(54) 发明名称
一种分离富集大体积环境水样中苏丹红系列染色剂的方法

(57) 摘要
本发明公开了一种分离富集大体积环境水样中苏丹红系列染色剂的方法。采用高内相乳液聚合技术合成具有亲水性的聚苯乙烯-二乙烯苯-DVB-二甲基丙烯酸乙二醇酯EGDMA高内相乳液聚合物柱，其中STY、DVB、EGDMA和Span80四种物质用量的体积比为6:3:3:4,水相体积比为90~92%;将500~1000mL环境水样品以1~2 mL/min的流速通过高内相乳液聚合物柱，萃取并富集样品中存在的低量苏丹红系列染色剂;采用10%或20%乙腈水溶液清洗柱体，然后采用丙酮进行洗脱，收集中洗脱液;将收集的洗脱液干燥后，用乙腈重溶后即可得待测溶液，即完成对环境水样中苏丹红系列染色剂的分离富集。
1.一种分离富集大体积环境水样中苏丹红系列染色剂的方法，其特征在于具体步骤为：

(1)采用高内相乳液聚合技术合成具有亲水性的聚苯乙烯STY-二乙烯苯DVB-二甲基丙烯酸乙二醇酯EGDMA高内相乳液聚合整体柱，即STY/DVB/EGDMA polyHIPE整体柱；

(2)将500~1000mL的环境水样品在蠕动泵或高压泵的作用下以1~2ml/min的流速通过步骤(1)制得的STY/DVB/EGDMA polyHIPE整体柱，萃取并富集样品中存在的痕量苏丹红系列染色剂；

(3)采用体积百分比浓度为10%或20%的乙腈水溶液清洗STY/DVB/EGDMA polyHIPE整体柱，除去吸附力小的干扰物质，然后采用丙酮进行洗脱，收集洗脱液，再将收集的洗脱液干燥后用乙腈重溶后得到待测溶液，即完成对环境水样中苏丹红系列染色剂的分离富集。

所述STY/DVB/EGDMA polyHIPE整体柱的具体制备步骤为：首先将STY、DVB、EGDMA和span80四种物质按照体积比为6：3：3：4加入到样品管中，混合均匀，组成有机相；配制2.4mg/mL的K2S2O8水溶液，组成水相；将水相逐滴加入到有机相中，同时快速搅拌均匀，逐渐形成高内相乳液，其中加入的水相体积比为90~92%；取0.5mL制备好的高内相乳液，加入到5mL预填充有玻璃纤维丝且内表面粗糙的移液枪头锥形顶部内，填充密实并封口；置于干燥箱中于60℃下热聚合24小时，即制得STY/DVB/EGDMA polyHIPE整体柱。
一种分离富集大体积环境水样中苏丹红系列染色剂的方法

技术领域
【0001】本发明属于分析化学样品前处理技术领域，特别涉及一种分离富集大体积环境水样中苏丹红系列染色剂的方法。该方法制备出一种萃取能力强、富集倍数高的高内相乳液聚合物整体柱，用于环境水样、土壤及其他复杂基体中苏丹红系列化学染色剂目标物的富集、分离和检测。

背景技术
【0002】苏丹红学名苏丹（Sudan），共分为苏丹红I、苏丹红II、苏丹红III和苏丹红IV。苏丹红是一种人工合成的非活性偶氮工业染料，被广泛用于如溶剂、油彩、机油、汽油、蜡的增色以及鞋、地板等染色增光方面。由于用苏丹红染色后的食品颜色非常鲜亮且不易褪色，能引起人们强烈的食欲，一些不法食品企业把苏丹红添加到辣椒粉、辣椒油、红豆腐、红心禽蛋等食品中。在多项体外致突变试验和动物致癌试验中发现苏丹红具有致突变性和致癌性。因此，世界卫生组织、国际癌症研究中心及中国、欧盟、美国等国家都对各种样品中苏丹红的含量有严格的限制。因此，如何高灵敏准确监测水体、土壤、食品等样品中的苏丹红，从而随时减少苏丹红对环境、食品等污染问题，成为世界各国人们密切关注的问题。
【0003】在分析复杂样品中苏丹红时，样品前处理技术是其中的关键之一。固相整体柱萃取技术是90年代兴起的一种新的样品前处理技术，集进样、萃取、浓缩功能于一体。整体柱材料是固相整体柱萃取技术发展的关键，目前的整体柱材料在复杂基质中痕量目标物的分离富集方面仍存在萃取能力小、柱容量有限等问题，尤其是对大体积样品中痕量目标物的分离分析仍面临很多的挑战。
【0004】高内相乳液聚合物具有孔径孔容积可调、交联度高、表面积大、表面易修饰等特点，与传统的聚合物整体柱合成方法相比，合成简单，稳定性好，聚合度可调等优点，作为载体在催化合成、药物释放、分离富集等方面显示重要的应用前景。高内相乳液聚合物在分离、富集及纯化方面展现了其特有的优势，已成为样品前处理技术中的研究前沿。

发明内容
【0005】本发明的目的是克服现有整体柱固相萃取技术萃取能力和萃取容量不够的局限性，提供一种分离富集大体积环境水样中苏丹红系列染色剂的方法。
【0006】具体步骤为：
（1）采用高内相乳液聚合技术合成具有亲水性的聚苯乙烯STY-二乙烯苯DVB-二甲基丙烯酸乙二醇酯EGDMA高内相乳液聚合整体柱，即STY/DVB/EGDMA polyHIPE整体柱。
【0007】（2）将500~1000mL的环境水样品在蠕动泵或高压泵的作用下以1~2mL/min的流速通过步骤(1)制得的STY/DVB/EGDMA polyHIPE整体柱，萃取并富集样品中存在的痕量苏丹红系列染色剂。
【0008】（3）采用体积百分比浓度为10%或20%的乙腈水溶液清洗STY/DVB/EGDMA polyHIPE整体柱，除去吸附力小的干扰物质，然后采用丙酮进行洗脱，收集洗脱液，再将收集的洗脱
液干燥后用乙腈重溶后得到待测溶液, 即完成了对环境水样中苏丹红系列染色剂的分离富集。

【0009】所述STY/DVB/EGDMA polyHIPE整体柱的具体制备步骤为：首先将STY、DVB、EGDMA
和span80四种物质按照体积比为6:3:3:4加入到样品管中, 混合均匀, 组成有机相; 配制
2.4mg/mL的K2SO4水溶液, 组成水相; 将水相逐滴加入到有机相中, 同时快速搅拌均匀, 逐渐
形成高内相乳液, 其中加入的水相体积比为90~92%; 取0.5mL制备好的高内相乳液, 加入到
5mL预充有玻璃纤维丝且内表面粗糙的移液枪头锥形顶部内, 填充密实并封口; 置于干燥
箱中于60℃下热聚合24小时, 即制得STY/DVB/EGDMA polyHIPE整体柱。

【0010】本发明方法具有以下优点：

（1）本发明采用聚苯乙烯、二乙烯苯和二甲基丙烯酸乙二醇酯为单体, 采用高内相乳液
聚合技术制备并控制整体柱的孔径、网络交联度, STY/DVB/EGDMA polyHIPE整体柱疏松多
孔, 表面积大, 吸附能力强。

【0011】（2）经过调控单体的比例、水相和有机相的体积比例, 获得了吸附性强、稳定性高、
流通性好的高内相乳液聚合物整体柱; 对苏丹红及其类似物具有高的萃取和富集能力, 可应
用于复杂水样中痕量苏丹红及其类似物的选择性萃取、富集、分离和分析; 采用高效液
相色谱-紫外光光谱仪(HPLC-UV)方法进行定性定量分析, 实现了大体积环境水样中苏丹红及
类似物的高灵敏度、超微量准确分析。

附图说明

【0012】图1是本发明STY/DVB/EGDMA polyHIPE整体柱制备过程及萃取富集过程示意图。

【0013】图2 是本发明实施例制备的STY/DVB/EGDMA polyHIPE整体柱放大倍数为5000
时的扫描电子显微镜图。

【0014】图3 是本发明实施例制备的STY/DVB/EGDMA polyHIPE整体柱放大倍数为10000
时的扫描电子显微镜图。

【0015】图4是本发明实施例中STY/DVB/EGDMA polyHIPE整体柱萃取富集环境水样品过程
的实物示意图。

【0016】图5是本发明实施例中STY/DVB/EGDMA polyHIPE整体柱与HPLC-UV联用分离分析
环境水样中苏丹红及其类似物的色谱图。其中, A是对位红、苏丹红I、苏丹红II、苏丹红III
和苏丹红IV标准溶液(50 ng/mL)的HPLC-UV色谱图; B是染热工业废水样品通过整体柱富集后
的HPLC-UV色谱图; C是染热废水样品经整体柱富集的HPLC-UV色谱图。其中, 1-对位红; 2-
苏丹红I; 3-苏丹红 II; 4-苏丹红 III; 5-苏丹红 IV。

【0017】具体实施方式

【0018】实施例：

为更进一步阐释本发明为达到预定发明目的所采取的技术手段及效果, 以下结合附图
及较佳的实施例, 对依据本发明提出的一种新型萃取富集大体积环境水样中微量苏丹红及
其类似物对位红染料的方法及其应用具体实施方式、方法、步骤、特征及其功效, 详细说明
如后。
具体步骤如下:

(1) STY/DVB/EGDMA polyHIPE整体柱制备

将STY/DVB/EGDMA和span80四种物质按照体积比6:3:3:4加入到样品管中，组成有机相，混合均匀；配制2.4 mg/mL的K2S2O8水溶液，组成水相，混合均匀；将水相逐滴加入到有机相中，同时快速搅拌均匀，逐渐形成高内相乳液，其中加入的水相体积比为91%；取0.5 mL制备好的高内相乳液，加入到5 mL预填充有玻璃纤维丝且内表面粗糙的移液枪头锥形顶部内，填充密实并封口；置于干燥箱中于60℃下热聚合24小时，反应过程简要示意图如图1所示。将所得STY/DVB/EGDMA polyHIPE整体柱用水、甲醇、乙醇及乙醇-二氯甲烷(1:1, v/v)和丙酮轮流出洗5次，除去所含的其他杂质。所得STY/DVB/EGDMA polyHIPE整体柱的表面显微结构如图2和图3所示。

(2) STY/DVB/EGDMA polyHIPE整体柱萃取富集苏丹红

将STY/DVB/EGDMA polyHIPE整体柱上端接上样品溶液，采用蠕动泵输送环境水样品（见图4），流速为2.0 mL/min，上样体积为500 mL。取萃取完成，先用体积百分比浓度为10%或20%的乙醇水溶液清洗杂质，然后采用丙酮洗脱富集在整体柱上的苏丹红或对位红等，收集洗脱液，干燥样品，用乙腈重溶，采用HPLC-UV进行检测，萃取及富集过程示意图如图4所示。以下为本实施例的应用实例：

应用实例1——高内相乳液聚合物整体柱与HPLC-UV联用分离分析自来水、湖水和河水中苏丹红的含量

首先从桂林市区内分别取20 L自来水、湖水和河水，静置沉降大颗粒杂质，然后过0.45 μm滤膜。取500 mL过滤水样，通过蠕动泵以2.0 mL/min流速通过整体柱；萃取完成后，用2 mL 10%乙醇水溶液清洗杂质，再用3 mL丙酮洗脱目标物，收集洗脱液；洗脱液通过氮气干燥，所得残留物用200 μL乙腈重溶，所得样品溶液过0.22 μm滤膜，用HPLC-UV分析，结果见图5。

应用实例2——高内相乳液聚合物整体柱与HPLC-UV联用分离分析染料工业废水中对位红和苏丹红的含量

首先从桂林市某印染小公司排水管内取水样50 L，静置沉降大颗粒杂质，先用滤纸过滤，除去大颗粒悬浮物和沉降物，然后过0.45 μm滤膜。取500 mL过滤水样，通过蠕动泵以2.0 mL/min流速通过整体柱；萃取完成后，用2 mL 20%乙醇水溶液清洗杂质，再用3 mL丙酮洗脱目标物，收集洗脱液；洗脱液通过氮气干燥，所得残留物用200 μL乙腈重溶，所得样品溶液过0.22 μm滤膜，用HPLC-UV分析，结果见图5。

图5中，A是对位红、苏丹红I、苏丹红II、苏丹红III和苏丹红IV标准溶液(50 ng/mL)的HPLC-UV色谱图；B是染料工业废水样品通过整体柱富集后的HPLC-UV色谱图；C是染料废水样品未经整体柱富集的HPLC-UV色谱图。通过定量分析可知，自来水和湖水未检测到对位红和苏丹红物质，城市污水中检测到少量苏丹红I，染料工业废水中检测到对位红和三种苏丹红物质，具体含量见表1所示。

在上述实例中，是采用染料废水、自来水、湖水、河水和城市污水等样品作为研究对象来证实本发明所制备的STY/DVB/EGDMA polyHIPE高内相乳液聚合整体柱的高萃取富集能力。但以上所述仅是本发明的较佳实施例而已，并非对本发明作任何形式上的限制，任何熟悉本专业的技术人员，在不脱离本发明技术方案范围内，当可利用上述揭示的技术
内容作些许更动或修饰为等同变化的等效实施例，但凡是未脱离本发明技术内容方案内容，依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰，均仍属于本发明技术方案的范围内。

[0025]

表1 STY/DVB/EGDMA polyHIPE整柱-HPLC-UV联用分离分析染纤废水、湖水、河水和
城市污水中苏丹红的含量结果(n=3)

<table>
<thead>
<tr>
<th>编号</th>
<th>染料名称</th>
<th>环境水样品中染料含量 a (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>染纤废水</td>
</tr>
<tr>
<td>1</td>
<td>苏丹红 I</td>
<td>29.3</td>
</tr>
<tr>
<td>2</td>
<td>苏丹红 II</td>
<td>18.4</td>
</tr>
<tr>
<td>3</td>
<td>苏丹红 III</td>
<td>13.9</td>
</tr>
<tr>
<td>4</td>
<td>苏丹红 IV</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>对位红</td>
<td>21.5</td>
</tr>
</tbody>
</table>

a 所用环境水样品的体积为500 mL, 过整体柱流速为2.0 mL/min; b表示未检测到目标物。
图 5