权利要求书 2 页 说明书 10 页

[54] 发明名称
集合水溶性纤维素醚

[57] 摘要
本发明涉及一种水溶性集合纤维素醚，其在 1 重量％的浓度下测定的 DP 粘度为 250～20,000mPa’s，并且含有未取代或取代的 C8～C24烃基的疏水取代基的分子取代度 MS 为 0.0001～0.005。该纤维素醚在低含量下具有良好的增稠效果和有利的应用性能，并且可用于含水装饰性油漆组合物、含水纸涂料组合物、含水有机填料组合物、含水水泥浆、含水洗涤剂组合物或含水个人护理制剂。
1. 一种混合水溶性纤维素醚，其特征在于在 20°C 下在 1 重量%的浓度下测量的 DP 粘度为 250 mPa · s-20,000 mPa · s，并且含有未取代或取代的 C₈-C₂₄ 烷基的疏水取代基的 MS 为 0.0001-0.005。

2. 根据权利要求 1 的纤维素醚，其特征在于 DP 粘度为 1,000 mPa · s-15,000 mPa · s 并且 MS 为 0.0003-0.0028。

3. 根据权利要求 1 或 2 的纤维素醚，其特征在于疏水取代基具有下式：

 \[
 RCHCH₂(O)_{x}(A)_{n}(CH₂CHCH₂)_{m-} \quad \text{(I),}
 \]

 其中 A 是具有 2-3 个碳原子的亚烷氧基，x、z 和 m 为数字 0 或 1，n 为 0-7 的数，条件是当 x 和 z 均为 0 时，n 和 m 均为 0，并且 R 表示 C₆-C₂₂ 烷基。

4. 根据权利要求 3 的纤维素醚，其特征在于当 z 为 1 时，x 为 0 且 m 为 1。

5. 根据权利要求 1-4 中任何一项的纤维素醚，其特征在于含有选自下列基团的取代基：羟乙基、羟丙基、甲基、乙基、羧甲基和含铵的取代基，以及它们的混合物。

6. 根据权利要求 1-5 中任何一项的纤维素醚，其特征在于是非离子纤维素醚。

7. 根据权利要求 1-6 中任何一项的纤维素醚，其特征在于 MS 羟乙基为 0.8-4.5。

8. 根据权利要求 1-7 中任何一项的纤维素醚，其特征在于浊点温度为 50°C-90°C。

9. 根据权利要求 7 或 8 的纤维素醚，其特征在于含有甲基取代基或乙基取代基或其混合物。

10. 根据权利要求 1-5、7 和 8 中任何一项的纤维素醚，其特征在于 DS 羧甲基为 0.3-1.4。

11. 权利要求 1-7 中任何一项定义的纤维素醚在含水装饰性油漆组合
物、含水纸涂料组合物、含水有机填料组合物、含水水泥浆、含水洗涤剂组合物或含水个人护理制剂中作为增稠剂和流变剂的用途。

12. 根据权利要求11的用途，其中油漆组合物含有醇酸乳液或胶乳。
締合水溶性纤维素醚

本发明涉及一种具有高平均聚合度(DP)且具有低的含有 C₈-C₂₄ 烃基的疏水取代基取代度的締合水溶性纤维素醚。在低温下，该纤维素醚具有良好的增稠效果和有利的应用性能，尤其在含水分散体如含有水不溶性基料的含水组合物中。

现在，水溶性纤维素醚如低 DP 纤维素醚通常在含水分散体中用作增稠剂和流变剂。该分散体的实例是装饰性油漆组合物、纸涂料组合物、接缝填料和水泥组合物。然而，必须加入高用量的低 DP 纤维素醚以产生良好的流变性能。由于纤维素醚是水溶性的，因此通常希望例如在装饰性油漆组合物中使用尽可能少的纤维素醚以尽量减小干燥分散体的水敏感性。

可以通过使用高 DP 纤维素醚而减少需要的纤维素醚用量。然而，即使高 DP 纤维素醚具有更好的增稠效果和保水性，但其它流变性能例如覆盖力和飞溅也不令人满意。减少飞溅的一种方法是使用大量的低 DP 纤维素醚。

通过使用締合纤维素醚，即具有包含约 C₁₀ 以上的大烃基的取代基并且具有很低 DP 的纤维素醚，基本上可以减少飞溅。依赖于其高 ICI 粘度和良好的均匀度，低 DP 的締合纤维素醚还有利于影响覆盖力，但是这需要大量加入。

在接缝填料中，可以少量使用高 DP 纤维素醚作为增稠剂和保水剂。不利的是，当将接缝填料施加在垂直表面上时，保水剂还产生更严重的下垂。通常通过加入不同的粘土以抵消该效果。

现已发现，当少量加入时，具有高 DP 且具有低的含有 C₈-C₂₄ 烃基的疏水取代基取代度的締合水溶性纤维素醚使含水分散体具有了独特的性能，例如高保水性和增稠效果、低飞溅和下垂和/或良好的覆盖力和均匀化效果。

本发明締合水溶性纤维素醚的 DP 粘度为 250-20,000 mPa · s。优选
1,000-15,000 mPa·s，优选2,000-15,000 mPa·s，所述DP粘度以粘度表示并且在20℃下以1重量%的浓度测量，并且其含有未取代或取代的C₈-C₂₄烃基，优选C₁₀-C₂₀烃基的疏水取代基的平均分子取代度(MS)为
0.0001-0.005，优选0.0002-0.0035，最优选0.0003-0.0028(MS疏水取代基)。未取代的烃基可以是脂族烃基或芳烃基团，例如壬基苯基或辛基苯基。取代的烃基可以含有羟基或氯代烃基。

可以使用常规流变仪，例如使用40mm的1°锥体和平板测量系统的Rheolica Controll Stress流变仪在0.5Pa的剪切应力和20℃的温度下测量DP粘度。本文中使用的DP粘度通过在20℃下将聚合物溶于由20重量%二甘醇丁基醚和80重量%水组成的溶剂体系中而进行测量。然后将得到的粘度除以系数2.7，以补偿在含有20重量%聚(乙二醇)丁基醚的水溶液中得到的比纯水中得到的粘度更高的粘度。疏水基团的分子取代度MS通过由Landoll，L.M.在J Polym. Sci.，Part A：Polymer Chem.，1982，20，433中描述的方法测量。

本发明的缔合水溶性纤维素醚优选具有至少800，优选至少850，最优选至少900，通常至多8,000，优选至多7,500，最优选至多7,000的平均聚合度(DP)。正如现有技术中已知的，可以由纤维素醚的特性粘度得出DP。

根据本发明，本发明的纤维素醚是非离子性或离子性的，并且适当地具有下式的疏水取代基：

\[
\text{RCH}_{2}\text{(O)}\text{X}_{2}\text{(A)}_{n}\text{(CH}_{2}\text{CHCH}_{2})_{m}\text{OH}
\]

其中A是具有2-3个碳原子的亚烷氧基，x，z和m为数字0或1，n为0-7的数，条件是当x和z均为0时，n和m均为0，并且R表示C₆-C₂₂烃基，优选C₈-C₁₈烃基。当x为1时，z，n和m适当地为0，并且当z为1时，x适当地为0且m为1。基团RCH₂CH₂和RCH(OH)CH₂表示上述含有8-24个碳原子的未取代烃基和取代烃基。

烃基RCH₂CH₂可以是直链脂族烃基，例如正辛基，正壬基，正癸基，正十二烷基，正十四烷基，正十六烷基，正十八烷基，正二十烷基和正二
十二烷基，其相应的不饱和脂族四基，以及含有 8-24 个碳原子和至少一个甲基或乙基支链的支化脂族四基。取代烃基 RCH(OH)CH₂ 可以衍生成于通过将具有 10-24 个碳原子的 α-不饱和脂族化合物环氧化而得到的具有 10-24 个碳原子的 α-环氧化物。

合适的疏水取代基的实例是：

\[RCH₂CH₂O(A)ₙCH₂CHCH₂⁻, \]
\[\quad \text{OH} \]

\[RCH₂CH₂OCH₂CHCH₂⁻, \]
\[\quad \text{OH} \]

\[RCH₂CH₂O(C₂H₄O)₁₂₆CH₂CHCH₂⁻ \]
\[\quad \text{OH} \]

其中 A、R 和 n 具有上式 I 的说明中提到的含义。

除了疏水取代基以外，本发明的纤维素醚还含有一个或多个选自如下的取代基：烃乙基、烃丙基、甲基、乙基、羧甲基，和具有伯胺、仲胺、叔胺或季铵基团的阳离子取代基。如果该纤维素醚是非离子纤维素醚，则该纤维素醚的 MS 烃乙基为 0.2-4.5，适当地，非离子纤维素醚的浊点温度为 50-90 ℃，优选 55-80 ℃。除了烃乙基和疏水取代基以外，该非离子纤维素醚通常含有甲基和/或乙基取代基。合适的浊点温度可以对流变性能产生积极影响并且将有助于纤维素醚的清洁和干燥。

本发明的纤维素醚还可以是阴离子的，并且羧甲基的平均取代度(DS 羧甲基) 为 0.3-1.4，优选 0.6-1.0。通过使用 F Cheng 等人在 J. Applied Pol. Sci., 61 卷, 1831-1838(1996) 中说明的 300mHz Bruker NMR 分光计测定 DS 羧甲基。除了羧甲基取代基以外，阴离子纤维素醚还可以由烃乙基、烃丙基、甲基和/或乙基取代。阳离子纤维素醚通常含有包含铵离子的取代基，该铵离子可以是伯胺、仲胺、叔胺或季铵。MS 铵通常为 0.01-1.0。通常优选季铵取代基。通过 Kjeldahl 分析测定阳离子纤维素醚中 N⁺ 的量。优选阳
离子纤维素醚含有羟乙基取代基，还可以存在选自羟丙基、甲基和乙基的取代基。

本发明的纤维素醚可以通过本身已知的反应步骤而制备。因此，可以在合适的反应介质中在碱性条件下进一步使 DP 粘度为约 250-20,000 mPa·s 的水溶性纤维素醚与下式的反应物反应：

\[
RCH\textsubscript{2}(O)\textsubscript{2}(A)(\textsubscript{2}A)\textsubscript{n}(CH\textsubscript{2}CH\textsubscript{2})\textsubscript{m}O \\
\textbf{I} \\
\textsubscript{(O)}\textsubscript{x} \\
\textsubscript{H}
\]

其中 RCH\textsubscript{2}、A、z、n 和 m 具有上述含义。反应后除去反应介质，

\[
\textbf{I} \\
\textsubscript{(O)}\textsubscript{x} \\
\textsubscript{H}
\]

并且可以用水和/或有机溶剂如醇洗涤得到的纤维素醚以除去在反应期间形成的副产物。

由于它们在低用量下具有独特的流变性能和高增稠能力，因此本发明的纤维素醚可以有利地用于某些应用领域的许多制剂中。

这些制剂可以呈溶液、乳液、分散体或悬浮液的形式。典型的应用领域是含水装饰性油漆组合物如乳胶漆；含水有机填料组合物；含水个人护理制剂如香波、含水调节剂和化妆品；含水洗涤剂组合物如硬表面清洁剂和洗衣组合物；含水水泥浆以及含水纸涂料组合物如润滑涂料。

在含水纸涂料组合物中，纤维素醚可以是非离子或阴离子的，或者是两者的组合。合适的组合物例如是含有羧基和碳酸钙以及作为增稠剂的本发明纤维素醚的含水润滑涂料。

阳离子纤维素醚可以有利地用于含水个人护理产品，因为这些醚具有优良的增稠和抗静电性能，以及附着在皮肤和头发上的能力。

这些纤维素醚还很适合用于水性的无光、半无光、半光和光泽油漆组合物，不仅作为增稠剂而且作为稳定剂。纤维素醚的加入量在很大程度上取决于油漆组合物的成分以及纤维素醚的取代度和粘度，但加入量通常为油漆组合物的 0.1-1.2 重量%。非离子和阴离子纤维素醚可以很好地用于含
有乳液基料如醇酸树脂和胶乳基料的油漆制剂中，这些胶乳基料例如是聚
乙酸乙烯酯，乙酸乙烯酯和丙烯酸酯的共聚物，乙酸乙烯酯和乙烯的共聚
物，乙酸乙烯酯、乙烯和氯乙烯的共聚物以及苯乙烯和丙烯酸酯的共聚物。
通常用阴离子表面活性剂稳定胶乳基料。

通过下列实施例进一步说明本发明。

实施例 1

在 70℃下在四氯化锡存在下使 1 摩尔式 R₁O(C₂H₄O)₂H 的环氧乙烷加
合物与 1 摩尔氯醇反应，其中 R₁ 是十二烷基和十四烷基的混合物。反应
后，在 80℃下将 30 重量％的氢氧化钠水溶液加入反应混合物中，得到下
式的缩水甘油醚并将其从水相中分离：

\[
R₁O(C₂H₄O)₂CH₂CH₂CH₂O
\]

其中 R₁ 具有上述含义。

以 100 份的用量将预计得到 DP 粘度为约 10,000mPa·s 的纤维素醚的
溶解木浆粉末加入反应器中。排出反应器中的空气并且用氮气、70 重量份
的 50 重量％氢氧化钠水溶液、氯乙烷(150 份)、环氧乙烷(84 份)和缩水甘
油醚(2.2 份)代替。

将反应器温度升高到 55℃并且将反应器保持在该温度下 50 分钟，随
后将反应器温度升高到 105℃并且保持在该温度下 50 分钟。用沸水洗涤得
到的纤维素醚并且用乙酸中和。该纤维素醚的 MS 羟乙基为 2.1，DS 乙基
为 0.9，MS 疏水取代基为 0.0025，且浊点温度为 59℃。目测确定浊点温度
Tₑₚ，在该温度下聚合物溶液(在 1 重量％浓度下)发生相分离。将该溶液置
于在分光光度计比色皿中，将比色皿浸入恒温水浴中。以 2℃的步幅升高
温度。在每次温度变化以后，在观察前使样品平衡 20 分钟。Tₑₚ 定义为 1
重量％的纤维素醚溶液首次变混浊的温度。

乙基和羟乙基的取代度通过在乙酸中使用氢溴酸将乙氧基和羟乙氧
基断裂而测量，该乙基和羟乙基形成了溴乙烷和 1,2-二溴乙烷。然后通过
气相色谱法测定这些溴化物的量。还参见 Hodges，K. L.，Analytical
Chemistry，51 卷(1979)，第 2172 页和 Stead Hindley，J Chromatog.(1969)，
第 470-475 页。

实施例 2

重复实施例 1，但使用预计得到 DP 粘度为约 6,000 mPa·s 的纤维素酶的溶解木浆。该纤维素酶的 MS 羟乙基为 2.1，DS 乙基为 0.8，MS 疏水取代基为 0.0026，且浊点温度为 61℃。

实施例 3

重复实施例 2，但缩水甘油醚的用量为 2.0 重量份。该纤维素酶的 MS 羟乙基为 2.1，DS 乙基为 0.8，MS 疏水取代基为 0.0018，且浊点温度为 64℃。

实施例 4

重复实施例 1，但使用预计得到 DP 粘度为约 15,000 mPa·s 的纤维素酶的溶解木浆，并且将缩水甘油醚中的烷基用十六烷基和十八烷基的化合物代替。以 0.3 重量份加入该缩水甘油醚。该纤维素酶的 MS 羟乙基为 2.1，DS 乙基为 0.9，MS 疏水取代基为 0.0004，且浊点温度为 65℃。

实施例 5

重复实施例 4，但缩水甘油醚的用量为 0.6 重量份。该纤维素酶的 MS 羟乙基为 2.1，DS 乙基为 0.8，MS 疏水取代基为 0.0007，且浊点温度为 65℃。

实施例 6

重复实施例 4，但缩水甘油醚的用量为 1.2 重量份。该纤维素酶的 MS 羟乙基为 2.1，DS 乙基为 0.8，MS 疏水取代基为 0.0012，且浊点温度为 65℃。

实施例 7

在 20℃下在氨气氛下采用搅拌将在 20g 水中的 81g 氢氧化钠溶液加入 150g 棉绒纤维素和 40g 水的混合物中，然后加入 103.9g 氯乙酸在 20g 水、60g 正丁基缩水甘油醚和 16g 下式的缩水甘油醚中的溶液中

\[C_{14}H_{29}O(CH_2CH_2O)_2CHCH_2O \]

。
将得到的混合物加热到 85℃并保持在该温度下 26 小时，然后冷却并用乙酸中和。洗涤所得的纤维素酯粗产物三次，每次用 65 重量%的乙醇水溶液、80 重量%的乙醇水溶液和含有 80 重量%乙醇和 20 重量%丙酮的溶液，然后干燥。该纤维素酯的 DS 羧甲基为 0.9、MS 正丁基缩水甘油基为 0.2，并且 MS 疏水取代基为 0.004。以类似于测量羧甲基的方式通过使用 NMR 分光计测定正丁基缩水甘油醚基团的取代度。

实施例 8

测试了在实施例 1-7 中制备的纤维素酯以及某些用于对比的纤维素酯在水中的粘度和 DP 粘度。这些纤维素酯的浓度为 1 重量%。用于对比的纤维素酯显示在表 1 中。在 0.5Pa 和 20℃下在配有 40mm 的 1°锥体和平板测量系统的 Rheolica Controll Stress 流变仪中测量粘度。得到的粘度显示在表 2 中。

表 1 用于对比测试的纤维素酯

<table>
<thead>
<tr>
<th>纤维素酯</th>
<th>MS 羧乙基</th>
<th>DS 乙基</th>
<th>MS 疏水取代基</th>
<th>被基</th>
<th>絮凝温度， °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.2</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>68</td>
</tr>
<tr>
<td>B</td>
<td>2.5</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>69</td>
</tr>
<tr>
<td>C</td>
<td>2.2</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>68</td>
</tr>
<tr>
<td>D</td>
<td>2.0</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>65</td>
</tr>
<tr>
<td>E</td>
<td>4.0</td>
<td>-</td>
<td>0.013</td>
<td>C_{16}C_{18}</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>2.1</td>
<td>0.8</td>
<td>0.010</td>
<td>C_{12}C_{14}</td>
<td>47</td>
</tr>
</tbody>
</table>

表 2 实施例 1-6 中的纤维素酯和对比纤维素酯 A-F 的粘度和 DP 粘度

<table>
<thead>
<tr>
<th>纤维素酯</th>
<th>MS 疏水取代基</th>
<th>被基</th>
<th>在水中的粘度 mPa·s</th>
<th>DP 粘度 mPa·s</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
<td>17,600</td>
<td>14,900</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>-</td>
<td>11,200</td>
<td>9,700</td>
</tr>
<tr>
<td>C</td>
<td>-</td>
<td>-</td>
<td>1,120</td>
<td>1,050</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>-</td>
<td>140</td>
<td>130</td>
</tr>
<tr>
<td>E</td>
<td>0.013</td>
<td>C_{16-18}</td>
<td>19,200</td>
<td>100</td>
</tr>
<tr>
<td>F</td>
<td>0.010</td>
<td>C_{12-14}</td>
<td>99,000</td>
<td>1,450</td>
</tr>
<tr>
<td>实施例 1</td>
<td>0.0025</td>
<td>C_{12-14}</td>
<td>46,200</td>
<td>8,500</td>
</tr>
<tr>
<td>实施例 2</td>
<td>0.0026</td>
<td>C_{12-14}</td>
<td>10,300</td>
<td>4,770</td>
</tr>
<tr>
<td>实施例 3</td>
<td>0.0018</td>
<td>C_{12-14}</td>
<td>9,800</td>
<td>5,700</td>
</tr>
<tr>
<td>实施例 4</td>
<td>0.0004</td>
<td>C_{16-18}</td>
<td>13,900</td>
<td>10,400</td>
</tr>
<tr>
<td>实例</td>
<td>0.0007</td>
<td>C_{16-18}</td>
<td>17,000</td>
<td>11,700</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>实例</td>
<td>0.0012</td>
<td>C_{16-18}</td>
<td>45,500</td>
<td>13,864</td>
</tr>
<tr>
<td>实例</td>
<td>0.004</td>
<td>C_{14}</td>
<td>4,330</td>
<td>1,010</td>
</tr>
</tbody>
</table>

结果表明即使是低的疏水改性基团的 MS，例如 0.0004，也对粘度产生显著的贡献。

实施例 9 和 10

在这些实施例中，在下表 3 显示的两种油漆制剂中测试了作为增稠剂的不同纤维素醚。调节纤维素醚的用量，调节的方式使该油漆制剂获得 105 KU 的 Stormer 粘度。

<table>
<thead>
<tr>
<th>组分</th>
<th>制剂 1 重量%</th>
<th>制剂 2 重量%</th>
</tr>
</thead>
<tbody>
<tr>
<td>胶乳</td>
<td>14.0</td>
<td>-</td>
</tr>
<tr>
<td>苯乙烯-丙烯酸酯 (Acronal 290D)</td>
<td>-</td>
<td>6.0</td>
</tr>
<tr>
<td>乙酸乙烯酯/乙烯/氯乙烯 (Mowilith DM 122)</td>
<td>-</td>
<td>6.0</td>
</tr>
<tr>
<td>水</td>
<td>38.7-x</td>
<td>45.9-x</td>
</tr>
<tr>
<td>测试的纤维素醚</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>消泡剂</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>杀菌剂</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>分散剂</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>丙二醇</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>二氧化钛</td>
<td>6.0</td>
<td>3.0</td>
</tr>
<tr>
<td>碳酸钙</td>
<td>37.5</td>
<td>34.0</td>
</tr>
<tr>
<td>滑石</td>
<td>1.3</td>
<td>10.0</td>
</tr>
</tbody>
</table>

测试这些油漆制剂的 ICI 粘度、均匀度和飞溅。按照 1-10 的等级通过试验板目测均匀度和飞溅的效果。在均匀度等级中，1 表示很差的均匀度，10 表示优异的均匀度，而在飞溅等级中，1 表示高度飞溅，10 表示完全没有飞溅。得到以下结果。
表 4 基于苯乙烯/丙烯酸酯胶乳的制剂的 ICI 粘度、均匀度和飞溅

<table>
<thead>
<tr>
<th>纤维素醚</th>
<th>用量，重量%</th>
<th>ICI 粘度 Pas</th>
<th>均匀度</th>
<th>飞溅</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.50</td>
<td>1.2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>0.55</td>
<td>1.2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>0.70</td>
<td>1.0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>0.85</td>
<td>1.6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>0.51</td>
<td>1.0</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>F</td>
<td>0.44</td>
<td>1.1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>实施例 1</td>
<td>0.30</td>
<td>1.2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>实施例 2</td>
<td>0.35</td>
<td>1.1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>实施例 3</td>
<td>0.45</td>
<td>1.3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>实施例 4</td>
<td>0.43</td>
<td>1.1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>实施例 5</td>
<td>0.33</td>
<td>1.1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>实施例 6</td>
<td>0.24</td>
<td>0.9</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>实施例 7</td>
<td>0.40</td>
<td>1.2</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

表 5 基于乙酸乙烯酯/乙烯/氯乙烯胶乳的漆制剂的 ICI 粘度、均匀度和飞溅

<table>
<thead>
<tr>
<th>纤维素醚</th>
<th>用量，重量%</th>
<th>ICI 粘度 Pas</th>
<th>均匀度</th>
<th>飞溅</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.43</td>
<td>1.0</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>0.50</td>
<td>1.1</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>0.65</td>
<td>1.5</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>0.85</td>
<td>1.8</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>0.52</td>
<td>1.2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>F</td>
<td>0.65</td>
<td>1.6</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>实施例 1</td>
<td>0.35</td>
<td>1.4</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>实施例 2</td>
<td>0.36</td>
<td>1.4</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>实施例 3</td>
<td>0.41</td>
<td>1.4</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>实施例 4</td>
<td>0.40</td>
<td>1.4</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>实施例 5</td>
<td>0.35</td>
<td>1.3</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>实施例 6</td>
<td>0.30</td>
<td>1.3</td>
<td>10</td>
<td>6</td>
</tr>
</tbody>
</table>

结果表明，与对比纤维素醚相比，本发明的纤维素醚可以以更低的用量使用和/或具有较少量的疏水取代基，并且仍然具有至少相等且在大多数情况下甚至更好的 ICI 粘度、飞溅和均匀度。

实施例 11

通过混合下列组分而制备高粘性的填料:
组分 重量份
镁和钙的碳酸盐 946.5
白垩水合物 10
根据下表 6 的增稠剂 5
乙酸乙烯酯/乙烯/氯乙烯(Mowilith DM 122) 30
杀菌剂 1
分散剂(聚丙烯酸) 0.5
消泡剂 2
水 350

借助环试验测试填料的流动性，得到以下结果。

表 6 含有不同纤维素醚的填料的流动性能

<table>
<thead>
<tr>
<th>纤维素醚</th>
<th>环试验，mm 流量</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>68.5</td>
</tr>
<tr>
<td>F</td>
<td>65</td>
</tr>
<tr>
<td>实施例 1</td>
<td>37</td>
</tr>
<tr>
<td>实施例 2</td>
<td>49</td>
</tr>
<tr>
<td>实施例 7</td>
<td>45</td>
</tr>
</tbody>
</table>

从这些结果看出，本发明的填料组合物的流量低于含有对比纤维素醚的组合物的流量。