WO 2004/019165 A2 ||| 080 00 00 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau

(43) International Publication Date

4 March 2004 (04.03.2004)

(10) International Publication Number

WO 2004/019165 A2

(25) Filing Language:

(30) Priority Data:

60/405,539
Not furnished

(51) International Patent Classification’:

(26) Publication Language:

(21) International Application Number:
PCT/US2003/026122

(22) International Filing Date: 21 August 2003 (21.08.2003)
English

English

23 August 2002 (23.08.2002)
20 August 2003 (20.08.2003)

(71) Applicant: BROADCOM CORPORATION [US/US];

16215 Alton Parkway, Irvine, CA 92618 (US).

GO6F

(72) Inventors: FAN, Kan Frankie,; 22934 True Grit Place,
Diamond Bar, CA 91765 (US). MCDANIEL, Scott Ster-
ling,; 18762 Peppertree Drive, Villa Park, CA 92861 (US).

(74) Agent: WINSLADE, Christopher C.,, McAndrews,
Held & Malloy, Ltd., 500 West Madison Street, Suite
3400, Chicago, IL 60661 (US).

(84) Designated States (regional): European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,
IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Published:
— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

b \‘

42

0
Generic Buffer
Handler

Generic
Buffers

Posted I

Buffer

Host Adap(é r

TCP Data)

NIC Chip

Network RX Data

(54) Title: METHOD AND SYSTEM FOR TCP/IP USING GENERIC BUFFERS FOR NON-POSTING TCP APPLICATIONS

(57) Abstract: Aspects of the invention for posting buffers for
a non-posting TCP application may comprise posting at least
one generic buffer located in a memory external to a host adapter
and transferring incoming data for a TCP connection to the
posted generic buffer prior to the non-posting TCP application
posting a TCP application buffer for the incoming data. At least
one generic buffer may be allocated from a pool of available
generic buffers upon receipt of the incoming TCP connection
data. At least a portion of the incoming data may be stored in the
allocated generic buffer if the TCP application buffer is unable
to accommodate the incoming data. The method may further
determining whether the incoming data for the TCP connection
transferred to the posted generic buffer is in sequence and
ordering the incoming data based on a sequence number if the
incoming data is out of sequence.

10

15

20

25

WO 2004/019165 PCT/US2003/026122

METHOD AND SYSTEM FOR TCP/IP USING GENERIC BUFFERS
FOR NON-POSTING TCP APPLICATIONS

RELATED APPLICATIONS

This application makes reference to, claims priority to and
claims the benefit of United States Provisional Application Serial No.
60/405,539 entitled “Remote Direct Memory Access Over TCP/IP Using
Generic Buffers For Non-Posting TCP Applications” filed on August 23, 2002.

The above referenced application is incorporated herein by

reference in its entirety.

FIELD OF THE INVENTION

Embodiments of the present application relate generally to the
control of networking bandwidth. In particular, certain embodiments of the
invention relate to a method and system for handiing non-posting TCP

applications.

BACKGROUND OF THE INVENTION

High-speed digital communication networks over copper, optical
fiber and other hybrid media are used in many digital communication systems
and storage applications. As these networks continue to evolve in order meet
ever—incrgasing bandwidth requirements, new protocols are being developed
to more efficiently transfer information throughout these networks. For
example, the well-known IEEE P802.3ae draft 5 specifications describe
requirements for 10 Gigabit Ethernet (GbE) applications, which may be used

in communication networks and storage area networks (SANSs).

Notwithstanding, processing power and memory bandwidth of
devices used in applications such 10 GbE have generally lagged behind the
increased demand for networking bandwidth and faster data rates. In
networks such as the Internet, which utilize the well-known transmission
control protocol/internet protocol (TCP/IP), data copying operations utilize a

great deal of CPU and memory resources. In addition to diminished

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

processing capacity, there is also increased latency, which may significantly
affect time critical applications such as voice applications. A major
consequence is that network computing nodes become bottlenecks, which

may significantly diminish system performance and throughput.

Some TCP/IP networks typically employ a TCP offload engine
(TOE) to facilitate more efficient packet processing. A TOE is an intelligent
network adapter that may be configured to offload most or all of the TCP/IP
protocol processing from a host processor or CPU to the network adapter.
One of the primary challenges associated with building a TCP offload device
involves the handling of applications that do not post or allocate buffers before
the data is received. Current TCP offload adapters store all their received data
locally on the adapter in buffers known as TCP segment buffers. The
received data may remain stored in the TCP segment buffers on the adapter
until the application posts or allocates a buffer for the data. When the buffer is
posted, the adapter copies the data from the on-chip TCP segment buffers to
the posted buffers in the host.

FIG. 1 illustrates a block diagram of a conventional TCP offload
system 100 that utilizes pre-posted buffers. Referring to FIG. 1, there is
shown an application 102 having a plurality of TCP application posted buffers
104, including buffers 104a, 104b, ..., 104n. Host adapter 106 may include a
network interface card (NIC) processor or chip 108 and memory 110. NIC
processor 108 may include a parsing/IP-TCP checks process 112 and a TCP
re-assembly process 114. The memory 110 for the host adapter 106 may
include a plurality of pre-allocated buffers TCP segment reassembly buffers
116, including 116a, 116b, ..., 116n. Host adapter 106 may receive data 118

from a network.

In operation, application 102 may pre-post the TCP application
posted buffers 104, for example 104a. A buffer post handler process or
processor, which may be integrated within application 102, may typically post
buffers for all the data it expects to receive. Since application 102 knows that

data may be received from a specific connection, the buffer post handler

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

process may post buffers before the data is received. Subsequent to the
posting of the buffers, NIC processor 108 may receive data 118 packets from
the network for a particular connection. The data packets may generally
contain an application header followed by a large or small amount of data. In
current systems such as system 100, process 112 may be configured to
process these data packets for IP and TCP, but no data placement is
generally done, other than to store the TCP data segments in the TCP
segment re-assembly buffers 116, such as 116a. Process 112 may notify the
TCP re-assembly process 114 that more TCP segment re-assembly buffers

116 are available for re-assembly processing.

The TCP re-assembly process 114 may consult TCP application
posted buffers 104a to determine which posted buffers are available. In this
case, the TCP re-assembly process 114 may find all the posted buffers it
needs to store the data. The TCP re-assembly process 114 may then access
the TCP re-assembly buffer 116 and read the previously stored information if
a consistent stream of TCP bytes are available. The TCP re-assembly
process 114 may then write the re-assembled TCP bytes to the TCP
application posted buffers 104, in this case 104a. Upon completion of the
writing process, TCP re-assembly process 114 may notify application 102 that
the posted buffers are now full. At this point, the application may process the

complete received command, which includes both header and data.

In high-speed applications, typically of the order of about 10
gigabits per second, the system 100 of FIG. 1 may encounter problems when
processing a large volume of data associated with these applications. In
order to remain TCP compliant, the host adapter 106 must supply one window
size, which is approximately 16Kbytes for every connection. Ina typical case
where there may be approximately 1000 connections, about 16 Mbytes of
memory would be required. However, high-speed applications such as 10
GbE, require much larger window sizes. In a case where the window size
increases to approximately 512 Kbytes for every connection and there are

1000 connections, then approximately 512 Mbytes of memory would be

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

required. Therefore, the memory requirements may become tremendous and
may be prohibitively expensive and/or too large to integrate inside a single

chip on the host adapter 106.

A similar situation may occur with conventional systems which
have non-pre-posted buffers. FIG. 2 illustrates a block diagram of a
conventional TCP offload system 200 that may utilize non-pre-posted buffers.
Referring to FIG. 2, there is shown an application 202 having a plurality of
TCP application posted buffers 204, namely buffers 204a, 204b, ..., 204n.
Host adapter 206 may include a network interface card (NIC) processor or
chip 208 and memory 210. NIC processor 208 may include a parsing/IP-TCP
checks process 212 and a TCP re-assembly process 214. The memory 210
for the host adapter 206 may include a plurality of pre-allocated TCP segment
reassembly buffers 216, namely 216a, 216b, ..., 216n. Host adapter 206 may

receive data 218 from a network.

In operation, application 202 may be configured to receive data
from a significantly large plurality of connections. In this case, the pre-posting
of TCP application posted buffers 204 would be a waste of resources, since
only some of the plurality of connections is active over any given period of
time. Application 202 may be configured to issue a “peek” operation to the
connection to indicate that the application 202 should be notified when any
data is received. The NIC processor 208 may then receive data 218 packets
for a specified connection. The data packets generally contain an application
header followed by a large or small amount of data. In current systems such
as system 200, process 212 may be configured to process these data packets
for IP and TCP, but no data placement is generally done, other than to store
the TCP data segments in the TCP segment re-assembly buffers 216, such
as 216a. Process 212 may notify the TCP re-assembly process 214 that
more TCP segment re-assembly buffers 216 are available for re-assembly

processing.

The TCP re-assembly process 214 may consult the TCP

application posted buffers 204 to determine which posted buffers are

10

15

20

25

WO 2004/019165 PCT/US2003/026122

available. In this case, the TCP re-assembly process 214 may find that there
are no available TCP application posted buffers in which to store the data.
Notwithstanding, TCP re-assembly process 214 may recognize that that a
“peek” request was made. An indication for the data may subsequently be
forwarded to the application 202. Application 202 may then, normally post
TCP application buffers to handle the received data. This action may dispatch
a message to the TCP re-assembly process 214 to indicate that new buffers
are available. The TCP re-assembly process 214 may then access the TCP
re-assembly buffer 216 and read the previously stored information if a
consistent stream of TCP bytes are available. The TCP re-assembly process
214 may then write the re-assembled TCP bytes to the TCP application
posted buffers 204, in this case 204a. Upon completion of the writing
process, TCP re-assembly process 214 may notify application 202 that the
posted buffers are now full. At this point, the application may process the

complete received command, which includes both header and data.

In high-speed applications, the system 200 of FIG. 2 may
encounter the same problems as the system 100 of FIG. 1, when processing
a large volume of data associated with these applications. The problems are
aggravated because the application 202 postpones posting of TCP application
buffers until after received data has been indicated such that the buffers
space on chip 216 is routinely used up to the full window size for a large

number of connection.

Further limitations and disadvantages of conventional and
traditional approaches will become apparent to one of skill in the art, through
comparison of such systems with the present invention as set forth in the

remainder of the present application with reference to the drawings.

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

BRIEF SUMMARY OF THE INVENTION

Certain -embodiments of the invention provide a method and
system for posting buffers for a non-posting TCP application. Aspects of the
invention may be found in a method and system for posting buffers for a non-
posting TCP application. Aspects of the method may comprise posting at
least one generic buffer located in a memory external to a host adapter and
transferring incoming data for a TCP connection to the posted generic buffer
prior to the non-posting TCP application posting a TCP application buffer for
the incoming data. At least one generic buffer may be allocated from a pool
of available generic buffers upon receipt of the incoming TCP connection
data. At least a portion of the incoming data may be stored in the allocated
generic buffer if the TCP application buffer is unable to accommodate the

incoming data.

The method may further determining whether the incoming data
for the TCP connection transferred to the posted generic buffer is in sequence
and ordering the incoming data based on a sequence number if the incoming
data is out-of-sequence (O0S). Incoming data in the generic buffers may
also be assembled if they are out-of-sequence. At least one posted generic
buffer may be polled by the non-posting TCP application to determine when
the posted generic buffer contains data for the TCP connection. In response
to the polling, the non-posting TCP application may be notified when the
incoming data is stored in the posted generic buffer. At least one generic
buffer may be posted prior to transferring the incoming data for a TCP
connection to at least a portion of available TCP application buffers. At least
one posted generic buffer may be located in a memory internal to the host

adapter.

Another aspect of the invention may provide a machine-
readable storage, having stored thereon a computer program having at least
one code section for posting buffers for a non-posting TCP application. The

at least one code section may be executable by a machine, thereby causing

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

the machine to perform the steps described above in the method for posting

buffers for a non-posting TCP application.

Aspects of the system may comprise posting at least one
generic buffer located in a memory external to a host adapter by a processor.
The processor may be at least one of a NIC, a generic buffer handler, a buffer
post handler, a TCP notifier and a TCP data placement processor. In any
case, the processor may be adapted to transfer incoming data for a TCP
connection to the posted generic buffer prior to the non-posting TCP
application posting a TCP application buffer for the incoming data. At least
one generic buffer may be allocated by the processor from a pool of available
generic buffers upon receipt of the incoming TCP connection data. The
processor may store a portion of the incoming data in the allocated generic
buffer if the TCP application buffer is unable to accommodate the incoming
data.

The processor may further be adapted to determine whether the
incoming data for the TCP connection transferred to the posted generic buffer
is in sequence and order/reorder the incoming data based on a sequence
number if the incoming data is out-of-sequence. Incoming data in the generic
buffers may also be assembled by the processor if they are out-of-sequence.
At least one posted generic buffer may be polled by the non-posting TCP
application to- determine when the posted generic buffer contains data for the
TCP connection. In response to the polling, the non-posting TCP application
may be notified by the processor when the incoming data is stored in the
posted generic buffer. At least one generic buffer may be posted by the
processor prior to transferring the incoming data for a TCP connection to at
least a portion of available TCP application buffers. In this regard, the at least
one posted generic buffer may be located in a memory internal to the host

adapter.

These and other advantages, aspects and novel features of the
present invention, as well as details of an illustrated embodiment thereof, will

be more fully understood from the following description and drawings.

WO 2004/019165 PCT/US2003/026122

BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS

FIG. 1 illustrates a block diagram of a conventional TCP offload

system 100 that utilizes pre-posted buffers.

FIG. 2 illustrates a block diagram of a conventional TCP offload

5 system 200 that utilizes non-pre-posted buffers.

FIG. 3 illustrates a block diagram of a TCP offload system 300
that utilizes pre-posted buffers in accordance with one embodiment of the

present invention.

FIG. 4 illustrates a block diagram of a TCP offload system 400
10 that utilizes non-pre-posted buffers in accordance with one embodiment of the

present invention.

FIG. 5 is a flow chart illustrating exemplary processing steps for

a buffer post handler in accordance with embodiments of FIG. 3 and FIG. 4.

FIG. 6 is a flow chart illustrating exemplary processing steps for
15 a generic buffer handier in accordance with embodiments of FIG. 3 and FIG.
4.

FIG. 7 is a flow chart illustrating exemplary processing steps for
a TCP data placement process in accordance with embodiments of FIG. 3
and FIG. 4.

20 FIG. 8 is a flow chart illustrating exemplary processing steps for
a TCP notification process in accordance with embodiments of FIG. 3 and
FIG. 4.

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

DETAILED DESCRIPTION OF THE INVENTION

Aspects of the present invention provide a method and system
for posting buffers for a non-posting TCP application so that a large memory
may not be required on, for example, a TOE adapter. The method may
include posting at least one posted buffer, namely a generic buffer, on behalf
of the TCP application. Upon receiving data for a connection, the a generic
posted buffer may be allocated from a pool of available generic posted buffers
for placement of the received data. Incoming data for the connection may
subsequently be transferred to at least one of the allocated generic buffers if
the TCP application posted buffer is unable to accommodate the incoming
data.

In response to a polling operation by the TCP application while
the data may still be in the generic buffer, a notification may be provided to
the TCP application to alert the TCP application that data may be available for
a TCP connection. The TCP application may post a buffer for data that has
already been received into the generic pre-posted buffer. Incoming data for
the connection may be transferred from the posted generic buffer to the TCP
application posted buffer. The TCP application may be notified when the
posted buffer is full. If incoming data stored in the generic buffers are out of
sequence, then the generic buffers may be assembled and placed in a proper
sequence in the posted buffer before the TCP application is notified that it's
buffer is full.

FIG. 3 illustrates a block diagram of a TCP offload system 300
that utilizes generic buffers in accordance with one embodiment of the present
invention. Referring to FIG. 3, there is shown an application 302 having a
plurality of TCP application posted buffers 304, which may include buffers
304a, 304b, ..., 304n, and a plurality of generic buffers 326, which may
include 326a, 326b, ..., 304n. A Host adapter 306 may include a network
interface card (NIC) processor 308. NIC processor or chip 308 may include a
parsing/IP-TCP checks process or processor 312 and a TCP data placement

process or processor 328. Host adapter 306 may receive data 318 from a

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

10

network. The system 300 may also include a TCP notification process or
processor 324, a buffer post handler process or processor 322 and a generic

buffer handler or processor 320.

In accordance with the inventive arrangements, application 302
may have the capability to recognize when network received data 318 may be
received via a specific connection. In this regard, application 302 may post
TCP application buffers from the pool of posted buffers 304, for example
304a, prior to the data 318 being received from the network. Generic buffer
handler 320 may be configured to post a plurality of generic buffers from the
pool of generic buffers 326, for example 326a, and may subsequently notify
the TCP data placement process 328 that new generic buffers have been
posted and are available. The generic buffers 326 may be configured as a
common pool of generic buffers, which may be made available for any

connection that requires them.

In operation, the buffer post handler process 322 may handle
the posting of TCP application posted buffers 304 by application 302. The
buffer post handler process 322 may store any pertinent information related to
the buffers. For example, the buffer post handler process 322 may store
information such as handles for the posted buffers, which may be

communicated to the host adapter 306.

Processor 312 which may run on the NIC chip 312 of host
adapter 306 may receive data 318 from the network for a particular
connection. Data packets for the received data 318 may normally contain an
application header followed by a large or small amount of data. Process 312
may process the data packets for the received data 318 at the IP and TCP
level. Preferably, no data placement may be done other than to pass the TCP
segments of the received data packets to the TCP data placement process
328, although the invention is not limited in this regard. No data buffering may
be required as in conventional systems since the TCP data placement

process 328 may always have the capability to place the data in an available

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

11

buffer. Accordingly, the processing may be very efficient since data flow may

be continuous due to the lack of buffering.

Upon receipt of the TCP data packets, the TCP data placement
process 328 may compare the received data packets to the range of TCP
application posted data buffers 304 that were previously allocated. If there is
enough posted buffers 304 available to store the data for the data packets,
then the data may be written directly to the posted buffers 304. The TCP data
placement process 328 may then issue a notification to the TCP notification
process 324, which may inform the application 302 that data has been placed
to the TCP application posted buffer 304. In a case where the data placed in
the TCP application posted buffer fills an entire TCP application posted buffer,
then the TCP data placement process 328 may send a notification to the TCP
notification process 324, which may notify the application 302 that the data is

ready for processing.

In a case where there is not enough TCP application posted
buffers 304 available to store the data contained in the received data packets,
then a non-pre-posted buffer processing may be followed. As shown in FIG.
4.

FIG. 4 illustrates a block diagram of a TCP offload system 400
that utilizes non-pre-posted buffers in accordance with one embodiment of the
present invention. Referring to FIG. 4, there is shown an application 402
having a plurality of TCP Application posted buffers 404, which may include
buffers 404a, 404b, ..., 404n, and a plurality of generic posted buffers 426,
which may include 426a, 426b, ..., 426n. A Host adapter 406 may include a
network interface card (NIC) processor or chip 408. NIC processor 408 may
include a parsing/IP-TCP check process or processor 412 and a TCP data
placement process or processor 428. Host adapter 406 may receive data
418 from a network. The system 400 may also include a TCP notification
process or processor 424, a buffer post handler process or processor 422 and

a generic buffer handler or processor 420.

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

12

In accordance with aspects of the present invention, application
402 may have the capability to wait for input from any of a plurality of TCP
connections. Since only a few TCP connections may be active at any given
period, the pre-posting of buffers would be a waste of resources. Generic
buffer handler 420 may be configured to post a plurality of generic buffers
from the pool of generic buffers 426, for example 426a, and may
subsequently notify the TCP data placement process 428 that new generic
buffers have been posted and are available. The generic buffers 426 may be
configured as a common pool of generic buffers, which may be made

available for any connection that requires them.

Application 402 may be configured to request the TCP
notification process 424 to execute a “peek” operation on the connection
carrying incoming received network data 418. The peek operation may be
used to determine when data has been received for a connection. [nitially,
since no data may be received, no acton may be taken by the TCP
notification process 424.

In operation, process 412 which may run on the NIC chip 412 of
host adapter 406, may receive data 418 from the network for a particular
connection. Data packets for the received data 418 may normally contain an
application header followed by a large or small amount of data. Process 412
may process the data packets for the received data 418 at the IP and TCP
level. Preferably, no data placement is done other than to pass the TCP
segments of the received data packets to the TCP data placement process
428.

Upon receipt of the TCP data packets, the TCP data placement
process 428 may compare the received data packets to the range of TCP
application posted data buffers 404, but will find that no buffers were
previously posted. Accordingly, a generic buffer from the pool of generic
buffers 426, such as 426a, may be allocated from the previously posted
generic buffers. The received data may then be written to the allocated

generic buffer. A record containing at least a TCP sequence number and the

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

13

location of the generic buffer containing the written data may be sent to the
TCP data placement process 428. The data placement process 428 may
subsequently pass the record containing at least the sequence number and
buffer location or address to the TCP notification process 424. The TCP
notification process 424 may add the information in the record to an internal

TCP re-assembly list.

If the data indicated by the notification to process 424 is in the
proper sequence relative to any data that was previously indicated to the
application, then the TCP' notification process 424 may satisfy the previously
requested “peek” operation. The information related to the “peek” operation
may then be sent to the application 402. Once the application 402 receives
information that the “peek” request has been satisfied and there is data
available for the connection, application 402 may respond by posting a TCP
application buffer to the buffer post handler process 422 to handle the
received data indicated by the TCP notification process 424. The buffer post
handler process 422 may post the TCP application buffers, save the
information about each posted TCP application buffer and pass the buffer
handle information to the TCP data placement process 428. The TCP data
placement process 428 may be configured to use these buffers to store the

information that was placed in the generic buffers.

TCP data placement process 428 may consult its re-assembly
list to determine whether the generic buffers containing data are complete.
The TCP data placement process may continue to copy the data from the
generic buffers 426 to the posted buffers until the data is complete. Upon
completion of the data copying, the TCP data placement process 428 may
send a notification to the TCP notification process 424, which may indicate
completion of the TCP application posted buffer 404. The TCP notification
process 424 may then notify the application 402 that the data is ready for
processing and also notify the generic buffer handler 420 that the generic
buffers which were allocated are now empty. The generic buffer handler 420

may then return the empty buffer the pool of available generic buffers. The

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

14

inventive arrangements of FIG. 3 and FIG. 4 may operate individually or in

conjunction with each other.

In one embodiment of the invention, a system for posting
generic buffers for a TCP application may be provided. The system may
include a buffer posting handler or processor 322 that may be configured for
handling posting of at least one posted TCP application buffer for use by the
TCP data placement block 328. FIG. 5 is a flow chart illustrating exemplary
processing steps for the buffer post handler process in accordance with the
embodiments of FIG. 3 and FIG. 4, for example. The buffer post handler
processes 322, 422 of FIG. 3 and FIG. 4 respectively, may be implemented
as a finite state machine (FSM). Accordingly, the exemplary steps illustrated
in FIG. 5 may represent a state diagram for buffer post handler processes 322
and 422.

Referring to FIG. 5, step 502 may be the start or reset step. In
step 504, which may occur subsequent to a start or reset step 502, a check
may be as to whether there is a TCP application buffer post request from the
application. If there is no buffer post request from the application, then the
state machine may remain in a loop and await a buffer post request by re-
executing step 504. Whenever a TCP application buffer post request is
received, the posted buffer information may be saved for later use by the TCP
notification block 324 or 424 of FIG. 3 and FIG. 4 respectively, in step 506. In
step 508, the buffer post handler process may send a message to the TCP
data placement process, which may indicate the posting of a new TCP
application buffer. Control may then return to step 504, where the buffer post

handler process awaits another buffer post request from the application.

In an embodiment of the invention, a system for posting generic
buffers for use when a TCP application has not designated buffers may be
provided. Accordingly, a TCP data placement block or processor 428 of FIG.
4, may be configured to transfer incoming data for a connection to one or
more generic buffers and/or TCP application posted buifers depending on a

corresponding buffer state for the connection. A data sequence checker may

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

15

be a part of the TCP data placement block or processor 428 and may be
configured to determine whether the incoming data in the generic buffer is in
proper sequence. In a case where data may be out of sequence, the data
sequence checker may be adapted to assemble the incoming data so that it

may be placed in sequence in the posted buffer

In accordance with the inventive arrangements, A TCP notification
processor 424 may be configured to notify and/or send an indication to the
TCP application 402 when the TCP application posted buffer is-full. After
being notified that the buffer is full, the TCP application may process the data.
The generic buffer handler or processor 420 may further include an allocating
processor configured to allocate a generic buffer from a pool of available
generic buffers. The data sequence checker may be configured to determine
whether the incoming data in the generic buffer is in a proper sequence. Ina
case where the data may be out of sequence, a data assembling processor
may assemble the incoming data so that it may be placed in sequence in the
posted buffer. The TCP notification processor 424, the generic buffer handler

or processor 420, data sequence checker may be implemented in software.

FIG. 6 is a flow chart illustrating exemplary processing steps for
the generic buffer handler process in accordance with embodiments of FIG. 3
and FIG. 4, for example. The generic buffer handler processes 320, 420 of
FIG. 3 and FIG. 4 respectively, may be implemented as a FSM. Accordingly,
the exemplary steps illustrated in FIG. 6 may represent a state diagram for

generic buffer handler processes 320 and 420.

Referring to FIG. 6, step 602 may be the start or reset step. In
step 604, which may occur subsequently to a start or reset step 602, a check
may be as to whether there is any buffer post request from a TCP notification
process. If there is a buffer post request from the TCP notification process
324 or 424, then step 606 may be executed and a generic buffer may be
found from a buffer tracking table. Once a buffer is found, then control may

pass to step 608 where the generic buffer handle may be sent to the adapter.

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

16

Control may then return to step 604 where the FSM awaits another buffer

notification from TCP notification process 424.

Returning to step 604, if no buffer post notification is received
from the TCP notification process, then in step 610, a decision is made as to
whether there are sufficient buffers in the adapter. [f there are insufficient
generic buffers in the adapter, then in step 612, memory buffers may be
allocated from the host memory. Subsequently, in step 614, a generic buffer
tracking table entry may be created. Following step 614, step 608 may be
executed -and the generic buffer handle may be sent to the TCP data
placement process of the host adapter.

Returning to step 610, if there are sufficient generic buffers in the
adapter, then, in step 610, processing will continue with step 604.

FIG. 7 is a flow chart illustrating exemplary processing steps for
the TCP data placement process in accordance with embodiments of FIG. 3
and FIG. 4, for example. The TCP data placement processes 328, 428 of
FIG. 3 and FIG. 4 respectively, may be implemented as a FSM. Accordingly,
the exemplary steps illustrated in FIG. 7 may represent a state diagram for
TCP data placement processes 328 and 428.

Referring to FIG. 7, step 702 may be the start or reset step. In
step 704, which may occur subsequent to a start or reset step 702, a decision
may be as to whether there is another TCP application buffer posted. If
another TCP application buffer is posted, then step 706 may be executed and
a decision may be made as to whether a generic buffer used count is greater
than zero. If the generic buffer count is greater than zero, then there are
available generic buffers. Step 708 may then be executed and a decision
may be made as to whether the data stored in the generic buffer will fit into
the posted buffer. If the data in the generic buffer may fit in the posted buffer,
then step 712 may subsequently be executed. ‘

In step 712, the generic used buffer count may he added to a

pointer used to indicate the last data for the TCP application posted buffer.

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

17

The result may now be the new value for the pointer used to indicate the last
data for the TCP application posted buffer. In step 714, a generic used byte
count may be set to zero. Subsequently to the execution of step 714, step
715 will indicate that the generic buffer is to be copied to the TCP application
posted buffer. The generic buffer handle, TCP application posted buffer
address, and number of bytes may be passed to the TCP Notification block.

Subsequently to the execution of step 715, control may pass to step 704.

Returning to step 706, if the generic used buffer count is not
greater than zero, then there are no generic used buffers available and step
716 may be executed. In step 716, the TCP application posted buffer may be
adjusted by adding the TCP application posted buffer to an internal posted
buffer list. Subsequently to the execution of step 716, control may pass to
step 704.

Returning to step 708, if the generic buffer count exceeds the
size of the TCP application posted buffer, then processing will continue with
step 710. In this case, step 710 may be executed and the TCP application
posted buffer count may be subtracted from the generic used buffer count.
Subsequently, step 726 may be executed and a message sent to the TCP
notification process, indicating that the TCP application posted buffer may be
filled with data from the specified generic buffer In step 728, no action may be
taken because this is a new buffer post as was determined in step 704.

Subsequently to the execution of step 728, control may pass to step 704.

Returning to step 704, if there was no other TCP application
posted buffer, then step 718 may be executed. In step 718, a decision may
be made as to whether there is a new packet for the connection to be
processed. In step 720, if there is no new packet to be processed, control
may then pass to step 730. In step 730, a decision may be made as to
whether there is another generic buffer. If there is a generic buffer, then in
step 732, the generic buffer may be added to the internal generic buffer list.
Subsequently to the execution of step 732, control may pass to step 704. In

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

18

step 730, if there is no other generic buffer, then control may pass to step
704.

Returning now to step 718, if there is a new packet to be
processed, then step 720 may subsequently be executed. In step 720, a
decision may be made as to whether the TCP application posted buffer space
is allocated to a current data segment. If the TCP application posted buffer
space is allocated for the current data segment, then step 722 may be
executed. In step 722, the current data segment may be appended to the end
of the last data written of the current post buffer. Subsequently, in step 724, a
decision may be made as to whether the current data segment was able to fit
into the current posted TCP application buffer. If the current data segment
was not able to fit into the current posted TCP application buffer, then step
726 may be executed. In step 726, a message may be sent to the TCP
notification process, indicating that the TCP application posted buffer has
been filled. The data that did not fit in the posted buffer will be handled as if it
were more packet data to process. This means that a particular packet may
be segmented into as many pieces or portions as may be needed, each piece
begin processed from step 718. When the current segment is placed, Control
may then pass to step 728. In step 728, the next posted TCP application
buffer may be selected, and control may pass to step 704, where a decision

may be made as to whether there was another posted TCP application buffer.

Returning to step 720, if the posted TCP application buffer
space was not allocated for the current data segment, then step 734 may be
executed. In step 734, a generic buffer may be allocated from the generic
buffer list. In step 736, data may subsequently be written to the generic
buffer. Subsequently, in step 738, a message may be sent to the TCP
notification process that may indicate at least information such as a generic
buffer handle, a TCP sequence number and a number of bytes placed in the
buffer. Step 740 may then be executed. In step 740, the number of bytes

placed in the generic buffer may be added to a local count for the number of

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

19

generic buffers used. Subsequently to the execution of step 740, control may
pass to step 704.

FIG. 8 is a flow chart illustrating exemplary processing steps for
the TCP notification process in accordance with embodiments of FIG. 3 and
FIG. 4, for example. The TCP notification processes 324, 424 of FIG. 3 and
FIG. 4 respectively, may be implemented as a FSM. Accordingly, the
exemplary steps illustrated in FIG. 8 may represent a state diagram for the
TCP notification processes 324 and 424.

Referring to FIG. 8, step 802 may be the start or reset step. In
step 804, which may occur subsequently to a start or reset step 802, a “peek”
request may be made by the application. The “peek” request may be a
request by the application asking that the application be notified when data for
a connection is available. If there is data available for the connection, then in
step 806, a determination may be made as to whether there are any generic
buffers available in the local list of buffers. If buffers are available, then in
step 808, a determination may be made as to whether the “peek’ request may
be satisfied from the generic data supplied. [f the “peek” request may be
satisfied, then step 810 may be executed. In step 810, results for the “peek”
request for the connection may be returned to the application along with a
copy of the data from the generic buffers. Subsequently, step 804 may be

executed.

Returning to step 806 or 808, if the “peek” request cannot be
supplied based on the data that is in the current local list of generic buffers,
then step 812 may be executed. In step 812, the “peek” request may be
recorded or stored .for subsequent processing. Subsequently, control may
pass to step 804.

Returning to step 804, if there is no “peek” request from the
application, then in step 814, a decision may be made as to whether there is
any generic buffer use message pending from the TCP data placement
process. [f there is a “generic buffer use” message pending from the TCP

data placement process, then in step 816, the generic buffer may be added to

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

20

a local list of generic buffers. A storage area that corresponds to the saved
generic buffer will show that no bytes from that buffer have been used. Step
818 may then be executed.

In step, 818, a decision may be made as to whether there is a
recorded “peek” request. If there is no recorded “peek” request pending, then
control may pass to step 804. If there is a recorded “peek” request pending,
then step 808 may be executed, where a decision may be made as to
whether the “peek” request may be satisfied from the generic data available,
and if so, then step 810 may return a copy of this data to satisfy the peek
operation. To “satisfy” a peek means to remove the recorded peek entry for

the peek, since it will not need to be processed again.

Returning to step 814, if there is no “generic buffer use”
message pending from the TCP data placement process, then in step 824, a
decision may be made as to whether there is any “posted buffer’” message
from the TCP data placement process. [f there is no “posted buffer” message
from the TCP data placement process, then control may pass to step 804. If
there is a “posted buffer” message from the TCP data placement process,
then in step 826, a decision may be made as to whether there is any generic
buffer available in the local list of generic buffers. If there is no generic buffer
available in the local list of generic buffers, then in step 822, an indication may
be sent to the application notifying the application that the TCP application
buffer specified in the “posted buffer” message is complete, and the TCP
application may process the data. Subsequently to the notification indicating

completion of the buffer, control may then pass to step 804.

In step 826, if there is a generic buffer available in the local list
of generic buffers, step 828 may subsequently be executed. In step 828,
parameters such as, the posted buffer TCP sequence number, generic buffer
handle, the generic buffer TCP sequence number, generic buffer length and
posted buffer length may be used to calculate one or more copy operations
that will move the generic buffer data into the posted buffer in the correct

order. On completion of the copying, in step 830, a decision may be made as

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

21

to whether the generic buffer filled the posted buffer. If the posted buffer is
not filled, then in step 832, the generic buffer may be returned to the generic
buffer handler process.

Subsequently to step 832, step 826 may be executed. Steps
826, 828, 830 and 832 may be re-executed until data in the generic buffers fill
the TCP application posted buffer, so long as there is a generic buffer
available in the local list. In step 830, if the TCP application posted buffer is
filled, then step 820 may be executed. In step 820, the number of bytes used
in the generic buffer may be increased by the number of bytes copied to the
TCP application posted buffer. Step 822 may then be executed, where an
indication may be sent to the application notifying the application that posted
TCP application buffer is now complete. Control may then pass to step 804.

Notably, the exemplary steps in accordance with the inventive
arrangements of FIG. 5, FIG. 6, FIG. 7 and FIG. 8 are not intended to be a
limitation on the buffer post handler, the generic buffer handler process, the
TCP data placement process and the TCP notification process. Accordingly,
other steps are possible without departing from the true spirit of the inventive

arrangements.

In another embodiment of the invention, it may be advantageous
to have the data copy operation of the TCP Notification executed in a remote
location from within the host adapter. This may significantly reduce the CPU
overhead while still using the host based generic buffers. For example,
referring to FIG. 3, the host adapter 306 may copy data from the generic
buffers 326 to the posted buffers 304. This may provide a zero-copy host
CPU overhead. The term zero-copy CPU overhead may mean that data may
be placed directly in the posted buffer for the application when it is first written

from the adapter.

Referring to the TCP notification process of FIG. 8, zero-copy
CPU overhead may be achieved through step 828. In this regard, the TCP
notification process may be configured to send a request to the host adapter

306, requesting that the host adapter 306 copy information from the generic

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

22

data buffers 326 to the posted buffer 304. Hence, in step 828, information
including at least data such as, the TCP sequence number, the generic,
consumed buffer value, the generic buffer length and the posted buffer length
may be sent to the host adapter 306.

In yet another embodiment, the generic buffers may be housed
partially within the host adapter. This may provide increased system
performance when the set of connections handled by the host adapter does
not require more generic buffer space than will fit on the host adapter, but
may fall back to using the host based generic buffers if requirements exceed
the memory available on the host adapter. In another aspect of the invention,
the generic buffer handler and/or the buffer post handler may be located
within the host adapter with little or no effect on the location of the generic
buffers or posted buffers themselves. The TCP Notification processor or
block may be implemented within the host adapter. Notwithstanding, it should
be recognized that there may be other ways of partitioning these operations
while still allowing some or all of TCP re-assembly storage to be done in

buffers located in the host memory.

In accordance with aspects of the invention, the use of generic
buffers may eliminate the need for TCP segment buffers in the host adapter,
since data may be placed directly from a small packet buffer into either the
generic buffers or the posted TCP application buffers. This may translate to
significant cost savings since large on-chip memory is required. Particularly
with TCP applications that post buffers before data may be received, the use
of generic buffers in accordance with the inventive arrangements may result in
significantly increased communication speeds and reduced latency. These
and other advantages may be atiributed to the fact that data for the completed
buffer does not have to be copied to the host after the packet that fills the

buffer has been received, or the TCP application buffer has been posted.

Accordingly, the present invention may be realized in hardware,
software, or a combination of hardware and software. The present invention

may be realized in a centralized fashion in one computer system, or in a

10

15

20

WO 2004/019165 PCT/US2003/026122

23

distributed fashion where different elements are spread across several
interconnecfed computer systems. Any kind of computer system or other
apparatus adapted for carrying out the methods described herein is suited. A
typical combination of hardware and software may be a general-purpose
computer system with a computer program that, when being loaded and
executed, controls the computer system such that it carries out the methods

described herein.

The present invention also may be embedded in a computer
program product, which comprises all the features enabling the
implementation of the methods described herein, and which when loaded in a
computer system is able to carry out these methods. Computer program in
the present context means any expression, in any language, code or notation,
of a set of instructions intended to cause a system having an information
processing capability to perform a particular function either directly or after
either or both of the following: a) conversion to another language, code or

notation; b) reproduction in a different material form.

Notwithstanding, the invention and its inventive arrangements
disclosed herein may be embodied in other forms without departing from the
spirit or essential attributes thereof. Accordingly, reference should be made to
the following claims, rather than to the foregoing specification, as indicating
the scope of the invention. In this regard, the description above is intended by
way of example only and is not intended to limit the present invention in any

way, except as set forth in the following claims.

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

24

CLAIMS

1. A method for posting buffers for a non-posting TCP application,
the method comprising:

posting at least one generic buffer located in a memory external to a
host adapter; and

transferring incoming data for a TCP connection to said at least one
posted generic buffer prior to the non-posting TCP application posting a TCP
application posted buffer for said incoming data.

2. The method according to claim 1, further comprising allocating
at least one generic buffer from a pool of available generic buffers upon

receipt of said incoming data for said TCP connection.

3. The method according to claim 2, further comprising storing at
least a portion of said incoming data in said allocated at least one generic
buffer if said TCP application posted buffer is unable to accommodate said

incoming data.

4. The method according to claim 1, further comprising determining
whether said incoming data for said TCP connection transferred to said at

least one posted generic buffer is in sequence.

5. The method according to claim 4, wherein said determining
further comprises assembling said incoming data in said at least one posted

generic buffer if said incoming data is out of sequence.

6. The method according to claim 5, further comprising ordering
said at least one posted generic buffer using a TCP data placement sequence

number for said out of sequence incoming data.

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

25

7. The method according to claim 1, further comprising polling said
at least one posted generic buffer by the non-posting TCP application to
determine when said at least one posted generic buffer contains data for said

TCP connection.

8. The method according to claim 7, further comprising, in
response to said polling, notifying the non-posting TCP application when said

incoming data is stored in said at least one posted generic buffer.

9. The method according to claim 1, further comprising posting at
least one generic buffer prior to said transferring of said incoming data for a

TCP connection to at least a portion of available TCP application buffers.

10. The method according to claim 1, further comprising posting at
least one posted generic buffer located in a memory internal to said host

adapter.

11. A machine-readable storage, having stored thereon a computer
program having at least one code section for posting buffers for a non-posting
TCP application, the at least one code section executable by a machine for
causing the machine to perform the steps comprising:

posting at least one generic buffer located in a memory external to a
host adapter; and

transferring incoming data for a TCP connection to said at least one
posted generic buffer prior to the non-posting TCP application posting a TCP

application posted buffer for said incoming data.

12. The machine-readable storage according to claim 11, further
comprising code for allocating at least one generic buffer from a pool of
available generic buffers upon receipt of said incoming data for said TCP

connection.

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

26

13. The machine-readable storage according to claim 12, further
comprising code for storing at least a portion of said incoming data in said
allocated at least one generic buffer if said TCP application posted buffer is

unable to accommodate said incoming data.

14. The machine-readable storage according to claim 11, further
comprising code for determining whether said incoming data for said TCP
connection transferred to said at least one posted generic buffer is in

sequence.

15. The machine-readable storage according to claim 14, further
comprising code for assembling said incoming data in said at least one posted

generic buffer if said incoming data is out of sequence.

16. The machine-readable storage according to claim 15, further
comprising code for ordering said at least one posted generic buffer using a
TCP data placement sequence number for said out of sequence incoming

data.

17. The machine-readable storage according to claim 11, further
comprising code for polling said at least one posted generic buffer by the non-
posting TCP application to determine when said at least one posted generic

buffer contains data for said TCP connection.

18. The machine-readable storage according to claim 17, further
comprising code for notifying the non-posting TCP application when said
incoming data is stored in said at least one posted generic buffer in response

to said polling.

19. The machine-readable storage according to claim 11, further

comprising code for posting at least one generic buffer prior to said

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

27

transferring of said incoming data for a TCP connection to at least a portion of

available TCP application buffers.

20. The machine-readable storage according to claim 11, further
comprising code for posting at least one posted generic buffer located in a
memory internal to said host adapter.

21. A system for posting buffers for a non-posting TCP application,
the system comprising:

at least one generic buffer located in a memory external to a host
adapter;

at least one processor that posts said at least one generic buffer
located in said memory external to said host adapter; and

said at least one processor transfers incoming data for a TCP
connection to said at least one posted generic buffer prior to the non-posting
TCP application posting a TCP application posted buffer for said incoming
data.

22. The system according to claim 21, wherein said at least one
processor allocates at least one generic buffer from a pool of available

generic buffers upon receipt of said incoming data for said TCP connection.

23. The system according to claim 22, wherein said at least one
processor stores at least a portion of said incoming data in said allocated at
least one generic buffer if said TCP application posted buffer is unable to

accommodate said incoming data.

24. The system according to claim 21, wherein said at least one
processor determines whether said incoming data for said TCP connection

transferred to said at least one posted generic buffer is in sequence.

10

15

20

25

30

WO 2004/019165 PCT/US2003/026122

28

25. The system according to claim 24, wherein said at least one
processor assembles said incoming data in said at least one posted generic

buffer if said incoming data is out of sequence.

26. The system according to claim 25, wherein said at least one
processor orders said at least one posted generic buffer using a TCP data

placement sequence number for said out of sequence incoming data.

27. The system according to claim 21, wherein said at least one
processor polls said at least one posted generic buffer by the non-posting
TCP application to determine when said at least one posted generic buffer

contains data for said TCP connection.

28. The system according to claim 27, wherein said at least one
processor notifies the non-posting TCP application when said incoming data

is stored in said at least one posted generic buffer in response to said polling.

29. The system according to claim 21, wherein said at least one
processor posts at least one generic buffer prior to said transferring of said
incoming data for a TCP connection to at least a portion of available TCP

application buffers.

30. The system according to claim 21, wherein said at least one
processor posts at least one posted generic buffer located in a memory

internal to said host adapter.

31. The system according to claim 21, wherein said at least one
processor is at least one of a NIC, a generic buffer handier, a buffer post

handler, an application, a TCP notifier and a TCP data placement processor.

WO 2004/019165 PCT/US2003/026122
1/8

100

Application

D)
102
104n

104b 104 (@
104a . /

110 1 114
7 /‘J
Host Adapter / 108
| > A

\ Memory
IR
Re-assembly
116a
__ TCP segment
B re-assembly .
buffers NIC Chip C‘D
116b
116n \-\[— Parsing/IP-TCP
\/ L _C\hecks 5
T 106
112

@
. Network RX Data ‘\,\

118

FIG. 1 (Prior Art)

WO 2004/019165 PCT/US2003/026122
2/8

Application
200
204n g
204b 9
204a :
210
’ A
\ Host Adapter J 208
216 L]
\ Memory c ¥
[~ TCP
| Re-assembly
216a
__ TCP segment
re-assembly . 4
buffers NIC Chip C)
216b
L (3)
216n - O/ > Parsing/IP-TCP
\ sy K_’C\hecks |
] 206
~
212

@
l Network RX Data %

218

FIG. 2 (Prior Art)

WO 2004/019165 PCT/US2003/026122
3/8

300

302

Application
320

Generic Buifer
Handler

Buffer Post
Handler

TCP Notificatiop

Generic
Buffers

Host|Adapter

TCP Data
Placement:

NIC Chip 328

J

Parsing/IP-TCP 308

Checks

g

306

312

@
‘ Network RX Data |\

318

FIG. 3

WO 2004/019165 PCT/US2003/026122
4/8 ’

400

420

Buffer Post
Handler

Generic Buffer
Handler

424

Generic
Buffers | [~ 4260

426b
1 a2 | (3
=

Host Adapt%r

~

TCP Data

Parsing/IP-TCP
Checks

l Network RX Data }

418

FIG. 4

WO 2004/019165 PCT/US2003/026122
5/8 '

500

502
\J START/RESET

¢ no

504

Is there a buffer
post request from
the application?

Yes

506 +

Save posted buffer information for
later use by the application

A

508
\, Send message indicating new posted
buffer to TCP data placement

FIG. 5

WO 2004/019165 PCT/US2003/026122
6/8

600

602

START/RESET

yes

604 610

Are there
sufficient generic buffers In
adapter?

Any buffer
From TCP notification?

yes no
612 +
Find generic buffer in ‘\/
tracking table K/ Allocate Er:ng;gs I';rom host
606
614 Y

Create generic buffer
tracking table entry

608
_\1 ‘

Send Generic Buffer
= Handle to Adapter

|

/

FIG. 6

PCT/US2003/026122

WO 2004/019165

7/8

4914

8¢L

‘pasn 1a4nq
ouauab Jo Junoo |eao|
ay} o} sejAq peoejd ppy

A

Jaynq
uj paoeyd se1kq B 9lAq Is|

ovL

8€L

30 Jaquinu souanbas 4oL u\/\

‘g|puey Joyng ousush
:Bugesipul uoyeoyOU
d0.1 0} abessay puss

A

layng
ousuab ayy 0} Ejep SJLAA

A

layng ouauab sy} wol}
1ayng ouauab e sjesoly

A

180 j
Jayng olauab [eussul oy

0} Jayng ousuab sy} ppy

'\

sak

éiayng
ouauab tayjoue
a1y} s

9l

veL

81l g/\

A.||lm0>loc

ceL

0eL

L—0ou

1aynq uaung
ayj 1s]| Jayng pajsod ayj uo
‘Aue §1 “Joynq pajsod 1xau aye

<

9ZL

“1oynq pajsod 0} paldod

gL aq 0} si Joyng oulauab |
S jey} Bunestpur uoneosyiou
d01 o} abessaw pusg
A
0lL

T

A
pa|ii Jaynq pajsod
:Bunesipul
uoRESYIIoU 401 0] abessew pusg
A
ou
vel

¢ayng pajsod
JULLND Ul 3y
ejep (e plq

ceL

‘194nq
pajsod JusnLno 8y} 0} UsPM
ejep Ise| Jo pua wol ejep puaddy

A

sak

0cL

Ziuswbas
s1y} Joj 9okdS Jayng
pajsod ayj |

sok

éssaooid 0
19M0ed Mau
Y 818} sj

S

‘0JaZ 0} JUNoO
aJAq pasn ousush au} J0S

‘Juno? pasn ousuab
woly azis Jayng pajsod joenqng

14 _Ru_/\ |

A

ou

80L

“Jaynq pajsod auyj Jo}
Jajuiod pasn ejep ise| auj 0}
junod pasn ouaush ay) ppy

éiayng
pajsod
MaU)i} pasn
ousuab
sa0Q

(4 ;\/\

sok

9L

\/\

A J

saf 11| Joyng
pajsod [eusaju ay} o}
Jlayng pajsod sy} ppy
A
40 <unod
pasn Jaynq ou
ouauab si
sok
NVE 00.
slapnq
pajsod Jaujoue 19s9Y/MEIS
alay} s|

PCT/US2003/026122

WO 2004/019165

8/8

“19||puey Lmt:_n_ ousuab ay)
o} Jaynq ousuab sy} umnay

wa;/\ +

ou

éiaunq peysod

auj |14 13yng
ousuab sy pig

8¢8

28

8 '9OId

008

— > pogdeisojon |«
| ‘uoijesljdde o0} Jaynqg i L
“1 pelsod sye|dwiod sjeslpy| : 4
A 0¢s8 oLg
Jong paysod au 0} Ind It
paidoo sa}4q o Jequnu Ag anjea slaynq ousuab wouj eyep jo Adoo ypm
pawinsuos ouauab ay) asealou| uoneoljdde syy 0} ,Moad, ay) unsy
\.Im@»r'L ou +
‘Buissaooid sok

7\
“Jaying

pajsod ay} 0} Isi| Jayng ousueb (00
ayy ul Aiyue doy ayy woyy eyep sy} Adoo
o} ‘yibus| Jayng pajsod pue ‘uibus)
Jayng oususb ‘snjea Jayng pawnsuoo
ousush ‘Jaquinu @ousnbag 4oL @SN

m>|»

98

éisl] [eoo]
By} ul slayng
oususb Auy

sak
¥¢8

7iuswaoe|d ejeq
dnl wouy sbessewl
Jayng paisod Auy

9&7

Jaje] Joy 1senbail yoad ploosy

808

\(\

A%

iisenbal
Jeed, peplooal
e alay) |

818

‘019Z 0} Jaynq 8y} 10} SNjeA
pSWwNSU0o 8y} 189S 'Isl| [820]
au} 0} Jaynq osuauab sy} ppy

f

sok

Ziuswaoe|d
eleq 401 woly
abessaw asn 1aynq
nauab e Auy

A

¢palddns
ejep ouausb
wioy} payspes
aq ¥sad uen

sak

&38| |eoo|
ay] ui slepng ousuab
Aue a8y} aly

208
;uoneoydde -
wol} 3sonbal yoed,
e asel) S| TAR) A RS

ou

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

