
C. HAMMER. VACUUM JAR CLOSURE: FILED MAY 25. 1921.

Tharles Hammer, By his attorney Wint Reid.

UNITED STATES PATENT OFFICE.

CHARLES HAMMER, OF QUEENS, NEW YORK, ASSIGNOR TO AMERICAN METAL CAP COMPANY, OF BROOKLYN, NEW YORK, A CORPORATION OF NEW YORK.

VACUUM JAR CLOSURE.

Application filed May 25, 1921. Serial No. 472,447.

To all whom it may concern:

Be it known that I, CHARLES HAMMER, a citizen of the United States, and a resident of Queens, in the county of Queens and 5 State of New York, have invented certain new and useful Improvements in Vacuum Jar Closures, of which the following is a specification.

This invention relates to closures for con-10 tainers, such as tumblers or wide-mouthed jars, and is of the character that is forced down on the container by a suitable sealing member, such as a ring chuck, with a compressible sealing ring or gasket located be-15 tween the closure flange and the jar outer wall at the top; and which is secured in such position by the flange of the closure being re-formed to strongly compress the gasket between the flange and the jar wall.

One object of this invention is to provide 20 an improved closure of this character, that is secured in sealing position on the jar by merely pressure vertically downward by a suitable sealing member, such as a ring 25 chuck, that will cause the flange wall to be re-formed and very strongly and securely hold the closure on the jar, by the compres-sion of the gasket between the re-formed flange and the jar wall; and whereby the 30 use of a special sealing member such as one having rotary arms carrying rolls, is obviated and simple downward pressure will in sealed position. produce the sealing.

A further object of the invention is to plied. 35 provide in a closure of this character, a. form of bead or channel in the flange, that will serve to loosely hold or retain the sealing gasket in the flange before sealing by having an open angular form; which angu-40 lar form during the sealing operation maintains its particular angular shape, but is so instead of upwardly as when first applied.

A further object of the invention is to provide in combination with a closure of the character set forth, an extension above the gasket-receiving portion that is provided with an inwardly extending bead, 50 that is adapted to have a frictional engagement with the jar wall on forcing the closure down on the jar, and which will itself inwardly, so that it is convex on the outer have a holding engagement with the jar wall without having its shape changed by the

by reason of a slight reduction of internal diameter over that of the jar wall where

engaged by the bead.

One of the important objects of the present invention is the provision of a metal clo- 60 sure for hermetically sealing a glass container, which closure comprises a top having a depending flange having at its lower edge an inwardly bent channel-forming portion so located and positioned relatively to 65 the flange that it will hold a gasket in place, but which channel-forming portion is, during the reformation of the depending flange, also reformed by the sealing pressure into a different position so that it will efficiently 70 hold and seal the gasket on the jar, and at the same time enable the closure to be hermetically sealed, so that without applying any direct pressure to the gasket holding portion it nevertheless has its position, as 75 it were, changed.

In the accompanying drawing illustrating embodiments of my invention, Figure 1 shows a jar with the closure sealed thereon, being in vertical section at the upper part.

Fig. 2 is a perspective view of the closure,

partly in section.

Fig. 3 is a sectional view enlarged at one side of the closure and jar, showing the application of the cap by suitable means.

Fig. 4 is a similar view with the closure

Fig. 5 shows a modification as first ap-

Fig. 6 shows the latter in sealing posi- 90

As set forth, the closure comprises a top 2, from which depends an annular flange or rim, and which device is made of comparatively thin sheet metal. The flange is shown 95 as having at the lower portion a substanshifted in position that the angular portion tially V-shaped angular gasket-retaining will face downward in the sealed closure, channel, that is formed by a bottom wall 3 shown as flat in section, in annular contour being substantially conical. This wall which 100 is the free bottom portion of the flange, connects with the upper wall 4 of the channel portion, meeting at a comparatively sharp angle as shown. The wall 4 is also substantially conical in annular contour adjacent 105 the angle, but at its upper portion it curves portion; and thereupon extends inward to connect with the top wall 2. In the pre-55 sealing member, but merely engage the jar ferred form, the top 2 is furnished with an 110

arch portion 5 at its outer part, adapted to engage the top rounded edge of the jar wall 6, see Figs. 3 and 4. This arch portion 5 merges into the convex portion 7 of the outer wall 5, to form a slight depression or shoulder at 8 as shown. The purpose of the latter is to receive the thrust of a sealing ring 9, that may be forced downwardly to engage the walls 4 and 7.

purpose of having a frictional binding engagement with the wall of the jar at this place. As shown in Fig. 5 the closure has a flat top portion 14, and the flange at the bottom is the angular portion formed by conical walls 15 and 16, the latter having a convex portion 17 and a shoulder at 18. The arch portion 19 of the top connects with the shoulder portion 18, by a comparatively

The gasket 10 of compressible material such as rubber or composition, is placed inside of the flange and will rest loosely on the lower wall 3 of the angular portion, as indicated in Fig. 3. This gasket may be of

15 any preferred sectional shape.

Upon placing the closure on the jar, as indicated in Fig. 3, and applying pressure vertically downward on the convex portion 7 and shoulder 8, the entire flange portion 20 is re-formed and changes its shape to that indicated in Fig. 4, the wall 3, that extended upward relative to the top plane of the cap. now extending downwardly. But it will be observed that the lower angular wall 3 still 25 maintains approximately the same angle with the adjacent wall 4, so that this channel is not itself re-formed but merely changes its position. The convex wall 7 in the flange, has now become a concave wall 12, extend-30 ing from the upper angular wall 4 of the channel to the arch portion 5, that is now slightly flattened to engage the rounded edge of the jar, as shown in this figure. the angular V-shape channel has been forced 35 inwardly the gasket 10 will be strongly compressed between this channel, and the opposite side wall of the jar and will be somewhat extended upwardly between the concave wall 12 and the jar wall, as shown. By this 40 sealing operation, the walls 4 and 7 are moved inwardly a considerable distance, whereby the angular portion or channel is moved nearer to the jar wall, as will be apparent by comparing Figs. 3 and 4. It will be also seen that the lower angular wall 3 is still spaced from the jar wall and does not engage the same. This will leave a small portion of the gasket exposed, that will facilitate the use of a suitable sharp implement 50 to loosen and remove the closure, that can be forced into the exposed gasket and serve to pry out the flange and to loosen the gasket. A closure of this character has been found, by repeated use, to have a very strong 55 grip on the jar, by reason of the rather long concave portion that is forced inwardly with a compression of the metal walls, as well as the sharp angular portion that serves to re-

tain the gasket in its compressed position.

In Figs. 5 and 6 is shown a modification in which substantially the same arrangement of flange and gasket is provided, but an extension is provided between the arch portion and the shoulder portion, that contains an inwardly extending bead or rib, for the

gagement with the wall of the jar at this place. As shown in Fig. 5 the closure has a flat top portion 14, and the flange at the bottom is the angular portion formed by 70 conical walls 15 and 16, the latter having a convex portion 17 and a shoulder at 18. The arch portion 19 of the top connects with the shoulder portion 18, by a comparatively small inwardly extending bead or rib 20, as 75 When this closure is applied to a jar, the bead will first engage the jar wall by reason of its internal diameter or distance apart at opposite portions, being slightly less than the diameter of the jar wall. The 80 flange below the bead is engaged by the sealing ring or other member and forced downwardly and re-formed to compress the gasket, as shown in Fig. 4, while at the same time the bead 20 will have a strong 85 frictional engagement with the jar wall and assist in retaining the closure in sealed position.

In a patent granted to me July 3, 1917, No. 1,231,881, is set forth a closure in which 90 the gasket is compressed between the flange and the jar wall, with a sealing bead arranged below the gasket for frictional engagement with the jar wall. In another patent of mine 1,335,054, a sealing bead also 95 engages the jar wall frictionally, and above the bead is a gasket that is pressed against the jar wall. But in the present invention the bead shown in Fig. 5 is arranged at the upper part of the flange, while below the 100 bead the gasket is compressed between the flange and the jar wall. Various changes in and modifications of the construction herein set forth may be made without departing from the spirit of this invention or sacri- 105 ficing its advantages.

What I claim is:

1. A metal cap provided with a depending flange having the lower edge thereof turned in to form an annular transverse wall adapted to receive a gasket, said wall having a width at least as great as the thickness of the gasket and having the major portion thereof lying outside of the inner periphery of the gasket before application of the cap to the 115 jar.

2. A metal cap provided with a depending flange having the lower edge thereof turned in to form an annular transverse wall adapted to receive a gasket, said wall having a 120 width at least as great as the thickness of the gasket and having the major portion thereof lying outside of the inner periphery of the gasket before application of the cap to the jar, the construction being such that the 125 sealing pressure on the cap will transform the inturned edge from one angular position relatively to the flange to a different angular position relatively to said flange.

3. A metal cap provided with a depending 130

1,440,986

in to form an annular wall adapted to receive a gasket, said wall having a width at least as great as the thickness of the gasket 5 and having the major portion thereof lying outside of the inner periphery of the gasket before application of the cap to the jar, said flange having an inwardly extending bead above the gasket for frictional engagement

10 with the side of the container.

4. A metal cap provided with a depending flange having the lower edge thereof turned in to form an annular wall adapted to re-ceive a gasket, said wall having a width at 15 least as great as the thickness of the gasket and having the major portion thereof lying outside of the inner periphery of the gasket before application of the cap to the jar, the construction being such that the sealing 20 pressure on the cap will transform the inturned edge from one angular position relatively to the flange to a different angular position relatively to said flange, said flange having an inwardly extending bead or rib 25 above the gasket for frictional engagement with the side of the container.

5. A metal closure for hermetically sealing a glass container comprising a top having a depending flange having an inwardly 30 bent channel forming portion at its lower edge adapted to receive a gasket, the sealing pressure on the closure adapted to transform the position of the channel-forming portion into a different position and the depending 35 flange into a different shape relatively to

each other and the container.

6. A metal closure for hermetically sealing glass container comprising a top having a depending flange having an inwardly bent channel-forming portion at its lower edge adapted to receive a gasket, the sealing pressure on the closure adapted to transform the position of the channel-forming portion into a different position and the depending 45 flange into a different shape relatively to each other and the container, said flange having an annular container engaging bead above the gasket.

7. A metal closure for hermetically seal-50 ing a glass container comprising a top having a depending flange provided at its lower edge with an inwardly and upwardly bent channel-forming portion adapted to receive a gasket and located at a predetermined 55 angle to the flange, the construction being such that on the application of a sealing pressure to the closure, said bent portion will be forced from its normal position to a

downward position.

8. A metal closure for hermetically sealing a glass container comprising a top having a depending flange provided at its lower edge with an inwardly and upwardly bent channel-forming portion adapted to receive one, said depending flange also having above

flange having the lower edge thereof turned angle to the flange, the construction being such that on the application of a sealing pressure to the closure, said bent portion will be forced from its normal position to a downward position but having substantially 70 the same angle relatively to the flange.

9. A metal closure for hermetically sealing a glass container comprising a top having a normally outwardly flared depending flange provided at its lower edge with an 75 inwardly and upwardly bent channel-forming portion adapted to receive a gasket and located at a predetermined angle to the flange, the construction being such that upon the application of sealing pressure to the 80 cap the flange will be forced toward the container and said bent portion will be forced from its normal position into a downward position while retaining however substantially the same angle relatively to the flange. 85

10. A metal closure for hermetically sealing a glass container comprising a top having a normally outwardly flared depending flange provided at its lower edge with an inwardly and upwardly bent channel-form- 90 ing portion adapted to receive a gasket and located at a predetermined angle to the flange, the construction being such that upon the application of sealing pressure to the cap the flange will be forced toward the con- 95 tainer and said bent portion will be forced from its normal position into a downward position while retaining however substantially the same angle relatively to the flange, said flange having a sealing bead or rib 100 above said gasket.

11. A metal closure for hermetically sealing a glass container comprising a top having a convex walled depending flange adapted by sealing pressure to be transformed into 105 a concave walled flange, said flange having at its lower edge a bent channel forming portion adapted to receive a gasket and located at a predetermined angle to the flange, said bent channel-forming portion being 110 adapted to have its angular position relatively to the flange changed during the transformation of the depending flange from a convex walled flange to a concave walled

12. A metal closure for hermetically sealing a glass container comprising a top having a convex walled depending flange adapted by sealing pressure to be transformed into a concave walled flange, said flange hav- 120 ing at its lower edge a bent channel-forming portion adapted to receive a gasket and located at a predetermined angle to the flange, said bent channel forming portion being adapted to have its angular position 125 relatively to the flange changed during the transformation of the depending flange from a convex walled flange to a concave walled 65 a gasket and located at a predetermined the gasket a sealing rib or bead.

115

130

13. A metal closure for hermetically seal-strongly compressed against the container ing a glass container comprising a top having a depending side wall having at its lower edge an inwardly projecting bent portion 5 located at an angle to said side wall and adapted to receive a gasket, the construction being such that on the application of a sealing pressure to the closure said bent portion will be forced from its normal position into

10 a downward position.

14. A metal closure for hermetically sealing a glass container comprising a top having a depending side wall having at its lower edge an inwardly projecting bent portion 15 located at an angle to said side wall and adapted to receive a gasket, the construction being such that on the application of a sealing pressure to the closure said bent portion will be forced from its normal position into 20 a downward position and the side wall into a

different shape.

15. A metal closure for hermetically sealing a glass container comprising a top having a depending side wall having at its lower 25 edge an inwardly projecting bent portion located at an angle to said side wall and adapted to receive a gasket, the construction being such that on the application of a sealing pressure to the closure said bent portion 30 will be forced from its normal position into a downward position, said flange having above the gasket a container engaging seal-

ing bead or rib.

16. A metal closure for hermetically seal-35 ing a glass container comprising a top having a depending side wall having at its lower edge an inwardly projecting bent portion located at an angle to said side wall and adapted to receive a gasket, the construction being 40 such that on the application of a sealing pressure to the closure said bent portion will be forced from its normal position into a downward position and the side wall into a different shape, said flange having above the 45 gasket a container engaging sealing bead or

17. A sealed package comprising a glass container and a closure comprising a top having a depending flange provided at its 50 lower edge with an inwardly extending downwardly bent portion terminating in a free edge adjacent to the container and forming with the flange a channel receiving portion and a gasket located therein and 55 strongly compressed against the container wall.

18. A sealed package comprising a glass container and a closure comprising a top having a depending flange reformed from a 60 concaved wall flange and provided at its lower edge with an inwardly extending downwardly bent portion terminating in a forming with the flange a channel receiving of the closure top wall, the flange below the portion, and a gasket located therein and arch portion being extended downwardly 130

wall.

19. A sealed package comprising a glass container and a closure comprising a top having a depending flange reformed from a 70 concaved wall flange and provided at its lower edge with an inwardly extending downwardly bent portion terminating in a free edge adjacent to the container and forming with the flange a channel receiving 75 portion, and a gasket located therein and strongly compressed against the container wall, said flange having above said deformed portion a container engaging sealing bead or

20. A closure for a jar that has a substantially straight outer wall at the top, comprising a top having an arch portion at the margin arranged to engage the top rounded edge of the jar, and a skirt or flange portion 85 projecting downwardly and outwardly from the arch portion, with a substantially Vshape angular gasket-retaining channel at the lower portion with the lower free wall of the angular portion extending inwardly 90 and also upwardly relative to the plane of the closure top wall, the flange above the angular channel portion being curved convex outwardly and merging into the lower part of the arch portion to provide a 95 shoulder for engagement with a chuck or sealing ring, and a ring gasket loosely resting on the lower wall of the angular portion and engaging the inner wall of the said curved portion below the shoulder, whereby 100 downward pressure on the shoulder portion and convex wall will cause inward movement of the convex portion and also of the said angular channel portion so that the lower marginal wall of the channel portion 105 will project inwardly and downwardly relative to the plane of the wall of the closure, and the flange from the arch portion will extend downwardly in a substantially straight conical form to merge into the up- 110 per wall of the said angular channel portion that will extend outwardly therefrom, and the gasket will be strongly compressed between the jar wall, and the angular channel portion and flange above the channel 115 portion.

21. A sealed package comprising a jar that has a substantially straight outer wall at the top, and a closure composed of a top having an arch portion at the margin ar- 120 ranged to engage the top rounded edge of the jar, and a skirt or flange portion pro-jecting downwardly and outwardly from the arch portion, with a substantially Vshape angular gasket-retaining channel at 125 the lower portion with the lower free wall of the angular portion extending inwardly free edge adjacent to the container and and also downwardly relative to the plane

in a substantially straight conical form to merge into the upper wall of the angular channel portion that will extend outwardly therefrom, and a gasket strongly compressed between the said jar wall, and the annular channel portion and flange above

the channel portion.

22. A closure for a jar comprising a top and a skirt or flange portion projecting 10 downwardly and outwardly with a substantially V-shape angular gasket-retaining channel at the lower portion with the lower free wall of the angular portion extending inwardly and also upwardly relative to the 15 plane of the closure top wall, the flange above the angular channel portion being curved convex outwardly and merging into the upper portion to provide a shoulder for engagement with a chuck or sealing ring, 20 and a ring gasket loosely resting on the lower wall of the angular portion and en-gaging the inner wall of the said curved portion below the shoulder, whereby downward pressure on the shoulder portion and 25 convex wall will cause inward movement of the convex portion and also of the said angular channel portion so that the lower marginal wall of the channel portion will project inwardly and downwardly relative 30 to the plane of the wall of the closure, and the flange will extend downwardly in a substantially straight conical form to merge into the upper wall of the said angular channel portion that will extend outwardly 35 therefrom, and the gasket will be strongly compressed between the jar wall, and the angular channel portion and flange above 18, 1921. the channel portion.

23. A closure for a jar comprising a top and a skirt or flange portion projecting 40 downwardly with an inwardly projecting annular bead adapted to frictionally engage the jar wall, the flange below the bead portion extending downwardly and outwardly with a substantially V-shape angular gasket- 45 retaining channel at the lower portion with the lower free wall of the angular portion extending inwardly and also upwardly relative to the plane of the closure top wall, the flange above the angular channel portion be- 50 ing curved convex outwardly and merging into the lower part of the upper portion to provide a shoulder for engagement with a chuck or sealing ring, and a ring gasket loosely resting on the said lower wall of the 55 angular portion and engaging the inner wall of the said curved portion below the shoulder, whereby downward pressure on the shoulder portion and convex wall will cause inward movement of the convex portion 60 and also of the said angular channel portion so that the lower marginal wall of the channel portion will project inwardly and downwardly relative to the plane of the top of the closure, and the flange from the 65 upper portion will extend downwardly in a substantially straight conical form to merge into the upper wall of the said angular channel portion that will extend outwardly therefrom, and the gasket will be strongly 70 compressed between the jar wall, and the angular channel portion and flange above the channel portion.

Signed at New York city, N. Y., on May

CHARLES HAMMER.