem (122) and configured
 to seal the primary arm stem (122); and
 further wherein the secondary arm stem (142) further comprises a secondary arm cap (150)
 tethered to the secondary arm stem (142) and configured to seal the secondary arm stem(142).
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61M39/10 A61M39/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2006/195066 AI (CROSS THOMAS E J R [US]) 31 August 2006 (2006-08-31) figure 8 paragraphs [0043], [0057] - [0059] claims 1, 7 -----</td>
<td>1-20</td>
</tr>
<tr>
<td>X</td>
<td>DE 10 2009 048584 B3 (HICURA LTD [DE]) 19 April 2012 (2012-04-19) figures 1-4 paragraphs [0017] - [0028] -----</td>
<td>1, 7, 10</td>
</tr>
<tr>
<td>X</td>
<td>US 6 375 231 BI (PICA GEORGE J [US] ET AL) 23 April 2002 (2002-04-23) figures 1-9 column 3, line 61 - column 5, line 27 -----</td>
<td>1, 7, 10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "B" earlier application or patent but published on or after the international filing date
 * "L" later document may throw doubts on priority claim(s) one of which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search: 21 January 2016

Date of mailing of the international search report: 29/01/2016

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer:
Lopez Garcia, Monica

Form PCT/ISA/210 (second sheet) (April 2006)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2006195066 A1</td>
<td>31-08-2006</td>
<td>NONE</td>
</tr>
<tr>
<td>DE 102009048584 B3</td>
<td>19-04-2012</td>
<td>NONE</td>
</tr>
<tr>
<td>US 6375231 B1</td>
<td>23-04-2002</td>
<td>NONE</td>
</tr>
<tr>
<td>US 5082025 A</td>
<td>21-01-1992</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2594734 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101460093 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103536998 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1835960 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008532569 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006173407 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011230828 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2016001043 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006076214 A2</td>
</tr>
<tr>
<td>US 5322073 A</td>
<td>21-06-1994</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006036843 A1</td>
</tr>
</tbody>
</table>