A battery maintenance tool, which electrically couples to a battery, includes a maintenance tool housing and electronic circuitry within the maintenance tool housing. A cable, substantially external to the maintenance tool housing includes a plurality of conductors. At least some conductors of the plurality of conductors are configured to electrically couple to the electronic circuitry within the maintenance tool housing. At least one probe light that is configured to electrically couple to at least two of the plurality of conductors in the cable is also included. The probe light, which is separate from the maintenance tool housing, receives power via the at least two of the plurality of conductors to which it is electrically coupled.

20 Claims, 9 Drawing Sheets
FOREIGN PATENT DOCUMENTS

DE 196 38 324 9/1996
EP 0 022 450 A1 1/1981
EP 0 037 754 A1 2/1995

US 7,977,914 B2 Page 5

OTHER PUBLICATIONS

“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US02/29461.

“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/05746.

“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/06577.

“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/07837.

“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/41561.

“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/76956.

Supplementary European Search Report Communication for Appl. No. 99917402.2.

“First Notice Informing the Applicant of the Communication of the International Application (To Designated Offices which do not apply the 30 Month Time Limit Under Article 22(1))” for PCT/US2008/008702 filed Jul. 17, 2008; one page.

* cited by examiner
FIG. 7

PROBE LIGHT 156

POWER SUPPLY 156

TO ELECTRONIC CIRCUITRY 154

PROTECTION DIODE

BRIGHT LED

26A, 28A

TO BATTERY POST

26B, 28B

30

161

162

14
1. BATTERY MAINTENANCE TOOL WITH PROBE LIGHT

The present application is a continuation-in-part of U.S. patent application Ser. No. 10/681,666, filed Oct. 8, 2003, entitled "ELECTRONIC BATTERY TESTER WITH PROBE LIGHT," the contents of which are hereby incorporated by reference in their entirety.

BACKGROUND

The present embodiments relate to storage batteries. More specifically, the present embodiments relate to battery maintenance tools.

Storage batteries, such as lead acid storage batteries, are used in a variety of applications such as automotive vehicles and standby power sources. Typical storage batteries consist of a plurality of individual storage cells which are electrically connected in series. Each cell can have a voltage potential of about 2.1 volts, for example. By connecting the cells in the series, the voltages of the individual cells are added in a cumulative manner. For example, in a typical automotive storage battery, six storage cells are used to provide a total voltage of about 12.6 volts. The individual cells are held in a housing and the entire assembly is commonly referred to as the "battery."

It is frequently desirable to ascertain the condition of a storage battery. Various testing techniques have been developed over the long history of storage batteries. For example, one technique involves the use of a hygrometer in which the specific gravity of the acid mixture in the battery is measured. Electrical testing has also been used to provide less invasive battery testing techniques. A very simple electrical test is to simply measure the voltage across the battery. If the voltage is below a certain threshold, the battery is determined to be bad. Another technique for testing a battery is referred to as a load test. In a load test, the battery is discharged using a known load. As the battery is discharged, the voltage across the battery is monitored and used to determine the condition of the battery. More recently, techniques have been pioneered by Dr. Keith S. Champin and Midtronics, Inc. of Willowbrook, Ill. for testing storage battery by measuring a dynamic parameter of the battery such as the dynamic conductance of the battery. These techniques are described in a number of United States patents, for example, U.S. Pat. No. 3,873,911, issued Mar. 25, 1975, to Champin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 3,909,708, issued Sep. 30, 1975, to Champin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 4,816,768, issued Mar. 28, 1989, to Champin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 4,825,370, issued Apr. 25, 1989, to Champin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH AUTOMATIC VOLTAGE SCALING; U.S. Pat. No. 4,881,038, issued Nov. 14, 1989, to Champin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH AUTOMATIC VOLTAGE SCALING TO DETERMINE DYNAMIC CONDUCTANCE; U.S. Pat. No. 4,912,416, issued Mar. 27, 1990, to Champin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH STATE-OF-CHARGE COMPENSATION; U.S. Pat. No. 5,140,269, issued Aug. 18, 1992, to Champin, entitled ELECTRONIC TESTER FOR ASSESSING BATTERY/CELL CAPACITY; U.S. Pat. No. 5,343,380, issued Aug. 30, 1994, entitled METHOD AND APPARATUS FOR SUPPRESSING TIME VARYING SIGNALS IN BATTERIES UNDERGOING CHARGING OR DISCHARGING; U.S. Pat. No. 5,572,136, issued Nov. 5, 1996, entitled ELECTRONIC BATTERY TESTER WITH AUTOMATIC COMPENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,574,355, issued Nov. 12, 1996, entitled METHOD AND APPARATUS FOR DETECTION AND CONTROL OF THERMAL RUNAWAY IN A BATTERY UNDER CHARGE; U.S. Pat. No. 5,585,416, issued Dec. 10, 1996, entitled APPARATUS AND METHOD FOR STEP-CHARGING BATTERIES TO OPTIMIZE CHARGE ACCEPTANCE; U.S. Pat. No. 5,585,728, issued Dec. 17, 1996, entitled ELECTRONIC BATTERY TESTER WITH AUTOMATIC COMPENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,589,757, issued Dec. 31, 1996, entitled APPARATUS AND METHOD FOR STEP-CHARGING BATTERIES TO OPTIMIZE CHARGE ACCEPTANCE; U.S. Pat. No. 5,592,093, issued Jan. 7, 1997, entitled ELECTRONIC BATTERY TESTING DEVICE LOOSE TERMINAL CONNECTION DETECTION VIA A COMPARISON CIRCUIT; U.S. Pat. No. 5,598,098, issued Jan. 28, 1997, entitled ELECTRONIC BATTERY TESTER WITH VERY HIGH NOISE IMMUNITY; U.S. Pat. No. 5,656,920, issued Aug. 12, 1997, entitled METHOD FOR OPTIMIZING THE CHARGING LEAD-ACID BATTERIES AND AN INTERACTIVE CHARGER; U.S. Pat. No. 5,757,192, issued May 26, 1998, entitled METHOD AND APPARATUS FOR DETECTING A BAD CELL IN A STORAGE BATTERY; U.S. Pat. No. 5,821,756, issued Oct. 13, 1998, entitled ELECTRONIC BATTERY TESTER WITH TAILORED COMPENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,831,435, issued Nov. 3, 1998, entitled BATTERY TESTER FOR JIS STANDARD; U.S. Pat. No. 5,914,605, issued Jun. 22, 1999, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 5,945,829, issued Aug. 31, 1999, entitled MIDPOINT BATTERY MONITORING; U.S. Pat. No. 6,002,238, issued Dec. 14, 1999, entitled METHOD AND APPARATUS FOR MEASURING COMPLEX IMPEDANCE OF CELLS AND BATTERIES; U.S. Pat. No. 6,037,751, issued Mar. 14, 2000, entitled APPARATUS FOR CHARGING BATTERIES; U.S. Pat. No. 6,037,777, issued Mar. 14, 2000, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Pat. No. 6,051,976, issued Apr. 18, 2000, entitled METHOD AND APPARATUS FOR AUDITING A BATTERY TEST; U.S. Pat. No. 6,081,098, issued Jun. 27, 2000, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,091,245, issued Jul. 18, 2000, entitled METHOD AND APPARATUS FOR AUDITING A BATTERY TEST; U.S. Pat. No. 6,104,167, issued Aug. 15, 2000, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,137,269, issued Oct. 24, 2000, entitled METHOD AND APPARATUS FOR ELECTRONICALLY EVALUATING THE INTERNAL TEMPERATURE OF AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Pat. No. 6,163,156, issued Dec. 19, 2000, entitled ELECTRICAL CONNECTION FOR ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,172,483, issued Jan. 9, 2001, entitled METHOD AND APPARATUS FOR MEASURING COMPLEX IMPEDANCE OF CELLS AND BATTERIES; U.S. Pat. No. 6,172,505, issued Jan. 9, 2001, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,222,369, issued Apr. 24, 2001, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Pat. No. 6,225,808, issued May 1, 2001, entitled TEST COUNTER FOR ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,249,124, issued Jun. 19, 2001, entitled ELECTRONIC BATTERY TESTER WITH INTER-
US 7,977,914 B2

In general, battery maintenance operations such as periodic battery testing and charging may be difficult to carry out in a poorly lit environment, for example, when the battery terminals are recessed in cabinets.

SUMMARY

A battery maintenance tool, which electrically couples to a battery, includes a maintenance tool housing and electronic circuitry within the maintenance tool housing. A cable, substantially external to the maintenance tool housing includes a plurality of conductors. At least some conductors of the plurality conductors are configured to electrically couple to the electronic circuitry within the maintenance tool housing. At least one probe light that is configured to electrically couple to at least two of the plurality of conductors in the cable is also included. The probe light, which is separate from the maintenance tool housing, receives power via the at least two of the plurality of conductors to which it is electrically coupled.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1, 2 and 3 are simplified block diagrams of battery testers in accordance with the present embodiments.

FIGS. 4 and 5 show perspective views of a battery tester Kelvin clamp to which a probe light is coupled in accordance with the present embodiments.

FIGS. 6 through 9 show different embodiments in which probes lights coupled to battery maintenance tool cables receive their power via conductors in the battery maintenance tool cables.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present embodiments, in general, relate to battery maintenance tools (battery testers, battery chargers, etc.) that include probe lights that help illuminate environments in which the battery maintenance tools are used. A battery tester that includes a probe light is a specific example of one of the present embodiments. Such a battery tester is first described below in connection with FIGS. 1 through 4. Embodiments in which a probe light receives its power through conductors within a battery maintenance tool cable are described further below.

FIG. 1 is a simplified block diagram of electronic battery tester 10, which includes a probe light 30, in accordance with one of the present embodiments. The same reference numerals are used in the various figures to represent the same or similar elements. Note that FIG. 1 is a simplified block diagram of a specific type of battery tester. However, the present embodiments are applicable to any type of battery tester including those which do not use dynamic parameters. Other types of example testers include testers that conduct load tests, current based tests, voltage based tests, tests which apply various conditions or observe various performance parameters of a battery, etc. Battery tester 10 includes a test circuit 18, a memory 20, an input 68, an output 22, cable(s) or probe(s) 14 and probe light 30. Test circuit 18 includes a microprocessor system 24 and other circuitry, shown in FIG. 3, configured to measure a dynamic parameter of battery 12. As used herein, a dynamic parameter is one which is related to a signal having an alternating current (AC) component. The signal can be either applied directly or drawn from battery 12.

Example dynamic parameters include dynamic resistance, conductance, impedance, admittance, etc. This list is not exhaustive, for example, a dynamic parameter can include a component value of an equivalent circuit of battery 12. Microprocessor system 24 controls the operation of other components within test circuit 18 and, in turn, carries out different battery testing functions based upon battery testing instructions stored in memory 20.

In the embodiment shown in FIG. 1, cable 14 includes a four-point connection known as a Kelvin connection formed by connections 26 and 28. With such a Kelvin connection, two couplings are provided to the positive and negative terminals of battery 12. First Kelvin connection 26 includes a first conductor 26A and a second conductor 26B, which couple to test circuit 18. Similarly, first conductor 28A and second conductor 28B of second Kelvin connection 28 also couple to test circuit 18. Employing Kelvin connections 26 and 28 allows one of the electrical connections on each side of bat-
battery 12 to carry large amounts of current while the other pair of connections can be used to obtain accurate voltage readings. Note that in other embodiments, instead of employing Kelvin connections 26 and 28, cable 14 can include a single conductor to couple the first battery terminal to test circuit 18 and a single conductor to couple the second battery terminal to test circuit 18. Details regarding testing battery 12 with the help of Kelvin connections 26 and 28 are provided further below in connection with FIG. 3.

As can be seen in FIG. 1, probe light 30, which releasably couples to cable 14, includes a light bulb 32, a housing 34, power control circuitry 36 and a switch 40. Housing 34, which may be formed of any suitable insulating material (such as plastic), substantially encloses power control circuitry 36. A lamp holder or socket (not shown), into which light bulb 32 is inserted, is included within housing 34. Power control circuitry 36 electrically couples to the lamp holder or socket. Probe light-to-cable connector 38, which is configured to couple probe light 30 to cable 14, is shown as a single block in the interest of simplification. However, depending upon the type of coupling desired between probe light 30 and cable 14, probe light-to-cable connector 38 may include one or more components of any suitable design. In some embodiments, probe light 30 releasably mechanically couples to cable 14 and therefore probe light-to-cable connector 38 may include pieces of Velcro (attached to housing 34, of probe light 30, and to cable 14), for example. In some embodiments, instead of Velcro pieces, probe-light-to-cable connector 38 may comprise a double-sided adhesive tape. In other such embodiments, probe-light-to-cable connector 38 may comprise a loop (formed of plastic, for example) that is configured to fit around cable 14. The loop may be formed integral with housing 34. In some embodiments, probe light-to-cable connector 38 may comprise a Velcro strap that is attached to housing 34, of probe light 30, and configured to wrap around cable 14. In some embodiments, probe light 30 is configured to releasably mechanically and electrically couple to cable 14. In such embodiments, probe light-to-cable connector 38 may include any suitable male and female plug fittings capable of providing the releasable mechanical and electrical coupling between probe 30 and cable 14. For simplification, dashed lines 44 and 46 are used in FIG. 1 to denote releasable electrical coupling between power control circuit 36, of probe light 30, and conductors of cable 14. It should be noted that, although dashed lines 44 and 46 are shown connected to conductors 26A and 26B, respectively, electrical coupling between probe 30 and cable 14 can be provided to any suitable combination of conductors 26A, 26B, 28A and 28B. In some embodiments, power control circuitry 36 includes non-rechargeable batteries (lithium coin cells, AA batteries, AAA batteries, etc.) that provide power to light bulb 32. In some embodiments, power is supplied to light bulb 32 from test circuit 18. For simplification, components such as pull up and/or pull down resistors and other power supply circuitry that may be employed within test circuit 18 to provide power to probe light 30 are not shown. Light bulb 30 can be switched on and off using switch 40 and/or form a push button (not shown), for example, included in input 68. In some embodiments, power control circuitry 36 includes rechargeable batteries/capacitors that can be recharged by the battery under test (such as 12) when it is coupled to tester 10. Incandescent lamps, cold-cathode lamps, etc., may be employed as light bulb 32. In some embodiments, probe light 30 has a longitudinal axis 35 that is oriented generally toward an end (such as 106 of FIG. 4), of one of the first and second Kelvin connections, that couples to one of the first and second terminals of the battery.

FIG. 2 is a simplified block diagram of electronic battery tester 10, which includes a probe light 30 that couples to probe extension(s) 42 in accordance with one embodiment. Probe extensions 42 are used, for example, when testing batteries employed in Uninterruptible Power Supply (UPS) and telecommunication (telecom) applications. Here, the batteries are in racks with very small clearance between the batteries and very little light, since no light is needed for the batteries to operate. Under such conditions, probe light 30, mounted on probe extension(s) 42, helps provide the necessary illumination to ensure that proper selection of battery terminals takes place and proper connection to the selected battery terminals is made by probe extensions 42, which are used to reach the terminals. In the embodiment shown in FIG. 2, the coupling of probe light 30, to probe extension(s) 42, and the powering and operation of probe light 30 is carried out in a manner similar to that described in connection with FIG. 1 above.

FIG. 3 is a simplified block diagram of electronic battery tester 10 showing components of test circuit 18. In addition to microprocessor system 24, test circuit 18 also includes forcing function 50, differential amplifier 52 and analog-to-digital converter 54. Amplifier 52 is capacitively coupled to battery 12 through capacitors C1 and C2. Amplifier 52 has an output connected to an input of analog-to-digital converter 54 which in turn has an output connected to microprocessor system 24. Microprocessor system 24 is also capable of receiving an input from input device 68.

During testing of battery 12, forcing function 50 is controlled by microprocessor system 24 and provides a current in the direction shown by the arrow in FIG. 3. In one embodiment, this is a sine wave, square wave or a pulse. Differential amplifier 52 is connected to terminals 13 and 15 of battery 12 through capacitors C1 and C2, respectively, and provides an output related to the voltage potential difference between terminals 13 and 15. In a preferred embodiment, amplifier 52 has a high input impedance. Tester 10 includes differential amplifier 70 having inverting and noninverting inputs connected to terminals 13 and 15, respectively. Amplifier 70 is connected to measure the open circuit potential voltage (VBAT) of battery 12 between terminals 13 and 15 and is one example of a dynamic response sensor used to sense the time varying response of the battery 12 to the applied time varying current. The output of amplifier 70 is provided to analog-to-digital converter 54 such that the voltage across terminals 13 and 15 can be measured by microprocessor system 24. The output of differential amplifier 52 is converted to a digital format and is provided to microprocessor system 24. Microprocessor system 24 operates at a frequency determined by system clock 58 and in accordance with programable instructions stored in memory 20.

Microprocessor system 24 determines the conductance of battery 12 by applying a current pulse 0 and measuring voltage change 50. This measurement provides a dynamic parameter related to the battery. Of course, any such dynamic parameter can be measured including resistance, admittance, impedance or their combination along with conductance. Further, any type of time varying signal can be used to obtain the dynamic parameter. The signal can be generated using an active forcing function or using a forcing function which provides a switchable load, for example, coupled to the battery 12. The processing circuitry determines the change in battery voltage due to the current pulse 0 using amplifier 52 and analog-to-digital converter 54. The value of current 0 generated by forcing function 50 is known and is stored in memory 20. In one embodiment, current 0 is obtained by applying a load to
battery 12. Microprocessor system 24 calculates the conductance of battery 12 using the following equation:

$$G_B = \frac{\Delta I}{\Delta V}$$ \hspace{1cm} \text{Equation 1}

where ΔI is the change in current flowing through battery 12 due to forcing function 50 and ΔV is the change in battery voltage due to applied current ΔI. Based upon the battery conductance G_B and the battery voltage, the battery tester 10 determines the condition of battery 12. Battery tester 10 is programmed with information which can be used with the determined battery conductance and voltage as taught in the above listed patents to Dr. Champlin and Midtronics, Inc.

The tester can compare the measured CCA (Cold Cranking Amp) with the rated CCA for that particular battery. Additional information relating to the conditions of the battery test (such as battery temperature, time, date, etc.) can be received by microprocessor system 24 from input device 68. Further, as mentioned above, in some embodiments, probe light 30 can be turned on and off from input 68.

FIG. 4 shows a perspective view of a battery tester Kelvin clamp 100 to which probe light 30 is coupled in accordance with another embodiment. Kelvin clamp 100 helps couple a Kelvin connection (such as 26) of cable 14 (not shown in FIG. 4) to a battery terminal (such as 13 (not shown in FIG. 4)). As can be seen in FIG. 4, clamp 100 includes a Plier-Type clip 108 having arms 102 and 104 connected together by pivot 105 and a terminal gripping portion 106 that can be opened or closed with the help of arms 102 and 104. As in the case of the above-described embodiments, probe light 30 helps provide the necessary illumination to ensure that proper selection of the battery terminal(s) takes place and proper connection to the selected battery terminals is made by Kelvin clamp 100. For simplification, individual conductors of Kelvin connection 26 are not shown in FIG. 4. In the embodiment shown in FIG. 4, the coupling of probe light 30, to Kelvin clamp 100, and the powering and operation of probe light 30 is carried out in a manner similar to that described in connection with FIG. 1 above.

FIG. 5 is another perspective view of a battery tester Kelvin clamp 100 with the probe light 30 in a different position than that shown in FIG. 4. Since the components of the clamps shown in FIG. 4 and FIG. 5 are substantially similar, the same reference numerals are used in both figures. As can be seen in FIG. 5, probe light 30 is positioned proximate pivot 105 of clamp 100 with bulb 32 positioned such that it automatically points in a same direction as terminal gripping portion 106 of clamp 100.

As indicated above, a probe light (such as 30) can be attached to a battery tester cable and, in general, to a battery maintenance tool cable. The description below relates to embodiments in which a probe light (such as 30) receives its power through conductors within a battery maintenance tool cable.

FIG. 6 is a simplified block diagram of a battery maintenance tool 150, which includes a probe light 30 that receives power via conductors in the battery maintenance tool cable. Battery maintenance tool 150 includes, as its primary components, a housing 152, an electronic circuit 154 (which can include battery charging circuitry and/or battery testing circuitry, etc.), cable 14, probe light 30 and a probe light power supply 156.

As can be seen in FIG. 6, cable 14, which is substantially extended battery maintenance tool housing 152 includes a plurality of conductors 26A, 26B, 28A, 28B, 158 and 160. Conductors 158 and 160 are optional. At least some conductors of the plurality of conductors (26A, 26B, 28A, 28B, 158 and 160) are electrically coupled to electronic circuitry 154 within housing 152. Further, probe light 30 electrically couples to at least two of the plurality of conductors in cable 14. For simplification, the electrical coupling of at least two of the plurality of conductors (26A, 26B, 28A, 28B, 158 and 160) to probe light 30 is shown by dashed lines 44 and 46. As noted above, probe light 30, which is separate from battery maintenance tool housing 152, receives power via the at least two of the plurality of conductors (26A, 26B, 28A, 28B, 158 and 160) to which it is electrically coupled.

As in the case of the earlier-described embodiment shown in FIG. 1, cable 14 of FIG. 6 includes a four-point Kelvin connection formed by connections 26 and 28. First Kelvin connection 26 includes first conductor 26A and second conductor 26B that couple to electronic circuit 154. First conductor 26A and second conductor 28B, included in second Kelvin connection 28, also couple to electronic circuit 154. Additionally, in some embodiments, at least some of Kelvin conductors 26A, 26B, 28A, 26C, 26D and 26E are electrically coupled to probe light 30 and electrically coupled to probe light power supply circuitry 156. In such embodiments, Kelvin connections 26, 28 serve a dual purpose of electrically coupling electronic circuitry 154 to battery 12 and operating as power supply conductors for probe light 30. As indicated above, in some embodiments, one or more additional conductors such as 158 and 160 are included in cable 14. Here, one or both of conductors 158 and 160 can be used along with, or instead of, at least one of Kelvin conductors 26A, 26B, 26C and 26D to supply power to probe light 30 from probe light power supply 156. In general, the embodiments described in connection with FIG. 6 eliminate any need for batteries within probe light housing 34 to power light bulb(s) or lamp(s) 32.

FIG. 7 shows a specific embodiment of a probe light 30 that receives its power from conductors within cable 14. In FIG. 7, a current limited power supply 156 is connected to conductors of Kelvin Connections such as 26 and 28, and a probe light 30 is placed across those conductors proximate to ends of the Kelvin connections that connect to terminals of battery 12. Probe light 30 may include a light-emitting diode (LED) 162 and a reverse protection diode 164 for the LED 162. Instead of an LED (such as 162), an incandescent lamp can be used in some embodiments. In embodiments that use an incandescent lamp, no protection diode such as 164 is necessary. In general, any suitable lamp can be used for probe light 30.

In the embodiment shown in FIG. 7, when probe light power supply 156 is ON, a lamp such as 162 is always ON until Kelvin probes 26 and/or 28 contact the battery posts. However, when there is proper contact between the Kelvin connections 26 and 28 and the battery terminals, the light is not needed. Thus, this feature provides visual feedback that a “good” connection has been made.

FIG. 8 shows another embodiment that illustrates how power can be supplied to probe light 30 via conductors of a Kelvin connection. In this embodiment, an alternating current (AC) power source 156 is used to supply power to lamp 32 of probe light 30. In the circuit of FIG. 8, capacitors 166 and 168 are employed to block the flow of direct current (DC). When probe light power supply 156 is ON, and conductors 26A and 26B held electrically separate (or isolated) from each other when Kelvin clamp 100 is in an open position or when any other suitable conductor separation mechanism 170 (for example, two insulated conductors in Kelvin probe 26) is used, lamp 32 remains ON. However, when conductors 26A and 26B are electrically coupled to the battery terminal as shown in FIG. 8, lamp 32 turns OFF due to the absence of a voltage across the lamp. In the embodiment shown in FIG. 8, it is also possible for microprocessor system 24 to monitor, or
periodically measure, AC current I, by measuring a voltage across resistor 172 and, based on the value of measured current, determine whether to turn probe light power supply ON/OFF.

FIG. 9 is a block diagram of an embodiment that utilizes multiple LEDs/lamps (174, 176) of different colors. For example, a white light can be used for illumination before a proper connection is made between the Kelvin connection(s) and the battery terminal(s). When a proper connection is made between the Kelvin connection(s) and the battery post(s), the white light can be turned OFF and a green light turned ON. In one example embodiment, microprocessor system 24 can detect whether the Kelvin connections are properly connected to the battery terminals and accordingly turn ON/OFF the appropriate lamp.

Although the present embodiments have been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the disclosure.

What is claimed is:

1. A battery maintenance tool comprising:
 a maintenance tool housing;
 electronic circuitry within the maintenance tool housing;
 a cable, substantially external to the maintenance tool housing, comprising a plurality of conductors, wherein at least some conductors of the plurality conductors are configured to electrically couple to the electronic circuitry within the maintenance tool housing;
 at least one probe light, separate from, and independent of, the maintenance tool housing, the at least one probe light configured to electrically couple to at least two of the plurality of conductors in the cable, wherein the at least one probe light is configured to receive power via the at least two of the plurality of conductors to which it is electrically coupled.

2. The battery maintenance tool of claim 1 wherein the cable comprises:
 a first Kelvin connection, which includes a first set of two conductors of the plurality conductors in the cable, configured to electrically couple to a first terminal of a battery; and
 a second Kelvin connection, which includes a second set of two conductors of the plurality of conductors in the cable, configured to electrically couple to a second terminal of the battery.

3. The battery maintenance tool of claim 2 wherein the at least two conductors of the plurality of conductors to which the probe light is electrically coupled are separate from, and additional to, the first Kelvin connection and the second Kelvin connection.

4. The battery maintenance tool of claim 2 wherein at least one of the at least two conductors of the plurality of conductors to which the probe light is electrically coupled are conductors included in at least one of the first Kelvin connection and the second Kelvin connection.

5. The battery maintenance tool of claim 2 wherein the at least two conductors of the plurality of conductors to which the probe light is electrically coupled are conductors included in at least one of the first Kelvin connection and the second Kelvin connection.

6. The battery maintenance tool of claim 2 wherein the at least two conductors of the plurality of conductors to which the probe light is electrically coupled are one of the first set of two conductors included in the first Kelvin connection and the second set of two conductors included in the second Kelvin connection and wherein the at least one probe light turns off when proper contact is made between the respective one of the first Kelvin connection and the first battery terminal and the second Kelvin connection and the second battery terminal to which the probe light is connected.

7. The battery maintenance tool of claim 2 wherein the at least one probe light turns off when proper contact is made between at least one of the first Kelvin connection and the first battery terminal and the second Kelvin connection and the second battery terminal.

8. The battery maintenance tool of claim 2 wherein at least one probe light changes color when proper contact is made between at least one of the first Kelvin connection and the first battery terminal and the second Kelvin connection and the second battery terminal.

9. The battery maintenance tool of claim 1 wherein the at least one probe light comprises a light-emitting diode.

10. The battery maintenance tool of claim 1 wherein the at least one probe light comprises an incandescent lamp.

11. The battery maintenance tool of claim 1 wherein the electronic circuitry comprises battery testing circuitry.

12. The battery maintenance tool of claim 1 wherein the electronic circuitry comprises battery charging circuitry.

13. A method comprising:
 coupling at least one probe light to at least two of a plurality of conductors of a battery maintenance tool cable; and
 powering the probe light through the at least two of the plurality of conductors of the battery maintenance tool cable.

14. The method of claim 13 wherein the at least two of the plurality of conductors of the battery maintenance tool cable are part of at least one of a first Kelvin connection and a second Kelvin connection of the battery maintenance tool cable.

15. The method of claim 13 wherein the at least two of the plurality of conductors of the battery maintenance tool cable are separate from, and additional to, a first Kelvin connection and a second Kelvin connection of the battery maintenance tool cable.

16. The method of claim 14 and further comprising turning off the at least one probe light when proper contact is made between one of the first Kelvin connection and a first battery terminal and the second Kelvin connection and a second battery terminal.

17. The method of claim 14 and further comprising turning off the at least one probe light when proper contact is made between the first Kelvin connection and a first battery terminal and the second Kelvin connection and a second battery terminal.

18. The method of claim 14 and further comprising changing a color of the at least one probe light when proper contact is made between one of the first Kelvin connection and a first battery terminal and the second Kelvin connection and a second battery terminal.

19. The method of claim 14 and further comprising changing a color of the at least one probe light when proper contact is made between the first Kelvin connection and a first battery terminal and the second Kelvin connection and a second battery terminal.

20. The method of claim 13 wherein coupling at least one probe light to at least two of a plurality of conductors of a battery maintenance tool cable comprises coupling one of a light-emitting diode and an incandescent lamp to the at least two of the plurality of conductors of the battery maintenance tool cable.