(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number

2 August 2001 (02.08.2001) PCT WO 01/55839 Al

(51) International Patent Classification”: GO6F 9/00, 12/14 (74) Agents: GARRETT, Arthur, S. et al.; Finnegan, Hen-
derson, Farabow, Garrett & Dunner, L.L.P., 1300 I Street,

(21) International Application Number: PCT/US01/01712 N.W., Washington, DC 20005-3315 (US).
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
(22) International Filing Date: 19 January 2001 (19.01.2001) AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
(25) Filing Language: English HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,

LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,

(26) Publication Language: English TR, TT, TZ. UA, UG, UZ. VN, YU, ZA, ZW.

(30) Priority Data: (84) Designated States (regional): ARIPO patent (GH, GM,
09/492,120 27 January 2000 (27.01.2000) US KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; MS patent (AT, BE, CH, CY, DE, DK, ES, F, IR, GB, GR, IE,
UPALO1-521, 901 San Antonio Road, Palo Alto, CA 94303 IT, LU, MC, NL, PT, SE, TR), OAPI patent (BE, BJ, CF,
(US). CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
(72) Inventors: CONNELLY, David; 4205 Army Street, #4, ik international search report

San Francisco, CA 99131 (US). LIANG, Sheng; 210

Calderon Avenue, #23, Mountain View, CA 94041 (US). For two-letter codes and other abbreviations, refer to the "Guid-
BENJAMIN, Renaud; 3970 19th Street, San Francisco, ance Notes on Codes and Abbreviations" appearing at the begin-
CA 94114 (US). ning of each regular issue of the PCT Gazette.

(54) Title: METHOD, SYSTEM, AND ARTICLE OF MANUFACTURE FOR LIMITING ACCESS TO PROGRAM FILES IN A

—
—
—
—
—
== SHARED LIBRARY FILE
— Class Loader 122 i 124
—] [Shared Library /s
— 220 208
= get_package | Manifest (Header) Attribute \J
— Method
— i L/ 206
— Interface Object i 210 /\ 200 (\202
— Class Definition Class Definition L
—_— - method 1 | E— - method 1 Class Definition
— - method 2 ™)
— method 2 204
= - method 3 200 - method 3 (-\
— is_exported | | Class Definition
— Method T

215

L

Virtual Machine

205

I Applet P

(57) Abstract: The present invention limits access to parts of a shared software library (124) by using a class loader (122) that
generates a selective interface (210) between an external process (126) and a program file, such as a class definition (200), in the
shared library (124). This prevents external processes (126) from loading parts of the shared library (124) that were meant to remain
private or internal to the library. The present invention loads a program file, such as a class definition (200), from the shared library
(124) and generate an interface, such as an object (210), to the loaded program file (200). A determination of whether the program
file can be exported is performed based on a status indicator associated with the interface. The interface limits access to the program
file if it is determined that the program can not be exported.

O 01/55839 Al

WO 01/55839

PCT/US01/01712

METHOD, SYSTEM, AND ARTICLE OF MANUFACTURE FOR

LIMITING ACCESS TO PROGRAM FILES IN A SHARED LIBRARY FILE

BACKGROUND OF THE INVENTION

A. Field of the Invention

This invention relates to systems for limiting access to parts of shared
software libraries and, more particularly, to systems for limiting access to object

class definition files within shared libraries using class loaders.

B. Description of the Related Art

Software vendors typically ship their products as a set of shared libraries,
such as libraries written in the Java™ object-oriented programming language and
packaged as a conventional shared library file called a JAR file. In this manner,
program files stored within these libraries can be easily and efficiently shared and
used by any program module that is part of the vendor's product.

Shared libraries are often used to maintain class definitions when the
vendor's product is written using object-oriented programming. In an object-
oriented programming environment, an object generally encapsulates data
members and function members (or methods) that manipulate the data member.
An object is an instance of a class, which defines various data members and
methods shared by objects of the same class. Thus, shared libraries can be used to
define each type of object used in the vendor's product.

It is important that a user be able to access the parts of shared libraries that
are meant to be shared. This is how its contents (generally referred to as program
files) are meant to be used in such a library implementation. However, not all of
the contents are meant to be used externally to the shared library. There are class
definitions and objects that can be accessed by any code that uses the shared
library, even though these class definitions and objects are meant to be only used
internally in the library implementation. As a result, one of the problems faced by
software vendors using shared libraries is limiting access to those parts of shared
libraries that are not meant to be shared externally to the library implementation.
For example, in a Java™ library packaged into a JAR file, a package is declared to

be public and can then be accessed by any code that uses the Java™ library

WO 01/55839

PCT/US01/01712

2

despite the fact that the Java™ package is meant to be only used internally to the
library.

Aside from the basic problem of providing an external process with
unauthorized access to these parts of the shared library, other problems may occur
as a result of doing so. For example, namespace problems may occur when
externally using parts of a shared library that are supposed to be only used internal
to the library. The software vendor that created the shared library may use
specific names or a naming convention for parts of the shared library without
regard to namespace collisions external to the shared library. However, when an
external process accesses a package meant to be strictly internal to the library, the
name for the package may conflict with the name of another package or object
already used by the external process. In such a situation, there may be a
duplication of class definitions for a given package name leading to problems on
how to resolve what functionality is associated with the named packages or
objects.

The introduction of sealing in the Java™ programming language has
improved the situation by allowing some instances of this problem to be detected
and an error raised. However, simply raising an error at run-time and requiring
the end user to take appropriate action to fix the problem is not as desirable as
having the program work as intended. Also, sealing will not generally help in the
important case of wanting to ship an application or applet bundled with a
particular version of some extension. If some different version of that extension is
already installed on an end user's computer, the installed one takes precedence
over the bundled one.

Accordingly, there is a need for a system that permits access to certain

parts of a shared library while limiting access to other parts of the shared library.

SUMMARY OF THE INVENTION

Methods, systems, and articles of manufacture consistent with the present

invention overcome the shortcomings of existing systems by using a class loader

to limit access to parts of a shared library, such as a JAR file. The class loader

WO 01/55839 PCT/US01/01712

3

generates an interface between external processes seeking to access a program file
in the library and the files in the library itself. Methods, systems, and articles of
manufacture consistent with the present invention, as embodied and broadly
described herein, load a program file from a shared software library. Typically
the program file is a class definition loaded by a class loader. Next, an interface to
the loaded program file is generated. The interface, preferably an interface object,
has a status indicator as to whether the program file can be exported. The status
indicator, preferably determined by executing a status method that is part of the
preferred interface object, is used to determine if the program file can be exported
from the shared library. The status method is typically created by reading an
attribute within the shared library that indicates if the program file can be
exported. If the program file cannot be exported based on the status indicator,
access to the program file is limited. On the other hand, if the status indicator
shows the program file can be exported, the program ﬁle is returned to a
requesting process.

In accordance with another aspect of the present invention, methods,
systems, and articles of manufacture, as embodied and broadly described herein,
describe a system for limiting access to an object class definition in a shared
library. The system has a memory storage device that maintains the shared library
and a class loader. The system also includes a processor coupled to the memory
storage device. The processor is operative to load the object class definition from
the shared library on the memory storage device using the class loader. Once the
appropriate object class definition has been located within the shared library and
loaded, the processor is further operative to create an instance of an interface
object in the memory storage device typically by calling a package method within
the class loader. The interface object is associated with the object class definition
and includes a status method created by the processor as part of the interface
object in the memory storage device. The status method defines a function that
designates if the object class definition is accessible by an external process
running on the processor. The processor is also operative to call the status method

to determine if the object class definition is designated to be accessible to the

WO 01/55839 PCT/US01/01712

4

external process. Finally, the processor is capable of limiting access to the object
class definition if the executed status method indicates the object class definition
is not designated to be accessible to the external process.

In accordance with yet another aspect of the present invention, methods,
systems, and articles of manufacture, as embodied and broadly described herein,
describe a computer-readable medium, which contains instructions for limiting
access to an object class definition within a shared software library. When the
instructions are executed, the object class definition is loaded from the shared
software library using a class loader. Next, an instance of an interface object
associated with the object class definition is created by the class loader along with
a status method related to the interface object. Typically, another method within
the class loader is called to created the instance of the interface object. The status
method indicates if the object class definition is designated to be accessible by an
external process. The status method is called to determine if the object class
definition is designated to be accessible to the external process. Finally, access to
the object class definition is limited or denied if the status method indicates the

object class definition is not designated to be accessible to the external process.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a

part of this specification, illustrate an implementation of the invention. The
drawings and the description serve to explain the advantages and principles of the
invention. In the drawings,

FIG. 1 is a block diagram of a data processing system suitable for use with
methods and systems consistent with the present invention;

FIG. 2 is a block diagram illustrating how a class loader can be used to
limit access to files within a shared library consistent with an exemplary
embodiment of the present invention; and

FIG. 3 is a flow chart illustrating typical steps performed by the class
loader to limit access to files within a shared library consistent with an exemplary

embodiment of the present invention.

WO 01/55839 PCT/US01/01712

DETAILED DESCRIPTION

Reference will now be made in detail to an implementation consistent with

the present invention as illustrated in the accompanying drawings. Wherever
possible, the same reference numbers will be used throughout the drawings and

the following description to refer to the same or like parts.

Introduction

In general, methods and systems consistent with the present invention
process a call during execution of a process, such as an applet written in the
Java™ programming language, by using a class loader to limit which parts of a
shared library can be accessed by external processes. By doing so, parts of the
shared library that are meant to be limited to internal use cannot be accessed and
used by external processes.

In more detail, a request for a program file (such as a class definition) is
received by a class loader from an executing process (such as an applet) external
to a shared library. In response to receiving the request, the class loader loads the
appropriate program file from the shared library and generates an interface (such
as an interface object) to the loaded program file. The interface has a status
indicator (such as a status method), which provides an indication of whether the
program file can be exported to the external process. Based upon the value of the
status indicator, access to the loaded program file is limited via the generated
interface to the program file. If access to the program file is limited, the executing
process is denied access to the program file. Otherwise, the executing process
receives access to the program file via the interface. Thus, a class loader is
utilized to not only load the correct and appropriate class definition but to also
provide the ability to limit access to those parts of a shared library that are meant

to be only internally accessed.

Computer Architecture

FIG. 1 depicts an exemplary data processing system 100 suitable for

WO 01/55839 PCT/US01/01712

6

practicing methods and implementing systems consistent with the present
invention. Referring now to FIG. 1, data processing system 100 includes a
computer system 110 connected to a network 170, such as a Local Area Network,
Wide Area Network, or the Internet.

Computer system 110 contains a memory storage device called main
memory 120, a secondary memory storage device 130, a central processing unit
(CPU) 140, an input device 150, and a video display 160, each of which are
electronically coupled to the other parts of computer system 110. In an exemplary
embodiment consistent with the present invention, computer system 110 is
implemented using a SPARC™ computer architecture. Further details regarding
the SPARC™ computer architecture can be found in a number of texts, including
the SPARC™ V9 Reference Manuals available from SPARC International of
Menlo Park, California, which are hereby incorporated by reference.

In computer system 110, main memory 120 contains an operating system
128, a virtual machine (VM) 126, a class loader 122, and a shared library 124. An
exemplary VM 126 for purposes of this description is a Java™ Virtual Machine
(JVM), which is part of the Java™ runtime environment included in the Java™
software development kit (JDK). The JDK is available from Sun Microsystems of
Palo Alto, California. In general, the JVM acts like an abstract computing
machine, receiving instructions from programs (such as applets) in the form of
bytecodes. A bytecode is essentially a compiled format for a general purpose
program, such as a program written in the Java™ programming language. Once
the instructions or bytecodes have been received, the JVM interprets these
bytecodes by dynamically converting them into a form for execution, such as
object code, and executing them.

This execution scheme for program modules, such as applets written in the
Java™ programming language, facilitates the platform independent nature of the
JVM. Further details on the JVM can be found in a number of texts, including
Lindholm and Yellin, The Java Virtual Machine Specification, Addison-Wesley,
1997, which is hereby incorporated by reference.

During execution of a program module, VM 126 rhay encounter a

WO 01/55839 PCT/US01/01712

7

symbolic reference to an object class that has yet to be loaded. In such a situation,
VM 126 typically delegates the task of loading the appropriate program files to a
class loader. Class loaders are known in the art and are normally used when an
interpreter requires an object class definition that is not yet been loaded.
Basically, the class loader loads object class definitions from particular memory
storage locations (remote servers or local memory files) where the object class
definitions are maintained. A more detailed description of a conventional class
loader is illustrated in U.S. Patent No. 5,727,147 entitled "SYSTEM AND
METHOD FOR RESOLVING SYMBOLIC REFERENCES TO EXTERNALLY
LOCATED PROGRAM FILES", which is assigned to Sun Microsystems of
Mountain View, California and is hereby incorporated by reference. '

Exemplary class loader 122 is a conventional class loader with the addition
of several other features enabling it to operate as a selective interfacing
mechanism to parts of a shared library, such as shared library 124. In particular,
class loader 122 can create an interface to program files in shared library 124.

The interface also has a status indicator that determines if those program files are
to be exported or accessible to external processes. This ability to load the
appropriate class definition from the correct location and to operate as an interface
allows class loader 122 to limit access to specific program files, such as object
class definitions, within a shared library.

For example, an external process (such as an applet running in conjunction
with VM 126) needs to load a particular class definition because that class
definition is not yet loaded into main memory 120. If that class definition is
meant to be exported to external processes, then simply loading the class
definition would suffice. However, if that class definition is not meant to be
accessible by external processes, further steps are required to limit access to the
class definition. Class loader 122 receives the request and loads the requested
class definition from within shared library 124. In this example, library 124 is
implemented as a conventional JAR file that maintains definitions for many
classes of Java™ packages or objects. At this point, class loader 122 creates an

interface object, also called a package object, that encapsulates the requested class

WO 01/55839 PCT/US01/01712

8

definition and includes a status method as the status indicator. If the requested
class definition is designated to be externally accessible, the result of executing
the status method is a preselected value, such as "true." A more detailed
description is available below with regard to FIG. 2.

Additionally, one skilled in the art will appreciate that although one
implementation consistent with the present invention is described as being
practiced in conjunction with a JVM, systems and methods consistent with the
present invention may also be practiced in an environment other than a Java™
environment. For example, the request for a program file (such as a class
definition) within the shared library may come from a mulii-threaded application
program module (not shown) running in conjunction with operating system 128
without the need for VM126.

Furthermore, one skilled in the art will appreciate that all or part of
systems and methods consistent with the present invention may be stored on or
read from other computer-readable media, such as secondary storage devices, like
hard disks, floppy disks, and CD-ROM; a carrier wave received from the Internet;
or other forms of ROM or RAM. Finally, although specific components of data
processing system 100 have been described, one skilled in the art will appreciate
that a data processing system suitable for use with the exemplary embodiment
may contain additional or different components, such as multiple processors and a

variety of input/output devices.

Access Limiting System

FIG. 2 is a more detailed block diagram illustrating how an exemplary
class loader can be used to limit access to files within an exemplary shared library
consistent with an embodiment of the present invention. Referring now to FIGS.
1 and 2, VM 126, class loader 122 and shared library 124 are illustrated as blocks
of software that interact together. Within VM 126 is an applet 205 containing
instructions or bytecodes that are interpreted and executed by VM 126. During
execution of a bytecode from applet 205, VM 126 may need to load a particular
object class definition because the bytecode lists an object defined by that

WO 01/55839 PCT/US01/01712

9

particular object class, which has not yet been loaded into main memory 120 from
shared library 124. To load the object class definition that is appropriate for the
bytecode, VM 126 uses or delegates to class loader 122 to find the correct object
class definition. In this way, class loader 122 receives a request from VM 126 for
the object class definition.

In response to the request, class loader 122 determines the appropriate
object class definition to load. In the exemplary embodiment illustrated in FIG. 2,
the appropriate object class definition is located in shared library 124, which
maintains numerous program files, such as class definitions 200, 202, and 204. In
the example illustrated in FIG. 2, class loader 122 determines that class definition
200 is the appropriate definition and retrieves the object class definition from
shared library 124. So far, this is typically what is done by most conventional
class loaders.

In addition to the standard class loading functionality described above, |
class loader 122 includes a method that creates an interface to the object class
definition. In the exemplary embodiment, the method 220 is called get_package.
When the get_package method 220 is called, it creates an instance of an object
210 (called an interface object or package object) that encapsulates the object
class definition 200. The get package method 220 also creates a method 215
(generally referred to as a status method) as part of interface object 210 that
indicates if the object class definition is designated to be accessible to an external
process. Typically, method 220 within class loader 122 looks within shared
library 124 for an indicator or other kind of flag type mechanism that indicates
whether the desired object class definition can be exported. In the exemplary
embodiment, the get_package method 220 reads an attribute 208 in the manifest
or header 206 of shared library 124. The manifest 206 keeps information about
the contents (i.e., the program files) in shared library 124. As part of manifest
206, attribute 208 is preferably a list of which files in shared library 124 are
designated to be exported or accessible to external processes.

Based upon attribute 208, get_package method 220 defines the status

method 215 in interface object 210 to provide or return the appropriate value

WO 01/55839

PCT/US01/01712

10

when executed. For example, if object class definition 200 is not to be accessible
by external processes, status method 215 (called "is_exported" in the exemplary
embodiment) returns a "false" value when called. In this manner, class loader 122
finds and loads the correct program file (such as object class definition 200) but
does not return it to the requesting process (such as applet 205) if a status
indicator (such as the result of executing status method 215) indicates the program
file is not to be exported.

In a more detailed embodiment where the shared library 124 is a JAR file,
the JAR file has the capability to declare one or more of its packages to be
exported. Classes and resources contained in exported packages are visible to
other JAR files. Packages which are not exported are called private, and their
classes and resources are only visible within that JAR file. Also, private classes
and resources are locally scoped, meaning that when a class/resource name has to
be resolved in code from this JAR file, the definitions in the JAR file take
precedence over any other classes/resources of the same names that may be
visible.

In this detailed embodiment, exported packages are declared through the
new per-entry manifest att}ribute 208, such as Exported: (true|false) .
This boolean attribute indicates whether or not a specific package should be
exported. For example, in the following manifest entry:

Name: avax/foc\a/

Exported: true
the package javax . foo would be exported.

This attribute can be applied to individual classes or resource files, as well
as to packages and directories. In this embodiment, when a package or directory
is exported, all of the classes/resources that it contains are automatically exported
unless they are explicitly made private by having their own Exported: false
attribute. However, if the package/directory contains subpackages/subdirectories,
they are usually not automatically exported.

In an exemplary embodiment, the default is typically for all

packages/directories and classes/resources to be exported if there are no

WO 01/55839 PCT/US01/01712

11

Exported attributes specified. If there is at least one Exported attribute
specified, the default is that everything is private unless declared exported.

A JAR tool within the Java™ programming lanugage has a -e option
allowing an exports file to be specified. This is convenient for software
developers so that they can list the exports concisely rather than have to create the
appropriate manifest file. The format of the exports file is preferably a sequence
of package names and JAR file entries, each terminated by a new line. For
example, specifying the following exports file using the -e option:

foo.bar
foo.baz

/images/foo.gif

/foo.properties
would be equivalent to specifying the following manifest file with the

conventional -m option:
Name: foo/bar

Exported: true

Name: foo/baz

Exported: true

Name: images/foo.gif

Exported: true

Name: foo.properties

Exported: true

' The -e and -m options can be used together in which case the manifests are
merged. In merging manifests, the Exported attributes generated from the -e
option take precedence; i.e. any other Exported attributes from other manifests
are ignored, so that the exports file always lists the complete set of exports.

In an exemplary embodiment, the class java.net. URLClassLoader is used
as class loader 122 to load classes and resources from a class path of JAR files and
directory URLs. As illustrated in FIG. 2, this embodiment basically involves

creating a small class loader to wrap each JAR file on the class path that declares

WO 01/55839

PCT/US01/01712

12

one or more exported packages in its manifest. This class loader, preferably called
JarClassLoader will be a private class and its purpose is to allow any code loaded
from the shared library 124 (e.g. JAR file) to access its own private classes and
resources while keeping them hidden from other JAR files on the class path.

The following is an exemplary implementation of the JarClassLoader
written in pseudo-code:

import java.lang.ClassLoader;

import java.net.URL;

class JarClassLoader extends SecureClassLoader
JarClassLoader (URL url, ClassLoader parent) {

. open jar url

/*
* Returns the url representing the resource
* matching the given name which is exported
* from this jar file.
*/
public URL getExportedResource (String name) {
if (isExported (name)) {

return findResource (name) ;

* Returns the url representing the resource matching
* the given name. Any resource declared private in this
* jar file will be only accessible to code loaded from
* this jar file and will have precedence over other
* resources in the class path.
*/
public URL getResource{String name) |
if (containsEntry(name) && !isExported()) {
return findResource (name) ;

}

return parent.getResource (name) ;

WO 01/55839 PCT/US01/01712

13

* Returns an enumeration of urls representing the resources
* which match the given name. Any resources declared private
* in this jar file will only be accessible to code loaded
from
* the jar file and will have precedence over other resources
* in the class path.
*/
public URL getResources (String name) throws IOException {
URL u = findResource (name) ;
if (u != null && !isExported(name)) {
Enumeration e = parent.getResourcesg (name) ;
return new ResourceEnumeration(u, e);
} else {

return parent.getResources (name) ;

/*
* Inner class which adds an object to the front of an

* Enumeration.
*/

private class ResourceEnumeration implements Enumeration {

ResourceEnumeration (Object o0, Enumeration e0) {

/*
* Returns true if the jar file contains the specified entry.
*/

private boolean containsEntry(String name) {

WO 01/55839 PCT/US01/01712

14
/*
* Returns true if the jar file exports the specified class.
*/

private boolean isExportedClass(String name) {
String s = name.replace('.', '/').concat(".class");

return isExported(s);

/%
* Searches the jar file for the specified class name.
*/
protected Class findClass (String name) throws
ClassNotFoundException

{

load class from jar file

/*
* First checks loaded classes for the specific class name,
* then calls findClass() to load the class if the class
* 1s declared exported.
*/
Class loadExportedClass (String name) {
Class c = findLoadedClass (name) ;
if (c == null && isExportedClass(name))
try {
¢ = findClass (name) ;

} catch (ClassNotFoundException e) {

}
}

return c;

public Class loadClass(étring name) throws
ClassNotFoundException {

Class ¢ = findLoadedClass (name) ;

WO 01/55839 PCT/US01/01712

15

if (¢ == null) {

if (containsEntry(name) && !isExportedClass(name)) {

¢ = findClass() ;
}
if (e == null) {
¢ = parent.loadClass (name) ;
}
}
return c;

In the context of the above example pseudocode, URLClassLoader will
create a new instance of JarClassLoader for each JAR file on the class path that
declares one or more exported packages. The delegation parent for
JarClassLoader will be the instance of URLClassLoader created for the class
path containing the JAR file. Whenever code loaded from the JAR file is linked,
the JarClassLoader's loadClass method will be called.

First, findLoadedClass() is called to check if the class has already been
loaded. Next, if the class is contained in this JAR file but not declared exported,
an attempt to load the class from the JAR file occurs. If this fails, the parent
URLClassLoader's loadClass() method is called to check for a public class. This
allows private classes to have local scoping while maintaining ordinary scoping
for public classes.

When URLClassLoader checks this JAR file for a class referenced by
another JAR file on the class path, it will call JarClassLoader's
loadExportedClass method to load the class. This method is similar to loadClass
except that it does not check the delegation parent and will only load classes from
the JAR file that are declared to be exported. This prevents private classes from
being loaded by other JAR files on the
class path.

WO 01/55839 PCT/US01/01712

16

Access Limiting Process

Further details on steps of an exemplary method in accordance with the
present invention for limiting access to program files, such as object class
definitions, in shared libraries using a class loader will now be explained with
reference to the flow chart of FIG. 3. Referring now to FIGS. 1-3, the method 300
begins at step 305 where an external process delegates to a class loader to load a
requested class definition. In the exemplary embodiment, applet 205 has a
bytecode that is interpreted by VM 126, which then calls class loader 122 to load
the appropriate object class definition needed to interpret the bytecode.

At step 310, the appropriate class definition is located and loaded. In the
exemplary embodiment, class definition 200 is determined by class loader 122 to
be the appropriate class definition to retrieve from shared library 124.

At step 315, a method is called to generate an interface to the loaded class
definition. In general, the interface can be any type of program interface or
programming structure that can selectively provide access to other file or
information. In the exemplary embodiment, the get_package method 220 is
called to create an instance of interface object 210 as the interface. When the
get_package method 220 executes, attribute 208 in shared library 124 is read at
step 320 to determine if the interface should allow access to the requested
program file in shared library 124, such as class definition 200.

At step 325, an instance of the interface (e.g., interface object 210) is
created for class definition 200. As part of creating interface object 210, a status
method is created at step 330 depending on attribute 208 in shared library 124.
The status method is used to determine if the class definition is designated to be
accessible to external processes depending on attribute 208. In the exemplary
embodiment, the status method is implemented as is_exported method 215 within
interface object 210. When executed, is_exported method 215 generally operates
as a status indicator indicating if class definition 200 is accessible to an external
process, such as applet 205. Thus, if class definition 200 is supposed to be
accessible to external processes, the is_exported method 215 returns an export

indicator of "true."

WO 01/55839 PCT/US01/01712

17

At step 335, the status method is called to determine if the class definition
or, more generally stated, the program files encapsulated by interface object 210
can be exported at step 340. If the export indicator indicators the class definition
is exportable, then step 340 proceeds to step 345 where the class definition is
returned by class loader 122 to the requesting process (e.g., VM 126 interpreting
applet 205). Otherwise, step 340 proceeds directly to step 350 where access to the
class definition is limited and the class definition is not returned to the requesting
process. Instead, class loader 122 throws an exception indicating an error
condition of attempting to access an inaccessible file and that the requested class

definition was not found.

Conclusion

Methods and systems described above and consistent with the present
invention limit access to parts of shared library 124, such as program files or,
more specifically, object class definitions. These methods and system use class
loader 122 to load an object class definition from shared library 124 and then
create an interface, such as interface object 210, to the loaded class definition 200
of shared library 124. As part of the interface, a status method is created
depending upon the value of attribute 208 within shared library 124. Calling the
status method returns an export indicator that indicates if the class definition
encapsulated in the interface is designated to be accessible to an external process,
such as applet 205. If the class definition is meant to be used only internal to the
shared library and not by external processes, the status method indicates so and
class loader 122 limits access to that part of the shared library 124.

The foregoing description of an implementation of the invention has been
presented for purposes of illustration and description. It is not exhaustive and
does not limit the invention to the precise form disclosed. Modifications and
variations are possible in light of the above teachings or may be acquired from
practicing of the invention. For example, the described implementation includes
software but the present invention may be implemented as a combination of

hardware and software or in hardware alone. Systems consistent with the present

WO 01/55839 PCT/US01/01712

18

invention are applicable when executing programs written in all computer
programming languages, including the Java™ programming language, Smalltalk-
80, and C++.

Furthermore, those skilled in the art will appreciate that while the
invention is described in terms of object-oriented systems, the invention may be
implemented with non-object-oriented programming systems as well. The scope

* of the invention is defined by the claims and their equivalents.

WO 01/55839 PCT/US01/01712

19

WHAT IS CLAIMED IS:

1. A method for limiting access to a program file within a shared

library, comprising the steps of:

loading the program file from the shared library;

generating an interface to the loaded program file, the interface
having a status indicator as to whether the program file can be exported;

determining whether the program file is exportable based upon the
status indicator; and

limiting access to the program file when it is determined that the

program file is not exportable.

2. The method of claim 1 further comprising returning the program
file when the program file is exportable.

3. The method of claim 1 further comprising receiving a request for
the program file and wherein the loading step further comprises loading the

program file in response to receiving the request.

4. The method of claim 1, wherein the loading step further comprises

loading a class definition as the program file using a class loader.

5. The method of claim 4, wherein the generating step further
comprises:
generating an interface object as the interface, the interface object
encapsulating the class definition; and
creating a status method within the interface object, the status

method providing the status indicator when executed.

6. The method of claim 4, wherein the creating step further comprises

reading an attribute within the shared library, the attribute indicates if the class

WO 01/55839 PCT/US01/01712

20

definition can be exported.

7. The method of claim 5, wherein the determining step further
comprises calling the status method to provide an export indicator as the status
indicator, the export indicator providing an indication of whether the class

definition can be exported.

8. A computer-readable medium containing instructions for
controlling a data processing system to perform a method for limiting access to an
object class definition within a shared library, the method comprising the steps of:

loading the object class definition from the shared library using a
class loader;

creating an instance of an interface object associated with the
object class definition;

creating a status method related to the interface object that
indicates if the object class definition is designated to be accessible by an external
process;

calling the status method to determine if the object class definition
is designated to be accessible to the external process; and

limiting access to the object class definition if the status method
indicates the object class definition is not designated to be accessible to the

external process.

9. The computer-readable medium of claim 8 further comprising
returning the object class definition only if the status method indicates the object

class definition is designated to be accessible to the external process.

10. The computer-readable medium of claim 8 further comprising
receiving a request for the object class definition and wherein the loading step
further comprises loading the object class definition in response to receiving the

request.

WO 01/55839 PCT/US01/01712

21

11. The computer-readable medium of claim 8, wherein the step of
creating the instance of the interface object further comprises calling a package

method within the class loader to create the instance of the interface object.

12. The computer-readable medium of claim 11, wherein the step of
creating the status method further comprises:
calling the package method to read an attribute in the shared
library, the attribute indicating whether the object class definition is designated to
be accessible to the external process; and
creating the status method as part of the interface object based
upon the attribute.

13. The computer-readable medium of claim 12, wherein the step of
calling the status method further comprises calling the status method to provide an

export indicator that indicates whether the class definition can be exported.

14. A computer system for limiting access to an object class definition
in a shared library file, comprising:
a memory storage device for maintaining the shared library file and
a class loader; and
a processor coupled to the memory storage device, the processor
being operative to
load the object class definition from the shared library on
the memory storage device using the class loader,
create an instance of an interface object in the memory
storage device, the interface object being associated with the object class
definition,
create a status method as part of the interface object in the
memory storage device, the status method defining a function that designates if

the object class definition is accessible by an external process running on the

WO 01/55839 PCT/US01/01712

22

Pprocessor,

call the status method to determine if the object class
definition is designated to be accessible to the external process, and

limit access to the object class definition if the status
method indicates the object class definition is not designated to be accessible to

the external process.

15. The system of claim 14, wherein the processor is further operative
to allow access to the object class definition through the interface object only if
the status method indicates the object class definition is designated to be

accessible to the external process.

16. The system of claim 14, wherein the processor is further operative
to receive a request for the object class definition from the external process
running on the processor and wherein the loading step further comprises loading

the object class definition in response to receiving the request.

17. The system of claim 14, wherein the processor is further operative
to call a package method within the class loader to create the instance of the

interface object in the memory storage device.

18. The system of claim 14, wherein the processor is further operative
to call the package method to read an attribute in the shared library, the attribute
indicating whether the object class definition is designated to be accessible to the
external process and create the status method in the memory storage device as part

of the interface object based upon the attribute.

19. The system of claim 18, wherein the processor is further operative
to call the status method to provide an export indicator that indicates whether the

class definition can be exported.

WO 01/55839 PCT/US01/01712
100
120 ,
: 130
124 |
Shared Library \J
122 Secondary Storage
|) Device
Class Loader
Virtual 126
Machine N J
Operating /128 - 140
System —
CPU
Main Memory
) 60 150
Video Display Input Device
170
NETWORK

FIG. 1

SUBSTITUTE SHEET (RULE 26)

PCT/US01/01712

WO 01/55839

2/3

80¢

uonluyeq ssejd

voz_)

uonluyeq sse|o

€ poyjew -
Z poylew -
| poyjew -
uoniuye(d ssej

j9|ddy

SUIYDB [ENIA

iy

POYIoN
papiodxa S|

D) 00z
90¢ D)
gLV (1epesH) 3sajiuep
vzl .\ Areiqi paseys

€ poyjew -
Z poyjew -
| pouew -
uoniuyaq sselo

0¢ce

o1z 199lq0 2088

POyl
abeyoed }ab

443 K

Jopeo] sse|H

¢ 9Old

SUBSTITUTE SHEET (RULE 26)

WO 01/55839

FIG. 3

3/3

< START >

:

External process delegates to
class loader to load requested
program files
(e.g., object class definition)

305

|

Load class definition
(local or remotely stored)

310

|

Call method to generate
interface object

315

-

Use attribute in shared library
to determine if interface object
for requested class definition
is to be exported

320

|

Create instance of interface
object for requested class
definition

325

|

Create status method in
interface object depending on
attribute in shared library

330

-/

A

335

Call status method

Is
Class Definition
Accessible to External
Processes?

YES

Throw exception indicating
requested class definition
not found

350

N

A 4

PCT/US01/01712

-

345

Return Requested
Class Definition

(END ><

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Intoiuational application No.
PCT/US01/01712

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GO6F 9/00, 12/14
US CL :713/2, 200

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. . 713/2,200; 709/331, 332; 717/3, 5, 10

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

STN

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means
"p document published prior to the international filing date but later than

the priority date claimed

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5,987,608 A (ROSKIND) 16 NOVEMBER 1999, col. 1, line 19 1-19
- col. 2, line 45.
Y US 5,987,242 A (BENTLEY et al.) 16 NOVEMBER 1999, col. 12, | 1-19
lines 1-50, col. 14, line 59 - col. 15, line 35.
A US 5,727,147 A (VAN HOFF) 10 MARCH 1998. 1-19
X US 5,615,400 A (COWSAR et al.) 25 MARCH 1997, col. 7, lines| 1-19
13-15 and 39-46, col. 13, line 64 - col. 14, line 6, col. 20, lines 8-
12 and col. 55, line 45 - col. 61, line 44,
A US 5,359,721 A (KEMPF et al.) 25 OCTOBER 1994, 1-19
D Further documents are listed in the continuation of Box C. D See patent family annex.
¥ Special categories of cited documents: "T" later docume_nt publi.shed. after the ir}terpalional filing date or priority
"A" ?oclzjumt}nt detﬁnilng th;: general state of the art which is not considered g?it:;g?en:rt m::rr;'ﬂtﬁd‘::g}iglgc&%pil:lc\!?:l?il:)gm citedto understand the
0 be of particular relevance
"E" earlier document published on or after the international filing date X gg:su{;::édﬁo{,’:{t éﬁucliﬂnr:fiveagggéic?é;g‘?i?:%}?ﬂf&%ﬁ?f: tslt;;
"L" document which may throw doubts on priority claim(s) or which is when the document is taken alone

"y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

10 MARCH 2001

Date of mailing of the international search report

12 APR 2001

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer p P -
' & b
DENNIS M. BUTLER{J/'&%&&Q, 28 :f/[CA

Telephone No. (703) 305-3900

Form PCT/ISA/210 (second sheet) (July 1998)x

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

