发明名称
对超声波焊接探头提供功率控制的系统

摘要
本发明涉及一种超声波发生器，包括用于接收功率信号的输入模块。用于输出超声波信号的输出模块也包括在发生器中。母板与输入模块和输出模块耦合，母板包括适用于控制输入模块和输出模块的数字控制器。
1. 一种用于超声波焊接系统的超声波发生器，包括：
 底座，该底座具有 AC 电源线输入并包含母板组件，该母板组件包括适于控制和 / 或
 监视下述模块的数字控制器以及固定的连接器，所述固接的连接器用于在不使用线性
 的情况下将该母板直接连接到下降模块；
 输入模块，用于将来自所述电源线输入的 AC 功率整流和滤波成 DC 功率；
 输出模块，用于利用脉冲宽度调制电源转换方法将所述 DC 功率转换成具有超声波频
 率的 AC 功率；以及
 匹配模块，用于有效地将该 AC 功率转换为驱动超声波负载的的超声波输出功率并向
 所述数字控制器提供临界模拟信号以驱动所述输出模块。
2. 如权利要求 1 所述的超声波发生器，其中所述输入模块，所述输出模块和所述匹配
 模块含有闪烁的 PROM 存储器设备，用于存储识别信息。
3. 如权利要求 1 所述的超声波发生器，其还包括选件模块卡盒，以便选件卡直接地连
 接到母板数字控制器。
4. 如权利要求 1 所述的超声波发生器，其还包括可选状态控制面板，该可选状态控制
 面板包括用于系统错误、功率错误和超声波激活的 LED 状态指示器。
5. 如权利要求 1 所述的超声波发生器，其中所述超声波频率是可控制的。
6. 如权利要求 1 所述的超声波发生器，其中所述数字控制器适于通过停止相位比较器
 来锁定所述超声波频率，该超声波频率在余下的焊接周期期间将不会改变。
对超声波焊接探头提供功率控制的系统

【0001】相关申请的交叉引用

【0002】[0001] 本申请要求2005年12月29日提出的美国临时专利申请系列号No.60/754681的优先权。

技术领域

【0003】[0002] 本发明一般涉及超声波功率供应，更具体地，涉及对用于超声波焊接或其它需要超声波能量的系统提供功率的方法和系统。

背景技术

【0004】[0003] 超声波焊接对制造环境中对连接组件的元件是一种有效的技术。当制造例如汽车零件、医疗器械和其它工业或消费产品时，超声波焊接的应用包括焊接塑料部件和结构。

【0005】[0004] 在现有的超声波焊接装置中，超声波发生器包括很多部件来控制并调节提供给超声波负载的功率。在很多这种现有的超声波发生器中，大多数设计使用的构造和封装方法不容易组装和维修，或者可选的系统特征在现场不能容易地升级。另外，通过利用传统的设计方法，封装系统的功率密度相当低。大多数现有的超声波发生器也使用模拟器件，这限制了可结合到设计中的可调整的控制方法。另外，由于在设计中大部分使用模拟器件，超声波发生器将结合更多电路，对噪声有更大的灵敏度，并且需要更大的电路板空间。

【0006】[0005] 因此，超声波功率供应需要；实现模块化、紧凑结构，可以更容易地装配、简单地进行系统缺陷诊断、模块的易维护性，容易在现场升级的可选特征，和物理尺寸和附加系统安装方法。超声波焊接设备还需要实现大部分器件数字化，得到更好的灵活性、更小的尺寸以及附加的特征。

发明内容

【0007】[0006] 依据本发明的一个实施例，提供一种超声波发生器。该发生器包括用于接收功率信号的输入模块，用于输出超声波信号的输出模块，以及与输入模块和输出模块耦合的母板。该母板包括适用于控制输入模块和输出模块的数字控制器。

【0008】[0007] 依据本发明的另一个实施例，提供一种产生超声波信号的方法，该方法包括提供输入模块用于接收功率信号。还提供用于输出超声波信号的输出模块。母板与输入模块和输出模块耦合。该母板包括适用于控制输入模块和输出模块的数字控制器。

【0009】[0008] 进一步包括一种测试超声波发生器功率的方法。该方法包括传输测试信号到输入模块，用于测量输入的功率供应。响应于测试信号到多个总线，用于测试内部功率供应，响应于内部功率供应的正测试结果，向输出功率供应传输测试信号。响应于输出功率供应的正测试结果，允许超声波发生器的全部操作。

【0010】[0009] 依据本发明的另一个实施例，提供一种超声波发生器操作方法。该方法包
括提供输入模块，输出模块和将母板与输入模块和输出模块耦合。通过母板选择调节控制，从而这种调节控制可在多种增量中调整。

[0011] [0010] 仍然依据本发明的另一个实施例，提供一种防止超声波发生器过载跳闸的方法。该方法包括取样超声波发生器的功率水平。取样的功率水平和预定过载功率水平相比较。响应于取样的功率水平大于预定过载功率水平，一旦过去预定的时间就激活跳闸。预定时间与取样的功率水平相关。

[0012] [0011] 仍然依据本发明的另一个实施例，提供一种防止超声波发生器过载跳闸的方法。该方法包括：取样超声波发生器的功率水平。然后确定取样的功率是否在过载跳闸水平的设定百分比之内。响应于取样功率在过载跳闸水平的设定百分比之内，减少取样功率的振幅。

[0013] [0012] 仍然依据本发明的另一个实施例，提供一种用于超声波发生器的设置超声波谐振频率的方法。该方法包括在超声波发生器使用时测量谐振频率和关于谐振频率设置相位锁定回路。

[0014] [0013] 依据本发明的另一个实施例，一种超声波发生器的输出振幅安全下降的方法。该方法包括激在超声波发生器中的斜线下降振幅控制算法，在预定的时间周期内逐渐减少超声波发生器的输出振幅。通过当振幅转到突然关闭时减少在周期结束时引入的应力，该方法使超声波维数的不同组件的工作寿命延长，例如超声焊极（触头），调压器和转换器。

[0015] [0014] 依据本发明的另一个实施例，提供一种超声波发生器中达到设定振幅的方法。该方法包括：在超声波发生器的存储器中存储多个曲线。每个曲线代表用于达到超声波发生器的设定振幅的不同方法。选择存储器中的多个设定曲线中的一个曲线。根据选择的曲线来达到超声波发生器的设定振幅。

附图说明

[0016] [0015] 在附图中：

[0017] [0016] 图 1 示出了依据本发明的一个实施例的基本超声波功率供应的模块化系统结构的超声波发生器的分解图；

[0018] [0017] 图 2a、2b、2c 和 2d 分别是手动或自动控制系统控制的超声波发生器的模块化结构的底座的透视图、俯视图、正视图和前正视图；

[0019] [0018] 图 3a、3b、3c、3d 和 3e 分别是包括具有选件的前面板处理控制器的超声波发生器的模块化结构的底座的后透视图、前透视图、后正视图、俯视图和前正视图；

[0020] [0019] 图 4 是表示根据本发明的一个实施例具有状态指示的功率管理功能的流程图；

[0021] [0020] 图 5a、5b、5c 和 5d 是使用依据本发明的一个实施例的模块化结构设计的不同底座安装选择的透视图；

[0022] [0021] 图 6 是依据本发明的一个实施例的数字化超声波功率供应控制器的方块图；

[0023] [0022] 图 7 是依据本发明的一个实施例的数字相位锁定回路的方块图；

[0024] [0023] 图 8 是表示依据本发明的一个实施例的有不同调节阻尼特性的多个可选
调节响应曲线；
[0025] [0024] 图 9 是表示依据本发明的一个实施例的多个范围选择的远程振幅调节控制图；
[0026] [0025] 图 10 是表示依据本发明的一个实施例的多个范围选择的远程功率调节控制图；
[0027] [0026] 图 11 是表示依据本发明的一个实施例的软停机（soft—stop）功能图；
[0028] [0027] 图 12 是表示依据本发明的一个实施例的平均过载跳闸响应时间图；
[0029] [0028] 图 13 是表示依据本发明的一个实施例可以获得图 12 示出特性的过载跳闸响应时间积分方法的流程图；
[0030] [0029] 图 14 是表示依据本发明的一个实施例防止过载的方法的流程图；
[0031] [0030] 图 15 是表示依据本发明的一个实施例，通过更新空转启动频率，用于在特殊频率锁定位锁定回路并且跟踪在其使用时频率改变的方法的流程图；
[0032] [0031] 图 16 是表示依据本发明的一个实施例的最初启动以及然后选择停止相位锁定回路比较器跟踪功能来维持之前捕获的锁定频率方法的流程图；
[0033] [0032] 图 17 是超声波焊接堆栈向将要焊接的部件前进的示意图；
[0034] [0033] 图 18 是转换器功率输出作为部件上的力的函数的图；
[0035] [0034] 图 19 是转换器反映电荷输出作为部件上的力的函数的图；和
[0036] [0035] 图 20 是启动焊接周期的“力触发”系统的方块图。

具体实施方式
[0037] [0036] 图 1 表示基本超声波功率供应的模块化系统结构，其核心系统组件是输入模块 10、输出模块 11、匹配模块 12 和将所有系统子部件连接起来的母板 14。输出模块 11 包括温度传感器和恒温控制电路，其按需要循环冷却风扇 15 的操作，从而冷却功率转换电路。母板 14 还包括支持可选特征的连接器，如前面板处理控制器面板 16，LED 状态控制板 19 和支持个别选件板或支持多个选件板的选件卡盒的选件模块连接器 18。这种模块设计方法使得当需要时有多个不同的系统装配变化，有宽范围的可选特征。
[0038] [0037] 图 2a、2b、2c 和 2d 表示有安装在底座上的子部件的基本水平超声波功率供应。图 1 示出的核心子部件安装在底座上并且用图 1 中使用的相同附图标记识别。除了图 1 中讨论的子部件，还示出了完成超声波功率供应系统所要求的两个其它面板。功率输入面板 20 包括用于 AC 电源线输入的连接器和调整的兼容电路保护设备。在一个实施例中，使用 IEC 兼容电源输入连接器，它可以连接国际上使用的任何类型的电源线，还提供过电流保护的用作电源开关的组合电源开关电路断路器。I/O 系统面板 22 包括控制功率供应操作的连接器。系统输入连接器 23 提供输入控制，从而外部控制系统可以激活或解除不同的功率供应功能。如果需要时系统输出连接器 24 对外部控制系统提供系统操作状态输出信号。配置端口连接器 25 向运行兼容软件应用程序的计算机提供串行通讯连接，该应用程序可以修改并在母板存储器中存储设置参数。连接器 25 还包括用于来自功率供应的超声波输出 26 的连接器，该连接器连接到兼容的超声波转换器，其将超声波输出功率转换成机械运动。
[0039] [0038] 恒温控制的冷却风扇 15 引导来自功率供应底座外部的寒冷空气，通过从
输出模块电源转换器上的散热器上伸出的冷却翅片，越过在匹配模块上的阻抗匹配磁性组件，并从底座远端的冷却通道排气口排出。这种设计引导冷空气流过散发热量的功率转换器组件来实现有效的热散效率。冷却空气还限定在冷却通道区域 27 之内，这样尘土或其它来自底座外部的环境污染物不会沉积在其内部封装的电子电路板上。

【0040】【0039】几个可选部件也在图 1 中示出，说明系统结构如何设计成支持不同可选部件的连接，该部件具有可进一步增强总体系统功能性的特征。可选状态控制面板 28 被示出连接到母板状态控制面板连接器 19。该面板 28 包括用于系统错误、功率错误和超声波激活的 LED 状态指示器 29。面板 28 还包括用于激活测试目的的超声波输出的控制开关 30 和用于当需要时停止超声波输出的 ON/OFF 线控制开关。可以理解可提供具有不同特征的其它可选状态控制板模块。图 1 中还示出了连接到母板选件连接器 18 的选件模块 32。在底座的这种结构中，只安装一个选件模块。可以得到不同的选件板功能，用户将选择最适于其特殊超声波处理的模块。

【0041】【0040】图 1 示出了模块化结构设计如何导致紧凑的底座，该底座容易安装、取消了低功率束线，并且如果需要的话系统可以配置不同选件模块。这种设计方法也使得容易分析系统问题，并且如果需要，服务人员可以容易地更换失效的子部件。

【0042】【0041】图 3a、3b、3c、3d 和 3e 表示在底座上安装了子部件的更优选的超声波功率供应。图 1 中示出的核心子部件安装在底座上并且使用与图 1 中使用的相同附图标记来表示。除了图 1 中所示的子部件，图 2a、2b、2c 和 2d 中示出的大多数子部件也出现在图 3a、3b、3c 和 3d 中。和基本系统一起使用的状态控制面板在优选系统中用前面板处理控制部件 31 替代，该前面板处理控制部件 31 连接到前面板母板连接器 16。前面板母板连接器设计成和多个前面板设计共同操作，提供在不同成本水平的多个特征。在基本系统（例如图 2a、2b、2c 和 2d）中看做前面板的部件在安装有前面板控制器的优选系统中成为后面板。优选系统的底座在深度上略微增加以容纳选件卡盒 34，该选件卡盒可以支持多种选件模块 36。选件卡盒连接器 18 设计成支持有多种特征的选件卡，当需要时支持将来的设计。

【0043】【0042】选件卡盒 34 直接连接到母板并且设计成接收选件模块 36。示出的选件模块 36 可以包括支持个别特征的卡，如用于控制不同典型超声波焊接压力，并且提供多个数据通讯接口端口。选件卡盒 34 设计成允许用户从系统封装的外面进入所有的选件模块槽，而不需要移除封装盖。选件模块还安全地安装在选件模块卡盒 34 中，而不需要任何工具，在本实施例中使用被拴住的螺旋螺钉附件。

【0044】【0043】在一些系统中，需要配置前面板电源开关 38，如在安装支架的底座中，安装在密封的后面板上的电源开关是难以接近的。用在特殊实施例中的前面板电源开关 38 是照亮按钮开关。这种类型的开关还用于向操作者提供电源状态指示，优选系统配置中用图示的 LCD 面板而不包括其它电源状态指示器。电源状态指示器功能的详细说明在下面描述。

【0045】【0044】上面描述的每个核心和可选模块包括 EEPROM 或和母板 14 通讯的其它设备，从而母板 14 可以决定什么模块连接到母板上。EEPROM 包括关于模块的所有必要信息，如部件编号、最大功率水平、频率、生产日期、系统运送时间、固件或可编程逻辑的版本信息、升级记录、工厂测试数据、维修历史数据和对跟踪模块有用的任何其它信息。母板 14 可以将这些信息传递到前面板控制器 32 来显示或当前前面板控制器没有安装时传递到配置端
口 25。

[0046] [0045] EEPROM 还包括这样的信息，该信息使母板 14 调整设置控制参数以适应连接的模块。例如，如果用户插入了 20kHz 的匹配模块，母板将读取该匹配模块中的 EEPROM，确定它是一个 20kHz 的匹配模块并且正确地在母板上预先设置控制寄存器，而不需要用户的干预。另外，因为所有模块都插入母板，所以容易地安装或更换不同的模块。母板可以通过前面板控制器或配置端口报告模块的丢失（不可读的 EEPROM）或安装了不兼容的模块，帮助容易查找故障以及修理系统。

[0047] [0046] 发生器的高度取决于输出功率水平。额定功率超过 1200W 的发生器封装在高度大约 4 到大约 6 英寸之间的底座内，优选 5.25 英寸。额定功率是 1200W 或更小的发生器封装在高度大约 2.50 到大约 4.5 英寸之间的底座内，优选大约 3.5 英寸。

[0048] [0047] 现在转到图 4，将要描述供应到或来自输入模块 10 的功率监视操作方法的一个实施例。如上所述，输入模块 10 与外部的 AC 电源耦合，包括向输出模块 11 提供功率的 DC 电容器，并且直接连接到 DC 控制电源 17。对于正确的系统操作，保证所有这些功率供应在其正常范围范围内是重要的。下面描述的方法利用输入模块 10 上的可编程逻辑芯片，在使发生器工作之前检测电源的三个不同的参数，如果检测到缺陷，通知用户哪个参数是问题源。在步骤 100，电源系统被激活。第一，在步骤 102，系统检测进入输入模块 10 的 AC 电源对于设备是否在正常的工作范围内。正常的工作范围是预置在输入模块 10 上的芯片内的标准，并且由超声波发生器规定的范围来决定。如果确定进入输入模块 10 的 AC 电源不在这正常范围内，即存在低电压（undervoltage）或超电压，然后过程进行到步骤 104，并且指示灯 29 或 38 快速闪烁以向操作者指示问题。当错误发生时，在步骤 105，POWER OK 状态输出停止。在一些实施例中，指示灯 29 或 38 以大约 2 到大约 6 赫兹闪烁，当然也可以使用其它闪烁速率。

[0049] [0048] 如果确定 AC 电源工作在正常范围之内，然后在步骤 106，确定 DC 总线电容器是否适当地从整流 AC 电容器输入充电。DC 电容器的充电取决于穿过电容器（未示出）的电压量，该电容器位于超声波发生器内的输入模块 10 中。如果 DC 总线电容器没有适当地充电，然后过程进行到步骤 108，并且指示灯 29 或 38 以慢速闪烁。当这个错误发生时，在步骤 109 停止 POWER OK 状态的输出。例如，在一些实施例中，指示灯 29 或 38 以约 0.5 到约 1.5 赫兹闪烁。

[0050] [0049] 在步骤 106 如果确定 DC 总线电容器被适当地充电，过程进行到步骤 110。在步骤 110，确定 DC 电源水平是否在低电压限之上。低电压限可以预先编程到输入模块 10 上的可编程逻辑芯片，该低电压限取决于系统电路的工作限制。如果 DC 电源水平低于低电压限，则在步骤 112，指示灯 29 或 38 稳定地发光。当这个错误发生时，在步骤 114 停止 POWER OK 状态的输出。但是，如果 DC 电源水平在低电压限之上，则指示灯 29 或 38 关闭，所有的系统功能进入正常工作。当没有错误发生时，在步骤 116 激活 POWER OK 状态输出。

[0051] [0050] 如上图 4 所示，操作者可以观察指示灯 29 或 38 来判断超声波焊接系统是否正常供电。如果没有任何问题发生在何处，这个信息为用户提供问题位于何处的指示，使得问题解决在成本上更有效。操作者不需要对每个不同的电源执行分阶段故障检查来发现发电区域。替代地，指示灯 29 或 38 精确指出了问题发生的区域，使问题的解决更有效。在其它实施例中，警告信号可以用声频信号来代替视觉信号（如指示灯 29 或 38）。
根据某个电源发生了错误，警告可以以不同的时间间隔（快蜂鸣或慢蜂鸣）或以不同的频率发声。还可以用任何其它类型的可编程电路作代替来执行和描述的本实施例使用的可编程逻辑芯片的同样功能。

[0052] [0051] 图5表示可以使用模块化部件结构的几个底座安装的变形形式。标准台阶安装类型封装箱可以装配有前面板控制器选件52或没有这个选件50。底座设计的标准排架安装变形通过在台阶安装底座上增加支架安装耳，设计成适合于标准19”架格安装尺寸。直立底座安装56，为了安装进入自动系统架，也可以用于没有处理控制前面板的基本级系统。如果需要处理控制面板，台阶安装底座可以直立安装，它将正常地安装到所显示的超声波焊接压力机54上。系统在低功率水平（1200W或更低）运行时在高功率单元更适用于紧凑、低外形封装。

[0053] [0052] 现在转到图6，其示出了改进的数字化超声波功率供应控制器的方块图。数字化控制系统用标准微控制器系统实现，具有单独的输入控制单元，与独特的可编程数字逻辑和适当设计的外部接口电路协同。数字控制板还作为系统母板。该板包括电连接器，该电连接器直接与核心超声波功率供应模块子部件连接，而不需要任何束线。该数字控制器设计中还包括几个另外的连接器，设计成支持不同可选部件的连接，该可选件部件具有将进一步增强系统功能性的特征。

[0054] [0053] 核心系统子部件是从功率供应输出中产生超声波能量所必需的。输入模块整流和滤波AC线输入功率，并且从这个子部件监视该输入功率和输出功率的状态。输出模块用脉冲宽度调制电源转换方法将来自输入模块的DC功率转换成超声波频率的AC功率。该模块还包含散热片温度传感器以控制冷却风扇的操作和保护开关晶体管防止规定的安全操作区域曲线以外的峰值电流的峰值过载电路。匹配模块有效地将来自输出模块的超声波频率的AC功率转换成驱动超声波负载的超声波输出功率，并且还向主控制器提供临界模拟信号。这些信号用于计算超声波输出功率水平，以正确的谐振频率驱动输出模块并且调节超声波振幅输出水平。需要I/O系统连接器用于控制输入信号和状态输出信号；其中该输入信号用于激活超声波输出或其它外部控制的功能，该状态输出信号用于将系统的操作状态连接到外部控制系统。还需要配置端口从而按需要来修改系统设置参数或升级微控制器系统固件。

[0055] [0054] 在本发明的具体实施例中，嵌入的微控制器系统通过数字I/O端口、模拟输入通道、1℃外部控制器和串行UART接口连接不同的系统子部件和选件。所有的核心系统子部件和选件板都装有闪烁的PROM存储器设备，在工厂用可由微控制器读取的识别信息预先编程。这种信息用于当系统启动时，基于安装的模块和选件，系统自的配置。该微控制器使用几个模块A到D通道，根据输入模块上的调节的功率输出来监视控制电源电压水平，还根据输入模块上的功率管理电路监视POWER OK状态信号。这种设计包括连接到微控制器的几个数字接口总线，因此它可以快速地和可编程逻辑内部寄存器或双端口RAM通讯，可以安装前面板处理控制器板和不同的选件卡。微控制器固件用固件算法编程，该固件算法控制超声波输出校准特性、远程控制等级范围、平均过载跳闸特性、软停机功能、平均过载禁止算法、频率跟踪算法和频率锁定和保持功能，这将在下面部分进行更详细的讨论。

[0056] [0055] 数字可编程逻辑设备结合用于一般目的的贯穿系统的数字输入和输出所
需要的接口逻辑,还包括从微控制器任务卸载的时间临界功能。改进的数字相位锁定回路
在可编程逻辑设计中实现,其锁定零交叉比较电路感知的运动电桥输出。还包括高速度多
通道数据获取系统,其自动执行精确计算超声波真正 RMS 功率水平需要的乘法和平均。该
逻辑还包括可编程计数器,该计数器产生用于在准确的谐振频率驱动输出模块的脉冲宽度
调制信号,并且在传导期间获得可编程的超声波输出水平。
[0057] [0056] 现在转到图 7,它是改进的数字相位锁定回路 (PLL) 的方块图,它在本实施例
中其在可编程逻辑设备的设计之内实现。该设计包括包含在传统数字相位锁定回路设计内
的多个元件。该设计使用数字控制的振荡器 (NCO) 来显示相位锁定频率输出,该输出根据
包括数字上 / 下计数器的积分控制模块设置。包括比例控制模块,该模块包括当感知到大
的相位误差时增加或减少额外计数的数字逻辑,从而系统可以在一个短时期内锁定至基准
信号中。数字相位比较器提供表示 NCO 输出频率和基准频率之间的相位误差输出信号,在
这种情况下,是从运动电桥输出信号和输出的零交叉信号,该运动电桥输出信号产生于驱动
的超声波转换器的匹配模块。一个输出信号检测相位误差是否是提前或滞后,另一个信
号输出是等于相位比较器输入之间的相位差的脉冲。这种设计改进着重于控制这些基本模
块操作的功能模块。
[0058] [0057] 频率控制寄存器模块控制相位锁定回路的捕获范围界限。频率的上限和下
限必须编入频率控制模块的寄存器的程序中。已编程的频率界限确定相位锁定回路的绝对
捕获范围,系统不能锁定比该界限高或低的频率。模拟 PLL 电路一般不能被动态编程以获
得特定的频率捕获范围,同时这是在很多数字相位比较器电路中发现的普遍特征。当基准
频率没有应用到数字相位比较器基准输入,这是在超声波电路中超声波停止时的情况, NCO
频率将下降直到它达到编程的频率下限值。超声波电源的频率操作范围或捕获范围和系统
的启动频率是重要的设计参数。理想的是超声波负载工作在电源的频率捕获范围中心附
近,但是使用传统的设计方法,启动频率在频率下限并且用于捕获负载的谐振频率,系统必
须以几百赫兹运算以锁定正确的频率和相位。改进的 PLL 设计增加附加的控制寄存器来设
置启动或重启动频率。当超声波停止和零交叉基准信号消失时, NCO 将在空转频率设置点运
行。当超声波激活时,系统将继续以空转频率操作,超声波水平升高,直到由零交叉确认模
块检测到有效的零交叉信号。一旦检测到有效零交叉信号,频率控制模块的逻辑从空转频
率模式切换到相位锁定模式,该相位锁定模式允许上限和下限寄存器工作。在本发明的一
个实施例中,频率上限设置为 21000 赫兹,频率下限设置为 19000 赫兹。标称的超声波工作频
率是 20000 赫兹,因此空转频率也可以设置为 20000 赫兹。当超声波激活时,系统将开始以
20000 赫兹的空转频率驱动电源输出上的超声波负载,并且当运动电桥输出水平增加到
噪声水平之上时,有效的零交叉信号将使系统可以对负载的实际谐振频率进行相位锁定,
该频率大约是 20037 赫兹。系统只需要在大约 37 赫兹运转,而不是 1037 赫兹 (没有该空
转频率寄存器),并且可以更快地对频率锁定,对连接到电源输出的超声波负载具有较少的
应力。该操作可以用频率跟踪固件算法进一步加强,该算法在后面部分进行讨论。使用这
个可选操作模式,空转频率寄存器可以基于以前的操作周期动态地设置。在上面的例子中,
如果频率跟踪模式被启用,空转频率寄存器可以动态地设置为 20035 赫兹并且初始驱动脉
冲将在实际超声波工作频率的 2 赫兹之内。数字 PLL 将以施加到超声波负载上最小应力的
方式快速锁定正确的频率。
[0059] 数字相位比较器模块具有增加的控制输入信号（频率保持信号），该信号可以按我地使该相位比较器功能无效。激活该信号将使相位比较器功能无效并且 NCO 频率将被保持在当前频率。这种设计改进能实现操作的频率锁定和保持模式。这在以后的部分进行讨论。

[0060] 现在转到图 8，比例积分微分器 (PID) 调节功能在固件中实现，允许用户更多地控制振幅调节特性。在以前的超声波发生器中，用于比例积分微分器的值由模拟硬件来确定。因此调节特性是固定的，不能改变。如图 8 所示，示出了用户可以选择的振幅相对于时间的响应特性上的三个不同的曲线。每一个响应特性曲线都有一个标记——快、中等和慢。用户能够在这三个不同的曲线中进行选择。在一些焊接应用中，用户希望快速达到设定振幅，而不关心超过的情况（对于小超声波触头）。在这种情况下，用户可以选择“快”曲线。做为选择，用户可能不关心多快能够达到设定振幅（对于大的超声波触头），而希望避免超过的情况。在这种情况下，用户可以选择“慢”曲线。希望较快达到设定曲线但是有最小超过的用户可以选择“中等”曲线。这些选择可以改变微控制器固件中的 PID 内部控制参考系数，从而改变曲线。

[0061] 在上所述，在以前的超声波发生器中，因为 PID 变量是通过硬件部件值确定的，调节特性嵌入在模拟电路设计中。在这个实施例中，用户现在可以在不同的调节曲线之间切换，选择最适于超声波应用的调节曲线。

[0062] 超声波发生器为操作者提供选择来通过任何本地用户接口或通过远程定位自动控制电源回路控制器控制调节设置点。其中通过本地用户接口时不需要任何范围缩放比例。操作者也可以选择需要的输出调节模式。系统输出可以工作在振幅恒定模式，其中超声波转换器位移振幅调节为用户编程设定的点值。也可以选择能量恒定模式，调节超声波能量输出水平到用户编程设定的点值。下面的图表示当调节设置点通过自动控制系统被远程控制时可获得的不同的范围。

[0063] 如图 9 所示，超声波的振幅可以被远程控制。在图 9 所示的实施例中，有五个不同的振幅等级。图 9 所示超声波振幅百分比作为电流回路控制水平 (mA) 的函数。最大振幅调节设定点是 100%，由 20mA 的最大输入信号控制水平来表示。在本实施例中的等级范围改变可获得的所需振幅调整范围。调整跨度的范围越宽，设定点水平的分辨率越低。例如，如果使用 1% mA 等级，跨度从振幅的 100% 下降到 84%。但是，如果使用 5% mA 等级，则跨度从 100% 下降到 20%。因此，根据适合用户需求的范围和等级，用户可以选择使用何跨度。

[0064] 与图 10 中类似，超声波发生器可以由操作者设置来远程控制能量调节设置点。本发明的超声波系统的范围从最大额定功率约 2400W 到最小额定功率约 120W，与超声波频率成反比 (20kHz 系统 = 2400W, 70kHz 系统 = 120W)。如果所有的这些额定功率都使用相同的比例因子，结果将是一个优化性不足的系统。换句话说，2400W 的系统，控制器只能调整功率高达 100W，使用每毫安 5W 的比例因子，用标准 4~20mA 电流回路控制器。相反，使用 100W/mA 的设置不适用于 120W 额定系统并且控制器将不能以需要的精度调整功率水平。

[0065] 为了处理这个问题，本发明的一个实施例允许操作者（或用户）通过按板来选择适当的控制范围并且有效地控制任何超声波发生器的功率调节设置点，而不考虑额
定功率。如图 10 所示，图示出 8 个控制器比例范围从 100W/ma 到 5W/ma。每条线代表不同的比例范围。图绘出的是标准电流回路控制水平（4-20mA）与功率调节控制水平的关系。标准电流回路控制水平是由用户的自动控制系统设置的电流水平，功率调节控制水平是所需的功率调节水平。如图 10 所示，在 100W/ma 的水平，最大 20mA 水平将导致 2000W 的功率调节水平，最小 4mA 的水平将导致 400W 的功率调节水平，1mA 控制水平改变将导致功率调节设置点 100W 的改变。如上所述，对于额定功率约为 1200W 的超声波发生器，100W/ma 的增量可能太大了。因此，用户可替代地选择使用 25W/ma 的比例，其在约 100W 开始，以 25W 的增量增加到 500W。该 25W/ma 的比例对于更低的功率系统可能太大了，比如一个额定为 120W 的系统。在这种系统中，操作者可以选择使用最低的比例范围，即 5W/ma。该 5W/ma 的比例范围在低功率水平给予用户最大的精度。

在图 10 出的实施例中，示出了个不同的比例或线 30a-30h。但是，根据应用，可以使用任何数量的比例（或线）。这些比例在固体中实现，该固体控制响应于电流回路输入信号的超声波系统。

现在转到图 11，图示了软停机功能。目前，多数超声波焊接系统利用某种软启动振幅斜线上升功能。在多个这些系统中，用户可以或编程一适当的软启动斜线上升时间。图 11 的图示出该相反的影响。如此图所示，可以实现 20 毫秒的软停机时间。然后，当焊接系统将超声波关闭时，系统每毫秒减少超声波功率水平 5%（100% 被 20 毫秒除）直到系统处于零功率水平。在现有的系统中，当超声波输出停止时，系统立即将整个振幅切换到零。这种类型的操作影响转换器的寿命，产生异常噪音，并且这会导致其它不需要的部件应力。利用软停机方式，对超声波探头和堆栈组件有较小的应力。一般地，斜线下降到 0% 可以挑线上升更快地实现，但是在一些实施例中，斜线下降可比斜线上升以相同或较慢的速率发生。另外，上面描述的实施例描述了特殊的速率，但应当理解的是也可以由用户编程或选择其它速率。

现在转到图 12，此图表示平均过载时间延时特性。图示出了过载跳间时间和过载跳间阈值百分比的关系曲线。过载跳间阈值百分比是通过当前测量的输出功率水平除以过载跳间阈值功率水平计算的。例如，如果过载跳间阈值设置为 1200W，那么当测量的输出功率水平达到 1800W 时，过载跳间阈值百分比为 150%。过载跳间时间是在系统关闭之前允许功率处于跳间阈值以上的时间量。结合该延时时间（少于 1 秒），允许超声波发生器保持运行，即使功率会瞬间高，只要功率减少的时间周期小于过载跳间时间即可。如图 12 中所示，过载跳间时间是一个非线性函数，随着过载跳间阈值百分比的增加，过载跳间时间快速下降。例如，如果过载跳间阈值百分比是 110%，则过载跳间时间大约为 0.38 秒。但是，如果过载跳间阈值百分比是 160%，则过载跳间时间只有大约 0.09 秒。平均过载跳间响应时间在固体算法中实现。过载响应特性被很好地表征并且是可重复的，而无论发生器的额定功率如何。

现在转到图 13，流程图描述了如何得到图 12 的响应特性。该固体算法只当超声波输出被激活（步骤 200）时运行，并当超声波输出停止时将初始化平均过载积分寄存器（步骤 202）。在步骤 204，固体监视持续更新的功率测量寄存器。在步骤 204 中监视的功率测量是定期更新的。在一些实施例中，该时间周期是每 500 微秒一次或每秒 2000 次。在步骤 206，测量的样本功率和预置的过载阈值相比较。如果功率低于 100%，则不是过载
条件，然后过程检查积分寄存器是否为空（步骤208）。如果积分寄存器不为空，它将回到开始或运行向下积分程序（步骤210）。如果功率是100％或更高，固件将开始向上积分程序（步骤212），对于图中所示的过载百分比，将重复图12的图表。根据过载功率百分比，固件允许系统在设定的时间内以该功率操作。例如，在图12所示的图表中，系统可以在150％的设定功率工作十分之一秒多一点。这之后，如果功率没有下降到100％功率以下，固件算法将向上积分直到积分寄存器溢出（步骤214）并且将运行平均过载程序，关闭超声波输出并且激活适当的状态指示器（步骤216）。固件算法还包括向下积分功能（步骤210），适用于功率水平有瞬间超过跳闸水平的功率起效并且然后功率下降到平均过载跳闸阈值以下的情况。系统然后能够恢复到以前的没有过载的工作状态。当超声波输出由于平均过载关闭而停止或终止正常焊接周期时，积分寄存器在步骤202重新初始化，然后系统准备开始下一次焊接周期。

[0070] [0069] 图12所示的图表仅是可由固件算法实现的一个例子的图表。在一些实施例中，时间和功率百分比之间的关系可以是线性的或其它函数关系。在一些实施例中，可以实现多个响应特性并且可以被选择出的选择特性。

[0071] [0070] 现在转到图14，将阐述防止平均负载跳闸的方法。在背景技术中，在超声波焊接机的操作过程中，平均过载固件算法保护发生器功率转换电路不被损坏。当发生器功率输出水平超过发生器功率额定输出的平均过载将停止焊接周期。发生器功率额定输出直接与超声波振幅设置成比例。例如，额定功率为2400W的超声波焊接机将在100％振幅提供2400W。当功率水平（在2400W的情况）超过时，平均过载将跳闸。如果超声波振幅设置为90％，则平均过载阈值将被减少到2160W（2400的90％）。在一些情况下，这种系统由于过载导致关闭，这会影响生产，因此是麻烦的。当与一些塑料零件共同工作时，连接这些零件比其它零件需要更多的功率。在一些情况下，需要防止平均过载故障。这可通过减少超声波振幅水平而使功率水平下降来实现，但是这将延长焊接这些零件所需要的时间量。为了防止平均过载跳闸，用户选择固件算法监视平均过载积分寄存器且并且将按需要自动减少每个功率测量周期（500微秒）的超声波振幅水平，因此积分寄存器将最后停止向上积分，这样将产生平均过载来终止焊接周期。

[0072] [0071] 转回到图14，用户可选择功能性，并且仅对适当的焊接应用才启动（步骤220），如果用户停止的话这个算法将不能运行。这个固件算法将只当超声波输出激活（步骤222）时运行，当输出停止时，振幅和过载设置存到它们的初始状态（步骤224）。当最后的功率测量大于过载跳闸水平（步骤226），振幅减少程序将在步骤234运行。由于平均过载跳闸水平是直接和振幅设置成比例，一个新的平均过载跳闸水平必须在步骤236中确定和存储。当最近功率测量小于过载跳闸水平（步骤226），在步骤228中检测平均负载积分寄存器。如果寄存器是空时，固件转回到开始。如果寄存器是非空时，进行检查以观察振幅是否在步骤230中改变。如果振幅不等于初始设置，振幅增加程序在步骤232运行。当振幅改变时，新的平均过载跳闸水平必须在步骤236确定并存储。如果从步骤230存储的振幅等于初始振幅设置，则固件转回到开始。在步骤232的振幅增加程序允许系统从临时功率高峰仅用超声波振幅水平瞬间下降来恢复。

[0073] [0072] 现在转到图15，流程图示出了动态调整焊接系统的空转频率

[0074] （该相位锁定回路电路的开始频率）的过程。该过程对于循环输入的焊接应用最
有用，但是也可以用于连续焊接应用的重新启动。在一些操作中，空转频率设置成堆栈操作的值（如 20kHz）。但是，堆栈可以实际上被调度成与 20kHz 的空转频率略微不同的谐振频率。但是，为了使系统更有效的工作，空转频率应该被设置成很接近于工作频率。如果固件控制的功能适合于特定的焊接应用，则该固件控制的功能可以被用户选择。这在步骤 240 进行检查，如果被用户停止时这个算法则不运行。这种固件算法仅当超声波输出被激活时运行（步骤 242）。当超声波关闭时，在步骤 244 中运行恢复时间程序，缓慢地将空转频率设置到用户编程的冷堆栈启动频率。如果超声波被激活，则固件等待直到相位锁定状态信号在步骤 245 激活。相位锁定回路电路锁定到堆栈频率以后，工作频率在步骤 246 被读取。频率跟踪寄存器在步骤 248 被更新，将空转频率设定为当前工作频率然后返回到开始。如果超声波关闭而持续延长的时间周期，或当系统第一次开启时，在步骤 244 的频率跟踪恢复程序将设置空转频率到用户选择的缺省值。这适合于没有任何最近的工作频率信息可以跟踪的情况。对于连续的焊接过程，需要周期性地重复固件算法，而不是只更新频率一次。通过跟踪相位锁定回路频率，可以避免过载跳频并且超声波焊接系统也可以更有效地工作，减少出现的问题。

0075] [0073] 现在转到图 16，示出的流程图描述使超声波焊接系统防止频率锁定错误的方法。频率锁定错误当由于超声波堆栈耦合非谐振负载，相位锁定回路感知电路跳到非正常频率时产生。在一些应用中，当使用超声波焊接机来切割冷冻食品时，特别是冷冻硬果巧克力，冷冻产品的温度经常在 0°F 以下。超声波焊接堆叠将与冷冻食品负载相耦合。该耦合导致频率突然改变到非正常频率，由于过载跳阈情形导致焊接机停止切割。这个固件控制的功能可以由用户选择，如果它适合于特定的焊接应用。这在步骤 250 进行检查，并且用户停止时这个算法将不再运行。这个固件算法也只当超声波输出在步骤 252 激活时运行。当超声波输出开关关闭时，相位锁定回路相位比较器功能在步骤 254 重新启用，使下一次超声波输出被激活时允许正常的相位锁定回路操作。当超声波开关打开时，相位锁定回路功能正常直到在步骤 256 用户设定的时间延迟结束。时间延迟结束后，当数字控制信号在步骤 258 被激活时，相位比较器功能停止。停止相位比较器锁定了超声波工作频率，并且在余下的焊接周期期间内将不会改变。用户在步骤 256 指定的时间延迟必须被编程，以在超声波焊接堆叠耦合非谐振负载之前结束。

0074] [0074] 在以前的系统中，相位锁定回路锁定反馈信号。但是，在某些情况下，反馈信号可能是错误的，如在上述的切割冷冻食品的情况下。在这个实施例中，当超声波触角在空气中时，系统锁定正确的频率。然后，当触角开始切割并且 PLL 收到差的反馈时，PLL 相位比较器的操作被停止，因此忽略差的反馈信号。通过使用数字组件准许这种操作。在以前的都是模拟组件的超声波发生器中，PLL 相位比较器的操作不能被改变。相反，在本实施例中，数字 PLL 功能当需要时可以被改变以适应系统的变化。

0077] [0075] 现有的用于启动超声波焊接周期的触发方法包括如下：

0078] ●力触发器（或动态触发），一旦感知元件上的压力（力）超过预定值，该力触发器激活超声波能量；

0079] ●距离触发器，一旦达到预定距离时激活超声波能量；

0080] ●预 - 触发器，其通过时间或距离（预 - 触发器标记）在空气中激活超声波能量。

0081] [0076] 这些触发方法需要附加的硬件来适当地实施，例如力传感器（测压元件）、
距离编码器或限位开关，并且具有机械限制，可使被焊接部件有很多变化。

[0077] 一个新的触发方法消除了许多机械和电子组件。这个方法只基于作为现代超声波焊接系统的一部分的电子组件和固体，比如，Dukane的IQ系列或DPC4+。由于功率测量的高精度和重复性，这种新方法比现有的方法提供更好的精确性、可重复性和焊接质量。该新的方法包括下列步骤（见图17和18）：

[0078] 1、操作者编程用于“功率触发”的值。
[0079] 2、周期开始。
[0080] 3、堆栈移向将要焊接的部件（见图17）。
[0081] 4、堆栈以10%~40%（用户调整）振幅运行，防止在部件上留下记号。
[0082] 5、堆栈对部件施加压力一超声波功率随着压力而增加（见图18）。
[0083] 6、达到功率触发器界限——会启动焊接周期（见图18）。
[0084] 7、振幅增加到100%（或者为适于焊接的需要值）。
[0085] 8、这一点可以利用重其他的焊接技术，例如通过时间焊接、通过能量焊接、通过崩渍距离焊接、通过峰值功率焊接或其它的技术。
[0086] 9、部件被焊接。

[0078] 功率比较可在固体内部进行处理，其处理时间只有几微秒。这可提供较高的精度和可重复生产的无缺陷焊接部件。

[0079] 替代测量超声波功率，也可以利用陶瓷压电转换器的二元性。通过仅监视转换器的输出（即超声波功率关闭）可能使用这个信号来“力触发”（见图17和19）。转换器的输出信号和施加的直接力成比例。设计电路包括向电压放大器300充电，电压放大器300连接到ADC301。该ADC输出通过微控制器302处理（见图20）。

[0080] 虽然已经阐明和描述了本发明的具体实施例和应用，但可以理解本发明不限于这里公开的这些精确的结构和组件，通过前述的说明，在不背离本发明精神的情况下，不同的修改、改变和变形是显而易见的，本发明的范围由所附的权利要求限定。
图4
图 11
图 12
开始

超声波输出被激活？

是

否

初始化积分寄存器

新的功率读取？

是

否

读取功率>过载跳闸水平？

是

否

积分寄存器空？

是

否

运行向上积分程序

运行向下积分程序

积分寄存器溢出？

是

否

运行平均过载超声波关闭和状态程序

图13
图15

开始

是

否

频率跟踪模式启动？

是

否

超声波输出激活？

是

否

运行频率跟踪恢复时间程序

相位锁定状态信号激活？

是

否

读下一个超声波频率转换

运行频率跟踪寄存器更新程序