a2 United States Patent

Davis et al.

US008131835B2

US 8,131,835 B2
*Mar. 6, 2012

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

@
(22)

(65)

(63)

METHOD OF LOAD BALANCING
EDGE-ENABLED APPLICATIONS IN A
CONTENT DELIVERY NETWORK (CDN)

Inventors: Andrew T. Davis, San Francisco, CA
(US); Nate Kushman, Boston, MA
(US); Jay G. Parikh, Redwood City, CA
(US); Srinivasan Pichai, Foster City,
CA (US); Daniel Stodolsky, Somerville,
MA (US); Ashis Tarafdar, Wayland,
MA (US); William E. Weihl, San
Francisco, CA (US)

Assignee: Akamai Technologies, Inc., Cambridge,
MA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 12/701,965

Filed: Feb. 8,2010

Prior Publication Data
US 2010/0138542 Al Jun. 3, 2010

Related U.S. Application Data

Continuation of application No. 10/823,871, filed on
Apr. 14, 2004, now Pat. No. 7,660,896.

INTERNET

108

(60) Provisional application No. 60/463,071, filed on Apr.
15, 2003.

(51) Imt.CL
GOG6F 15/173 (2006.01)

(52) US.CL e 709/223; 709/224

(58) Field of Classification Search 709/223,

709/224

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
7,660,896 B1* 2/2010 Davisetal.cc.c...... 709/226
* cited by examiner

Primary Examiner — Adnan Mirza
(74) Attorney, Agent, or Firm — David H. Judson

(57) ABSTRACT

A method and system of load balancing application server
resources operating in a distributed set of servers is described.
In a representative embodiment, the set of servers comprise a
region of a content delivery network. Each server in the set
typically includes a server manager process, and an applica-
tion server on which edge-enabled applications or application
components are executed. As service requests are directed to
servers in the region, the application servers manage the
requests in a load-balanced manner, and without any require-
ment that a particular application server spawned on-demand.

11 Claims, 3 Drawing Sheets

ORIGIN
SERVER

I/”sfl CONTENT |
106 MIGRATION

REGION
106

CON
—1 sTAGING SERVER -I 102
CONTROL STAGING SERVER 102

/
118 1200

CDN

o
o
o
— STAGING
120n

U.S. Patent Mar. 6, 2012 Sheet 1 of 3 US 8,131,835 B2
oren P10 [content
SERVER 106/ MIGRATION
FIG. 1

INTERNET

AGENT

MAKER [*

CON |7_ [IREGION
SERVER 106

~N .
107
108
CON POP
SERVER L4102
CDN ‘
STAGING SERVER I 102
el
~)
120a ° \
METADATA CDN
CONTROL |__ STAGING SERVER | 102
11/8 .)
120b n
Q
(o]
CDN
STAGING
™-120n

U.S. Patent Mar. 6, 2012 Sheet 2 of 3 US 8,131,835 B2

FIG. 2
210
/
CDN EDGE SERVER
HARDWARE. 1/0, ETC... DISK STORAGE
CDN SOFTWARE FILE SYSTEM CACHE
206 HOT OBJECT CACHE 212
TCP
CONNECTION
MANAGER 204
/
208
OPERATING SYSTEM KERNEL
/
202
318 320 FIG. 3
\ N
310a 310b 310n
APPLICATION \ \ /
SANDBOXES
308 J2EE | | J2EE | o o o | J2EE 0
= S
i
= =
o 3 SERVER MANAGER |—316 J2EE
= || & APPLICATION
s = SERVER
= = cusTomeEr | - <
5 > CONFIGURATION [~~314 304 446
& \
JAVA VIRTUAL
CACHE ™~312 | MACHINE
OPERATING SYSTEM 302

U.S. Patent Mar. 6,2012

FIG. 4

Sheet 3 of 3

CDN EDGE SERVER

402a

404~

MANAGER

406

MONITOR

408"

AGGREGATOR

CDN EDGE SERVER

402b

404~

MANAGER

4061

MONITOR

408

AGGREGATOR

CDN EDGE SERVER

402¢

404~

MANAGER

406"

MONITOR

408"

AGGREGATOR

o
o]
(o]

CDN EDGE SERVER

402n

404~

MANAGER

406"

MONITOR

4081

AGGREGATOR

US 8,131,835 B2

US 8,131,835 B2

1
METHOD OF LOAD BALANCING
EDGE-ENABLED APPLICATIONS IN A
CONTENT DELIVERY NETWORK (CDN)

This application is a continuation of Ser. No. 10/823,871,
filed Apr. 14, 2004, now U.S. Pat. No. 7,660,896, which
application was based on and claimed priority to Ser. No.
60/463,071, filed Apr. 15, 2003.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates generally to execution of
Web-based applications in a content delivery network.

2. Description of the Related Art

Enterprises can expand their business, increase efficiency,
and enable new revenue streams by extending their business
applications over the Internet to customers, partners, and
suppliers. One way to enable enterprises to shift the opera-
tional burden of running a reliable and secure Web presence is
to outsource that presence, in whole or in part, to a service
provider, such as a content delivery network (CDN). A con-
tent delivery network is a collection of content servers and
associated control mechanisms that offload work from Web
site origin servers by delivering content (e.g., Web objects,
streaming media, HTML and executable code) on their behalf
to end users. Typically, the content servers are located at the
“edge” of the Internet. A well-managed CDN achieves this
goal by serving some or all of the contents of a site’s Web
pages, thereby reducing the customer’s infrastructure costs
while enhancing an end user’s browsing experience from the
site. In operation, the CDN uses a request routing mechanism
to locate a CDN edge server electronically close to the client
to serve a request directed to the CDN. Sites that use a CDN
benefit from the scalability, superior performance, and avail-
ability of the CDN service provider’s outsourced infrastruc-
ture.

Many enterprises, such as those that outsource their con-
tent delivery requirements, also implement their business ser-
vices as multi-tier (n-tier) applications. In a representative
n-tiered application, Web-based technologies are used as an
outer (a first or “presentation”) tier to interface users to the
application, and one or more other tiers comprise middleware
that provides the core business logic and/or that integrates the
application with existing enterprise information systems. The
Java 2 Platform, Enterprise Edition (J2EE™) is a technology
and an associated component-based model that reduces the
cost and complexity of developing such multi-tier, enterprise
services. The J2EE runtime environment defines several
types of application components that can be used to build
services. These include (a) Web tier components (e.g., serv-
lets, JSP pages, Java beans, filters, and web event listeners),
which are components that typically execute in a web server
and respond to HTTP requests from web clients, and (b)
Enterprise tier components (e.g., session beans, entity beans
and message driven beans, which may be developed as Enter-
prise JavaBeans™ (EJB™)), that include the business logic
and that execute in a managed environment to support trans-
actions. Runtime support for J2EE application components
are provided by so-called “containers,” with a Web container
supporting the Web tier components, and an Enterprise con-
tainer supporting the Enterprise tier components. Containers
execute the application components and provide utility ser-
vices. J2EE-compliant servers provide deployment, manage-
ment and execution support for conforming application com-
ponents.

20

25

30

35

40

45

50

55

60

65

2

The provisioning of server-side Java applications or appli-
cation components to run on CDN edge servers presents
complex deployment and operational issues. A solution is
described in commonly-owned, copending application Ser.
No. 10/340,206, filed Jan. 10, 2003, titled “Java Application
Framework For Use In A Content Delivery Network.”
According to that application, given edge servers in the CDN
are provisioned with application server code used to execute
Web tier components of an application (an “edge-enabled
application”). In an illustrative embodiment, these applica-
tion servers (appserver) are run out of process from a CDN
server manager process, preferably one for every customer.
Child appserver processes are forked/exec’d from the CDN
server manager process, after which they are tightly moni-
tored and controlled by a Java Manager subsystem. The CDN
server manager process forwards a client request that requires
appserver processing over local TCP socket to a child apps-
erver process, which processes the request, and sends the
response on the same connection. In addition, resource utili-
zation load is reported from each appserver process, prefer-
ably across a shared memory segment, to the Java Manager
subsystem. The Java Manager subsystem tightly monitors
resource utilization of each child appserver process and will
kill appserver processes that over utilize resources.

Java application servers typically are started on-demand,
as in-bound requests are mapped to web applications (some-
time referred to as “webapyps™). Each application server pro-
cess may also map to a content provider (i.e., a customer)
code, so if an in-bound request maps to a webapp on a cus-
tomer code for which no application server process is run-
ning, a new application server process may be started. Once
started, the webapp can be installed in this application server
process, and once installed, the request can be serviced.

If application server processes continue to spawn on
demand, resources on the machine may start to run out so that
it may not be possible to start another application server
process on that machine. Because application servers may
take on the order of 30-60 seconds to start and load, and
because web applications can also take on the order of 10-20
seconds to load, misses for application processing requests
can expensive from a request latency perspective. Indeed,
spawning application servers in an on-demand fashion may
lead the CDN server manager process into an undesirable
state, where it is launching an application server for each new
customer code that is requested, and it may deny service to
requests when it hits a resource limit.

The present invention addresses this problem.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof, reference should be made to
the following Detailed Description taken in connection with
the accompanying drawings, in which:

FIG. 1 is a block diagram of a known content delivery
network in which the present invention may be implemented;

FIG. 2 illustrates a typical machine configuration for a
CDN edge server;

FIG. 3 illustrates a typical machine configuration for a
CDN edge server that is provisioned to executed edge-en-
abled applications or application components; and

FIG. 4 illustrates a cluster of CDN servers in which the
load-balancing technique of the present invention may be
implemented.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

The present invention leverages Internet CDN architecture
and functionality such as generally described below. Famil-

US 8,131,835 B2

3

iarity with Java programming conventions and the J2EE
architecture are presumed. Additional information about
J2EE is available in the publication titled Java 2 Platform
Enterprise Edition Specification v1.3 (July 2001), which is
available from Sun Microsystems.

By way ofbackground, itis known in the prior art to deliver
digital content (e.g., HTTP content, streaming media and
applications) using an Internet content delivery network
(CDN). A CDN is a network of geographically-distributed
content delivery nodes that are arranged for efficient delivery
of content on behalf of third party content providers. Typi-
cally, a CDN is implemented as a combination of a content
delivery infrastructure, a DNS request-routing mechanism,
and a distribution infrastructure. The content delivery infra-
structure usually comprises a set of “surrogate” origin servers
that are located at strategic locations (e.g., Internet network
access points, Internet Points of Presence, and the like) for
delivering content to requesting end users. The request-rout-
ing mechanism allocates servers in the content delivery infra-
structure to requesting clients in a way that, for web content
delivery, minimizes a given client’s response time and, for
streaming media delivery, provides for the highest quality.
The distribution infrastructure consists of on-demand or
push-based mechanisms that move content from the origin
server to the surrogates. An effective CDN serves frequently-
accessed content from a surrogate that is optimal for a given
requesting client. In a typical CDN, a single service provider
operates the request-routers, the surrogates, and the content
distributors. In addition, that service provider establishes
business relationships with content publishers and acts on
behalf of their origin server sites to provide a distributed
delivery system.

As seen in FIG. 1, an Internet content delivery infrastruc-
ture usually comprises a set of “surrogate” origin servers 102
that are located at strategic locations (e.g., Internet network
access points, and the like) for delivering copies of content to
requesting end users 119. A surrogate origin server is defined,
for example, in IETF Internet Draft titled “Requirements for
Surrogates in the HTTP” dated Aug. 9, 2000, which is incor-
porated herein by reference. The request-routing mechanism
104 allocates servers 102 in the content delivery infrastruc-
ture to requesting clients. The distribution infrastructure con-
sists of on-demand or push-based mechanisms that move
content from the origin server to the surrogates. A CDN
service provider (CDNSP) may organize sets of surrogate
origin servers as a group or cluster, sometimes called a
“region.” In this type of arrangement, a CDN region 106
typically comprises a set of one or more content servers that
share a common back-end network, e.g., a LAN, and that are
located at or near an Internet access point. A typical CDN
region may be co-located within an Internet Service Provider
(ISP) Point of Presence (PoP) 108 or some other data center.
A “region” need not be associated with or imply any geo-
graphic association. A representative CDN content server is a
Pentium-based caching appliance running an operating sys-
tem (e.g., Linux-based, Windows NT, Windows 2000) and
having suitable RAM and disk storage for CDN applications
and content delivery network content (e.g., HITP content,
streaming media and applications). Such content servers are
sometimes referred to as “edge” servers as they are located at
or near the so-called outer reach or “edge” of the Internet. An
“edge” server need not be associated with or imply any par-
ticular geographic association, however. The CDN typically
also includes network agents 109 that monitor the network as
well as the server loads. These network agents are typically
co-located at third party data centers or other locations. Map-
maker software 107 receives data generated from the network

20

25

30

35

40

45

50

55

60

65

4

agents and periodically creates maps that dynamically asso-
ciate IP addresses (e.g., the IP addresses of client-side local
name servers) with the CDN regions.

Content may be identified for delivery from the CDN using
a content migrator or rewrite tool 106 operated, for example,
at a participating content provider server. Tool 106 rewrites
embedded object URLs to point to the CDNSP domain. A
request for such content is resolved through a CDNSP-man-
aged DNS to identify a “best” region, and then to identify an
edge server within the region that is not overloaded and that is
likely to host the requested content. Instead of using content
provider-side migration (e.g., using the tool 106), a partici-
pating content provider may simply direct the CDNSP to
serve an entire domain (or subdomain) by a DNS directive
(e.g., a CNAME). In either case, the CDNSP may provide
object-specific metadata to the CDN content servers to deter-
mine how the CDN content servers will handle a request for
an object being served by the CDN. Metadata, as used herein,
refers to a set of control options and parameters for the object
(e.g., coherence information, origin server identity informa-
tion, load balancing information, customer code, other con-
trol codes, etc.), and such information may be provided to the
CDN content servers via a configuration file, in HTTP head-
ers, or in other ways. The Uniform Resource Locator (URL)
of'an object that is served from the CDN in this manner does
not need to be modified by the content provider. When a
request for the object is made, for example, by having an end
user navigate to a site and select the URL, a customer’s DNS
system directs the name query (for whatever domain is in the
URL) to the CDNSP DNS request routing mechanism. Once
an edge server is identified, the browser passes the object
request to the server, which applies the metadata supplied
from a configuration file or HTTP response headers to deter-
mine how the object will be handled.

As also seen in FIG. 1, the CDNSP may operate a metadata
transmission system 116 comprising a set of one or more
servers to enable metadata to be provided to the CDNSP
content servers. The system 116 may comprise at least one
control server 118, and one or more staging servers 120a-n,
each of which is typically an HTTP server (e.g., Apache).
Metadata is provided to the control server 118 by the CDNSP
or the content provider (e.g., using a secure extranet applica-
tion) and periodically delivered to the staging servers 120a-n.
The staging servers deliver the metadata to the CDN content
servers as necessary. Of course, any other convenient data
transport mechanism may be used to deliver the customer
metadata to the CDN servers.

FIG. 2 illustrates a typical machine configuration for a
CDN edge server. Typically, the content server 200 is a cach-
ing appliance running an operating system kernel 202, a file
system cache 204, server manager software 206, TCP con-
nection manager 208, and disk storage 210. Server manager
software 206, among other things, creates and manages a
“hot” object cache 212 for popular objects being served by the
CDN. It may also provide other CDN-related functions, such
as request routing, in-region load balancing, and the like. In
operation as an HTTP cache for example, the content server
200 receives end user requests for content, determines
whether the requested object is present in the hot object cache
or the disk storage, serves the requested object via HTTP (if
it is present) or establishes a connection to another content
server or an origin server to attempt to retrieve the requested
object upon a cache miss. Typically, the edge server operates
in a “pull” manner, wherein an object is pulled into the cache
initially upon the first request to the cache—which will gen-
erate a cache miss since the object is not present. This is not

US 8,131,835 B2

5

required, however, as content may be pushed into the server
before it is requested for the first time.

The CDN also includes an application framework compris-
ing, for example, at least one region of application server-
enabled edge servers. In such case, a given edge server (the
machine) such as illustrated above in FIG. 2 also includes
application server code. As is well-known, an application
server is a software platform (sometimes called middleware)
on which applications can be deployed. It provides useful
utility services and functions to applications. There are cur-
rently several major types of application servers, Java-based
(J2EE) and Microsoft .NET. Java, of course, is a program-
ming language and a platform, and the programming lan-
guage is object-oriented and platform independent. Applica-
tions written in Java are translated into Java byte code, which
code is then run on (interpreted by) a Java Virtual Machine
(JVM). In one embodiment, the present invention takes
advantage of given edge servers in the CDN that are provi-
sioned with application server and additional code to enable
applications or application components to be executed from
the edge of the Internet. The framework can take advantage of
and leverage the mapping, load-balancing and management
systems used with known CDN offerings, such as the CDN
illustrated in FIG. 1 (which is merely representative). In a first
embodiment, the application server is a servlet container
(e.g., Apache Tomcat), to enable offloading and execution of
the Web tier of n-tier Java-based applications. JSP, servlets,
Java beans and custom tags, which are executed within an
application server’s servlet container, are executed at the edge
of'the Internet, close to the end-user. The Web tier is typically
the front end of a J2EE server. In an alternate embodiment, in
addition to the Web tier, at least some or all of the Enterprise
tier of the application is also deployed to and executed on a
given edge server. The Enterprise or “business” tier typically
hosts application-specific business logic and provides sys-
tem-level services such as transaction management, concur-
rency control, and security. Further details of a preferred
Java-based application framework are described in copend-
ing, commonly-owned Ser. No. 10/340,206, the disclosure of
which is incorporated by reference.

FIG. 3 illustrates a representative edge server architecture
for a CDN server in the edge-enabled application region(s). A
given region includes one or more of such servers that are
interconnected over a common back-end LAN;, as previously
described. The server 300 preferably runs on commodity
hardware running an operating system (e.g., a modified form
ofLinux)302. The Java stack includes a Java Virtual Machine
(JVM) 304 and preferably a J2EE-compliant application
server 306. For Web tier components, the application server
306 may be implemented with Apache Tomcat servlet con-
tainer. In particular, a representative Web container is pro-
vided by Apache Tomcat servlet container, which uses the
JVMin JDK 1.3.1_ 04 available from Sun Microsystems. Of
course, these components are merely exemplary and are not
meant to be limiting. For Web tier and Enterprise tier com-
ponents, the application server 306 may be implemented with
IBM WebSphere Application Server (WAS), such as Version
5.0 application server (WAS). IBM WebSphere uses JVM
(Java Virtual Machine) 1.3.1. These products, of course, are
merely exemplary. The framework (preferably the JVM) cre-
ates and maintains application sandboxes 308 for each of the
applications 310a-n. A given customer may run application
310a, while another customer runs application 3105. Gener-
alizing, the edge server 300 supports one or more discretely-
executable applications. The edge server 300 implements a
cache 312 and maintains customer configuration data 314 that
controls when application components are used. The server

20

25

30

35

40

45

50

55

60

65

6

manager 316 overlays and controls the cache, using the cus-
tomer configuration data. System management 318 and sys-
tem security 320 modules are also provided to facilitate these
and other functions.

As illustrated in FIG. 4, the CDN includes at least a first
edge server region 400 having one or more edge servers
402a-r provisioned with an application framework on which
edge-enabled applications or application components are
executed. A given edge server 402 is illustrated in FIG. 3.
Instead of trying to load every application on every machine,
a new load balancing scheme is described below that uses
server resources more intelligently across the content deliv-
ery network. Because the cost of starting application servers
and loading applications is much, much higher than retrieving
atypical static object (from origin or from cache peer/parent),
it is much better to send requests for a particular application to
a server that already has the application loaded.

According to the invention, when a edge server manager
process receives a request for which it does not have the
application loaded, it does not try to load the application.
Rather, the request is forwarded (e.g., by tunneling) to others
machines that have the application loaded. In this way, net-
work resources are much better utilized and denial of service
is avoided. To enable a CDN server manager process to tun-
nel, preferably it is provided a global view of “what is loaded
where” in its particular region. In addition, the server man-
ager process preferably is provided with information about
what the “desired” state of “what should be loaded where”.
These are the basic premises around the load balancing
scheme described herein.

With the above as background, the following terms are now
defined:

Appserver: A Java application server or servlet container
that complies with a given specification, such as the Servlet
Specification of Sun Microsystems. This is a Java program
that runs in a JVM, and hosts the execution of Java-based
webapps.

Webapps: Java applications as defined by a given specifi-
cation, such as the Sun Microsystems Servlet Specification. A
typical Java application is a combinations of servlets, JSPs,
static resources, and class library jar archives.

WAR file: A Web Application aRchive (WAR) file, which
contains all of'the necessary class files, static resources, JSPs,
and jars necessary to run a webapp.

Java heap: Each JVM instance may manage an internal
block of memory, in which it allocates and garbage collects
Java objects. The maximum and minimum size of this heap
preferably is configurable, and it is set when the JVM is
initialized. Note that the Java heap typically is part of the
memory used by the appserver process, and it is reported to a
given process (which is called DNSP as described below) as
such.

Appserver process size: This is the total memory used by
the appserver process, and typically it includes the memory
used by the Java heap, internal JVM data structures, and the
like.

Overview

As illustrated in FIG. 4 and by way of additional back-
ground, each server 402a-4027 in a given server region 400
includes several processes: a CDN server manager process
404, a monitor process 406, and an aggregator process 408.
These processes are shown as distinct and independent, but
this is not a requirement. The server manager 404 publishes
metadata and resource utilization information for webapps
and appserver processes to the monitor process 406. The
monitor process 406 windows this data, publishes query
tables based on this data, and also publishes this data (pref-

US 8,131,835 B2

7

erably over UDP transport) to the aggregator process 408.
Process 408 acts as the global aggregator of data related to
webapps and appservers from each CDN server manager in
the region. The aggregator process 408 preferably keeps state
as to which webapps are running on which CDN server man-
ager, and it publishes this information in a first map (or other
data construct) to each CDN server manager running in the
region 400. This map tells each CDN server manager “what is
loaded where,” and it allows a particular CDN server manager
to implement a communication policy (e.g., tunneling) based
on this map. The aggregator process 408 also preferably
implements a load balancing algorithm from which the output
is a second map that is published over the same communica-
tion channel. This second map tells the CDN server manager
“what should be loaded where,” and it allows the CDN server
manager to implement a webapp loading policy based on this
second map. Using the second map, the aggregator process
408 can ask a given CDN server manager running on a give
machine to load a webapp, e.g., by adding that webapp to this
second map for that CDN server manager, or by “mapping”
that webapp to that CDN server manager.

The following policies may then be implemented to facili-
tate load balancing:

Request Tunneling Policy—based on the maps received
from the aggregator process, a given CDN server man-
ager may implement the following tunneling policy:

1. mapped and loaded—route the request to a CDN
server manager that has the application loaded and for
which the aggregator process has that application
mapped;

2. loaded, but not mapped—route the request to a CDN
server manager that has the application loaded, evenif
it is not mapped;

3.deny—send an error page to the user, and deny service
to the request.

Alternatively, tunnel this request to another region
where there is support.

Webapp Loading Policy—based on the maps received
from the aggregator process, a given CDN server man-
ager may implement the following webapp loading
policy:

1. load if mapped—if a webapp is “mapped” by the
aggregator process for the machine IP on which the
given CDN server manager is executing, then aggres-
sively load this webapp;

2. unload if unmapped—if the aggregator process has
removed a webapp id for the IP address on which the
given CDN server manager is executing, then unin-
stall this webapp from the appserver in which it is
running.

The following is a more detailed design of the load balanc-
ing algorithm:

Recap of the Problem
Interfaces:

The flit-load incoming in a region is divided based on the
content requested into buckets called serials. The flit-load is
further divided based on the webapp requested. Each webapp
is in a unique serial and each serial may contain multiple
webapps.

A “flit” is an arbitrary unit of work generally representing
non-bandwidth resource usage on a given server machine.
Such utilization typically encompasses CPU utilization, disk
utilization, usage of hardware accelerator cards (such as SSL,
accelerators), operating system abstraction-limited resources
such as threads and semaphores, and the like, and combina-
tions thereof. In a representative embodiment, a flit is a given
linear or convex function of several individual machine vari-

20

25

30

35

40

45

50

55

60

65

8
ables, such as CPU and disk utilizations. For the load balanc-
ing described generally below, however, CPU utilization on a
given machine is a good approximation for the flit value.

Webapps need to be preloaded in memory otherwise the

amount of time taken to load (10’s of seconds) a webapp
on-demand may cause a service denial. The webapps typi-
cally run inside appservers (an appserver is an application
running on a JVM that acts as a runtime environment for
webapps) that have some memory overhead and typically
take a long time to load (1-2 minutes). Webapps of the same
customer typically run in their own appserver. Each appserver
may have a pre-allocated memory heap from which it allo-
cates memory for the various webapps. If the appserver-heap
runs out of memory, the webapps running in that appserver
are very likely to be unavailable. One can distinguish memory
allocated from the server manager’s system heap from the
“heap-memory” allocated from the appserver’s internal heap.
The total memory used on a server manager is the memory
pre-allocated for each appserver heap plus the memory over-
head per appserver.

Asused below, a server manager is referred to as “ghost™ as

a shorthand for global host. The monitor process is “ghost-
mon” and the aggregator process is “dnsp”.

Inputs:

flit-capacity per-ghost

flit-load per-ghost, per-webapp

memory-capacity per-ghost

memory-used per-ghost

heap-memory-capacity per-ghost, per-appserver-heap

heap-memory-used per-ghost, per-appserver-heap

Outputs:

a weighted mapping from webapps to set of ghosts,

(the webapps are to be pre-loaded on the mapped ghosts
and the requests are to be sent to those ghosts in propor-
tion to their weights)

heap-memory-capacity per-ghost, per-appserver-heap

(the appserver is to be set to this capacity)

Objectives:

1: to reduce the chance of running out of memory

2: to reduce the chance of running out of flits

3: to reduce the overhead flits
(overhead flits are caused by (un)loading webapps and

appservers)
4: to reduce the chances of a session-state miss (i.e. sticki-
ness)
Proposed Solution
Requirements

The following requirements assume the steady state and
ideal memory estimates. As an optimization, it is desirable to
add requirements for time to reach steady state and how much
off the memory estimates can be.
Preferred Requirements:
1. Memory constraints:

The memory capacity of a ghost is never exceeded, and the
max-heap capacity of an appserver is never exceeded.

2. Extent of webapp spreading:

If n is the num. instances of a webapp_type with total flits

f, then:

max(f/LTWMW)<n<fflUTW

unless the region is out of memory or flit-disbalanced.
3. Extent of appserver spreading:

If n is the num. instances of an appserver_type with total
flits f,

m is the max. instances across webapp_types for the app
server_type,

US 8,131,835 B2

9

w is the memory needed for all webapps of the appserver_

type

max(f7LTA,m,w/MXHP)<n<f/UTA

unless the region is out of memory or flit-disbalanced.

4. Balancing flits given current webapp/appserver placement:

Given the current state of loaded webapps, the flits are
directed optimally, so as to minimize the max flit-percent
across ghosts.

5. Balancing flits:

The region typically is not flit-disbalanced unless the
region is out of memory.
Explanation of Terms:

A region is “out of memory” if it does not have enough
memory on any ghost to load another appserver containing
the largest webapp.

A region is “flit-disbalanced” if the flit-percent of a ghost is

>max(FDC,FDM+average flit-percent across ghosts)

The following are dynamic configurable parameters:
FDM—lit-disbalance margin—possible value: 50%
FDC—Alit-disbalance cutoff—possible value: 70%
LTW—loading threshold for webapp—possible value:

20%

UTW-—unloading threshold for webapp—possible value:
10%

LTA—loading threshold for appserver—possible value:
20%

UTA—unloading threshold for
value: 10%
MW-—minimum numer of webapps of each type—pos-
sible value: 2
MXHP—max-heapsize for appserver—possible value: 30
MB
LTW/UTW will be configurable per-webapp-type.
LTA/UTA/MXHP will be configurable per-cpcode and per
appserver-type.
LTW/UTW/LTA/UTA are expressed relative to the min (op-
tionally, avg) flit capacity across ghosts.

The inequalities above may be adjusted for boundary con-
ditions and to make sure that the lower_bounds are less than
the upper_bounds.

High-Level Design

To attempt to break the complexity down into smaller
chunks, the following is the new structure of the LLoadBal-
ancer in dnsp (the aggregator process).

LoadBalancer: manages shared resources between DNS &

EJ LoadBalancers
DNSLoadBalancer: spreading algorithm that publishes the
Ilmap

EJLoadBalancer: algorithm that publishes the ejmap

MemoryEstimator: estimates memory requirements for

webapps/appservers

AppserverPlacer: decides ideal mapped ghosts for each

appserver_type and min/max heapsizes

WebappPlacer: decides ideal mapped ghosts for each

webapp_type
FlitDirector: decides weights for mapped ghosts for each

webapp_type
RateLimiter: decides actual mapped ghosts for each

webapp/appserver_type
LoadBalancer:
Input: RegionMonitor interface (aggregate of ghostmon
packets)
Output: llmap for each service & ejmap if service J is config-
ured in the region.

appserver—possible

20

25

30

35

40

45

50

55

60

65

10

Solution: The LoadBalancer will be dynamically config-
urable to switch between using EJL.oadBalancer or not. If not
using EJL.oadBalancer, it will continue to produce the ejmap
and llmap for J as it does currently (ejmap based on llmap).
Otherwise, it first runs the EJL.oadBalancer giving it all flit-
capacities. Then, run the DNSLoadBalancer with the residual
flit-capacities for all services except J. The llmap for service
J may be based on the ejmap.

EJLoadBalancer:

Input: RegionMonitor interface (aggregate of ghostmon

packets)

Output: ejmap

Solution:

1. Initialize state: If the dnsp is a new leader, skip N iterations
to allow some time for the previous leader’s loads to com-
plete.

Then, accept the set of loaded ghosts
for each webapp_type/appserver_type as the current state. If
the dnsp was the leader before, use the previous mapped set of
ghosts for each webapp_type/appserver_type as the current
state except those that are “deferred unmapped”. This allows
the webapps/appservers in the process of loading to count
towards memory usage, and also the webapps/appservers in
the process of unloading to not count towards memory usage.

Memory capacity for each ghost is further reduced by a
buffer memory area whose space is configurable. This is used
to allow slow unloads for session state and also to help correct
bad memory estimates.

2. Run MemoryEstimator for fresh memory estimates.

3. Run AppServerPlacer to decide on the mapping of app
server_types and their min/max heapsizes.

4. Change the state as if the output of AppServerPlacer has
already taken effect.

5. Run WebappPlacer to decide on the mapping of webapp_
types.

6. Change the state deleting all webapps/appservers that are
not yet loaded, setting their weights to 0.

7. Run FlitDirector to set the weights on the remaining
webapps/appservers.

8. Run RateLimiter to control the rate of weights, mappings
and unmappings.

AppserverPlacer
Inputs: set of appserver_types and for each:
total flit-percent of each of its webapp_types
memory estimate for itself+its webapp_types
set of ghosts on which it is loaded and corresponding

min/max heapsizes set of ghosts and for each:

the memory capacity

the flit-capacity
Outputs: set of appserver-ghost mappings with correspond-
ing min/max heapsizes
Solution:

1. Determine num. appservers to-be-mapped/unmapped for

each appserver_type:

For each appserver_type:

If num. appservers<max (f'LTA, m, w/MXHP), the differ-
ence is to-be-mapped

If num. appservers>f/UTA, the difference is to-be-un-
mapped

(Refer requirements section above for explanation of
terms).

2. Set the min/max heapsizes of the newly mapped appserv-

er_types:

Set the max heapsizes to MXHP (configurable).

Set the min heapsize to MNHP (configurable)

US 8,131,835 B2

11

3. Decide which appservers to unmap:

Option 1: only memory:

For each appserver_type, pick as many appservers as need
to-be-unmapped, always picking from the ghost with the
minimum memory.

Option 2: memory and flits:
For each appserver_type, pick as many appservers as need
to-be-unmapped picking each one as follows:
Assume average flits on each appserver of the appserv-

er_type;
Convert flits to memory units using FLIT_
TO_MEMORY;

Unmap the appserver on the ghost thst has the:
max across ghosts of
max across resources (flit, memory) of
percent increase in residual resource capacity of
the ghost
4. Decide where to map the to-be-mapped appservers:
Option 1: only memory:
a. Order the appservers by decreasing memory
b. For each appserver, map it to the ghost with the minimum
residual memory capacity.
c. If there is not enough residual memory capacity on any
ghost, stop and report region suspended to the top-level.
Option 2: memory and flits:
a. Order the appservers by decreasing max(memory, flit*
(FLIT_TO_MEMORY))
b. For each appserver, map it to the ghost chosen as follows:
Assume average flits on each appserver of the appserv-

er_type;
Convert flits to memory units using FLIT_
TO_MEMORY;

Map appserver to the ghost that has the:
min across ghosts of
max across resources (flit, memory) of
percent decrease in residual resource capacity of
the ghost (Note: if flit-disbalanced, use the max-
flit ghost last).

c. If there isn’t enough residual capacity (on either
resource) on any ghost, stop and report region suspended
to the top-level.

WebappPlacer
Inputs: set of webapp_types and for each:

total flit-percent

memory estimate

set of appservers and which ones have it loaded already set
of ghosts and for each:

the memory capacity

the flit-capacity

Outputs: set of webapp-ghost mappings

Solution:
1. Determine num. webapps to-be-mapped/unmapped for
each webapp_type:

For each webapp_type:

If number of webapps<max (/L.TW, MW), the difference
is to-be-mapped.

If number of webapps>f/UTW, the difference is to-be-
unmapped.

(Refer requirements section above for explanation of

terms).
2. If flit-disbalanced state persists for more than x iterations
with the same ghost:

order the webapp_types on the max-flit ghost in descend-
ing flit-order pick the first webapp_type that has any
webapps to-be-unmapped.

If found, unmap the webapp on the max-flit ghost and
reduce the number to-be-unmapped.

20

25

30

35

40

45

50

55

60

12

Otherwise, pick first webapp_type such that num.
webapps>max (/LTW, MW) if found, unmap the
webapp on the max-flit ghost
otherwise, pick the webapp_type with the max flit-to-
memory and increase its number of webapps to-be-
mapped by 1 (i.e. attempting a move);

mark the webapp_type as flit-constrained, evenifitisn’t,
so that only it is placed based on flits and not memory

3. Decide which webapps to unmap:

(Exactly same as for appservers replacing appserver by
webapp and ghost by appserver)

4. Decide where to map the to-be-mapped webapps:
(Exactly same as for appservers replacing appserver by

webapp and ghost by appserver)

FlitDirector

Inputs: set of webapp_types with corresponding flit-loads and
loaded ghosts flit capacities of the ghosts

Outputs: weights for each webapp_type on each loaded ghost
max flit-percent on a ghost

Solution: parametric flow algorithm

RateLimiter

Input: ideal mapped webapp-ghosts, appserver-ghosts and
loaded webapp-ghosts, appserver-ghosts

Output: actual mapped webapp-ghosts, appserver-ghosts

Solution:

1. Mapping webapps/appservers: If there are more than
MMW new webapp or MMA appserver mappings on the
same ghost, then only actually map the one with the fewest
instances

2. Unmapping webapps: mark the unmapped webapps as
mapped with O-weight and remember them as “deferred-
unmapped”. Unmap all previously deferred-unmapped
webapps once flits drop to O or a timeout TW expires. In
case a deferred-unmapped webapp becomes mapped,
make it a regular mapped webapp. In case there is not
enough (i.e. within some percent Y of) heap-memory to
hold all the deferred unmapped webapps, start unmapping
deferred-unmapped webapps in the order of decreasing
number of instances.

3. Unmapping appservers: mark any unmapped appservers as
“deferred-unmapped”. Once all the webapps inside a
deferred-unmapped appserver are unloaded or a timeout
TA expires, mark the appserver as unmapped. In case there
is not enough (i.e. within some percent X of) buffer-
memory to hold all the deferred unmapped appservers,
start unmapping deferred-unmapped appservers in the
order of decreasing number of instances.

MemoryEstimator

Inputs: min_memory requirements for each webapp_type;
actual memory for each appserver_type, relative-sizes for
each webapp_type (dyn. config), scale-factor for each
webapp_type (dyn. config), min/max heapsizes for each
appserver_type (dyn. config)

Outputs: memory estimate for each webapp_type and app
server_type

Solution:

1. For each appserver_type, the memory estimate is the max

of the default configured maxHeapSize and the max actual

size of any appserver

2. For each webapp_type, the memory estimate is the max of

the estimates arrived at by the following methods:

a. take the min_webapp_size and multiply by the scale_
factor

b. for each appserver in which the webapp resides, take the
fraction of the actual appserver memory (after subtract-
ing the min appserver memory) based on the relative-

US 8,131,835 B2

13

sizes of webapps in the appserver, and take the max of
this number across all instances of the webapp.

There is no requirement that application components be
fully or partially J2EE-compliant, or even that the subject
matter be implemented entirely in Java. Indeed, the present
invention is also extensible beyond Java and J2EE. In particu-
lar, the inventive concepts may be practiced in any platform-
independent application server programming environment
(e.g., Microsoft NET, Mod Perl executing in Apache, Zope,
or the like) capable of being deployed in a distributed com-
puting environment such as a content delivery network.

What is claimed is as follows:

1. A method operative in a distributed network including a
set of server machines, each server machine provisioned with
a manager process together with an application server on
which one or more web applications are loaded and executed,
comprising:

for each server machine and its respective manager pro-

cess, identifying a resource usage value;

using the values to generate a weighted mapping of web

applications to manager processes for the set of server
machines such that the resource usage value for each
server machine is not exceeded, and wherein the
weighted mapping of web applications to manager pro-
cesses balances a given resource value across the set of
server machines;

servicing requests at the server machines in proportion to

the weighted mapping; and

re-generating the weighted mapping of web applications to

manager processes for the set of machine servers if the
resource usage values across the set of CDN servers
becomes unbalanced.

20

25

30

14

2. The method as described in claim 1 wherein the resource
usage value is an arbitrary unit of work representing resource
usage on the server machine.

3. The method as described in claim 2 wherein the resource
usage value is (i) a flit-capacity, and (ii) a memory capacity,
where a flit is an arbitrary unit of work representing resource
usage on the server machine.

4. The method as described in claim 1 wherein the
weighted mapping of web applications to manager processes
is also a function of application server memory capacity on
each server machine.

5. The method as described in claim 1 wherein the resource
usage value represents non-bandwidth resource usage at a
server machine.

6. The method as described in claim 3 wherein the flit is
CPU utilization.

7. The method as described in claim 1 wherein the
weighted mapping of web applications to manager processes
requires a given web application to be loaded onto the server
machine.

8. The method as described in claim 1 wherein the
weighted mapping of web applications to manager processes
requires a given web application to be unloaded from the
server machine.

9. The method as described in claim 1 wherein the set of
server machines are co-located.

10. The method as described in claim 1 wherein a given
request is serviced at by an instance of a web application
loaded and executing on a given server machine.

11. The method as described in claim 1 wherein the dis-
tributed network is a content delivery network (CDN).

#* #* #* #* #*

