(12) United States Patent # **Bertness** ### US 7,977,914 B2 (10) **Patent No.:** (45) **Date of Patent:** Jul. 12, 2011 # (54) BATTERY MAINTENANCE TOOL WITH PROBE LIGHT - (75) Inventor: Kevin I. Bertness, Batavia, IL (US) - Assignee: Midtronics, Inc., Willowbrook, IL (US) - Subject to any disclaimer, the term of this (*) Notice: patent is extended or adjusted under 35 U.S.C. 154(b) by 216 days. - Appl. No.: 11/931,907 - Filed: Oct. 31, 2007 (22) #### (65)**Prior Publication Data** US 2008/0106267 A1 May 8, 2008 # Related U.S. Application Data - Continuation-in-part of application No. 10/681,666, filed on Oct. 8, 2003, now abandoned. - (51) Int. Cl. H01M 10/46 (2006.01) - (52) - 320/114, 115; 324/426, 430, 433; 362/157, 362/183, 190 See application file for complete search history. #### (56)**References Cited** ## U.S. PATENT DOCUMENTS | 2,000,665 A | 5/1935 | Neal 439/440 | |-------------|---------|-------------------| | 2,417,940 A | 3/1947 | Lehman 200/61.25 | | 2,514,745 A | 7/1950 | Dalzell 324/115 | | 2,727,221 A | 12/1955 | Springg 340/447 | | 3,178,686 A | 4/1965 | Mills 340/447 | | 3,223,969 A | 12/1965 | Alexander 340/447 | | 3,267,452 A | 8/1966 | Wolf 340/249 | | 3,356,936 A | 12/1967 | Smith | | | | | | 3,562,634 A
3,593,099 A | 2/1971
7/1971 | Latner | | | | |----------------------------|------------------|------------------------|--|--|--| | 3,607,673 A
3,652,341 A | 9/1971
3/1972 | Seyl | | | | | 3,676,770 A | 7/1972 | Sharaf et al | | | | | 3,729,989 A | 5/1973 | Little 73/862.192 | | | | | 3,750,011 A | 7/1973 | Kreps 324/430 | | | | | 3,753,094 A | 8/1973 | Furuishi et al 324/430 | | | | | 3,776,177 A | 12/1973 | Bryant et al 116/311 | | | | | 3,796,124 A | 3/1974 | Crosa 411/521 | | | | | 3,808,522 A | 4/1974 | Sharaf 324/430 | | | | | (Continued) | | | | | | ### FOREIGN PATENT DOCUMENTS DE 29 26 716 B1 1/1981 (Continued) # OTHER PUBLICATIONS "Electrochemical Impedance Spectroscopy in Battery Development and Testing", Batteries International, Apr. 1997, pp. 59 and 62-63. ### (Continued) Primary Examiner — Edward Tso (74) Attorney, Agent, or Firm — Alan G. Rego; Westman, Champlin & Kelly, P.A. #### (57)**ABSTRACT** A battery maintenance tool, which electrically couples to a battery, includes a maintenance tool housing and electronic circuitry within the maintenance tool housing. A cable, substantially external to the maintenance tool housing includes a plurality of conductors. At least some conductors of the plurality conductors are configured to electrically couple to the electronic circuitry within the maintenance tool housing. At least one probe light that is configured to electrically couple to at least two of the plurality of conductors in the cable is also included. The probe light, which is separate from the maintenance tool housing, receives power via the at least two of the plurality of conductors to which it is electrically coupled. # 20 Claims, 9 Drawing Sheets # US 7,977,914 B2 Page 2 | U.S. | PATENT | DOCUMENTS | 4,707,795 A | 11/1987 | Alber et al | 702/63 | |----------------------------|--------------------|-----------------------------------|----------------------------|--------------------|---------------------------------|---------| | 3,811,089 A | | Strezelewicz 324/170 | 4,709,202 A | 11/1987 | Koenck et al | 320/112 | | 3,816,805 A | 6/1974 | Terry 329/123 | 4,710,861 A | | Kanner | | | 3,850,490 A | | Zehr 439/822 | 4,719,428 A
4,723,656 A | | Liebermann
Kiernan et al | | | 3,873,911 A | | Champlin | 4,743,855 A | | Randin et al | | | 3,876,931 A
3,886,426 A | | Daggett 324/429 | 4,745,349 A | | Palanisamy et al | | | 3,886,443 A | 5/1975 | Miyakawa et al 324/426 | 4,773,011 A
4,781,629 A | | VanHoose
Mize | | | 3,889,248 A | 6/1975 | | 4,816,768 A | | Champlin | | | 3,906,329 A
3,909,708 A | | Bader 320/134
Champlin 324/431 | 4,820,966 A | | Fridman | | | 3,936,744 A | | Perlmutter 324/772 | 4,825,170 A | | Champlin | | | 3,946,299 A | 3/1976 | Christianson et al 320/430 | 4,847,547 A
4,849,700 A | | Eng, Jr. et al
Morioka et al | | | 3,947,757 A | | Grube et al | 4,874,679 A | 10/1989 | | | | 3,969,667 A
3,979,664 A | | McWilliams | 4,876,495 A | | Palanisamy et al | | | 3,984,762 A | | Dowgiallo, Jr | 4,881,038 A | | Champlin | | | 3,984,768 A | 10/1976 | Staples 324/712 | 4,885,523 A
4,888,716 A | | Koenck
Ueno | | | 3,989,544 A | 11/1976 | Santo | 4,901,007 A | | Sworm | | | 4,008,619 A
4,023,882 A | 2/1977
5/1977 | Alcaide et al | 4,907,176 A | | Bahnick et al | | | 4,024,953 A | | Nailor, III | 4,912,416 A
4,913,116 A | | Champlin
Katogi et al | | | 4,047,091 A | 9/1977 | Hutchines et al | 4,926,330 A | | Abe et al | | | 4,053,824 A
4,056,764 A | 10/1977 | Dupuis et al | 4,929,931 A | | McCuen | | | 4,057,313 A | 11/1977 | Endo et al | 4,931,738 A | | MacIntyre et al | | | 4,070,624 A | 1/1978 | Taylor 324/772 | 4,932,905 A
4,933,845 A | | Richards
Hayes | | | 4,086,531 A | | Bernier | 4,934,957 A | | Bellusci | | | 4,106,025 A | 8/1978
9/1978 | Katz | 4,937,528 A | 6/1990 | Palanisamy | 324/430 | | 4,112,351 A
4,114,083 A | | Back et al | 4,947,124 A | | Hauser | | | 4,126,874 A | | Suzuki et al 396/301 | 4,949,046 A
4,956,597 A | 8/1990
9/1990 | Seyfang
Heavey et al | | | 4,160,916 A | 7/1979 | Papasideris | 4,965,738 A | | Bauer et al | | | 4,178,546 A | | Hulls et al | 4,968,941 A | | Rogers | | | 4,193,025 A
4,207,611 A | | Frailing et al | 4,968,942 A | | Palanisamy | | | 4,217,645 A | | Barry et al 702/63 | 4,969,834 A
4,983,086 A | | Johnson
Hatrock | | | 4,280,457 A | 7/1981 | Bloxham 123/198 R | 5,004,979 A | | Marino et al | | | 4,297,639 A | | Branham | 5,030,916 A | | Bokitch | | | 4,307,342 A
4,315,204 A | | Peterson | 5,032,825 A | | Kuznicki | | | 4,316,185 A | 2/1982 | | 5,034,893 A
5,037,778 A | | FisherStark et al | | | 4,322,685 A | 3/1982 | Frailing et al | 5,047,722 A | | Wurst et al. | | | 4,351,405 A
4,352,067 A | | Fields et al | 5,081,565 A | | Nabha et al | | | 4,360,780 A | 11/1982 | Skutch, Jr | 5,087,881 A | | Peacock | | | 4,361,809 A | | Bil et al 324/426 | 5,095,223 A
5,108,320 A | | Thomas
Kimber | | | 4,363,407 A | | Buckler et al | 5,109,213 A | | Williams | | | 4,369,407 A
4,379,989 A | | Korbell | 5,126,675 A | | Yang | | | 4,379,990 A | | Sievers et al | 5,130,658 A | | Bohmer | | | 4,385,269 A | 5/1983 | Aspinwall et al 320/129 | 5,140,269 A
5,144,218 A | | Champlin
Bosscha | | | 4,390,828 A | = 14000 | Converse et al | 5,144,248 A | | Alexandres et al | | | 4,392,101 A
4,396,880 A | 7/1983
8/1983 | Saar et al | 5,159,272 A | | Rao et al | | | 4,408,157 A | 10/1983 | Beaubien 324/712 | 5,160,881 A
5,168,208 A | 11/1992
12/1992 | Schramm et al
Schultz et al | | | 4,412,169 A | 10/1983 | Dell'Orto 320/123 | 5,170,124 A | | Blair et al | | | 4,423,378 A
4,423,379 A | 12/1983
12/1983 | Marino et al | 5,179,335 A | 1/1993 | Nor | 320/159 | | 4,424,491 A | | Bobbett et al | 5,194,799 A | | Tomantschger | | | 4,441,359 A | | Ezoe 73/116.06 | 5,204,611 A
5,214,370 A | | Nor et al
Harm et al | | | 4,459,548 A | | Lentz et al | 5,214,385 A | 5/1993 | | | | 4,514,694 A
4,520,353 A | 4/1985
5/1985 | Finger | 5,241,275 A | 8/1993 | Fang | | | 4,521,498 A | 6/1985 | | 5,254,952 A | 10/1993 | Salley et al | | | 4,564,798 A | 1/1986 | Young 320/103 | 5,266,880 A
5,281,919 A | 11/1993
1/1994 | Newland
Palanisamy | | | 4,620,767 A | | Woolf | 5,281,920 A | 1/1994 | | | | 4,633,418 A
4,637,359 A | | Bishop 702/63
Cook | 5,295,078 A | 3/1994 | Stich et al | | | 4,659,977 A | | Kissel et al | 5,298,797 A | 3/1994 | Redl | | | 4,663,580 A | 5/1987 | Wortman 320/153 | 5,300,874 A
5,302,902 A | 4/1994
4/1994 | Shimamoto et al
Groehl | | | 4,665,370 A | | Holland | 5,313,152 A | 5/1994 | Wozniak et al | | | 4,667,143 A
4,667,279 A | 5/1987 | Cooper et al | 5,315,287 A | 5/1994 | Sol | | | 4,678,998 A | 7/1987 | Muramatsu | 5,321,626 A | | Palladino | 702/63 | | 4,679,000 A | | Clark 324/428 | 5,321,627 A | | Reher | | | 4,680,528 A
4,686,442 A | 7/1987
8/1987 | Mikami et al | 5,323,337 A
5,325,041 A | 6/1994 | Wilson et al
Briggs | | | 4,686,442 A
4,697,134 A | | Burkum et al 320/123 | 5,331,268 A | | Patino et al | | | .,05.,15.11 | 5.1501 | | 2,222,200 11 | | | | # US 7,977,914 B2 Page 3 | 5,332,927 A
5,336,993 A | 7/1004 | | | | | |--|--
---|---|---|--| | 5,336,993 A | 1/1227 | Paul et al 307/66 | 5,705,929 A | 1/1998 | Caravello et al 324/430 | | | 8/1994 | Thomas et al 324/158.1 | 5,707,015 A | 1/1998 | Guthrie 241/120 | | 5,338,515 A | 8/1994 | Dalla Betta et al 422/95 | 5,710,503 A | 1/1998 | Sideris et al 320/116 | | 5,339,018 A | | Brokaw 320/147 | 5,711,648 A | | Hammerslag 414/800 | | 5,343,380 A | | Champlin 363/46 | 5,717,336 A | 2/1998 | Basell et al 324/430 | | 5,347,163 A | | Yoshimura 307/66 | 5,717,937 A | | Fritz | | | | Reni et al | , , | | | | 5,352,968 A | | | 5,732,074 A | 3/1998 | Spaur et al | | 5,357,519 A | | Martin et al 371/15.1 | 5,739,667 A | 4/1998 | Matsuda et al | | 5,365,160 A | 11/1994 | Leppo et al 320/160 | 5,744,962 A | 4/1998 | Alber et al 324/426 | | 5,365,453 A | 11/1994 | Startup et al 702/36 | 5,745,044 A | 4/1998 | Hyatt, Jr. et al 340/5.23 | | 5,369,364 A | 11/1994 | Renirie et al 324/430 | 5,747,189 A | 5/1998 | Perkins 429/91 | | 5,381,096 A | | Hirzel 324/427 | 5,747,909 A | 5/1998 | Syverson et al 310/156.56 | | 5,387,871 A | | Tsai | 5,747,967 A | | Muljadi et al 320/148 | | | | | | | | | 5,402,007 A | | Center et al | 5,754,417 A | | Nicollini | | 5,410,754 A | | Klotzbach et al 370/466 | 5,757,192 A | | McShane et al | | 5,412,308 A | 5/1995 | Brown 323/267 | 5,760,587 A | 6/1998 | Harvey 324/434 | | 5,412,323 A | 5/1995 | Kato et al 324/429 | 5,772,468 A | 6/1998 | Kowalski et al 439/506 | | 5,425,041 A | 6/1995 | Seko et al 372/45.01 | 5,773,978 A | 6/1998 | Becker 324/430 | | 5,426,371 A | | Salley et al 324/429 | 5,778,326 A | 7/1998 | Moroto et al 701/22 | | 5,426,416 A | | Jefferies et al | 5,780,974 A | | Pabla et al | | | | | | | | | 5,430,645 A | | Keller 364/424.01 | 5,780,980 A | | Naito | | 5,432,025 A | | Cox | 5,789,899 A | | van Phuoc et al 320/112 | | 5,432,426 A | | Yoshida 320/160 | 5,793,359 A | 8/1998 | Ushikubo 345/169 | | 5,434,495 A | 7/1995 | Toko 320/135 | 5,796,239 A | 8/1998 | van Phuoc et al 320/107 | | 5,435,185 A | 7/1995 | Eagan 73/587 | 5,808,469 A | 9/1998 | Kopera 324/434 | | 5,442,274 A | | Tamai | 5,811,979 A | 9/1998 | Rhein 324/718 | | 5,445,026 A | | Eagan | 5,818,234 A | 10/1998 | McKinnon | | | | | | | | | 5,449,996 A | | Matsumoto et al 320/148 | 5,820,407 A | 10/1998 | Morse et al | | 5,449,997 A | | Gilmore et al 320/148 | 5,821,756 A | 10/1998 | McShane et al 324/430 | | 5,451,881 A | 9/1995 | Finger 324/433 | 5,821,757 A | 10/1998 | Alvarez et al 324/434 | | 5,453,027 A | 9/1995 | Buell et al 439/433 | 5,825,174 A | 10/1998 | Parker 324/106 | | 5,457,377 A | | Jonsson 324/430 | 5,831,435 A | 11/1998 | Troy 324/426 | | 5,459,660 A | | Berra 701/33 | 5,832,396 A | | Moroto et al 701/22 | | 5,469,043 A | | Cherng et al 320/161 | 5,850,113 A | | Weimer et al 307/125 | | | | | | | | | 5,485,090 A | | Stephens 324/433 | 5,862,515 A | 1/1999 | Kobayashi et al 702/63 | | 5,488,300 A | | Jamieson 324/432 | 5,865,638 A | 2/1999 | Trafton 439/288 | | 5,504,674 A | 4/1996 | Chen et al 705/4 | 5,871,858 A | 2/1999 | Thomsen et al 429/7 | | 5,508,599 A | 4/1996 | Koenck 320/138 | 5,872,443 A | 2/1999 | Williamson 320/160 | | 5,519,383 A | | De La Rosa 340/636.15 | 5,872,453 A | 2/1999 | Shimoyama et al 324/431 | | 5,528,148 A | | Rogers 320/137 | 5,883,306 A | 3/1999 | Hwang 73/146.8 | | 5,537,967 A | | Tashiro et al 123/192.1 | 5,895,440 A | 4/1999 | Proctor et al 702/63 | | | | | | | | | 5,541,489 A | | Dunstan | 5,903,154 A | 5/1999 | Zhang et al | | 5,546,317 A | | Andrieu | 5,903,716 A | 5/1999 | Kimber et al 395/114 | | | | Nicol et al 340/439 | 5,912,534 A | 6/1999 | Benedict 315/82 | | 5,548,273 A | 8/1990 | | 3,712,331 11 | | | | 5,548,273 A
5,550,485 A | | Falk 324/772 | 5,914,605 A | 6/1999 | Bertness 324/430 | | 5,550,485 A | 8/1996 | Falk 324/772 | 5,914,605 A | | | | 5,550,485 A
5,561,380 A | 8/1996
10/1996 | Falk | 5,914,605 A
5,927,938 A | 7/1999 | Hammerslag 414/809 | | 5,550,485 A
5,561,380 A
5,562,501 A | 8/1996
10/1996
10/1996 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 | 5,914,605 A
5,927,938 A
5,929,609 A | 7/1999
7/1999 | Hammerslag | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A | 8/1996
10/1996
10/1996
10/1996 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A | 7/1999
7/1999
8/1999 | Hammerslag | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A | 8/1996
10/1996
10/1996
10/1996
11/1996 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A | 7/1999
7/1999
8/1999
8/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A
5,573,611 A | 8/1996
10/1996
10/1996
10/1996
11/1996
11/1996 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A | 7/1999
7/1999
8/1999
8/1999
8/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A | 8/1996
10/1996
10/1996
10/1996
11/1996
11/1996 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A | 7/1999
7/1999
8/1999
8/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A
5,573,611 A | 8/1996
10/1996
10/1996
10/1996
11/1996
11/1996 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A |
7/1999
7/1999
8/1999
8/1999
8/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A
5,573,611 A
5,574,355 A | 8/1996
10/1996
10/1996
10/1996
11/1996
11/1996
11/1996 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A
5,946,605 A | 7/1999
7/1999
8/1999
8/1999
8/1999
9/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,583,416 A | 8/1996
10/1996
10/1996
10/1996
11/1996
11/1996
11/1996
12/1996 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A
5,946,605 A
5,951,229 A
5,955,951 A | 7/1999
7/1999
8/1999
8/1999
8/1999
9/1999
9/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,562,501 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,583,416 A
5,585,416 A | 8/1996
10/1996
10/1996
10/1996
11/1996
11/1996
11/1996
12/1996 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A
5,946,605 A
5,951,229 A
5,955,951 A
5,961,561 A | 7/1999
7/1999
8/1999
8/1999
8/1999
9/1999
9/1999
10/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/422 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,583,416 A
5,585,416 A
5,585,728 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A
5,946,605 A
5,951,229 A
5,955,951 A
5,961,561 A
5,961,604 A | 7/1999
7/1999
8/1999
8/1999
8/1999
9/1999
9/1999
10/1999
10/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/420 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,583,416 A
5,585,416 A
5,585,728 A
5,589,757 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A
5,946,605 A
5,951,229 A
5,951,229 A
5,951,561 A
5,961,604 A
5,961,604 A
5,969,625 A | 7/1999
7/1999
8/1999
8/1999
8/1999
9/1999
9/1999
10/1999
10/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,583,416 A
5,585,428 A
5,585,728 A
5,589,757 A
5,592,093 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1996
1/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A
5,946,605 A
5,951,229 A
5,955,951 A
5,961,561 A
5,961,604 A
5,969,625 A
5,973,598 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 9/1999 10/1999 10/1999 10/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A
5,574,355 A
5,578,915 A
5,583,416 A
5,585,416 A
5,585,728 A
5,589,757 A
5,592,093 A
5,592,094 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A
5,946,605 A
5,951,229 A
5,955,951 A
5,961,561 A
5,961,604 A
5,969,625 A
5,973,598 A
5,973,598 A | 7/1999
7/1999
8/1999
8/1999
8/1999
9/1999
9/1999
10/1999
10/1999
10/1999
11/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,583,416 A
5,585,428 A
5,585,728 A
5,589,757 A
5,592,093 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A
5,946,605 A
5,951,229 A
5,955,951 A
5,961,561 A
5,961,604 A
5,969,625 A
5,973,598 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 9/1999 10/1999 10/1999 10/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A
5,574,355 A
5,578,915 A
5,583,416 A
5,585,416 A
5,585,728 A
5,589,757 A
5,592,093 A
5,592,094 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
1/1997
1/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A
5,946,605 A
5,951,229 A
5,955,951 A
5,961,561 A
5,961,604 A
5,969,625 A
5,973,598 A
5,973,598 A | 7/1999
7/1999
8/1999
8/1999
8/1999
9/1999
9/1999
10/1999
10/1999
10/1999
11/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,562,501 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,583,416 A
5,585,416 A
5,585,728 A
5,589,757 A
5,592,093 A
5,592,094 A
5,596,260 A
5,598,098 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997
1/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A
5,946,605 A
5,951,229 A
5,955,951 A
5,961,561 A
5,961,604 A
5,969,625 A
5,973,598 A
5,978,805 A
5,978,805 A
5,982,138 A
6,002,238 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 10/1999 11/1999 11/1999 12/1999 | Hammerslag 414/809 Joy
et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,583,416 A
5,585,416 A
5,585,728 A
5,585,728 A
5,589,757 A
5,592,093 A
5,592,094 A
5,592,098 A
5,598,098 A
5,602,462 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997
1/1997
1/1997
2/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A
5,946,605 A
5,951,229 A
5,955,951 A
5,961,561 A
5,961,604 A
5,969,625 A
5,973,598 A
5,978,805 A
5,982,138 A
6,002,238 A
6,005,489 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 11/1999 11/1999 12/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,583,416 A
5,585,416 A
5,585,728 A
5,585,728 A
5,589,757 A
5,592,094 A
5,592,094 A
5,596,260 A
5,598,098 A
5,602,462 A
5,606,242 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
1/1997
1/1997
1/1997
1/1997
2/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A
5,946,605 A
5,951,229 A
5,955,951 A
5,961,561 A
5,961,561 A
5,961,604 A
5,969,625 A
5,973,598 A
5,978,805 A
5,982,138 A
6,002,238 A
6,005,489 A
6,005,759 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 11/1999 12/1999 12/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,583,416 A
5,585,728 A
5,585,728 A
5,589,757 A
5,592,093 A
5,592,094 A
5,596,260 A
5,598,098 A
5,602,462 A
5,606,242 A
5,614,788 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997
1/1997
1/1997
2/1997
2/1997
3/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A
5,946,605 A
5,951,229 A
5,955,951 A
5,961,604 A
5,961,604 A
5,969,625 A
5,973,598 A
5,978,805 A
5,982,138 A
6,002,238 A
6,002,489 A
6,005,759 A
6,008,652 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 11/1999 12/1999 12/1999 12/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 Theofanopoulos et al. 324/434 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,562,501 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,583,416 A
5,585,416 A
5,585,728 A
5,589,757 A
5,592,093 A
5,592,094 A
5,596,260 A
5,598,098 A
5,602,462 A
5,606,242 A
5,614,788 A
5,621,298 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997
1/1997
1/1997
2/1997
2/1997
2/1997
4/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 Harvey 320/134 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A
5,946,605 A
5,951,229 A
5,951,229 A
5,955,951 A
5,961,561 A
5,961,604 A
5,969,625 A
5,973,598 A
5,973,598 A
6,002,238 A
6,002,238 A
6,005,759 A
6,008,652 A
6,009,369 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 11/1999 12/1999 12/1999 12/1999 12/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 Theofanopoulos et al. 324/434 Boisvert et al. 321/199 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,562,501 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,583,416 A
5,585,416 A
5,585,728 A
5,589,757 A
5,592,094 A
5,592,094 A
5,596,260 A
5,596,260 A
5,598,098 A
5,602,462 A
5,602,462 A
5,614,788 A
5,621,298 A
5,633,985 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997
1/1997
1/1997
2/1997
2/1997
3/1997
4/1997
5/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 Harvey 320/134 Severson et al. 704/267 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A
5,946,605 A
5,951,229 A
5,955,951 A
5,961,561 A
5,961,604 A
5,969,625 A
5,973,598 A
5,978,805 A
5,978,805 A
6,002,238 A
6,005,489 A
6,005,759 A
6,008,652 A
6,009,369 A
6,016,047 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/64 Boisvert et al. 701/99 Notten et al. 320/137 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,585,416 A
5,585,416 A
5,585,416 A
5,585,728 A
5,589,757 A
5,592,093 A
5,592,094 A
5,596,260 A
5,598,098 A
5,602,462 A
5,606,242 A
5,614,788 A
5,621,298 A
5,633,985 A
5,633,985 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
1/1997
1/1997
1/1997
2/1997
2/1997
3/1997
4/1997
6/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 Harvey 320/134 Severson et al. 704/267 Kellett et al. 320/104 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A
5,946,605 A
5,951,229 A
5,951,229 A
5,955,951 A
5,961,561 A
5,961,604 A
5,969,625 A
5,973,598 A
5,973,598 A
6,002,238 A
6,002,238 A
6,005,759 A
6,008,652 A
6,009,369 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/1999 12/1999 12/1999 12/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 Theofanopoulos et al. 324/434 Boisvert et al. 321/199 | | 5,550,485
A
5,561,380 A
5,562,501 A
5,562,501 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,583,416 A
5,585,416 A
5,585,728 A
5,589,757 A
5,592,094 A
5,592,094 A
5,596,260 A
5,596,260 A
5,598,098 A
5,602,462 A
5,602,462 A
5,614,788 A
5,621,298 A
5,633,985 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
1/1997
1/1997
1/1997
2/1997
2/1997
3/1997
4/1997
6/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 Harvey 320/134 Severson et al. 704/267 | 5,914,605 A
5,927,938 A
5,929,609 A
5,939,855 A
5,939,861 A
5,945,829 A
5,946,605 A
5,951,229 A
5,955,951 A
5,961,561 A
5,961,604 A
5,969,625 A
5,973,598 A
5,978,805 A
5,978,805 A
6,002,238 A
6,005,489 A
6,005,759 A
6,008,652 A
6,009,369 A
6,016,047 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/64 Boisvert et al. 701/99 Notten et al. 320/137 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,585,416 A
5,585,416 A
5,585,416 A
5,585,728 A
5,589,757 A
5,592,093 A
5,592,094 A
5,596,260 A
5,598,098 A
5,602,462 A
5,606,242 A
5,614,788 A
5,621,298 A
5,633,985 A
5,633,985 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
1/1997
1/1997
1/1997
2/1997
2/1997
3/1997
4/1997
5/1997
6/1997
6/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 Harvey 320/134 Severson et al. 704/267 Kellett et al. 320/104 | 5,914,605 A 5,927,938 A 5,929,609 A 5,939,855 A 5,939,861 A 5,945,829 A 5,946,605 A 5,951,229 A 5,955,951 A 5,961,561 A 5,961,604 A 5,969,625 A 5,973,598 A 5,978,805 A 5,978,805 A 6,002,238 A 6,002,238 A 6,005,489 A 6,005,759 A 6,008,652 A 6,009,369 A 6,016,047 A 6,031,354 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/1999 12/1999 12/1999 12/1999 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/63 Theofanopoulos et al. 324/434 Boisvert et al. 701/99 Notten et al. 320/137 Wiley et al. 320/116 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,563,496 A
5,572,136 A
5,573,611 A
5,578,915 A
5,583,416 A
5,585,416 A
5,585,728 A
5,589,757 A
5,592,093 A
5,592,094 A
5,596,260 A
5,598,098 A
5,602,462 A
5,614,788 A
5,614,788 A
5,633,985 A
5,633,985 A
5,633,978 A
5,637,978 A
5,642,031 A
5,650,937 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
1/1997
1/1997
1/1997
2/1997
2/1997
3/1997
4/1997
5/1997
6/1997
6/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 Harvey 320/134 Severson et al. 704/267 Kellett et al. 320/106 Bounaga 702/65 | 5,914,605 A 5,927,938 A 5,929,609 A 5,939,855 A 5,939,861 A 5,945,829 A 5,946,605 A 5,951,229 A 5,951,229 A 5,951,561 A 5,961,561 A 5,961,561 A 5,969,625 A 5,973,598 A 5,978,805 A 5,982,138 A 6,002,238 A 6,002,238 A 6,005,759 A 6,008,652 A 6,009,369 A 6,016,047 A 6,031,354 A 6,031,354 A 6,031,354 A 6,031,358 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/1900 2/2000 3/2000 3/2000 | Hammerslag | | 5,550,485 A
5,561,380 A
5,562,501 A
5,562,501 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,585,416 A
5,585,416 A
5,585,728 A
5,589,757 A
5,592,094 A
5,592,094 A
5,596,260 A
5,596,260 A
5,598,098 A
5,602,462 A
5,606,242 A
5,614,788 A
5,621,298 A
5,633,985 A
5,637,978 A
5,642,031 A
5,650,937 A
5,650,501 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997
1/1997
1/1997
2/1997
2/1997
2/1997
3/1997
6/1997
6/1997
7/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 Harvey 320/134 Severson et al. 704/267 Kellett et al. 320/106 Brotto 320/156 Bounaga 702/65 McClure et al. 340/636.15 | 5,914,605 A 5,927,938 A 5,929,609 A 5,939,855 A 5,939,861 A 5,945,829 A 5,946,605 A 5,951,229 A 5,951,229 A 5,956,561 A 5,961,604 A 5,969,625 A 5,973,598 A 5,973,598 A 6,002,238 A 6,002,238 A 6,005,759 A 6,005,759 A 6,008,652 A 6,009,369 A 6,016,047 A 6,031,354 A 6,031,354 A 6,031,368 A 6,031,368 A 6,037,749 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/2000 2/2000 3/2000 3/2000 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 Theofanopoulos et al. 324/434 Boisvert et al. 701/99 Notten et al. 320/137 Wiley et al. 320/13 Klippel et al. 324/133 Koike et al. 320/104 Parsonage 320/132 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,562,501 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,585,416 A
5,585,416 A
5,585,728 A
5,589,757 A
5,592,094 A
5,592,094 A
5,596,260 A
5,596,260 A
5,598,098 A
5,602,462 A
5,606,242 A
5,614,788 A
5,621,298 A
5,633,985 A
5,637,978 A
5,637,978 A
5,652,501 A
5,655,501 A
5,653,659 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997
1/1997
1/1997
2/1997
2/1997
3/1997
4/1997
6/1997
6/1997
7/1997
8/1997 | Falk 324/772 Sway-Tin et al 324/509 Kinoshita et al 439/852 McClure 320/128 Champlin 324/426 Koch et al 152/152.1 McShane et al 320/161 Crouch, Jr. et al 324/428 Klang 320/160 Audett et al 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al 320/135 Champlin 324/430 Stich et al 323/258 Hull et al 320/106 Mullins et al 315/82 Harvey 320/134 Severson et al 704/267 Kellett et al 320/104 Brotto 320/156 Bounaga 702/65 McClure et al 340/636.15 Kunibe et al 477/111 | 5,914,605 A 5,927,938 A 5,929,609 A 5,939,855 A 5,939,861 A 5,945,829 A 5,946,605 A 5,951,229 A 5,951,229 A 5,956,561 A 5,961,604 A 5,969,625 A 5,973,598 A 5,978,805 A 5,978,805 A 6,002,238 A 6,005,759 A 6,005,759 A 6,008,652 A 6,009,369 A 6,016,047 A 6,031,354 A 6,031,354 A 6,031,358 A 6,037,745 A 6,037,749 A 6,037,749 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/1999 3/2000 2/2000 3/2000 3/2000 3/2000 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 Theofanopoulos et al. 324/434 Boisvert et al. 701/99 Notten et al. 320/137 Wiley et al. 320/114 Klippel et al. 324/133 Koike et al. 320/104 Parsonage 320/132 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,562,501 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,585,416 A
5,585,416 A
5,585,728 A
5,589,757 A
5,592,094 A
5,592,094 A
5,596,260 A
5,596,260 A
5,598,098 A
5,602,462 A
5,614,788 A
5,621,298 A
5,633,985 A
5,637,978 A
5,637,978 A
5,650,937 A
5,650,937 A
5,652,501 A
5,653,659 A
5,654,623 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997
1/1997
2/1997
2/1997
2/1997
3/1997
3/1997
6/1997
6/1997
7/1997
8/1997
8/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane
et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 Harvey 320/134 Severson et al. 704/267 Kellett et al. 320/104 Brotto 320/156 Bounaga 702/65 McClure et al. 340/636.15 Kunibe et al. 477/111 Shiga et al. 320/106 | 5,914,605 A 5,927,938 A 5,929,609 A 5,939,855 A 5,939,861 A 5,945,829 A 5,946,605 A 5,951,229 A 5,955,951 A 5,961,561 A 5,961,604 A 5,969,625 A 5,973,598 A 5,978,805 A 5,978,805 A 6,002,238 A 6,005,489 A 6,005,759 A 6,008,652 A 6,009,369 A 6,016,047 A 6,031,354 A 6,031,354 A 6,037,745 A 6,037,745 A 6,037,745 A 6,037,745 A 6,037,7751 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/1999 3/2000 3/2000 3/2000 3/2000 3/2000 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 Theofanopoulos et al. 324/434 Boisvert et al. 701/99 Notten et al. 320/137 Wiley et al. 320/116 Klippel et al. 324/133 Koike et al. 320/104 Parsonage 320/132 Klang 320/160 Champlin 324/430 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,562,501 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,585,416 A
5,585,416 A
5,585,728 A
5,589,757 A
5,592,094 A
5,592,094 A
5,596,260 A
5,596,260 A
5,598,098 A
5,602,462 A
5,606,242 A
5,614,788 A
5,621,298 A
5,633,985 A
5,637,978 A
5,637,978 A
5,652,501 A
5,655,501 A
5,653,659 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997
1/1997
1/1997
2/1997
2/1997
3/1997
4/1997
6/1997
6/1997
7/1997
8/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 Harvey 320/134 Severson et al. 704/267 Kellett et al. 320/104 Brotto 320/156 Bounaga 702/65 McClure et al. 340/636.15 Kunibe et al. 477/111 Shiga et al. 320/106 | 5,914,605 A 5,927,938 A 5,929,609 A 5,939,855 A 5,939,861 A 5,945,829 A 5,946,605 A 5,951,229 A 5,951,229 A 5,956,561 A 5,961,604 A 5,969,625 A 5,973,598 A 5,978,805 A 5,978,805 A 6,002,238 A 6,005,759 A 6,005,759 A 6,008,652 A 6,009,369 A 6,016,047 A 6,031,354 A 6,031,354 A 6,031,358 A 6,037,745 A 6,037,749 A 6,037,749 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/1999 3/2000 2/2000 3/2000 3/2000 3/2000 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 Theofanopoulos et al. 324/434 Boisvert et al. 701/99 Notten et al. 320/137 Wiley et al. 320/114 Klippel et al. 324/133 Koike et al. 320/104 Parsonage 320/132 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,562,501 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,585,416 A
5,585,416 A
5,585,728 A
5,589,757 A
5,592,094 A
5,592,094 A
5,596,260 A
5,596,260 A
5,598,098 A
5,602,462 A
5,614,788 A
5,621,298 A
5,633,985 A
5,637,978 A
5,637,978 A
5,650,937 A
5,650,937 A
5,652,501 A
5,653,659 A
5,654,623 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
1/1997
1/1997
1/1997
2/1997
2/1997
3/1997
4/1997
6/1997
6/1997
7/1997
7/1997
8/1997
8/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 Harvey 320/134 Severson et al. 704/267 Kellett et al. 320/104 Brotto 320/156 Bounaga 702/65 McClure et al. 340/636.15 Kunibe et al. 477/111 Shiga et al. 320/106 | 5,914,605 A 5,927,938 A 5,929,609 A 5,939,855 A 5,939,861 A 5,945,829 A 5,946,605 A 5,951,229 A 5,955,951 A 5,961,561 A 5,961,604 A 5,969,625 A 5,973,598 A 5,978,805 A 5,978,805 A 6,002,238 A 6,005,489 A 6,005,759 A 6,008,652 A 6,009,369 A 6,016,047 A 6,031,354 A 6,031,354 A 6,037,745 A 6,037,745 A 6,037,745 A 6,037,745 A 6,037,7751 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/1999 3/2000 3/2000 3/2000 3/2000 3/2000 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 Theofanopoulos et al. 324/434 Boisvert et al. 701/99 Notten et al. 320/137 Wiley et al. 320/116 Klippel et al. 324/133 Koike et al. 320/104 Parsonage 320/132 Klang 320/160 Champlin 324/430 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,562,501 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,585,416 A
5,585,416 A
5,585,728 A
5,585,728 A
5,589,757 A
5,592,093 A
5,592,093 A
5,592,094 A
5,596,260 A
5,606,242 A
5,614,788 A
5,621,298 A
5,633,985 A
5,637,978 A
5,633,985 A
5,637,978 A
5,650,937 A
5,652,501 A
5,652,501 A
5,653,659 A
5,654,623 A
5,654,623 A
5,656,920 A
5,6661,368 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997
1/1997
2/1997
2/1997
3/1997
4/1997
6/1997
6/1997
6/1997
7/1997
8/1997
8/1997
8/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/228 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 Harvey 320/134 Severson et al. 704/267 Kellett et al. 320/104 Brotto 320/156 Bounaga 702/65 McClure et al. 340/636.15 Kunibe et al. 477/111 Shiga et al. 324/431 Deol et al. 315/82 | 5,914,605 A 5,927,938 A 5,929,609 A 5,939,855 A 5,939,861 A 5,945,829 A 5,945,829 A 5,951,229 A 5,951,229 A 5,951,661 A 5,961,664 A 5,969,625 A 5,973,598 A 5,978,805 A 5,982,138 A 6,002,238 A 6,002,238 A 6,005,489 A 6,005,759 A 6,008,652 A 6,009,369 A 6,016,047 A 6,031,354 A 6,031,354 A 6,037,745 A 6,037,745 A 6,037,749 A 6,037,777 A 6,037,778 A 6,037,778 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/2000 2/2000 2/2000 3/2000 3/2000 3/2000 3/2000 3/2000 4/2000 4/2000 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 Theofanopoulos et al. 324/434 Boisvert et al. 320/134 Wiley et al. 320/116 Klippel et al. 320/116 Klippel et al. 320/116 Klippel et al. 320/106 Champlin 320/130 Wiley et al. 320/106 Champlin 320/160 Champlin 324/430 Makhija 324/433 Rouillard et al. 307/77 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,562,501 A
5,572,136 A
5,573,611 A
5,578,915 A
5,583,416 A
5,585,728 A
5,585,728 A
5,589,757 A
5,592,093 A
5,592,094 A
5,592,094 A
5,592,094 A
5,592,094 A
5,602,462 A
5,602,462 A
5,602,462 A
5,602,462 A
5,602,462 A
5,602,462 A
5,603,985 A
5,633,985 A
5,633,985 A
5,633,985 A
5,637,978 A
5,650,937 A
5,650,937 A
5,650,937 A
5,655,501 A
5,654,623 A
5,656,920 A
5,656,920 A
5,656,920 A
5,656,920 A
5,656,920 A
5,656,920 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997
1/1997
1/1997
2/1997
2/1997
2/1997
6/1997
6/1997
7/1997
8/1997
8/1997
8/1997
8/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 Harvey 320/134 Severson et al. 704/267 Kellett et al. 320/104 Brotto 320/156 Bounaga 702/65 McClure et al. 340/636.15 Kunibe et al. 477/111 Shiga et al. 324/431 Deol et al. 315/82 Vinci 324/72.5 | 5,914,605 A 5,927,938 A 5,929,609 A 5,939,855 A 5,939,861 A 5,945,829 A 5,946,605 A 5,951,229 A 5,951,229 A 5,955,951 A 5,961,561 A 5,961,561 A 5,969,625 A 5,973,598 A 5,978,805 A 5,982,138 A 6,002,238 A 6,002,238 A 6,005,749 A 6,003,369 A 6,016,047 A 6,031,354 A 6,031,354 A 6,031,354 A 6,037,745 A 6,037,745 A 6,037,777 A 6,037,777 A 6,037,777 A 6,037,777 A 6,037,777 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 12/1999
12/1999 12/1999 12/1999 12/1999 12/2000 2/2000 3/2000 3/2000 3/2000 3/2000 3/2000 4/2000 4/2000 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 Theofanopoulos et al. 324/434 Boisvert et al. 701/99 Notten et al. 320/136 Klippel et al. 320/116 Klippel et al. 320/137 Wiley et al. 320/116 Klippel et al. 320/136 Klang 320/160 Parsonage 320/132 Klang 320/160 Champlin 324/433 Rouillard et al. 307/77 Bertness 324/426 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,562,501 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,583,416 A
5,585,728 A
5,585,728 A
5,589,77 A
5,592,094 A
5,592,094 A
5,592,094 A
5,592,094 A
5,602,462 A
5,602,462 A
5,602,462 A
5,602,462 A
5,602,462 A
5,602,462 A
5,602,462 A
5,602,462 A
5,602,462 A
5,603,985 A
5,633,985 A
5,631,987 A
5,651,298 A
5,650,937 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997
1/1997
1/1997
2/1997
2/1997
2/1997
3/1997
6/1997
6/1997
7/1997
7/1997
8/1997
8/1997
8/1997
8/1997
8/1997
1/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 Harvey 320/134 Severson et al. 704/267 Kellett et al. 320/106 Bounaga 702/65 McClure et al. 340/636.15 Kunibe et al. 477/111 Shiga et al. 324/431 Deol et al. 315/82 <tr< td=""><td>5,914,605 A 5,927,938 A 5,929,609 A 5,939,855 A 5,939,861 A 5,945,829 A 5,946,605 A 5,951,229 A 5,955,951 A 5,961,561 A 5,961,604 A 5,969,625 A 5,973,598 A 5,973,598 A 6,002,238 A 6,005,489 A 6,005,789 A 6,005,789 A 6,004,652 A 6,009,369 A 6,016,047 A 6,031,354 A 6,031,354 A 6,031,354 A 6,037,745 A 6,037,777 A 6,037,778 A 6,037,778 A 6,037,778 A 6,046,514 A 6,051,976 A 6,055,468 A</td><td>7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/1999 12/2000 2/2000 3/2000 3/2000 3/2000 3/2000 3/2000 4/2000 4/2000 4/2000 4/2000</td><td>Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 Theofanopoulos et al. 324/434 Boisvert et al. 320/137 Wiley et al. 320/137 Wiley et al. 320/137 Wiley et al. 320/113 Koike et al. 320/104 Parsonage 320/104 Parsonage 320/104 Parsonage 320/106 Champlin 324/433 Roillard et al. 307/77 Bertness 324/426 Kaman et al. 701/29</td></tr<> | 5,914,605 A 5,927,938 A 5,929,609 A 5,939,855 A 5,939,861 A 5,945,829 A 5,946,605 A 5,951,229 A 5,955,951 A 5,961,561 A 5,961,604 A 5,969,625 A 5,973,598 A 5,973,598 A 6,002,238 A 6,005,489 A 6,005,789 A 6,005,789 A 6,004,652 A 6,009,369 A 6,016,047 A 6,031,354 A 6,031,354 A 6,031,354 A 6,037,745 A 6,037,777 A 6,037,778 A 6,037,778 A 6,037,778 A 6,046,514 A 6,051,976 A 6,055,468 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/1999 12/2000 2/2000 3/2000 3/2000 3/2000 3/2000 3/2000 4/2000 4/2000 4/2000 4/2000 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 Theofanopoulos et al. 324/434 Boisvert et al. 320/137 Wiley et al. 320/137 Wiley et al. 320/137 Wiley et al. 320/113 Koike et al. 320/104 Parsonage 320/104 Parsonage 320/104 Parsonage 320/106 Champlin 324/433 Roillard et al. 307/77 Bertness 324/426 Kaman et al. 701/29 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,562,501 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,585,416 A
5,585,416 A
5,585,728 A
5,589,757 A
5,592,094 A
5,592,094 A
5,592,094 A
5,602,462 A
5,606,242 A
5,614,788 A
5,61,298 A
5,633,985 A
5,633,985 A
5,637,978 A
5,652,501 A
5,650,937 A
5,655,501 A
5,655,659 A
5,654,623 A
5,656,920 A
5,656,920 A
5,656,920 A
5,656,921 A
5,657,044 A
5,677,077 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997
1/1997
1/1997
2/1997
2/1997
3/1997
3/1997
6/1997
6/1997
7/1997
8/1997
8/1997
8/1997
8/1997
8/1997
8/1997
10/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 Harvey 320/106 Mullins et al. 315/82 Horotto 320/156 Bounaga 702/65 McClure et al. 340/636.15 Kunibe et al. 477/111 Shiga et al. 320/106 Cherng et al. 324/42.5 Greene 340/636.11 | 5,914,605 A 5,927,938 A 5,929,609 A 5,939,855 A 5,939,861 A 5,945,829 A 5,946,605 A 5,951,229 A 5,951,229 A 5,956,561 A 5,961,604 A 5,969,625 A 5,973,598 A 5,973,598 A 6,005,759 A 6,005,759 A 6,005,759 A 6,008,652 A 6,009,369 A 6,016,047 A 6,031,354 A 6,031,354 A 6,037,774 A 6,037,775 A 6,037,777 6,037,778 A 6,046,514 A 6,055,468 A 6,055,468 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/1999 12/2000 2/2000 3/2000 3/2000 3/2000 3/2000 3/2000 4/2000 4/2000 4/2000 5/2000 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 Hart et al. 320/134 Boisvert et al. 701/99 Notten et al. 320/116 Klippel et al. 320/116 Klippel et al. 320/116 Klippel et al. 320/116 Klippel et al. 320/104 Parsonage 320/102 Champlin 324/430 Makhija 324/433 Rouillard et al. 307/77 Bertness 324/426 Kaman et al. 701/29 Joyce 702/63 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,562,501 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,583,416 A
5,585,728 A
5,585,728 A
5,589,77 A
5,592,094 A
5,592,094 A
5,592,094 A
5,592,094 A
5,602,462 A
5,602,462 A
5,602,462 A
5,602,462 A
5,602,462 A
5,602,462 A
5,602,462 A
5,602,462 A
5,602,462 A
5,603,985 A
5,633,985 A
5,631,987 A
5,651,298 A
5,650,937 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997
1/1997
1/1997
2/1997
2/1997
3/1997
3/1997
6/1997
6/1997
7/1997
8/1997
8/1997
8/1997
8/1997
8/1997
8/1997
10/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 Harvey 320/134 Severson et al. 704/267 Kellett et al. 320/106 Bounaga 702/65 McClure et al. 340/636.15 Kunibe et al. 477/111 Shiga et al. 324/431 Deol et al. 315/82 <tr< td=""><td>5,914,605 A 5,927,938 A 5,929,609 A 5,939,855 A 5,939,861 A 5,945,829 A 5,946,605 A 5,951,229 A 5,955,951 A 5,961,561 A 5,961,604 A 5,969,625 A 5,973,598 A 5,973,598 A 6,002,238 A 6,005,489 A 6,005,789 A 6,005,789 A 6,004,652 A 6,009,369 A 6,016,047 A 6,031,354 A 6,031,354 A 6,031,354 A 6,037,745 A 6,037,777 A 6,037,778 A 6,037,778 A 6,037,778 A 6,046,514 A 6,051,976 A 6,055,468 A</td><td>7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/1999 12/2000 2/2000 3/2000 3/2000 3/2000 3/2000 3/2000 4/2000 4/2000 4/2000 4/2000</td><td>Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 Theofanopoulos et al. 324/434 Boisvert et al. 320/137 Wiley et al. 320/137 Wiley et al. 320/137 Wiley et al. 320/113 Koike et al. 320/104 Parsonage 320/104 Parsonage 320/104 Parsonage 320/106 Champlin 324/433 Roillard et al. 307/77 Bertness 324/426 Kaman et al. 701/29</td></tr<> | 5,914,605 A 5,927,938 A 5,929,609 A 5,939,855 A 5,939,861 A 5,945,829 A 5,946,605 A 5,951,229 A 5,955,951 A 5,961,561 A 5,961,604 A 5,969,625 A 5,973,598 A 5,973,598 A 6,002,238 A 6,005,489 A 6,005,789 A 6,005,789 A 6,004,652 A 6,009,369 A 6,016,047 A 6,031,354 A 6,031,354 A 6,031,354 A 6,037,745 A 6,037,777 A 6,037,778 A 6,037,778 A 6,037,778 A 6,046,514 A 6,051,976 A 6,055,468 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/1999 12/2000 2/2000 3/2000
3/2000 3/2000 3/2000 3/2000 4/2000 4/2000 4/2000 4/2000 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 Theofanopoulos et al. 324/434 Boisvert et al. 320/137 Wiley et al. 320/137 Wiley et al. 320/137 Wiley et al. 320/113 Koike et al. 320/104 Parsonage 320/104 Parsonage 320/104 Parsonage 320/106 Champlin 324/433 Roillard et al. 307/77 Bertness 324/426 Kaman et al. 701/29 | | 5,550,485 A
5,561,380 A
5,562,501 A
5,562,501 A
5,572,136 A
5,573,611 A
5,574,355 A
5,578,915 A
5,585,416 A
5,585,416 A
5,585,728 A
5,589,757 A
5,592,094 A
5,592,094 A
5,592,094 A
5,602,462 A
5,606,242 A
5,614,788 A
5,61,298 A
5,633,985 A
5,633,985 A
5,637,978 A
5,652,501 A
5,650,937 A
5,655,501 A
5,655,659 A
5,654,623 A
5,656,920 A
5,656,920 A
5,656,920 A
5,656,921 A
5,657,044 A
5,677,077 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997
1/1997
1/1997
2/1997
2/1997
3/1997
3/1997
6/1997
6/1997
7/1997
8/1997
8/1997
8/1997
8/1997
8/1997
8/1997
10/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 Harvey 320/106 Mullins et al. 315/82 Horotto 320/156 Bounaga 702/65 McClure et al. 340/636.15 Kunibe et al. 477/111 Shiga et al. 320/106 Cherng et al. 324/42.5 Greene 340/636.11 | 5,914,605 A 5,927,938 A 5,929,609 A 5,939,855 A 5,939,861 A 5,945,829 A 5,946,605 A 5,951,229 A 5,951,229 A 5,956,561 A 5,961,604 A 5,969,625 A 5,973,598 A 5,973,598 A 6,005,759 A 6,005,759 A 6,005,759 A 6,008,652 A 6,009,369 A 6,016,047 A 6,031,354 A 6,031,354 A 6,037,774 A 6,037,775 A 6,037,777 6,037,778 A 6,046,514 A 6,055,468 A 6,055,468 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/1999 12/2000 2/2000 3/2000 3/2000 3/2000 3/2000 3/2000 4/2000 4/2000 4/2000 5/2000 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/104 Joko et al. 320/122 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 Hart et al. 320/134 Boisvert et al. 701/99 Notten et al. 320/116 Klippel et al. 320/116 Klippel et al. 320/116 Klippel et al. 320/116 Klippel et al. 320/104 Parsonage 320/102 Champlin 324/430 Makhija 324/433 Rouillard et al. 307/77 Bertness 324/426 Kaman et al. 701/29 Joyce 702/63 | | 5,550,485 A 5,561,380 A 5,562,501 A 5,562,501 A 5,572,136 A 5,573,611 A 5,574,355 A 5,578,915 A 5,585,416 A 5,585,416 A 5,585,728 A 5,589,757 A 5,592,094 A 5,592,094 A 5,596,260 A 5,598,098 A 5,602,462 A 5,614,788 A 5,621,298 A 5,633,985 A 5,637,978 A 5,642,031 A 5,650,937 A 5,650,937 A 5,650,937 A 5,652,501 A 5,653,659 A 5,653,659 A 5,654,623 A 5,654,623 A 5,656,920 A 5,654,623 A 5,657,2964 A 5,677,977 A 5,684,678 A | 8/1996
10/1996
10/1996
11/1996
11/1996
11/1996
11/1996
12/1996
12/1996
12/1996
12/1997
1/1997
1/1997
2/1997
2/1997
3/1997
3/1997
6/1997
6/1997
7/1997
8/1997
8/1997
8/1997
8/1997
8/1997
10/1997
10/1997
10/1997
11/1997 | Falk 324/772 Sway-Tin et al. 324/509 Kinoshita et al. 439/852 McClure 320/128 Champlin 324/426 Koch et al. 152/152.1 McShane et al. 320/161 Crouch, Jr. et al. 324/428 Klang 320/160 Audett et al. 522/35 Champlin 324/427 Klang 320/160 Klingbiel 324/427 Klang 320/160 Klingbiel 324/426 Ichikawa 324/427 Moravec et al. 320/135 Champlin 324/430 Stich et al. 323/258 Hull et al. 320/106 Mullins et al. 315/82 Harvey 320/134 Severson et al. 704/267 Kellett et al. 320/104 Brotto 320/156 Bounaga 702/65 McClure et al. 340/636.15 Kunibe et al. 477/111 | 5,914,605 A 5,927,938 A 5,929,609 A 5,939,855 A 5,939,861 A 5,945,829 A 5,946,605 A 5,951,229 A 5,955,951 A 5,961,561 A 5,961,604 A 5,969,625 A 5,973,598 A 5,978,805 A 5,978,805 A 6,005,759 A 6,005,759 A 6,005,759 A 6,006,363 A 6,016,047 A 6,031,354 A 6,031,354 A 6,037,775 A 6,037,775 A 6,037,775 A 6,037,777 A 6,037,777 A 6,037,778 A 6,046,514 A 6,051,976 A 6,055,468 A 6,061,638 A 6,064,372 A | 7/1999 7/1999 8/1999 8/1999 8/1999 9/1999 10/1999 10/1999 11/1999 11/1999 12/1999 12/1999 12/1999 12/1999 12/1999 12/1999 4/2000 3/2000 3/2000 3/2000 3/2000 3/2000 4/2000 4/2000 4/2000 5/2000 5/2000 6/2000 | Hammerslag 414/809 Joy et al. 322/25 Proctor et al. 320/104 Joko et al. 320/104 Joko et al. 320/102 Bertness 324/430 Takahisa et al. 455/68 Hammerslag 414/398 Wischerop et al. 340/572.8 Wakefield, II 701/29 Anderson et al. 709/229 Russo 340/636.19 Beigel 340/572.1 Carson 707/10 Krieger 320/105 Champlin 320/134 Siegle et al. 340/825.69 Hart et al. 361/66 Theofanopoulos et al. 324/434 Boisvert et al. 320/116 Klippel et al. 320/137 Wiley et al. 320/116 Klippel et al. 320/137 Kliege al. 320/104 Parsonage 320/105 Champlin 324/430 Makhija 324/430 Makhija 324/430 Makhija 324/430 Makhija 324/436 Rouillard et al. 307/77 Bertness 324/426 Kaman et al. 701/29 Joyce 702/63 Kahkoska 345/173 | # US 7,977,914 B2 Page 4 | | | | | - / | | |--|---|--
--|--|---| | 6,081,098 A | 6/2000 | Bertness et al 320/134 | 6,449,726 B1 | 9/2002 | Smith 713/340 | | 6,081,109 A | 6/2000 | Seymour et al 324/127 | 6,456,036 B1 | 9/2002 | Thandiwe 320/106 | | 6,087,815 A | 7/2000 | Pfeifer et al 323/282 | 6,456,045 B1 | 9/2002 | Troy et al 320/139 | | 6,091,238 A | | McDermott 324/207.2 | 6,465,908 B1 | 10/2002 | Karuppana et al 307/31 | | 6,091,245 A | | Bertness 324/426 | 6,466,025 B1 | 10/2002 | Klang | | | | | | | | | 6,094,033 A | | Ding et al 320/132 | 6,466,026 B1 | 10/2002 | Champlin 324/430 | | 6,100,670 A | 8/2000 | Levesque 320/150 | 6,469,511 B1 | 10/2002 | Vonderhaar et al 324/425 | | 6,104,167 A | 8/2000 | Bertness et al 320/132 | 6,477,478 B1 | 11/2002 | Jones et al 702/102 | | 6,113,262 A | | Purola et al 374/45 | 6,495,990 B2 | 12/2002 | Champlin 320/132 | | 6,114,834 A | | Parise | 6,497,209 B1 | 12/2002 | Karuppana et al 123/179.3 | | | | | | | | | 6,137,269 A | | Champlin 320/150 | 6,500,025 B1 | 12/2002 | Moenkhaus et al 439/502 | | 6,140,797 A | | Dunn 320/105 | 6,505,507 B1 | 1/2003 | Imao 73/146.5 | | 6,144,185 A | 11/2000 | Dougherty et al 320/132 | 6,507,196 B2 | 1/2003 | Thomsen et al 324/436 | | 6,147,598 A | 11/2000 | Murphy et al 340/426.19 | 6,526,361 B1 | 2/2003 | Jones et al 702/63 | | 6,150,793 A | | Lesesky et al 320/104 | 6,529,723 B1 | 3/2003 | Bentley 455/405 | | | | | 6,531,848 B1 | | | | 6,158,000 A | | Collins | * * | 3/2003 | Chitsazan et al | | 6,161,640 A | | Yamaguchi 180/65.8 | 6,532,425 B1 | 3/2003 | Boost et al 702/63 | | 6,163,156 A | | Bertness 324/426 | 6,534,992 B2 | 3/2003 | Meissner et al 324/426 | | 6,164,063 A | 12/2000 | Mendler 60/274 | 6,534,993 B2 | 3/2003 | Bertness 324/433 | | 6,167,349 A | 12/2000 | Alvarez 702/63 | 6,536,536 B1 | 3/2003 | Gass et al 173/2 | | 6,172,483 B1 | | Champlin 320/134 | 6,544,078 B2 | 4/2003 | Palmisano et al 439/762 | | 6,172,505 B1 | | Bertness | 6,545,599 B2 | 4/2003 | Derbyshire et al 340/442 | | | | | | | | | 6,177,737 B1 | | Palfey et al | 6,556,019 B2 | 4/2003 | Bertness | | 6,181,545 B1 | | Amatucci et al | 6,566,883 B1 | 5/2003 | Vonderhaar et al 324/426 | | 6,211,651 B1 | 4/2001 | Nemoto 320/133 | 6,570,385 B1 | 5/2003 | Roberts et al 324/378 | | 6,215,275 B1 | 4/2001 | Bean 320/106 | 6,577,107 B2 | 6/2003 | Kechmire 320/139 | | 6,218,936 B1 | | Imao 340/447 | 6,586,941 B2 | 7/2003 | Bertness et al 324/426 | | 6,222,342 B1 | | Eggert et al 320/105 | 6,597,150 B1 | 7/2003 | Bertness et al 320/104 | | | | 22 | | 7/2003 | Woltermann et al 600/300 | | 6,222,369 B1 | | Champlin | 6,599,243 B2 | | | | D442,503 S | | Lundbeck et al D10/77 | 6,600,815 B1 | 7/2003 | Walding 379/93.07 | | 6,225,808 B1 | 5/2001 | Varghese et al 324/426 | 6,611,740 B2 | 8/2003 | Lowrey et al 701/29 | | 6,236,332 B1 | 5/2001 | Conkright et al 340/3.1 | 6,614,349 B1 | 9/2003 | Proctor et al 340/572.1 | | 6,238,253 B1 | | Qualls 439/759 | 6,618,644 B2 | 9/2003 | Bean 700/231 | | 6,242,887 B1 | | Burke 320/104 | 6,621,272 B2 | 9/2003 | Champlin 324/426 | | 6,249,124 B1 | | Bertness | 6,623,314 B1 | 9/2003 | Cox et al | | | | | | | | | 6,250,973 B1 | | Lowery et al | 6,624,635 B1 | 9/2003 | Lui | | 6,254,438 B1 | 7/2001 | Gaunt 439/755 | 6,628,011 B2 | 9/2003 | Droppo et al 307/43 | | 6,259,170 B1 | 7/2001 | Limoge et al 307/10.8 | 6,629,054 B2 | 9/2003 | Makhija et al 702/113 | | 6,259,254 B1 | 7/2001 | Klang 324/427 | 6,633,165 B2 | 10/2003 | Bertness 324/426 | | 6,262,563 B1 | 7/2001 | Champlin 320/134 | 6,635,974 B1 | 10/2003 | Karuppanana et al 307/140 | | 6,263,268 B1 | | Nathanson 701/29 | 6,667,624 B1 | 12/2003 | Raichle et al 324/522 | | | | Becker et al 320/112 | 6,679,212 B2 | 1/2004 | Kelling 123/179.28 | | | | | | | 1101111g 123/1/7.20 | | 6,271,643 B1 | | | | | 7hang 174/74 | | 6,271,748 B1 | 8/2001 | Derbyshire et al 340/442 | 6,686,542 B2 | 2/2004 | Zhang | | 6,271,748 B1
6,275,008 B1 | 8/2001
8/2001 | Derbyshire et al | 6,686,542 B2
6,696,819 B2 | 2/2004
2/2004 | Bertness 320/134 | | 6,271,748 B1
6,275,008 B1
6,294,896 B1 | 8/2001
8/2001
9/2001 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/134 | 6,686,542 B2
6,696,819 B2
6,707,303 B2 | 2/2004
2/2004
3/2004 | Bertness | | 6,271,748 B1
6,275,008 B1
6,294,896 B1
6,294,897 B1 | 8/2001
8/2001
9/2001
9/2001 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/134 Champlin 320/153 | 6,686,542 B2
6,696,819 B2
6,707,303 B2
6,736,941 B2 | 2/2004
2/2004
3/2004
5/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 | | 6,271,748 B1
6,275,008 B1
6,294,896 B1 | 8/2001
8/2001
9/2001
9/2001 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/134 | 6,686,542 B2
6,696,819 B2
6,707,303 B2 | 2/2004
2/2004
3/2004 | Bertness | | 6,271,748 B1
6,275,008 B1
6,294,896 B1
6,294,897 B1 | 8/2001
8/2001
9/2001
9/2001
10/2001 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/134 Champlin 320/153 | 6,686,542 B2
6,696,819 B2
6,707,303 B2
6,736,941 B2 | 2/2004
2/2004
3/2004
5/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 | | 6,271,748 B1
6,275,008 B1
6,294,896 B1
6,294,897 B1
6,304,087 B1
6,307,349 B1 | 8/2001
8/2001
9/2001
9/2001
10/2001 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/134 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 | 6,686,542 B2
6,696,819 B2
6,707,303 B2
6,736,941 B2
6,737,831 B2
6,738,697 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 | | 6,271,748 B1
6,275,008 B1
6,294,896 B1
6,294,897 B1
6,304,087 B1
6,307,349 B1
6,310,481 B2 | 8/2001
8/2001
9/2001
9/2001
10/2001
10/2001 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/134 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 | 6,686,542 B2
6,696,819 B2
6,707,303 B2
6,736,941 B2
6,737,831 B2
6,738,697 B2
6,740,990 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 | | 6,271,748 B1
6,275,008 B1
6,294,896 B1
6,294,897 B1
6,304,087 B1
6,307,349 B1
6,310,481 B2
6,313,607 B1 | 8/2001
8/2001
9/2001
9/2001
10/2001
10/2001
11/2001 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/134 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 | 6,686,542 B2
6,696,819 B2
6,707,303 B2
6,736,941 B2
6,737,831 B2
6,738,697 B2
6,740,990 B2
6,745,153 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 | | 6,271,748 B1
6,275,008 B1
6,294,896 B1
6,294,897 B1
6,304,087 B1
6,307,349 B1
6,310,481 B2
6,313,607 B1
6,313,608 B1 | 8/2001
8/2001
9/2001
9/2001
10/2001
10/2001
11/2001
11/2001 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/134 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 | 6,686,542 B2
6,696,819 B2
6,707,303 B2
6,736,941 B2
6,737,831 B2
6,738,697 B2
6,740,990 B2
6,745,153 B2
7,744,149 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 | | 6,271,748 B1
6,275,008 B1
6,294,896 B1
6,294,897 B1
6,304,087 B1
6,307,349 B1
6,310,481 B2
6,313,607 B1
6,313,608 B1
6,316,914 B1 |
8/2001
8/2001
9/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/134 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 | 6,686,542 B2
6,696,819 B2
6,707,303 B2
6,736,941 B2
6,737,831 B2
6,738,697 B2
6,740,990 B2
6,745,153 B2
7,744,149 B2
6,759,849 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
7/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 | | 6,271,748 B1
6,275,008 B1
6,294,896 B1
6,294,897 B1
6,304,087 B1
6,310,481 B2
6,313,607 B1
6,313,608 B1
6,316,914 B1
6,320,351 B1 | 8/2001
8/2001
9/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 | 6,686,542 B2
6,696,819 B2
6,707,303 B2
6,736,941 B2
6,737,831 B2
6,738,697 B2
6,740,990 B2
6,745,153 B2
7,744,149 B2
6,759,849 B2
6,777,945 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
5/2004
6/2004
6/2004
7/2004
8/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 | | 6,271,748 B1
6,275,008 B1
6,294,897 B1
6,304,087 B1
6,307,349 B1
6,313,607 B1
6,313,607 B1
6,313,608 B1
6,316,914 B1
6,323,650 B1 | 8/2001
8/2001
9/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
11/2001 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 324/426 | 6,686,542 B2
6,696,819 B2
6,707,303 B2
6,736,941 B2
6,737,831 B2
6,738,697 B2
6,740,990 B2
6,745,153 B2
7,744,149 B2
6,759,849 B2
6,777,945 B2
6,781,382 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
5/2004
6/2004
6/2004
7/2004
8/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Johnson 324/426 | | 6,271,748 B1
6,275,008 B1
6,294,896 B1
6,294,897 B1
6,304,087 B1
6,310,481 B2
6,313,607 B1
6,313,608 B1
6,316,914 B1
6,320,351 B1 | 8/2001
8/2001
9/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
11/2001 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 | 6,686,542 B2
6,696,819 B2
6,707,303 B2
6,736,941 B2
6,737,831 B2
6,738,697 B2
6,740,990 B2
6,745,153 B2
7,744,149 B2
6,759,849 B2
6,777,945 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
5/2004
6/2004
6/2004
7/2004
8/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 | | 6,271,748 B1
6,275,008 B1
6,294,897 B1
6,304,087 B1
6,307,349 B1
6,313,607 B1
6,313,607 B1
6,313,608 B1
6,316,914 B1
6,323,650 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
11/2001
12/2001 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 324/426 | 6,686,542 B2
6,696,819 B2
6,707,303 B2
6,736,941 B2
6,737,831 B2
6,738,697 B2
6,740,990 B2
6,745,153 B2
7,744,149 B2
6,759,849 B2
6,777,945 B2
6,781,382 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
5/2004
6/2004
6/2004
7/2004
8/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Johnson 324/426 | | 6,271,748 B1
6,275,008 B1
6,294,896 B1
6,294,897 B1
6,304,087 B1
6,307,349 B1
6,310,481 B2
6,313,608 B1
6,316,914 B1
6,320,351 B1
6,320,351 B1
6,320,793 B1
6,321,762 B1 | 8/2001
8/2001
9/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 324/426 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 320/134 | 6,686,542 B2
6,696,819 B2
6,707,303 B2
6,736,941 B2
6,737,831 B2
6,738,697 B2
6,740,990 B2
6,745,153 B2
7,744,149 B2
6,759,849 B2
6,777,945 B2
6,784,635 B2
6,784,635 B2
6,784,635 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
7/2004
8/2004
8/2004
8/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/107 | | 6,271,748 B1
6,275,008 B1
6,294,897 B1
6,304,087 B1
6,304,087 B1
6,310,481 B2
6,313,607 B1
6,313,608 B1
6,316,914 B1
6,320,351 B1
6,323,650 B1
6,329,793 B1
6,332,113 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/133 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 324/426 Bertness et al. 320/132 Bertness 320/134 Bertness 702/63 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,737,831 B2 6,738,697 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,777,945 B2 6,784,635 B2 6,784,635 B2 6,784,637 B2 6,788,025 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
8/2004
9/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/107 Bertness et al. 320/104 | | 6,271,748 B1
6,275,008 B1
6,294,897 B1
6,304,087 B1
6,304,087 B1
6,313,607 B1
6,313,608 B1
6,313,608 B1
6,316,914 B1
6,320,351 B1
6,320,351 B1
6,323,650 B1
6,321,762 B1
6,331,762 B1
6,332,113 B1
6,346,795 B2 | 8/2001
8/2001
9/2001
10/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2001
2/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/153 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/104 Bertness et al. 324/426 Bertness et al. 320/132 Bertness 320/134 Bertness 702/63 Haraguchi et al. 320/136 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,737,831 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,777,945 B2 6,784,635 B2 6,784,635 B2 6,784,637 B2 6,788,025 B2 6,795,782 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
8/2004
9/2004
9/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Larson 320/104 Raichle et al. 320/107 Bertness et al. 320/104 Bertness et al. 702/63 | | 6,271,748 B1
6,275,008 B1
6,294,897 B1
6,304,087 B1
6,304,087 B1
6,310,481 B2
6,313,607 B1
6,313,608 B1
6,313,609 B1
6,323,650 B1
6,329,793 B1
6,329,793 B1
6,332,113 B1
6,332,113 B1
6,346,795 B2
6,347,958 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2001
2/2002
2/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/134 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 320/134 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,737,831 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,777,945 B2 6,784,635 B2 6,784,637 B2 6,784,637 B2 6,788,025 B2 6,795,782 B2 6,796,841 B1 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
8/2004
9/2004
9/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 3307/31 Bertness 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/104 Bertness et al. 320/104 Bertness et al. 702/63 Cheng et al. 439/620.3 | | 6,271,748 B1
6,275,008 B1
6,294,897 B1
6,304,087 B1
6,307,349 B1
6,313,607 B1
6,313,607 B1
6,313,608 B1
6,316,914 B1
6,320,351 B1
6,329,793
B1
6,331,762 B1
6,332,113 B1
6,346,795 B2
6,347,958 B1
6,351,102 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2001
2/2002
2/2002
2/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/134 Ng et al. 320/104 Bertness et al. 324/426 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,737,831 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,781,382 B2 6,784,637 B2 6,784,637 B2 6,788,025 B2 6,795,782 B2 6,796,841 B1 6,805,090 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
8/2004
9/2004
9/2004
10/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/107 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 123/198 | | 6,271,748 B1
6,275,008 B1
6,294,897 B1
6,304,087 B1
6,304,087 B1
6,310,481 B2
6,313,607 B1
6,313,608 B1
6,313,609 B1
6,323,650 B1
6,329,793 B1
6,329,793 B1
6,332,113 B1
6,332,113 B1
6,346,795 B2
6,347,958 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2001
2/2002
2/2002
2/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/134 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 320/134 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,737,831 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,777,945 B2 6,781,382 B2 6,784,635 B2 6,784,635 B2 6,788,025 B2 6,795,782 B2 6,795,782 B2 6,795,841 B1 6,805,090 B2 6,806,716 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
8/2004
9/2004
9/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 3307/31 Bertness 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/104 Bertness et al. 320/104 Bertness et al. 702/63 Cheng et al. 439/620.3 | | 6,271,748 B1
6,275,008 B1
6,294,897 B1
6,304,087 B1
6,307,349 B1
6,313,607 B1
6,313,607 B1
6,313,608 B1
6,316,914 B1
6,320,351 B1
6,329,793 B1
6,331,762 B1
6,332,113 B1
6,346,795 B2
6,347,958 B1
6,351,102 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2002
2/2002
2/2002
3/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/134 Ng et al. 320/104 Bertness et al. 324/426 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,737,831 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,781,382 B2 6,784,637 B2 6,784,637 B2 6,788,025 B2 6,795,782 B2 6,796,841 B1 6,805,090 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
8/2004
9/2004
9/2004
10/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/107 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 123/198 | | 6,271,748 B1
6,275,008 B1
6,294,897 B1
6,304,087 B1
6,307,349 B1
6,310,481 B2
6,313,607 B1
6,316,918 B1
6,320,351 B1
6,329,793 B1
6,331,762 B1
6,332,113 B1
6,346,795 B2
6,347,958 B1
6,351,102 B1
6,356,042 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2001
2/2002
2/2002
2/2002
3/2002
3/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 324/426 Bertness et al. 320/132 Bertness 320/134 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,737,831 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,777,945 B2 6,781,382 B2 6,784,635 B2 6,784,635 B2 6,788,025 B2 6,795,782 B2 6,795,782 B2 6,795,841 B1 6,805,090 B2 6,806,716 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
8/2004
9/2004
9/2004
10/2004
10/2004 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/107 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 123/198 Bertness et al. 324/426 | | 6,271,748 B1
6,275,008 B1
6,294,897 B1
6,304,087 B1
6,304,087 B1
6,310,481 B2
6,313,607 B1
6,313,608 B1
6,316,914 B1
6,320,351 B1
6,320,753 B1
6,332,113 B1
6,332,113 B1
6,346,795 B2
6,347,958 B1
6,351,102 B1
6,356,042 B1
6,359,441 B1
6,359,442 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2001
2/2002
2/2002
2/2002
3/2002
3/2002
3/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/134 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Henningson et al. 324/426 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,737,831 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,777,945 B2 6,784,635 B2 6,784,635 B2 6,784,637 B2 6,784,637 B2 6,784,637 B2 6,786,841 B1 6,805,900 B2 6,806,716 B2 6,806,716 B2 6,825,669 B2 6,842,707 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
9/2004
9/2004
10/2004
10/2004
11/2004
1/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/104 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 123/198 Bertness et al. 324/426 Raichle et al. 324/426 Raichle et al. 324/426 Raichle et al. 324/426 | | 6,271,748 B1
6,275,008 B1
6,294,897 B1
6,304,087 B1
6,304,087 B1
6,313,607 B1
6,313,607 B1
6,313,608 B1
6,313,608 B1
6,323,650 B1
6,323,650 B1
6,329,793 B1
6,332,113 B1
6,332,113 B1
6,346,795 B2
6,347,958 B1
6,351,102 B1
6,356,042 B1
6,359,441 B1
6,359,442 B1
6,363,303 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2002
2/2002
2/2002
3/2002
3/2002
3/2002
3/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness et al. 320/134 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Henningson et al. 324/426 Bertness 701/29 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,784,635 B2 6,784,635 B2 6,784,637 B2 6,788,025 B2 6,795,782 B2 6,796,841 B1 6,805,090 B2 6,806,716 B2 6,825,669 B2 6,842,707 B2 6,845,279 B1 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
8/2004
9/2004
9/2004
10/2004
11/2005
1/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/104 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 123/198 Bertness et al. 324/426 Raichle et al. 324/426 Raichle et al. 702/62 Gilmore et al. 700/115 | | 6,271,748 B1 6,275,008 B1 6,294,897 B1 6,304,087 B1 6,307,349 B1 6,313,607 B1 6,313,607 B1 6,313,608 B1 6,316,914 B1 6,320,351 B1 6,323,650 B1 6,329,793 B1 6,332,113 B1 6,3347,958 B2 6,347,958 B1 6,351,102 B1 6,356,042 B1 6,359,441 B1 6,359,442 6,363,303 B1 RE37,677 E | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2001
12/2002
2/2002
2/2002
3/2002
3/2002
3/2002
3/2002
4/2002
4/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 702/63 Haraguchi et al. 320/136 Troy 320/139 Kahlon et al. 318/138 Bertness
324/426 Henningson et al. 324/426 Bertness 701/29 Irie 315/83 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,737,831 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,781,382 B2 6,784,637 B2 6,784,637 B2 6,788,025 B2 6,796,841 B1 6,805,090 B2 6,806,716 B2 6,825,669 B2 6,842,707 B2 6,845,279 B1 6,850,037 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
9/2004
9/2004
10/2004
11/2004
11/2005
2/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Johnson 324/426 Johnson 320/104 Raichle et al. 320/107 Bertness et al. 320/104 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 324/426 Raichle et al. 324/426 Raichle et al. 324/426 Gailmore et al. 700/61 Gilmore et al. 700/115 Bertness 320/132 | | 6,271,748 B1
6,275,008 B1
6,294,897 B1
6,394,897 B1
6,304,087 B1
6,310,481 B2
6,313,608 B1
6,313,608 B1
6,320,351 B1
6,322,355 B1
6,329,793 B1
6,331,762 B1
6,332,113 B1
6,346,795 B2
6,347,958 B1
6,355,042 B1
6,359,441 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2002
2/2002
2/2002
3/2002
3/2002
3/2002
3/2002
3/2002
4/2002
4/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/133 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Henningson et al. 324/426 Henningson et al. 315/83 Karuppana et al. 323/220 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,737,831 B2 6,738,697 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,777,945 B2 6,784,635 B2 6,784,637 B2 6,786,841 B1 6,805,090 B2 6,842,707 B2 6,842,707 B2 6,845,279 B1 6,850,037 B2 6,871,151 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
8/2004
9/2004
9/2004
10/2004
11/2005
1/2005
3/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Larson 320/104 Raichle et al. 320/107 Bertness et al. 320/104 Bertness et al. 439/620.3 Bertness et al. 123/198 Bertness et al. 324/426 Raichle et al. 324/426 Raichle et al. 702/62 Gilmore et al. 700/115 Bertness 320/132 Bertness 320/132 | | 6,271,748 B1 6,275,008 B1 6,294,897 B1 6,304,087 B1 6,304,087 B1 6,310,481 B2 6,313,607 B1 6,313,608 B1 6,320,351 B1 6,323,650 B1 6,329,793 B1 6,332,113 B1 6,346,795 B2 6,347,958 B1 6,351,102 B1 6,355,441 B1 6,359,442 B1 6,359,442 B1 6,359,442 B1 6,357,677 E 6,377,031 B1 6,384,608 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2001
2/2002
2/2002
2/2002
3/2002
3/2002
3/2002
3/2002
4/2002
4/2002
5/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/133 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Henningson et al. 324/426 Bertness 701/29 Irie 315/83 Karuppana et al. 323/220 Namaky 324/430 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,737,831 B2 6,738,697 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,777,945 B2 6,784,635 B2 6,784,637 B2 6,784,637 B2 6,786,841 B1 6,805,090 B2 6,806,716 B2 6,842,707 B2 6,842,707 B2 6,845,279 B1 6,850,037 B2 6,871,151 B2 6,885,195 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
9/2004
9/2004
9/2004
10/2004
11/2005
1/2005
2/2005
3/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Johnson 324/426 Johnson 320/104 Raichle et al. 320/107 Bertness et al. 320/104 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 324/426 Raichle et al. 324/426 Raichle et al. 702/62 Gilmore et al. 700/115 Bertness 320/132 Bertness 702/63 Bertness 702/63 Bertness 702/63 Bertness 702/63 Bertness 320/132 Bertness 702/63 Bertness 320/132 | | 6,271,748 B1
6,275,008 B1
6,294,897 B1
6,394,897 B1
6,304,087 B1
6,310,481 B2
6,313,608 B1
6,313,608 B1
6,320,351 B1
6,322,355 B1
6,329,793 B1
6,331,762 B1
6,332,113 B1
6,346,795 B2
6,347,958 B1
6,355,042 B1
6,359,441 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2001
2/2002
2/2002
2/2002
3/2002
3/2002
3/2002
3/2002
4/2002
4/2002
5/2002
5/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/134 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/104 Bertness et al. 320/104 Bertness et al. 320/132 Bertness 320/134 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Henningson et al. 324/426 Bertness 701/29 Irie 315/83 Karuppana et al. 323/220 Namaky 324/426 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,737,831 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,784,635 B2 6,784,635 B2 6,784,637 B2 6,784,637 B2 6,786,841 B1 6,805,990 B2 6,806,716 B2 6,825,669 B2 6,842,707 B2 6,842,707 B2 6,842,707 B2 6,845,279 B1 6,850,037 B2 6,871,151 B2 6,885,195 B2 6,888,468 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
8/2004
9/2004
9/2004
10/2004
11/2005
1/2005
3/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Larson 320/104 Raichle et al. 320/104 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 123/198 Bertness et al. 324/426 Raichle et al. 324/426 Raichle et al. 702/62 Gilmore et al. 700/115 Bertness 320/126 Bertness 702/63 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/426 | | 6,271,748 B1 6,275,008 B1 6,294,897 B1 6,304,087 B1 6,304,087 B1 6,310,481 B2 6,313,607 B1 6,313,608 B1 6,320,351 B1 6,323,650 B1 6,329,793 B1 6,332,113 B1 6,346,795 B2 6,347,958 B1 6,351,102 B1 6,355,441 B1 6,359,442 B1 6,359,442 B1 6,359,442 B1 6,357,677 E 6,377,031 B1 6,384,608 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2001
2/2002
2/2002
2/2002
3/2002
3/2002
3/2002
3/2002
4/2002
4/2002
5/2002
5/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/133 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Henningson et al. 324/426 Bertness 701/29 Irie 315/83 Karuppana et al. 323/220 Namaky 324/430 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,737,831 B2 6,738,697 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,777,945 B2 6,784,635 B2 6,784,637 B2 6,784,637 B2 6,786,841 B1 6,805,090 B2 6,806,716 B2 6,842,707 B2 6,842,707 B2 6,845,279 B1 6,850,037 B2 6,871,151 B2 6,885,195 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
9/2004
9/2004
9/2004
10/2004
11/2005
1/2005
2/2005
3/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Johnson 324/426 Johnson 320/104 Raichle et al. 320/107 Bertness et al. 320/104 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 324/426 Raichle et al. 324/426 Raichle et al. 702/62 Gilmore et al. 700/115 Bertness 320/132 Bertness 702/63 Bertness 702/63 Bertness 702/63 Bertness 702/63 Bertness 320/132 Bertness 702/63 Bertness 320/132 | | 6,271,748 B1 6,275,008 B1 6,294,897 B1 6,304,087 B1 6,304,087 B1 6,313,608 B1 6,313,608 B1 6,313,608 B1 6,320,351 B1 6,323,650 B1 6,329,793 B1 6,332,113 B1 6,332,113 B1 6,346,795 B2 6,347,958 B1 6,351,102 B1 6,355,0442 B1 6,359,441 B1 6,359,441 B1 6,363,303 B1 RE37,677 E 6,377,031 B1 6,384,608 B1 6,388,448 B1 6,388,448 B1 6,389,414 B2 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2001
2/2002
2/2002
2/2002
3/2002
3/2002
3/2002
3/2002
4/2002
4/2002
5/2002
5/2002
5/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/134 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 320/134 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Henningson et al. 324/426 Bertness 701/29 Irie 315/83 Karuppana et al. 323/220 Namaky 324/426 Bertness 324/426 Bertness 324/426 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,784,635 B2 6,784,635 B2
6,784,635 B2 6,784,635 B2 6,785,782 B2 6,795,782 B2 6,796,841 B1 6,805,090 B2 6,806,716 B2 6,825,669 B2 6,842,707 B2 6,842,707 B2 6,845,279 B1 6,850,037 B2 6,871,151 B2 6,885,195 B2 6,888,468 B2 6,881,378 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
9/2004
9/2004
10/2004
11/2005
1/2005
2/2005
3/2005
5/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/107 Bertness et al. 320/104 Bertness et al. 123/198 Bertness et al. 123/198 Bertness et al. 324/426 Raichle et al. 324/426 Gilmore et al. 700/62 Gilmore et al. 700/115 Bertness 320/132 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/636.15 Bertness 340/636.15 Bertness et al. 324/426 | | 6,271,748 B1 6,275,008 B1 6,294,897 B1 6,304,087 B1 6,307,349 B1 6,313,607 B1 6,313,607 B1 6,313,608 B1 6,313,607 B1 6,323,650 B1 6,323,650 B1 6,329,793 B1 6,332,113 B1 6,332,113 B1 6,346,795 B2 6,347,958 B1 6,351,102 B1 6,359,442 B1 6,359,442 B1 6,359,442 B1 6,363,303 B1 RE37,677 E 6,377,031 B1 6,384,608 B1 6,384,608 B1 6,384,608 B1 6,384,448 B1 6,392,414 B2 6,396,278 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2001
2/2002
2/2002
2/2002
3/2002
3/2002
3/2002
3/2002
4/2002
4/2002
5/2002
5/2002
5/2002
5/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/134 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/104 Bertness et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 320/134 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Henningson et al. 324/426 Bertness 701/29 Irie 315/83 Karuppana et al. 323/220 Namaky 324/430 Cervas 324/426 Bertness 324/429 Makhija 324/402 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,736,949 B2 6,740,990 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,784,635 B2 6,784,637 B2 6,784,637 B2 6,786,639 B2 6,806,716 6,805,090 B2 6,806,716 B2 6,805,090 B2 6,806,716 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
8/2004
9/2004
9/2004
10/2004
11/2005
1/2005
2/2005
3/2005
5/2005
6/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Johnson 324/426 Johnson 320/104 Raichle et al. 320/104 Bertness et al. 320/104 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 123/198 Bertness et al. 324/426 Raichle et al. 702/62 Gilmore et al. 700/115 Bertness 320/132 Bertness 320/132 Bertness 324/426 Bertness 340/636.15 Bertness et al. 324/426 Pertness et al. 324/426 | | 6,271,748 B1 6,275,008 B1 6,294,897 B1 6,394,897 B1 6,304,087 B1 6,310,481 B2 6,313,608 B1 6,313,608 B1 6,320,351 B1 6,322,355 B1 6,322,793 B1 6,332,113 B1 6,346,795 B2 6,347,958 B1 6,351,102 B1 6,355,441 B1 6,359,442 B1 6,359,441 6,369,278 B1 6,396,278 B1 6,407,554 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2001
2/2002
2/2002
2/2002
3/2002
3/2002
3/2002
3/2002
4/2002
4/2002
5/2002
5/2002
5/2002
5/2002
6/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 320/134 Bertness 702/63 Haraguchi et al. 320/136 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Henningson et al. 324/426 Henningson et al. 324/426 Bertness 701/29 Irie 315/83 Karuppana et al. 323/220 Namaky 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/426 <t< td=""><td>6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,736,941 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,784,635 B2 6,784,637 B2 6,788,025 B2 6,796,841 B1 6,805,090 B2 6,806,716 B2 6,825,669 B2 6,842,707 B2 6,845,279 B1 6,850,037 B2 6,871,151 B2 6,885,195 B2 6,885,195 B2 6,881,378 B2 6,904,796 B2 6,891,378 B2 6,904,796 B2 6,904,796 B2 6,904,796 B2</td><td>2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
9/2004
9/2004
10/2004
11/2005
1/2005
2/2005
3/2005
5/2005
6/2005</td><td>Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Johnson 324/426 Johnson 320/104 Raichle et al. 320/107 Bertness et al. 320/104 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 324/426 Raichle et al. 324/426 Raichle et al. 702/62 Gilmore et al. 700/115 Bertness 320/132 Bertness 324/426 Bertness 340/636.15 Bertness et al. 324/426 Pacsai et al. 73/146.8 Bertness et al. 324/426</td></t<> | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,736,941 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,784,635 B2 6,784,637 B2 6,788,025 B2 6,796,841 B1 6,805,090 B2 6,806,716 B2 6,825,669 B2 6,842,707 B2 6,845,279 B1 6,850,037 B2 6,871,151 B2 6,885,195 B2 6,885,195 B2 6,881,378 B2 6,904,796 B2 6,891,378 B2 6,904,796 B2 6,904,796 B2 6,904,796 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
9/2004
9/2004
10/2004
11/2005
1/2005
2/2005
3/2005
5/2005
6/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Johnson 324/426 Johnson 320/104 Raichle et al. 320/107 Bertness et al. 320/104 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 324/426 Raichle et al. 324/426 Raichle et al. 702/62 Gilmore et al. 700/115 Bertness 320/132 Bertness 324/426 Bertness 340/636.15 Bertness et al. 324/426 Pacsai et al. 73/146.8 Bertness et al. 324/426 | | 6,271,748 B1 6,275,008 B1 6,294,897 B1 6,394,897 B1 6,304,087 B1 6,310,481 B2 6,313,607 B1 6,313,608 B1 6,320,351 B1 6,329,793 B1 6,332,113 B1 6,346,795 B2 6,347,958 B1 6,351,102 B1 6,355,441 B1 6,359,442 B1 6,359,441 B1 6,359,442 B1 6,359,441 B1 6,359,442 B1 6,359,441 B1 6,359,442 B1 6,359,441 B1 6,359,442 B1 6,363,003 B1 RE37,677 E 6,377,031 B1 6,384,608 B1 6,388,448 B1 6,392,414 B2 6,396,278 B1 6,407,554 B1 6,411,098 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
2/2002
2/2002
2/2002
3/2002
3/2002
3/2002
3/2002
3/2002
4/2002
4/2002
5/2002
5/2002
5/2002
5/2002
6/2002
6/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/133 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/104 Bertness et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Henningson et al. 324/426 Bertness 701/29 Irie 315/83 Karuppana et al. 323/220 Namaky 324/426 Bertness 324/426 Bertness 324/426 Godau et al. 324/503 Laletin 324/36 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,738,697 B2 6,745,153 B2 6,759,849 B2 6,7744,149 B2 6,784,635 B2 6,784,635 B2 6,784,637 B2 6,786,841 B1 6,805,090 B2 6,842,707 B2 6,842,707 B2 6,842,707 B2 6,845,279 B1 6,850,037 B2 6,851,151 B2 6,885,195 B2 6,885,195 B2 6,881,378 B2 6,891,378 B2 6,904,796 B2 6,906,522 B2 6,906,522 B2 6,906,522 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
9/2004
9/2004
9/2004
10/2004
11/2005
1/2005
2/2005
5/2005
6/2005
6/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/107 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 123/198 Bertness et al. 324/426 Raichle et al. 324/426 Raichle et al. 700/62 Gilmore et al. 700/115 Bertness 320/132 Bertness 324/426 Bertness et al. | | 6,271,748 B1 6,275,008 B1 6,294,897 B1 6,394,897 B1 6,304,087 B1 6,310,481 B2 6,313,608 B1 6,313,608 B1 6,320,351 B1 6,322,355 B1 6,322,793 B1 6,332,113 B1 6,346,795 B2 6,347,958 B1 6,351,102 B1 6,355,441 B1 6,359,442 B1 6,359,441 6,369,278 B1 6,396,278 B1 6,407,554 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2001
2/2002
2/2002
2/2002
3/2002
3/2002
3/2002
3/2002
4/2002
4/2002
5/2002
5/2002
5/2002
5/2002
6/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/133 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/104 Bertness et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Henningson et al. 324/426 Bertness 701/29 Irie 315/83 Karuppana et al. 323/220 Namaky 324/426 Bertness 324/426 Bertness 324/426 Godau et al. 324/503 Laletin 324/36 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,736,941 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,784,635 B2 6,784,637 B2 6,788,025 B2 6,796,841 B1 6,805,090 B2 6,806,716 B2 6,825,669 B2 6,842,707 B2
6,845,279 B1 6,850,037 B2 6,871,151 B2 6,885,195 B2 6,885,195 B2 6,881,378 B2 6,904,796 B2 6,891,378 B2 6,904,796 B2 6,904,796 B2 6,904,796 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
9/2004
9/2004
10/2004
11/2005
1/2005
2/2005
3/2005
5/2005
6/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/107 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 123/198 Bertness et al. 324/426 Raichle et al. 324/426 Raichle et al. 700/62 Gilmore et al. 700/115 Bertness 320/132 Bertness 324/426 Bertness et al. | | 6,271,748 B1 6,275,008 B1 6,294,897 B1 6,394,897 B1 6,304,087 B1 6,310,481 B2 6,313,607 B1 6,313,608 B1 6,320,351 B1 6,329,793 B1 6,332,113 B1 6,346,795 B2 6,347,958 B1 6,351,102 B1 6,355,441 B1 6,359,442 B1 6,359,441 B1 6,359,442 B1 6,359,441 B1 6,359,442 B1 6,359,441 B1 6,359,442 B1 6,359,441 B1 6,359,442 B1 6,363,003 B1 RE37,677 E 6,377,031 B1 6,384,608 B1 6,388,448 B1 6,392,414 B2 6,396,278 B1 6,407,554 B1 6,411,098 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
2/2002
2/2002
2/2002
3/2002
3/2002
3/2002
3/2002
3/2002
4/2002
4/2002
5/2002
5/2002
5/2002
5/2002
6/2002
6/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/133 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/104 Bertness et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Henningson et al. 324/426 Bertness 701/29 Irie 315/83 Karuppana et al. 323/220 Namaky 324/426 Bertness 324/426 Bertness 324/426 Godau et al. 324/503 Laletin 324/36 | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,738,697 B2 6,745,153 B2 6,759,849 B2 6,7744,149 B2 6,784,635 B2 6,784,635 B2 6,784,637 B2 6,786,841 B1 6,805,090 B2 6,842,707 B2 6,842,707 B2 6,842,707 B2 6,845,279 B1 6,850,037 B2 6,851,151 B2 6,885,195 B2 6,885,195 B2 6,881,378 B2 6,891,378 B2 6,904,796 B2 6,906,522 B2 6,906,522 B2 6,906,522 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
9/2004
9/2004
9/2004
10/2004
11/2005
1/2005
2/2005
5/2005
6/2005
6/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/107 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 123/198 Bertness et al. 324/426 Raichle et al. 324/426 Raichle et al. 700/62 Gilmore et al. 700/115 Bertness 320/132 Bertness 324/426 Bertness et al. | | 6,271,748 B1 6,275,008 B1 6,294,897 B1 6,304,087 B1 6,304,087 B1 6,310,481 B2 6,313,607 B1 6,313,608 B1 6,320,351 B1 6,323,650 B1 6,329,793 B1 6,331,762 B1 6,332,113 B1 6,346,795 B2 6,347,958 B1 6,351,102 B1 6,355,441 B1 6,359,441 B1 6,359,441 B1 6,359,441 B1 6,359,442 B1 6,363,303 B1 RE37,677 E 6,377,031 B1 6,384,608 B1 6,384,488 B1 6,392,414 B2 6,396,278 B1 6,407,554 B1 6,411,098 B1 6,417,669 B1 6,420,852 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2001
2/2002
2/2002
2/2002
3/2002
3/2002
3/2002
3/2002
4/2002
5/2002
5/2002
5/2002
5/2002
5/2002
6/2002
7/2002
7/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Bertness 320/132 Bertness 320/132 Bertness 320/104 Bertness et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 320/134 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Bertness 324/426 Bertness 701/29 Irie 315/83 Karuppana et al. 323/220 Namaky 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/420 Odau et al. | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,738,697 B2 6,746,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,784,635 B2 6,784,635 B2 6,784,637 B2 6,784,637 B2 6,784,637 B2 6,842,707 B2 6,842,707 B2 6,842,707 B2 6,845,279 B1 6,850,037 B2 6,845,279 B1 6,850,037 B2 6,841,378 B2 6,885,195 B2 6,881,1378 B2 6,891,378 B2 6,904,796 6,906,522 B2 6,906,523 B2 6,906,624 B2 6,906,624 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
9/2004
9/2004
10/2004
11/2005
1/2005
2/2005
3/2005
6/2005
6/2005
6/2005
6/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/104 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 324/426 Raichle et al. 324/426 Raichle et al. 700/115 Bertness 320/132 Bertness 320/134 Bertness 320/134 Bertness 320/135 Bertness 320/136 Bertness 320/136 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bertness et al. McClelland et al. 340/442 Bertness 324/427 | | 6,271,748 B1 6,275,008 B1 6,294,897 B1 6,304,087 B1 6,304,087 B1 6,313,608 B1 6,313,608 B1 6,313,608 B1 6,320,351 B1 6,323,650 B1 6,329,793 B1 6,331,762 B1 6,332,113 B1 6,346,795 B2 6,347,958 B1 6,351,102 B1 6,355,441 B1 6,359,442 B1 6,359,441 B1 6,359,442 B1 6,363,303 B1 RE37,677 E 6,377,031 B1 6,384,608 B1 6,388,448 B1 6,392,414 B2 6,396,278 B1 6,411,098 B1 6,417,669 B1 6,417,669 B1 6,420,852 B1 6,424,157 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
12/2001
2/2002
2/2002
2/2002
3/2002
3/2002
3/2002
3/2002
4/2002
5/2002
5/2002
5/2002
5/2002
6/2002
6/2002
7/2002
7/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Bertness 320/132 Bertness 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 320/134 Bertness et al. 320/134 Bertness 320/134 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Henningson et al. 324/426 Bertness 701/29 Irie 315/83 Karuppana et al. 323/220 Namaky 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bertness | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,784,635 B2 6,784,635 B2 6,784,637 B2 6,784,637 B2 6,784,637 B2 6,784,637 B2 6,850,90 B2 6,806,716 B2 6,825,669 B2 6,842,707 B2 6,842,707 B2 6,845,279 B1 6,850,037 B2 6,871,151 B2 6,885,195 B2 6,884,688 B2 6,891,378 B2 6,904,796 B2 6,906,522 B2 6,906,523 B2 6,906,523 B2 6,906,523 B2 6,906,524 B2 6,909,287 B2 6,909,356 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
8/2004
9/2004
9/2004
10/2004
11/2005
1/2005
2/2005
3/2005
6/2005
6/2005
6/2005
6/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/107 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 123/198 Bertness et al. 324/426 Raichle et al. 324/426 Raichle et al. 324/426 Gilmore et al. 700/115 Bertness 320/132 Bertness 324/426 Bertness 324/426 Bertness 340/636.15 Bertness et al. 324/426 Bertness et al. 324/426 Bertness et al. 324/426 Bertness et al. 324 | | 6,271,748 B1 6,275,008 B1 6,294,897 B1 6,304,087 B1 6,304,087 B1 6,313,608 B1 6,313,608 B1 6,313,608 B1 6,320,351 B1 6,323,650 B1 6,329,793 B1 6,332,113 B1 6,332,113 B1 6,346,795 B2 6,347,958 B1 6,351,102 B1 6,359,441 B1 6,359,442 B1 6,359,441 B1 6,363,303 B1 RE37,677 E 6,377,031 B1 6,384,608 B1 6,388,448 B1 6,392,414 B2 6,396,278 B1 6,411,098 B1 6,417,669 B1 6,417,669 B1 6,424,157 B1 6,424,157 B1 | 8/2001
8/2001
9/2001
10/2001
10/2001
11/2001
11/2001
11/2001
11/2001
11/2001
12/2001
12/2001
2/2002
2/2002
2/2002
3/2002
3/2002
3/2002
3/2002
4/2002
4/2002
5/2002
5/2002
5/2002
5/2002
5/2002
5/2002
7/2002
7/2002
7/2002
7/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness et al. 320/134 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Henningson et al. 324/426 Bertness 701/29 Irie 315/83 Karuppana et al. 323/220 Namaky 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bert | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,784,635 B2 6,784,635 B2 6,784,635 B2 6,784,635 B2 6,785,782 B2 6,795,782 B2 6,796,841 B1 6,805,090 B2 6,806,716 B2 6,825,669 B2 6,842,707 B2 6,842,707 B2 6,845,279 B1 6,850,037 B2 6,871,151 B2 6,885,195 B2 6,888,468 B2 6,891,378 B2 6,904,796 B2 6,906,522 B2 6,906,523 6,906,524 B2 6,909,287 B2 6,909,356 B2 6,909,356 B2 6,909,356 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
9/2004
9/2004
9/2004
10/2004
11/2005
1/2005
2/2005
3/2005
5/2005
6/2005
6/2005
6/2005
6/2005
6/2005 | Bertness | |
6,271,748 B1 6,275,008 B1 6,294,897 B1 6,304,087 B1 6,307,349 B1 6,313,607 B1 6,313,608 B1 6,313,608 B1 6,313,607 B1 6,323,650 B1 6,323,650 B1 6,323,650 B1 6,329,793 B1 6,331,762 B1 6,332,113 B1 6,346,795 B2 6,347,958 B1 6,351,102 B1 6,359,442 B1 6,359,442 B1 6,359,442 B1 6,359,442 B1 6,363,303 B1 RE37,677 E 6,377,031 B1 6,384,608 B1 6,384,608 B1 6,384,608 B1 6,384,608 B1 6,384,608 B1 6,407,554 B1 6,411,098 B1 6,417,669 B1 6,420,852 B1 6,424,157 B1 6,424,157 B1 6,424,157 B1 6,424,158 B2 6,437,957 B1 | 8/2001 8/2001 9/2001 10/2001 10/2001 11/2001 11/2001 11/2001 11/2001 11/2001 12/2001 12/2001 2/2002 2/2002 3/2002 3/2002 3/2002 3/2002 3/2002 5/2002 5/2002 5/2002 5/2002 5/2002 5/2002 5/2002 5/2002 6/2002 7/2002 7/2002 7/2002 8/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/133 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Henningson et al. 324/426 Henningson et al. 324/426 Bertness 324/426 Namaky 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bert | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,736,941 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,784,637 B2 6,784,637 B2 6,784,637 B2 6,784,637 B2 6,785,782 B2 6,796,841 B1 6,805,090 B2 6,806,716 B2 6,825,669 B2 6,842,707 B2 6,845,279 B1 6,850,037 B2 6,871,151 B2 6,885,195 B2 6,884,688 B2 6,891,378 B2 6,904,796 B2 6,906,523 B2 6,906,523 B2 6,906,523 B2 6,906,524 B2 6,906,524 B2 6,906,525 B2 6,906,525 B2 6,906,526 B2 6,906,527 B2 6,906,528 B2 6,906,528 B2 6,906,528 B2 6,906,529 B2 6,906,529 B2 6,906,529 B2 6,906,528 6,908,536 B2 6,908,366 B2 6,909,376 B2 6,909,376 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
8/2004
9/2004
9/2004
10/2004
11/2005
1/2005
2/2005
3/2005
5/2005
6/2005
6/2005
6/2005
6/2005
7/2005
7/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/107 Bertness et al. 320/104 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 123/198 Bertness et al. 324/426 Raichle et al. 324/426 Raichle et al. 324/426 Raichle et al. 700/15 Bertness et al. 700/15 Bertness 324/426 Bertness 340/636.15 Bertness 340/636.15 Bertness et al. 324/426 Bertness 340/636.15 Bertness 340/636.15 Bertness 340/636.15 Bertness et al. 324/426 340/32 Restaino et al. 439/504 Bertness et al. 340/32 Restaino et al. 439/504 Bertness et al. 320/104 | | 6,271,748 B1 6,275,008 B1 6,294,897 B1 6,304,087 B1 6,304,087 B1 6,313,608 B1 6,313,608 B1 6,313,608 B1 6,320,351 B1 6,323,650 B1 6,329,793 B1 6,332,113 B1 6,332,113 B1 6,346,795 B2 6,347,958 B1 6,351,102 B1 6,359,441 B1 6,359,442 B1 6,359,441 B1 6,363,303 B1 RE37,677 E 6,377,031 B1 6,384,608 B1 6,388,448 B1 6,392,414 B2 6,396,278 B1 6,411,098 B1 6,417,669 B1 6,417,669 B1 6,424,157 B1 6,424,157 B1 | 8/2001 8/2001 9/2001 10/2001 10/2001 11/2001 11/2001 11/2001 11/2001 11/2001 12/2001 12/2001 2/2002 2/2002 3/2002 3/2002 3/2002 3/2002 3/2002 5/2002 5/2002 5/2002 5/2002 5/2002 5/2002 5/2002 5/2002 6/2002 7/2002 7/2002 7/2002 8/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness et al. 320/134 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Henningson et al. 324/426 Bertness 701/29 Irie 315/83 Karuppana et al. 323/220 Namaky 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bert | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,784,635 B2 6,784,635 B2 6,784,635 B2 6,784,635 B2 6,785,782 B2 6,795,782 B2 6,796,841 B1 6,805,090 B2 6,806,716 B2 6,825,669 B2 6,842,707 B2 6,842,707 B2 6,845,279 B1 6,850,037 B2 6,871,151 B2 6,885,195 B2 6,888,468 B2 6,891,378 B2 6,904,796 B2 6,906,522 B2 6,906,523 6,906,524 B2 6,909,287 B2 6,909,356 B2 6,909,356 B2 6,909,356 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
9/2004
9/2004
9/2004
10/2004
11/2005
1/2005
2/2005
3/2005
5/2005
6/2005
6/2005
6/2005
6/2005
6/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/107 Bertness et al. 320/104 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 123/198 Bertness et al. 324/426 Raichle et al. 324/426 Raichle et al. 324/426 Raichle et al. 700/15 Bertness et al. 700/15 Bertness 324/426 Bertness 340/636.15 Bertness 340/636.15 Bertness et al. 324/426 Bertness 340/636.15 Bertness 340/636.15 Bertness 340/636.15 Bertness et al. 324/426 340/32 Restaino et al. 439/504 Bertness et al. 340/32 Restaino et al. 439/504 Bertness et al. 320/104 | | 6,271,748 B1 6,275,008 B1 6,294,897 B1 6,304,087 B1 6,307,349 B1 6,313,607 B1 6,313,608 B1 6,313,608 B1 6,313,607 B1 6,323,650 B1 6,323,650 B1 6,323,650 B1 6,329,793 B1 6,331,762 B1 6,332,113 B1 6,346,795 B2 6,347,958 B1 6,351,102 B1 6,359,442 B1 6,359,442 B1 6,359,442 B1 6,359,442 B1 6,363,303 B1 RE37,677 E 6,377,031 B1 6,384,608 B1 6,384,608 B1 6,384,608 B1 6,384,608 B1 6,384,608 B1 6,407,554 B1 6,411,098 B1 6,417,669 B1 6,420,852 B1 6,424,157 B1 6,424,157 B1 6,424,157 B1 6,424,158 B2 6,437,957 B1 | 8/2001 8/2001 9/2001 10/2001 10/2001 11/2001 11/2001 11/2001 11/2001 11/2001 12/2001 12/2001 2/2002 2/2002 2/2002 3/2002 3/2002 3/2002 3/2002 3/2002 5/2002 5/2002 5/2002 5/2002 5/2002 5/2002 5/2002 7/2002 7/2002 7/2002 7/2002 8/2002 8/2002 | Derbyshire et al. 340/442 Arai et al. 320/132 Champlin 320/133 Champlin 320/153 Bertness 324/426 Koenck et al. 320/112 Bertness 324/430 Champlin 320/132 Varghese et al. 320/132 Bertness 320/134 Ng et al. 320/104 Bertness et al. 320/132 Bertness et al. 320/132 Bertness 702/63 Haraguchi et al. 320/136 Tsai 439/488 Troy 320/139 Kahlon et al. 318/138 Bertness 324/426 Henningson et al. 324/426 Henningson et al. 324/426 Bertness 324/426 Namaky 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bertness 324/426 Bert | 6,686,542 B2 6,696,819 B2 6,707,303 B2 6,736,941 B2 6,736,941 B2 6,738,697 B2 6,740,990 B2 6,745,153 B2 7,744,149 B2 6,759,849 B2 6,784,637 B2 6,784,637 B2 6,784,637 B2 6,784,637 B2 6,785,782 B2 6,796,841 B1 6,805,090 B2 6,806,716 B2 6,825,669 B2 6,842,707 B2 6,845,279 B1 6,850,037 B2 6,871,151 B2 6,885,195 B2 6,884,688 B2 6,891,378 B2 6,904,796 B2 6,906,523 B2 6,906,523 B2 6,906,523 B2 6,906,524 B2 6,906,524 B2 6,906,525 B2 6,906,525 B2 6,906,526 B2 6,906,527 B2 6,906,528 B2 6,906,528 B2 6,906,528 B2 6,906,529 B2 6,906,529 B2 6,906,529 B2 6,906,528 6,908,536 B2 6,908,366 B2 6,909,376 B2 6,909,376 B2 | 2/2004
2/2004
3/2004
5/2004
5/2004
5/2004
6/2004
6/2004
8/2004
8/2004
8/2004
9/2004
9/2004
9/2004
10/2004
11/2005
1/2005
5/2005
5/2005
6/2005
6/2005
6/2005
6/2005
7/2005
7/2005 | Bertness 320/134 Bertness et al. 324/426 Oku et al. 203/68 Champlin 320/132 Breed 701/29 Tozuka et al. 307/9.1 White et al. 702/184 Karuppana et al. 307/31 Bertness 324/426 Roberts et al. 324/426 Johnson 324/426 Larson 320/104 Raichle et al. 320/107 Bertness et al. 320/104 Bertness et al. 702/63 Cheng et al. 439/620.3 Bertness et al. 123/198 Bertness et al. 324/426 Raichle et al. 324/426 Raichle et al. 324/426 Raichle et al. 700/15 Bertness et al. 700/15 Bertness 324/426 Bertness 340/636.15 Bertness 340/636.15 Bertness et al. 324/426 Bertness 340/636.15 Bertness 340/636.15 Bertness 340/636.15 Bertness et al. 324/426 340/32 Restaino et al. 439/504 Bertness et al. 340/32 Restaino et al. 439/504 Bertness et al. 320/104 | | 6,933,72 | 7 B2 8/2005 | Bertness et al 324/426 | EP | 0 982 159 A2 | 3/2000 | |--------------|--------------------|-----------------------------------|-----------------|--|---| | 6,941,23 | | Bertness et al 702/63 | FR | 2 749 397 | 12/1997 | | 6,967,48 | | Bertness | GB | 2 029 586 | 3/1980 | | 6,972,662 | | 5 Ohkawa et al 340/10.1 | GB | 2 088 159 A | 6/1982 | | | | | GB | 2 246 916 A | 10/1990 | | 6,998,84 | | Bertness et al 324/426 | | | | | 7,003,410 | | Bertness et al 702/63 | GB | 2 275 783 A | 7/1994 | | 7,003,41 | | Bertness 702/63 | GB | 2 387 235 A | 10/2003 | | 7,012,433 | | 5 Smith et al 324/426 | JР | 59-17892 | 1/1984 | | 7,058,52 | | 6 Bertness et al 702/63 | JР | 59-17893 | 1/1984 | | 7,081,75 | 5 B2 7/2006 | 5 Klang et al 324/426 | JP | 59-17894 | 1/1984 | | 7,106,070 | O B2 9/2006 | 5 Bertness et al 324/538 | JP | 59017894 | 1/1984 | | 7,116,109 | | 5 Klang 324/426 | JP | 59215674 | 12/1984 | | 7,119,680 | | Bertness et al 340/572.1 | JP | 60225078 | 11/1985 | | 7,120,48 | | Nova et al 600/2 | JP | 62-180284 | 8/1987 | | 7,126,34 | | 5 Bertness et al 324/426 | JР | 63027776 | 2/1988 | | 7,129,70 | | 5 Kalley 324/426 | JР | 03274479 | 12/1991 | | 7,182,14 | | 7 Cutler et al | JP | 03282276 | 12/1991 | | | | | | | | | 7,184,90 | | Stefan | JР | 4-8636 | 1/1992 | | 7,200,42 | | Tischer et al 455/567 | JP | 04095788 | 3/1992 | | 7,209,860 | | 7 Trsar et al 702/183 | JР | 04131779 | 5/1992 | | 7,212,88 | 7 B2 5/2007 | Shah et al 700/276 | JР | 04372536 | 12/1992 | | 7,235,97 | 7 B2 6/2007 |
Koran et al 324/426 | $_{ m JP}$ | 05211724 A | 8/1993 | | 7,272,519 | 9 B2 9/2007 | ⁷ Lesesky et al 702/63 | JP | 5216550 | 8/1993 | | 7,339,47 | | 340/572.1 Puzio et al | JP | 7-128414 | 5/1995 | | 7,446,530 | | Bertness 324/426 | JP | 09061505 | 3/1997 | | 2002/0004694 | | 2 McLeod 701/29 | JP | 10056744 | 2/1998 | | 2002/001055 | | 2 Bertness et al 702/63 | JР | 10232273 | 9/1998 | | 2002/004117: | | 2 Lauper et al 320/106 | JР | 11103503 A | 4/1999 | | | | 2 Derbyshire et al | RU | | | | 2002/0044050 | | | | 2089015 C1 | 8/1997 | | 2002/0171423 | | 2 Bertness | WO | WO 93/22666 | 11/1993 | | 2002/0176010 | | 2 Wallach et al 348/362 | WO | WO 94/05069 | 3/1994 | | 2003/0009270 | | Breed 701/29 | WO | WO 96/01456 | 1/1996 | | 2003/002548 | 1 A1 2/2003 | 3 Bertness 324/427 | WO | WO 96/06747 | 3/1996 | | 2003/0036909 | 9 A1 2/2003 | 3 Kato 704/275 | WO | WO 97/01103 | 1/1997 | | 2003/0040873 | 3 A1 2/2003 | 3 Lesesky et al 702/57 | WO | WO 97/44652 | 11/1997 | | 2003/008837: | 5 A1 5/2003 | Bertness et al 702/63 | WO | WO 98/04910 | 2/1998 | | 2003/013727 | | 3 Mori et al 320/132 | WO | WO 98/58270 | 12/1998 | | 2003/0169013 | | Berels et al 320/132 | WO | WO 99/23738 | 5/1999 | | 2003/018426 | | 320/156 Makhija | WO | WO 00/16083 | 3/2000 | | 2003/018430 | | Bertness et al 324/426 | WO | WO 00/10003
WO 00/62049 | 10/2000 | | | | 3 Suzuki 701/29 | WO | | 11/2000 | | 2003/0187550 | | | | WO 00/67359 | | | 2003/019467 | | Roberts et al 431/196 | WO | WO 01/59443 | 2/2001 | | 2003/021439: | | Flowerday et al 340/445 | WO | WO 01/16614 | 3/2001 | | 2004/0000590 | | Raichle et al 235/462.01 | WO | WO 01/16615 | 3/2001 | | 2004/000089 | | Raichle et al 320/107 | WO | WO 01/51947 | 7/2001 | | 2004/0000893 | 3 A1 1/2004 | Raichle et al 320/135 | WO | WO 03/047064 A3 | 6/2003 | | 2004/0002824 | 4 A1 1/2004 | Raichle et al 702/63 | WO | WO 03/076960 A1 | 9/2003 | | 2004/000282: | 5 A1 1/2004 | Raichle et al 702/63 | WO | WO 2004/047215 A1 | 6/2004 | | 2004/0002830 | | Raichle et al 702/188 | | | | | 2004/0032264 | | | | OTHER PUE | BLICATIONS | | 2004/004445 | | Bauer et al 703/33 | | | | | 2004/004936 | | Hamdan et al 702/115 | "Batte | ry Impedance", by E. Willil | anganz et al., Electrical Engineer- | | 2004/0051533 | | Namaky 324/426 | | | 2 | | 2004/005153 | | Namaky 702/182 | | ep. 1959, pp. 922-925. | T. (A.). (A.). (A.). | | | | | "Detei | mining the End of Battery | Life", by S. DeBardelaben, IEEE, | | 2004/011358 | | Mikuriya et al 320/128 | 1986, | pp. 365-368. | | | 2004/014534 | | Lyon 320/108 | | | Cell", by S. Debardelaben, IEEE, | | 2004/017818 | | Yoshikawa et al 219/270 | | pp. 394-397. | , -, | | 2004/019934 | | Cardinal et al 702/63 | | • | C-11-22 1 NI A III | | 2004/022752 | | Namaky 324/537 | | • | rage Cells", by N.A. Hampson et | | 2004/023933 | 2 A1 12/2004 | Mackel et al 324/426 | al., <i>Joi</i> | ırnal of Applied Electroche | <i>mistry</i> , 1980, pp. 3-11. | | 2005/0017720 | 5 A1 1/2005 | Koran et al 324/433 | "A Pa | ckage for Impedance/Adı | nittance Data Analysis", by B. | | 2005/0025299 | 9 A1 2/2005 | Tischer et al 379/199 | Bouka | mp, Solid State Ionics, 198 | 6. pp. 136-140. | | 2005/004386 | | Mitcham 701/29 | | | copy Estimates of Bulk, Reaction | | 2005/0057250 | | Bertness 324/426 | | | | | 2005/0102073 | | 5 Ingram 701/29 | | | s", by J. Macdonald et al., J. | | 2005/0182530 | | 5 Doyle et al 701/29 | | oanal, Chem., 1991, pp. 1-1 | | | 2005/025410 | | 5 Silverbrook et al 358/539 | Interna | al Resistance: Harbinger of | Capacity Loss in Starved Electro- | | 2005/025410 | | 5 Cawthorne et al 701/22 | lyte Se | ealed Lead Acid Batteries, | by Vaccaro, F.J. et al., AT&T Bell | | | | | • | atories, 1987 IEEE, Ch. 24' | | | 2006/0030980 | | 5 St. Denis 701/29 | | | For Maintenance, Testings, and | | 2006/008976 | | 5 Sowa | | | | | 2006/0217914 | | 6 Bertness 702/113 | | | age Batteries for Generating Sta- | | 2006/028232 | 3 A1 12/2006 | Walker et al 705/14 | | | ute of Electrical and Electronics | | 2007/002691 | | Juds et al 463/1 | Engine | eers, Inc., ANSI/IEEE Std. 4 | 150-1987, Mar. 9, 1987, pp. 7-15. | | | | | "Field | and Laboratory Studies to A | Assess the State of Health of Valve- | | F | OREIGN PATI | ENT DOCUMENTS | | | art I Conductance/Capacity Corre- | | | | | _ | | , <i>IEEE</i> , Aug. 1992, pp. 218-233. | | DE | 196 38 324 | 9/1996 | | · • | -Lead Acid Batteries for Automo- | | EP | 0 022 450 A1 | | | - | | | EP
EP | 0 637 754 A1 | | | - <i>Japanese Sianaaras Assoc</i>
ov. 1995. | ciation UDC, 621.355.2:629.113. | | HP | 11 77 7 1 1156 A 1 | 5/1997 | OO6 N | AV TUUN | | | LI | 0 772 056 A1 | 3/1991 | 000, 11 | OV. 1995. | | "Performance of Dry Cells", by C. Hambuechen, Preprint of Am. Electrochem. Soc., Apr. 18-20, 1912, paper No. 19, pp. 1-5. "A Bridge for Measuring Storage Battery Resistance", by E. Willihncanz, *The Electrochemical Society*, preprint 79-20, Apr. 1941, pp. 253-258. National Semiconductor Corporation, "High Q Notch Filter", Mar. 1969, Linear Brief 5. Burr-Brown Corporation, "Design A 60 Hz Notch Filter with the UAF42", Jan. 1994, AB-071. National Semiconductor Corporation, "LMF90-4th-Order Elliptic Notch Filter", Dec. 1994, RRD-B30M115. "Alligator Clips with Wire Penetrators" J.S. Popper, Inc. product information, downloaded from http://www.jspopper.com/, undated. "#12: LM78S40 Simple Switcher DC to DC Converter", ITM e-Catalog, downloaded from http://www.pcbcafe.com, undated. "Simple DC-DC Converts Allows Use of Single Battery", *Electronix Express*, downloaded from http://www.elexp.com/t_dc-dc.htm, undated. "DC-DC Converter Basics", *Power Designers*, downloaded from http://www.powederdesigners.com/InforWeb.design_center/articles/DC-DC/converter.shtm, undated. "Notification of Transmittal of The International Search Report or the Declaration", PCT/US02/29461. "Notification of Transmittal of The International Search Report or the Declaration", PCT/US03/07546. "Notification of Transmittal of The International Search Report or the Declaration", PCT/US03/06577. "Notification of Transmittal of The International Search Report or the Declaration", PCT/US03/07837. "Improved Impedance Spectroscopy Technique For Status Determination of Production ${\rm Li/SO_2}$ Batteries" Terrill Atwater et al., pp. 10-113, (1992). "Notification of Transmittal of The International Search Report or the Declaration", PCT/US03/41561. "Notification of Transmittal of The International Search Report or the Declaration", PCT/US03/27696. "Programming Training Course, 62-000 Series Smart Engine Analyzer", Testproducts Division, Kalamazoo, Michigan, pp. 1-207, (1984) "Operators Manual, Modular Computer Analyzer Model MCA 3000", Sun Electric Corporation, Crystal Lake, Illinois, pp. 1-1-14-13, (1991). Supplementary European Search Report Communication for Appl. No. 99917402.2. "Dynamic modelling of lead/acid batteries using impedance spectroscopy for parameter identification", Journal of Power Sources, pp. 69-84, (1997). Notification of Transmittal of the International Search Report for PCT/US03/30707. "A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries", Journal of Power Sources, pp. 59-69, (1998). "Search Report Under Section 17" for Great Britain Application No. GB0421447.4. "Results of Discrete Frequency Immittance Spectroscopy (DFIS) Measurements of Lead Acid Batteries", by K.S. Champlin et al., *Proceedings of 23rd International Teleco Conference (INTELEC)*, published Oct. 2001, IEE, pp. 433-440. "Examination Report" from the U.K. Patent Office for U.K. App. No. 0417678.0. Wikipedia Online Encyclopedia, Inductance, 2005, http://en.wikipedia.org/wiki/inductance, pp. 1-5, mutual Inductance, pp. 3,4. "Professional BCS System Analyzer Battery-Charger-Starting", pp. 2-8, (2001). Young Illustrated Encyclopedia Dictionary of Electronics, 1981, Parker Publishing Company, Inc., pp. 318-319. "DSP Applications in Hybrid Electric Vehicle Powertrain", Miller et al., Proceedings of the American Control Conference, Sand Diego, CA, Jun. 1999; 2 ppg. "Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration" for PCT/US2008/008702 filed Jul. 2008; 15 pages. "Notification Concerning Availability of the Publication of the International Application" for PCT/US2008/008702, filed Jul. 17, 2008; 24 pages. "A Microprocessor-Based Control System for a Near-Term Electric Vehicle", Bimal K. Bose; IEEE Transactions on Industry Applications, vol. IA-17, No. 6, Nov./Dec. 198?,; 0093-9994/81/1100-0626\$00.75 © 1981 IEEE, 6 pages. "First Notice Informing the Applicant of the Communication of the International Application (To Designated Offices which do not apply the 30 Month Time Limit Under Article 22(1))" for PCT/US2008/008702 filed Jul. 17, 2008; one page. "Notification of the Recording of a Change" for PCT/US2008/008702 filed Jul. 17, 2008; one page. * cited by examiner FIG. 1 FIG. 4 FIG. 5 # BATTERY MAINTENANCE TOOL WITH PROBE LIGHT The present application is a continuation-in-part of U.S. patent application Ser. No. 10/681,666, filed Oct. 8, 2003, 5 entitled "ELECTRONIC BATTERY TESTER WITH PROBE LIGHT," the contents of which are hereby incorporated by reference in their entirety. # **BACKGROUND** The present embodiments relate to storage batteries. More specifically, the present embodiments relate to battery maintenance tools. Storage batteries, such as lead acid storage batteries, are used in a variety of applications such as automotive vehicles and standby power sources. Typical storage batteries consist of a plurality of individual storage cells which are electrically connected in series. Each cell can have a voltage potential of about 2.1 volts, for example. By connecting the cells in the series, the voltages of the individual cells are added in a cumulative manner. For example, in a typical automotive storage battery, six
storage cells are used to provide a total voltage of about 12.6 volts. The individual cells are held in a housing and the entire assembly is commonly referred to as 25 the "battery." It is frequently desirable to ascertain the condition of a storage battery. Various testing techniques have been developed over the long history of storage batteries. For example, one technique involves the use of a hygrometer in which the 30 specific gravity of the acid mixture in the battery is measured. Electrical testing has also been used to provide less invasive battery testing techniques. A very simple electrical test is to simply measure the voltage across the battery. If the voltage is below a certain threshold, the battery is determined to be bad. 35 Another technique for testing a battery is referred to as a load test. In a load test, the battery is discharged using a known load. As the battery is discharged, the voltage across the battery is monitored and used to determine the condition of the battery. More recently, techniques have been pioneered by 40 Dr. Keith S. Champlin and Midtronics, Inc. of Willowbrook, Ill. for testing storage battery by measuring a dynamic parameter of the battery such as the dynamic conductance of the battery. These techniques are described in a number of United States patents, for example, U.S. Pat. No. 3,873,911, issued 45 Mar. 25, 1975, to Champlin, entitled ELECTRONIC BAT-TERY TESTING DEVICE; U.S. Pat. No. 3,909,708, issued Sep. 30, 1975, to Champlin, entitled ELECTRONIC BAT-TERY TESTING DEVICE; U.S. Pat. No. 4,816,768, issued Mar. 28, 1989, to Champlin, entitled ELECTRONIC BAT- 50 TERY TESTING DEVICE; U.S. Pat. No. 4,825,170, issued Apr. 25, 1989, to Champlin, entitled ELECTRONIC BAT-TERY TESTING DEVICE WITH AUTOMATIC VOLTAGE SCALING; U.S. Pat. No. 4,881,038, issued Nov. 14, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING 55 DEVICE WITH AUTOMATIC VOLTAGE SCALING TO DETERMINE DYNAMIC CONDUCTANCE; U.S. Pat. No. 4,912,416, issued Mar. 27, 1990, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH STATE-OF-CHARGE COMPENSATION; U.S. Pat. No. 60 5,140,269, issued Aug. 18, 1992, to Champlin, entitled ELECTRONIC TESTER FOR ASSESSING BATTERY/ CELL CAPACITY; U.S. Pat. No. 5,343,380, issued Aug. 30, 1994, entitled METHOD AND APPARATUS FOR SUP-PRESSING TIME VARYING SIGNALS IN BATTERIES 65 UNDERGOING CHARGING OR DISCHARGING; U.S. Pat. No. 5,572,136, issued Nov. 5, 1996, entitled ELEC- 2 TRONIC BATTERY TESTER WITH AUTOMATIC COM-PENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,574,355, issued Nov. 12, 1996, entitled METHOD AND APPARATUS FOR DETECTION AND CONTROL OF THERMAL RUNAWAY IN A BATTERY UNDER CHARGE; U.S. Pat. No. 5,585,416, issued Dec. 10, 1996, entitled APPARATUS AND METHOD FOR STEP-CHARGING BATTERIES TO OPTIMIZE CHARGE ACCEPTANCE; U.S. Pat. No. 5,585,728, issued Dec. 17, 10 1996, entitled ELECTRONIC BATTERY TESTER WITH AUTOMATIC COMPENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,589,757, issued Dec. 31, 1996, entitled APPARATUS AND METHOD FOR STEP-CHARGING BATTERIES TO OPTIMIZE CHARGE ACCEPTANCE; U.S. Pat. No. 5,592,093, issued Jan. 7, 1997, entitled ELECTRONIC BATTERY TESTING DEVICE LOOSE TERMINAL CONNECTION DETECTION VIA A COMPARISON CIRCUIT; U.S. Pat. No. 5,598,098, issued Jan. 28, 1997, entitled ELECTRONIC BATTERY TESTER WITH VERY HIGH NOISE IMMUNITY; U.S. Pat. No. 5,656,920, issued Aug. 12, 1997, entitled METHOD FOR OPTIMIZING THE CHARGING LEAD-ACID BATTER-IES AND AN INTERACTIVE CHARGER; U.S. Pat. No. 5,757,192, issued May 26, 1998, entitled METHOD AND APPARATUS FOR DETECTING A BAD CELL IN A STORAGE BATTERY; U.S. Pat. No. 5,821,756, issued Oct. 13, 1998, entitled ELECTRONIC BATTERY TESTER WITH TAILORED COMPENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,831,435, issued Nov. 3, 1998, entitled BATTERY TESTER FOR JIS STANDARD; U.S. Pat. No. 5,914,605, issued Jun. 22, 1999, entitled ELEC-TRONIC BATTERY TESTER; U.S. Pat. No. 5,945,829, issued Aug. 31, 1999, entitled MIDPOINT BATTERY MONITORING; U.S. Pat. No. 6,002,238, issued Dec. 14, 1999, entitled METHOD AND APPARATUS FOR MEA-SURING COMPLEX IMPEDANCE OF CELLS AND BAT-TERIES; U.S. Pat. No. 6,037,751, issued Mar. 14, 2000, entitled APPARATUS FOR CHARGING BATTERIES; U.S. Pat. No. 6,037,777, issued Mar. 14, 2000, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMIT-TANCE; U.S. Pat. No. 6,051,976, issued Apr. 18, 2000, entitled METHOD AND APPARATUS FOR AUDITING A BATTERY TEST; U.S. Pat. No. 6,081,098, issued Jun. 27, 2000, entitled METHOD AND APPARATUS FOR CHARG-ING A BATTERY; U.S. Pat. No. 6,091,245, issued Jul. 18, 2000, entitled METHOD AND APPARATUS FOR AUDIT-ING A BATTERY TEST; U.S. Pat. No. 6,104,167, issued Aug. 15, 2000, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,137,269, issued Oct. 24, 2000, entitled METHOD AND APPARATUS FOR ELECTRONICALLY EVALUATING THE INTERNAL TEMPERATURE OF AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Pat. No. 6,163,156, issued Dec. 19, 2000, entitled ELECTRICAL CONNECTION FOR ELEC-TRONIC BATTERY TESTER; U.S. Pat. No. 6,172,483, issued Jan. 9, 2001, entitled METHOD AND APPARATUS FOR MEASURING COMPLEX IMPEDANCE OF CELL AND BATTERIES; U.S. Pat. No. 6,172,505, issued Jan. 9, 2001, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,222,369, issued Apr. 24, 2001, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMIT-TANCE; U.S. Pat. No. 6,225,808, issued May 1, 2001, entitled TEST COUNTER FOR ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,249,124, issued Jun. 19, 2001, entitled ELECTRONIC BATTERY TESTER WITH INTER- NAL BATTERY; U.S. Pat. No. 6,259,254, issued Jul. 10, 2001, entitled APPARATUS AND METHOD FOR CARRY-ING OUT DIAGNOSTIC TESTS ON BATTERIES AND FOR RAPIDLY CHARGING BATTERIES; U.S. Pat. No. 6,262,563, issued Jul. 17, 2001, entitled METHOD AND 5 APPARATUS FOR MEASURING COMPLEX ADMIT-TANCE OF CELLS AND BATTERIES; U.S. Pat. No. 6,294, 896, issued Sep. 25, 2001; entitled METHOD AND APPA-RATUS FOR MEASURING COMPLEX SELF-IMMITANCE OF A GENERAL ELECTRICAL 10 ELEMENT; U.S. Pat. No. 6,294,897, issued Sep. 25, 2001, entitled METHOD AND APPARATUS FOR ELECTRONI-CALLY EVALUATING THE INTERNAL TEMPERA-TURE OF AN ELECTROCHEMICAL CELL OR BAT-TERY; U.S. Pat. No. 6,304,087, issued Oct. 16, 2001, entitled 15 APPARATUS FOR CALIBRATING ELECTRONIC BAT-TERY TESTER; U.S. Pat. No. 6,310,481, issued Oct. 30, 2001, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,313,607, issued Nov. 6, 2001, entitled METHOD AND APPARATUS FOR EVALUATING STORED CHARGE IN 20 AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Pat. No. 6,313,608, issued Nov. 6, 2001, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,316,914, issued Nov. 13, 2001, entitled TESTING PARAL-LEL STRINGS OF STORAGE BATTERIES; U.S. Pat. No. 25 6,323,650, issued Nov. 27, 2001, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,329,793, issued Dec. 11, 2001, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,331,762, issued Dec. 18, 2001, entitled ENERGY MANAGEMENT SYS- 30 TEM FOR AUTOMOTIVE VEHICLE; U.S. Pat. No. 6,332, 113, issued Dec. 18, 2001, entitled ELECTRONIC BAT-TERY TESTER; U.S. Pat. No. 6,351,102, issued Feb. 26, 2002, entitled AUTOMOTIVE BATTERY CHARGING SYSTEM TESTER; U.S. Pat. No. 6,359,441, issued Mar. 19, 35 10/093,853, filed Mar. 7, 2002, entitled ELECTRONIC BAT-2002, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,363,303, issued Mar. 26, 2002, entitled ALTERNATOR DIAGNOSTIC SYSTEM, U.S. Pat. No. 6,392,414, issued May 21, 2002, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,417,669, issued Jul. 9, 2002, entitled SUP- 40 741, filed Mar. 14, 2002, entitled METHOD AND PRESSING INTERFERENCE IN AC MEASUREMENTS OF CELLS, BATTERIES AND OTHER ELECTRICAL ELEMENTS; U.S. Pat. No. 6,424,158, issued Jul. 23, 2002, entitled APPARATUS AND METHOD FOR CARRYING OUT DIAGNOSTIC TESTS ON BATTERIES AND FOR 45 RAPIDLY CHARGING BATTERIES; U.S. Pat. No. 6,441, 585, issued Aug. 17, 2002, entitled APPARATUS AND METHOD FOR TESTING RECHARGEABLE ENERGY STORAGE BATTERIES; U.S. Pat. No. 6,445,158, issued Sep. 3, 2002, entitled VEHICLE ELECTRICAL SYSTEM 50 TESTER WITH ENCODED OUTPUT; U.S. Pat. No. 6,456, 045, issued Sep. 24, 2002, entitled INTEGRATED CON-DUCTANCE AND LOAD TEST BASED ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,466,025, issued Oct. 15, 2002, entitled ALTERNATOR TESTER; U.S. Pat. No. 6,466, 55 026, issued Oct. 15, 2002, entitled PROGRAMMABLE CURRENT EXCITER FOR MEASURING AC IMMIT-TANCE OF CELLS AND BATTERIES; U.S. Pat. No. 6,534, 993, issued Mar. 18, 2003, entitled ELECTRONIC BAT-TERY TESTER; U.S. Pat. No. 6,544,078, issued Apr. 8, 60 2003, entitled BATTERY CLAMP WITH INTEGRATED CURRENT SENSOR; U.S. Pat. No. 6,556,019, issued Apr. 29, 2003, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,566,883, issued May 20, 2003, entitled ELEC-TRONIC BATTERY TESTER; U.S. Pat. No. 6,586,941, 65 issued Jul. 1, 2003, entitled BATTERY TESTER WITH DATABUS; U.S. Pat. No. 6,597,150, issued Jul. 22, 2003, entitled METHOD OF DISTRIBUTING JUMP-START BOOSTER PACKS; U.S. Ser. No. 09/780,146, filed Feb. 9, 2001, entitled STORAGE BATTERY WITH INTEGRAL BATTERY TESTER; U.S. Ser. No. 09/756,638, filed Jan. 8, 2001, entitled METHOD AND APPARATUS FOR DETER-MINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Ser. No. 09/862,783, filed May 21, 2001, entitled METHOD AND APPARATUS FOR TESTING CELLS AND BATTERIES EMBEDDED IN SERIES/PARALLEL SYSTEMS; U.S. Ser. No. 09/960, 117, filed Sep. 20, 2001, entitled IN-VEHICLE BATTERY MONITOR; U.S. Ser. No. 09/908,278, filed Jul. 18, 2001, entitled BATTERY CLAMP WITH EMBEDDED ENVI-RONMENT SENSOR; U.S. Ser. No. 09/880,473, filed Jun. 13, 2001; entitled BATTERY TEST MODULE; U.S. Ser. No. 09/940,684, filed Aug. 27, 2001, entitled METHOD AND APPARATUS FOR EVALUATING STORED CHARGE IN AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Ser. No. 60/330,441, filed Oct. 17, 2001, entitled ELECTRONIC BATTERY TESTER WITH
RELATIVE TEST OUTPUT: U.S. Ser. No. 60/348,479, filed Oct. 29, 2001, entitled CON-CEPT FOR TESTING HIGH POWER VRLA BATTERIES; U.S. Ser. No. 10/046,659, filed Oct. 29, 2001, entitled ENERGY MANAGEMENT SYSTEM FOR AUTOMO-TIVE VEHICLE; U.S. Ser. No. 09/993,468, filed Nov. 14, 2001, entitled KELVIN CONNECTOR FOR A BATTERY POST; U.S. Ser. No. 09/992,350, filed Nov. 26, 2001, entitled ELECTRONIC BATTERY TESTER, U.S. Ser. No. 60/341, 902, filed Dec. 19, 2001, entitled BATTERY TESTER MOD-ULE; U.S. Ser. No. 10/042,451, filed Jan. 8, 2002, entitled BATTERY CHARGE CONTROL DEVICE, U.S. Ser. No. 10/073,378, filed Feb. 8, 2002, entitled METHOD AND APPARATUS USING A CIRCUIT MODEL TO EVALU-ATE CELL/BATTERY PARAMETERS; U.S. Ser. No. TERY TESTER WITH NETWORK COMMUNICATION; U.S. Ser. No. 60/364,656, filed Mar. 14, 2002, entitled ELEC-TRONIC BATTERY TESTER WITH LOW TEMPERA-TURE RATING DETERMINATION; U.S. Ser. No. 10/098, APPARATUS FOR AUDITING A BATTERY TEST; U.S. Ser. No. 10/112,114, filed Mar. 28, 2002; U.S. Ser. No. 10/109,734, filed Mar. 28, 2002; U.S. Ser. No. 10/112,105, filed Mar. 28, 2002, entitled CHARGE CONTROL SYSTEM FOR A VEHICLE BATTERY; U.S. Ser. No. 10/112,998, filed Mar. 29, 2002, entitled BATTERY TESTER WITH BAT-TERY REPLACEMENT OUTPUT; U.S. Ser. No. 10/119. 297, filed Apr. 9, 2002, entitled METHOD AND APPARA-TUS FOR TESTING CELLS AND BATTERIES EMBEDDED IN SERIES/PARALLEL SYSTEMS; U.S. Ser. No. 60/379,281, filed May 8, 2002, entitled METHOD FOR DETERMINING BATTERY STATE OF CHARGE; U.S. Ser. No. 60/387,046, filed Jun. 7, 2002, entitled METHOD AND APPARATUS FOR INCREASING THE LIFE OF A STORAGE BATTERY; U.S. Ser. No. 10/177,635, filed Jun. 21, 2002, entitled BATTERY CHARGER WITH BOOSTER PACK; U.S. Ser. No. 10/207,495, filed Jul. 29, 2002, entitled KELVIN CLAMP FOR ELECTRICALLY COUPLING TO A BATTERY CONTACT; U.S. Ser. No. 10/200,041, filed Jul. 19, 2002, entitled AUTOMOTIVE VEHICLE ELECTRICAL SYSTEM DIAGNOSTIC DEVICE; U.S. Ser. No. 10/217,913, filed Aug. 13, 2002, entitled, BATTERY TEST MODULE; U.S. Ser. No. 60/408, 542, filed Sep. 5, 2002, entitled BATTERY TEST OUTPUTS ADJUSTED BASED UPON TEMPERATURE; U.S. Ser. No. 10/246,439, filed Sep. 18, 2002, entitled BATTERY TESTER UPGRADE USING SOFTWARE KEY; U.S. Ser. No. 60/415,399, filed Oct. 2, 2002, entitled QUERY BASED ELECTRONIC BATTERY TESTER; and U.S. Ser. No. 10/263,473, filed Oct. 2, 2002, entitled ELECTRONIC BAT-TERY TESTER WITH RELATIVE TEST OUTPUT; U.S. Ser. No. 60/415,796, filed Oct. 3, 2002, entitled QUERY 5 BASED ELECTRONIC BATTERY TESTER; U.S. Ser. No. 10/271,342, filed Oct. 15, 2002, entitled IN-VEHICLE BAT-TERY MONITOR; U.S. Ser. No. 10/270,777, filed Oct. 15, 2002, entitled PROGRAMMABLE CURRENT EXCITER FOR MEASURING AC IMMITTANCE OF CELLS AND 10 BATTERIES; U.S. Ser. No. 10/310,515, filed Dec. 5, 2002, entitled BATTERY TEST MODULE; U.S. Ser. No. 10/310, 490, filed Dec. 5, 2002, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 10/310,385, filed Dec. 5, 2002, entitled BATTERY TEST MODULE, U.S. Ser. No. 60/437, 15 255, filed Dec. 31, 2002, entitled REMAINING TIME PRE-DICTIONS, U.S. Ser. No. 60/437,224, filed Dec. 31, 2002, entitled DISCHARGE VOLTAGE PREDICTIONS, U.S. Ser. No. 10/349,053, filed Jan. 22, 2003, entitled APPARATUS AND METHOD FOR PROTECTING A BATTERY FROM 20 OVERDISCHARGE, U.S. Ser. No. 10/388,855, filed Mar. 14, 2003, entitled ELECTRONIC BATTERY TESTER WITH BATTERY FAILURE TEMPERATURE DETERMI-NATION, U.S. Ser. No. 10/396,550, filed Mar. 25, 2003, entitled ELECTRONIC BATTERY TESTER, U.S. Ser. No. 25 60/467,872, filed May 5, 2003, entitled METHOD FOR DETERMINING BATTERY STATE OF CHARGE, U.S. Ser. No. 60/477,082, filed Jun. 9, 2003, entitled ALTERNA-TOR TESTER, U.S. Ser. No. 10/460,749, filed Jun. 12, 2003, entitled MODULAR BATTERY TESTER FOR SCAN 30 TOOL, U.S. Ser. No. 10/462,323, filed Jun. 16, 2003, entitled ELECTRONIC BATTERY TESTER HAVING A USER INTERFACE TO CONFIGURE A PRINTER, U.S. Ser. No. 10/601,608, filed Jun. 23, 2003, entitled CABLE FOR ELEC-TRONIC BATTERY TESTER, U.S. Ser. No. 10/601,432, 35 filed Jun. 23, 2003, entitled BATTERY TESTER CABLE WITH MEMORY; U.S. Ser. No. 60/490,153, filed Jul. 25, 2003, entitled SHUNT CONNECTION TO A PCB FOR AN ENERGY MANAGEMENT SYSTEM EMPLOYED IN AN AUTOMOTIVE VEHICLE, U.S. Ser. No. 10/653,342, filed 40 Sep. 2, 2003, entitled ELECTRONIC BATTERY TESTER CONFIGURED TO PREDICT A LOAD TEST RESULT, U.S. Ser. No. 10/654,098, filed Sep. 3, 2003, entitled BAT-TERY TEST OUTPUTS ADJUSTED BASED UPON BAT-TERY TEMPERATURE AND THE STATE OF DIS- 45 CHARGE OF THE BATTERY, U.S. Ser. No. 10/656,526, filed Sep. 5, 2003, entitled METHOD AND APPARATUS FOR MEASURING A PARAMETER OF A VEHICLE ELECTRICAL SYSTEM, U.S. Ser. No. 10/656,538, filed Sep. 5, 2003, entitled ALTERNATOR TESTER WITH 50 ENCODED OUTPUT, which are incorporated herein in their entirety. In general, battery maintenance operations such as periodic battery testing and charging may be difficult to carry out in a poorly lit environment, for example, when the battery terminals are recessed in cabinets. ## **SUMMARY** A battery maintenance tool, which electrically couples to a 60 battery, includes a maintenance tool housing and electronic circuitry within the maintenance tool housing. A cable, substantially external to the maintenance tool housing includes a plurality of conductors. At least some conductors of the plurality conductors are configured to electrically couple to the 65 electronic circuitry within the maintenance tool housing. At least one probe light that is configured to electrically couple to 6 at least two of the plurality of conductors in the cable is also included. The probe light, which is separate from the maintenance tool housing, receives power via the at least two of the plurality of conductors to which it is electrically coupled. # BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1, 2 and 3 are simplified block diagrams of battery testers in accordance with the present embodiments. FIGS. 4 and 5 show perspective views of a battery tester Kelvin clamp to which a probe light is coupled in accordance with the present embodiments. FIGS. **6** through **9** show different embodiments in which probes lights coupled to battery maintenance tool cables receive their power via conductors in the battery maintenance tool cables. # DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present embodiments, in general, relate to battery maintenance tools (battery testers, battery chargers, etc.) that include probe lights that help illuminate environments in which the battery maintenance tools are used. A battery tester that includes a probe light is a specific example of one of the present embodiments. Such a battery tester is first described below in connection with FIGS. 1 through 4. Embodiments in which a probe light receives it power through conductors within a battery maintenance tool cable are described further below FIG. 1 is a simplified block diagram of electronic battery tester 10, which includes a probe light 30, in accordance with one of the present embodiments. The same reference numerals are used in the various figures to represent the same or similar elements. Note that FIG. 1 is a simplified block diagram of a specific type of battery tester. However, the present embodiments are applicable to any type of battery tester including those which do not use dynamic parameters. Other types of example testers include testers that conduct load tests, current based tests, voltage based tests, tests which apply various conditions or observe various performance parameters of a battery, etc. Battery tester 10 includes a test circuit 18, a memory 20, an input 68, an output 22, cable(s) or probe(s) 14 and probe light 30. Test circuit 18 includes a microprocessor system 24 and other circuitry, shown in FIG. 3, configured to measure a dynamic parameter of battery 12. As used herein, a dynamic parameter is one which is related to a signal having an alternating current (AC) component. The signal can be either applied directly or drawn from battery 12. Example dynamic parameters include dynamic resistance, conductance, impedance, admittance, etc. This list is not exhaustive, for example, a dynamic parameter can include a component value of an equivalent circuit of battery 12. Microprocessor system 24 controls the operation of other components within test circuitry 18 and, in turn, carries out different battery testing functions based upon battery testing instructions stored in memory 20. In the embodiment shown in FIG. 1, cable 14 includes a four-point connection known as a Kelvin connection formed by connections 26 and 28. With such a Kelvin connection, two couplings are provided to the positive and negative terminals of battery 12. First Kelvin connection 26 includes a first conductor 26A and a second conductor 26B, which couple to test circuit 18. Similarly, first conductor 28A and second conductor 28B of second Kelvin connection 28 also couple to test circuit 18. Employing Kelvin connections 26 and 28 allows one of the electrical connections on each side of bat- tery 12 to carry large amounts of current while the other pair of connections can be used to obtain accurate voltage readings. Note that in other embodiments, instead of employing Kelvin connections 26 and 28, cable 14 can include a single conductor to couple the first battery terminal to test circuit 18 and a single conductor to couple the second battery terminal to test circuit 18. Details regarding testing battery 12 with the help of Kelvin connections 26 and 28 are provided further below in connection with FIG. 3. As can be seen in FIG. 1, probe light 30, which releasably 10 couples to cable 14, includes a light bulb 32, a housing 34, power control circuitry 36 and a switch 40. Housing 34, which may be formed of any suitable insulating material (such as plastic), substantially encloses power control circuitry 36. A lamp holder or socket (not shown), into which light bulb 32 is inserted, is included within
housing 34. Power control circuitry 36 electrically couples to the lamp holder or socket. Probe light-to-cable connector 38, which is configured to couple probe light 30 to cable 14, is shown as a single block in the interest of simplification. However, depending 20 upon the type of coupling desired between probe light 30 and cable 14, probe light-to-cable connector 38 may include one or more components of any suitable design. In some embodiments, probe light 30 releasably mechanically couples to cable 14 and therefore probe light-to-cable connector 38 may 25 include pieces of Velcro (attached to housing 34, of probe light 30, and to cable 14), for example. In some embodiments, instead of Velcro pieces, probe-light-to-cable connector 38 may comprise a double-sided adhesive tape. In other such embodiments, probe-light-to-cable connector 38 may com- 30 prise a loop (formed of plastic, for example) that is configured to fit around cable 14. The loop may be formed integral with housing 34. In some embodiments, probe light-to-cable connector 38 may comprise a Velcro strap that is attached to housing 34, of probe light 30, and configured to wrap around 35 cable 14. In some embodiments, probe 30 is configured to releasably mechanically and electrically couple to cable 14. In such embodiments, probe light-to-cable connector 38 may include any suitable male and female plug fittings capable of providing the releasable mechanical and electrical coupling 40 between probe 30 and cable 14. For simplification, dashed lines 44 and 46 are used in FIG. 1 to denote releasable electrical coupling between power control circuitry 36, of probe light 30, and conductors of cable 14. It should be noted that, although dashed lines 44 and 46 are shown connected to 45 conductors 26A and 26B, respectively, electrical coupling between probe 30 and cable 14 can be provided to any suitable combination of conductors 26A, 26B, 28A and 28B. In some embodiments, power control circuitry 36 includes non-rechargeable batteries (lithium coin cells, AA batteries, AAA 50 batteries, etc.) that provide power to light bulb 32. In some embodiments, power is supplied to light bulb 32 from test circuitry 18. For simplification, components such as pull up and/or pull down resistors and other power supply circuitry that may be employed within test circuitry 18 to provide 55 power to probe light 30 are not shown. Light bulb 30 can be switched on and off using switch 40 and/or form a push button (not shown), for example, included in input 68. In some embodiments, power control circuit circuitry 36 includes rechargeable batteries/capacitors that can be recharged by the 60 battery under test (such as 12) when it is coupled to tester 10. Incandescent lamps, cold-cathode lamps, etc., may be employed as light bulb 32. In some embodiments, probe light 30 has a longitudinal axis 35 that is oriented generally toward an end (such as 106 of FIG. 4), of one of the first and second 65 Kelvin connections, that couples to one of the first and second terminals of the battery. 8 FIG. 2 is a simplified block diagram of electronic battery tester 10, which includes a probe light 30 that couples to probe extension(s) 42 in accordance with one embodiment. Probe extensions 42 are used, for example, when testing batteries employed in Uninterruptible Power Supply (UPS) and telecommunication (telecom) applications. Here, the batteries are in racks with very small clearance between the batteries and very little light, since no light is needed for the batteries to operate. Under such conditions, probe light 30, mounted on probe extension(s) 42, helps provide the necessary illumination to ensure that proper selection of battery terminals takes place and proper connection to the selected battery terminals is made by probe extensions 42, which are used to reach the terminals. In the embodiment shown in FIG. 2, the coupling of probe light 30, to probe extension(s) 42, and the powering and operation of probe light 30 is carried out in a manner similar to that described in connection with FIG. 1 FIG. 3 is a simplified block diagram of electronic battery tester 10 showing components of test circuit 18. In addition to microprocessor system 24, test circuit 18 also includes forcing function 50, differential amplifier 52 and analog-to-digital converter 54. Amplifier 52 is capacitively coupled to battery 12 through capacitors C_1 and C_2 . Amplifier 52 has an output connected to an input of analog-to-digital converter 54 which in turn has an output connected to microprocessor system 24. Microprocessor system 24 is also capable of receiving an input from input device 68. During testing of battery 12, forcing function 50 is controlled by microprocessor system 24 and provides a current I in the direction shown by the arrow in FIG. 3. In one embodiment, this is a sine wave, square wave or a pulse. Differential amplifier 52 is connected to terminals 13 and 15 of battery 12 through capacitors C₁ and C₂, respectively, and provides an output related to the voltage potential difference between terminals 13 and 15. In a preferred embodiment, amplifier 52 has a high input impedance. Tester 10 includes differential amplifier 70 having inverting and noninverting inputs connected to terminals 13 and 15, respectively. Amplifier 70 is connected to measure the open circuit potential voltage (VBAT) of battery 12 between terminals 13 and 15 and is one example of a dynamic response sensor used to sense the time varying response of the battery 12 to the applied time varying current. The output of amplifier 70 is provided to analog-todigital converter 54 such that the voltage across terminals 13 and 15 can be measured by microprocessor system 24. The output of differential amplifier 52 is converted to a digital format and is provided to microprocessor system 24. Microprocessor system 24 operates at a frequency determined by system clock 58 and in accordance with programmable instructions stored in memory 20. Microprocessor system 24 determines the conductance of battery 12 by applying a current pulse I using forcing function 50. This measurement provides a dynamic parameter related to the battery. Of course, any such dynamic parameter can be measured including resistance, admittance, impedance or their combination along with conductance. Further, any type of time varying signal can be used to obtain the dynamic parameter. The signal can be generated using an active forcing function or using a forcing function which provides a switchable load, for example, coupled to the battery 12. The processing circuitry determines the change in battery voltage due to the current pulse I using amplifier 52 and analog-to-digital converter 54. The value of current I generated by forcing function 50 is known and is stored in memory 20. In one embodiment, current I is obtained by applying a load to battery 12. Microprocessor system 24 calculates the conductance of battery 12 using the following equation: $$G_{BAT} = \frac{\Delta I}{\Delta V}$$ Equation 1 5 where ΔI is the change in current flowing through battery 12 due to forcing function 50 and ΔV is the change in battery voltage due to applied current ΔI . Based upon the battery conductance G_{BAT} and the battery voltage, the battery tester 10 determines the condition of battery 12. Battery tester 10 is programmed with information which can be used with the determined battery conductance and voltage as taught in the above listed patents to Dr. Champlin and Midtronics, Inc. The tester can compare the measured CCA (Cold Cranking 15 Amp) with the rated CCA for that particular battery. Additional information relating to the conditions of the battery test (such as battery temperature, time, date, etc.) can be received by microprocessor system **24** from input device **68**. Further, as mentioned above, in some embodiments, probe light **30** 20 can be turned on and off from input **68**. FIG. 4 shows a perspective view of a battery tester Kelvin clamp 100 to which probe light 30 is coupled in accordance with another embodiment. Kelvin clamp 100 helps couple a Kelvin connection (such as 26) of cable 14 (not shown in FIG. 25 4) to a battery terminal (such as 13 (not shown in FIG. 4)). As can be seen in FIG. 4, clamp 100 includes a Plier-Type clip 108 having arms 102 and 104 connected together by pivot 105 and a terminal gripping portion 106 that can be opened or closed with the help of arms 102 and 104. As in the case of the 30 above-described embodiments, probe light 30 helps provide the necessary illumination to ensure that proper selection of the battery terminal(s) takes place and proper connection to the selected battery terminals is made by Kelvin clamp 100. For simplification, individual conductors of Kelvin connec- 35 tion 26 are not shown in FIG. 4. In the embodiment shown in FIG. 4, the coupling of probe light 30, to Kelvin clamp 100, and the powering and operation of probe light 30 is carried out in a manner similar to that described in connection with FIG. FIG. 5 is another perspective view of a battery tester Kelvin clamp 100 with the probe light 30 in a different position than that shown in FIG. 4. Since the components of the clamps shown in FIG. 4 and FIG. 5 are substantially similar, the same reference numerals are used in both figures. As can be seen in 45 FIG. 5, probe light 30 is positioned proximate pivot 105 of clamp 100 with bulb 32 positioned such that it automatically points in a same direction as terminal gripping portion 106 of clamp 100. As indicated above, a probe light (such as **30**) can be 50 attached to a battery tester cable and, in general, to a battery maintenance tool cable. The description below relates to embodiments in which a probe light (such as **30**) receives it power through conductors within a battery maintenance tool cable. FIG. 6 is a simplified block diagram of a battery maintenance tool 150, which includes a
probe light 30 that receives power via conductors in the battery maintenance tool cable. Battery maintenance tool 150 includes, as its primary components, a housing 152, an electronic circuit 154 (which can 60 include battery charging circuitry and/or battery testing circuitry, etc.), cable 14, probe light 30 and a probe light power supply 156. As can be seen in FIG. 6, cable 14, which is substantially external to battery maintenance tool housing 152, includes a 65 plurality of conductors 26A, 26B, 28A, 28B, 158 and 160. Conductors 158 and 160 are optional. At least some conduc- 10 tors of the plurality of conductors (26A, 26B, 28A, 28B, 158 and 160) are electrically coupled to electronic circuitry 154 within housing 152. Further, probe light 30 electrically couples to at least two of the plurality of conductors in cable 14. For simplification, the electrical coupling of at least two of the plurality of conductors (26A, 26B, 28A, 28B, 158 and 160) to probe light 30 is shown by dashed lines 44 and 46. As noted above, probe light 30, which is separate from battery maintenance tool housing 152, receives power via the at least two of the plurality of conductors (26A, 26B, 28A, 28B, 158 and 160) to which it is electrically coupled. As in the case of the earlier-described embodiment shown in FIG. 1, cable 14 of FIG. 6 includes a four-point Kelvin connection formed by connections 26 and 28. First Kelvin connection 26 includes first conductor 26A and second conductor 26B that couple to electronic circuit 154. First conductor 28A and second conductor 28B, included in second Kelvin connection 28, also couple to electronic circuit 154. Additionally, in some embodiments, at least some of Kelvin conductors 26A, 26B, 26C and 26D are electrically coupled to probe light 30 and electrically coupled to probe light power supply circuitry 156. In such embodiments, Kelvin connections 26, 28 serve a dual purpose of electrically coupling electronic circuitry 154 to battery 12 and operating as power supply conductors for probe light 30. As indicated above, in some embodiments, one or more additional conductors such as 158 and 160 are included in cable 14. Here, one or both of conductors 158 and 160 can be used along with, or instead of, at least one of Kelvin conductors 26A, 26B, 26C and 26D to supply power to probe light 30 from probe light power supply 156. In general, the embodiments described in connection with FIG. 6 eliminate any need for batteries within probe light housing 34 to power light bulb(s) or lamp(s) 32. FIG. 7 shows a specific embodiment of a probe light 30 that receives its power from conductors within cable 14. In FIG. 7, a current limited power supply 156 is connected to conductors of Kelvin Connections such as 26 and 28, and a probe light 30 is placed across those conductors proximate to ends of the Kelvin connections that connect to terminals of battery 12. Probe light 30 may include a light-emitting diode (LED) 162 and a reverse protection diode 164 for the LED 162. Instead of an LED (such as 162), an incandescent lamp can be used in some embodiments. In embodiments that use an incandescent lamp, no protection diode such as 164 is necessary. In general, any suitable lamp can be used for probe light 30. In the embodiment shown in FIG. 7, when probe light power supply 156 is ON, a lamp such as 162 is always ON until Kelvin probes 26 and/or 28 contact the battery posts. However, when there is proper contact between the Kelvin connections 26 and 28 and the battery terminals, the light is not needed. Thus, this feature provides visual feedback that a "good" connection has been made. FIG. 8 shows another embodiment that illustrates how power can be supplied to probe light 30 via conductors of a Kelvin connection. In this embodiment, an alternating current (AC) power source 156 is used to supply power to lamp 32 of probe light 30. In the circuit of FIG. 8, capacitors 166 and 168 are employed to block the flow of direct current (DC). When probe light power supply 156 is ON, and conductors 26A and 26B held electrically separate (or isolated) from each other when Kelvin clamp 100 is in an open position or when any other suitable conductor separation mechanism 170 (for example, two insulated conductors in Kelvin probe 26) is used, lamp 32 remains ON. However, when conductors 26A and 26B are electrically coupled to the battery terminal as shown in FIG. 8, lamp 32 turns OFF due to the absence of a voltage across the lamp. In the embodiment shown in FIG. 8, it is also possible for microprocessor system 24 to monitor, or periodically measure, AC current I₁ by measuring a voltage across resistor 172 and, based on the value of measured current, determine whether to turn probe light power supply 156 ON/OFF FIG. 9 is a block diagram of an embodiment that utilizes multiple LEDs/lamps (174, 176) of different colors. For example, a white light can be used for illumination before a proper connection is made between the Kelvin connection(s) and the battery terminal(s). When a proper connection is made between the Kelvin connection(s) and the battery post(s), the white light can be turned OFF and a green light 10 turned ON. In one example embodiment, microprocessor system 24 can detect whether the Kelvin connections are properly connected to the battery terminals and accordingly turn ON/OFF the appropriate lamp. Although the present embodiments have been described 15 with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the disclosure. What is claimed is: - 1. A battery maintenance tool comprising: - a maintenance tool housing; electronic circuitry within the maintenance tool housing; - a cable, substantially external to the maintenance tool housing, comprising a plurality of conductors, wherein 25 at least some conductors of the plurality conductors are configured to electrically couple to the electronic circuitry within the maintenance tool housing; - at least one probe light, separate from, and independent of, configured to electrically couple to at least two of the plurality of conductors in the cable, - wherein the at least one probe light is configured to receive power via the at least two of the plurality of conductors to which it is electrically coupled. - 2. The battery maintenance tool of claim 1 wherein the cable comprises: - a first Kelvin connection, which includes a first set of two conductors of the plurality conductors in the cable, conbattery; and - a second Kelvin connection, which includes a second set of two conductors of the plurality of conductors in the cable, configured to electrically couple to a second terminal of the battery. - 3. The battery maintenance tool of claim 2 wherein the at least two conductors of the plurality of conductors to which the probe light is electrically coupled are separate from, and additional to, the first Kelvin connection and the second Kelvin connection. - 4. The battery maintenance tool of claim 2 wherein at least one of the at least two conductors of the plurality of conductors to which the probe light is electrically coupled is a conductor included in one of the first Kelvin connection and the second Kelvin connection. - 5. The battery maintenance tool of claim 2 wherein the at least two conductors of the plurality of conductors to which the probe light is electrically coupled are conductors included in at least one of the first Kelvin connection and the second Kelvin connection. - 6. The battery maintenance tool of claim 2 wherein the at least two conductors of the plurality of conductors to which the probe light is electrically coupled are one of the first set of two conductors included in the first Kelvin connection and the second set of two conductors included in the second Kelvin connection and wherein the at least one probe light turns off 12 when proper contact is made between the respective one of the first Kelvin connection and the first battery terminal and the second Kelvin connection and the second battery terminal to which the probe light is connected. - 7. The battery maintenance tool of claim 2 wherein the at least one probe light turns off when proper contact is made between at least one of the first Kelvin connection and the first battery terminal and the second Kelvin connection and the second battery terminal. - 8. The battery maintenance tool of claim 2 wherein the at least one probe light changes color when proper contact is made between at least one of one of the first Kelvin connection and the first battery terminal and the second Kelvin connection and the second battery terminal. - 9. The battery maintenance tool of claim 1 wherein the at least one probe light comprises a light-emitting diode. - 10. The battery maintenance tool of claim 1 wherein the at least one probe light comprises an incandescent lamp. - 11. The battery maintenance tool of claim 1 wherein the 20 electronic circuitry comprises battery testing circuitry. - 12. The battery maintenance tool of claim 1 wherein the electronic circuitry comprises battery charging circuitry. - 13. A method comprising: - coupling at least one probe light to at least two of a plurality of conductors of a battery maintenance tool cable; and powering the probe light through the at least two of the plurality of conductors of the battery maintenance tool cable. - 14. The method of claim 13 wherein the at least two of the the maintenance tool housing, the at least one probe light 30 plurality of conductors of the battery maintenance tool cable are part of at least one of a first Kelvin connection and a second Kelvin connection of the battery maintenance tool cable. - 15. The method of claim 13 wherein the at least two of the 35 plurality of conductors of the battery maintenance tool cable are separate from, and additional to, a first Kelvin connection and a second Kelvin connection of the
battery maintenance - 16. The method of claim 14 and further comprising turning figured to electrically couple to a first terminal of a 40 off the al least one probe light when proper contact is made between one of the first Kelvin connection and a first battery terminal and the second Kelvin connection and a second battery terminal. - 17. The method of claim 14 and further comprising turning off the al least one probe light when proper contact is made between the first Kelvin connection and a first battery terminal and the second Kelvin connection and a second battery terminal. - 18. The method of claim 14 and further comprising changing a color of the al least one probe light when proper contact is made between one of the first Kelvin connection and a first battery terminal and the second Kelvin connection and a second battery terminal. - 19. The method of claim 14 and further comprising chang-55 ing a color of the al least one probe light when proper contact is made between the first Kelvin connection and a first battery terminal and the second Kelvin connection and a second battery terminal. - 20. The method of claim 13 wherein coupling at least one probe light to at least two of a plurality of conductors of a battery maintenance tool cable comprises coupling one of a light-emitting diode and an incandescent lamp to the at least two of the plurality of conductors of the battery maintenance tool cable.