
DE69829442T220060413
ß (19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 698 29 442 T2 2006.04.13

(12) Übersetzung der europäischen Patentschrift

(97) EP 0 889 400 B1
(21) Deutsches Aktenzeichen: 698 29 442.4
(96) Europäisches Aktenzeichen: 98 305 133.5
(96) Europäischer Anmeldetag: 29.06.1998
(97) Erstveröffentlichung durch das EPA: 07.01.1999
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 23.03.2005
(47) Veröffentlichungstag im Patentblatt: 13.04.2006

(51) Int Cl.8: G06F 9/445 (2006.01)
G06F 17/30 (2006.01)

(54) Bezeichnung: System und Verfahren für transparenten, globalen Zugang zu physikalischen Geräten in einem
Rechnersystem

(30) Unionspriorität:
885024 30.06.1997 US

(73) Patentinhaber:
Sun Microsystems, Inc., Santa Clara, Calif., US

(74) Vertreter:
Dr. Weber, Dipl.-Phys. Seiffert, Dr. Lieke, 65183
Wiesbaden

(84) Benannte Vertragsstaaten:
DE, FR, GB, NL, SE

(72) Erfinder:
Viswanathan, Srinivasan, Fremont, California
94536, US; Nazari, Siamak, Arcadia, California
91006, US; Swaroop, Anil, Loma Linda, California
92354, US; Khalidi, Yousef, Sunnyvale, California
94086, US

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/28

DE 698 29 442 T2 2006.04.13
Beschreibung

[0001] Die vorliegende Erfindung bezieht sich allgemein auf Systeme und Verfahren zum Zugriff auf physika-
lische Geräte bzw. Einrichtungen, die an einen Computer angeschlossen sind und insbesondere auf Systeme
und Verfahren zum Zugriff auf physikalische Einrichtungen an einem Computer-Cluster.

HINTERGRUND DER ERFINDUNG

[0002] Es ist für Unix-basierte Computeranwendungen immer üblicher geworden, daß sie auf einem Cluster
beheimatet sind, der eine Mehrzahl von Computern umfaßt. Es ist das Ziel von Cluster-Betriebssystemen, den
Betrieb des Clusters für Anwendungen/Benutzer so transparent zu machen, als wenn es sich um einen einzel-
nen Computer handeln würde. Zum Beispiel stellt ein Cluster typischerweise ein globales Dateisystem bereit,
das einen Benutzer in die Lage versetzt, alle herkömmlichen Dateien auf dem Cluster zu sehen und auf sie
zuzugreifen unabhängig davon, wo die Dateien gelegen sind. Diese Transparenz gilt jedoch nicht für einen Ge-
rätezugriff auf einem Cluster.

[0003] Typischerweise wird Gerätezugriff auf Unix-basierten Systemen durch eine spezielles Dateisystem
(z.B. SpecFS) bereitgestellt, das Geräte wie Dateien behandelt. Dieses spezielle Dateisystem wird nur auf ei-
nem einzelnen Knoten betrieben. Das bedeutet, daß es nur einen Benutzer auf einem bestimmten Knoten in
die Lage versetzt, Geräte an diesem Knoten zu sehen und auf sie zuzugreifen, was dem Ziel einer globalen
Sichtbarkeit von Geräten auf einem Cluster zuwiderläuft. Diese Einschränkungen rühren sowohl von der feh-
lenden Koordination zwischen den speziellen Dateisystemen, die auf unterschiedlichen Knoten laufen, als
auch von der fehlenden Strategie für das Benennen von Geräten her, um der globalen Sichtbarkeit von Gerä-
ten bzw. Einrichtungen Rechnung zu tragen. Diese Aspekte eines Zugriffsystems auf Geräte nach dem Stand
der Technik werden nun unter Bezug auf die Fig. 1–Fig. 4 beschrieben.

[0004] In Fig. 1 ist ein Blockdiagramm eines herkömmlichen Computersystems 100 abgebildet, das eine zen-
trale Verarbeitungseinheit (Central Processing Unit, CPU) 102, einen Hochgeschwindigkeitsspeicher 104, eine
Mehrzahl von physikalischen Einrichtungen 106 und eine Gruppe von physikalischen Geräteschnittstellen 108
beinhaltet (z. B. Busse oder andere elektronische Schnittstellen), die die CPU 102 in die Lage versetzen, Daten
zu steuern und mit dem Speicher 102 und den physikalischen Einrichtungen 106 auszutauschen. Der Speicher
102 kann ein wahlfrei zugreifbarer Speicher (Random Access Memory, RAM) oder ein Cachespeicher sein.

[0005] Die physikalischen Einrichtungen 106 können Hochverfügbarkeitseinrichtungen 112, Drucker 114,
Kernspeicher 116, Kommunikationseinrichtungen 118 und Speichereinrichtungen 120 (z. B. Plattenlaufwerke)
umfassen, sind jedoch nicht darauf beschränkt. Drucker 114 und Speichereinrichtungen 120 sind wohlbekannt.
Hochverfügbarkeitseinrichtungen 112 umfassen Einrichtungen wie Speichereinheiten oder Drucker, die über
zugeordnete Sekundär- bzw. Ersatzeinrichtungen verfügen. Solche Einrichtungen sind hochverfügbar, da die
Sekundäreinrichtungen beim Ausfall einer Primäreinrichtung für ihre entsprechenden Primär- bzw. Hauptein-
richtungen einspringen können. Der Kernspeicher 116 ist ein programmierter Bereich des Speichers 102, der
das Erfassen und Berichten von Statistiken zur Systemleistung bzw. zum Systemdurchsatz beinhaltet. Die
Kommunikationseinrichtungen 118 umfassen Modems, ISDN-Schnittstellenkarten, Netzschnittstellenkarten
und andere Arten von Kommunikationseinrichtungen. Die Einrichtungen bzw. "Geräte" 106 können auch Pseu-
do-Einrichtungen 122 umfassen, die Software-Einrichtungen sind, die nicht einer tatsächlichen physikalischen
Einrichtung bzw. einem tatsächlichen physikalischen Gerät zugeordnet sind.

[0006] Der Speicher 104 des Computers 100 kann ein Betriebssystem 130, Anwendungsprogramme 150 und
Datenstrukturen 160 speichern. Das Betriebssystem 130 wird in der CPU 102 ausgeführt, solange der Com-
puter 100 in Betrieb ist und Systemdienste für den Prozessor 102 und die in der CPU 102 ausgeführten An-
wendungen 150 bereitstellt. Das Betriebssystem 130, das auf V. 2.6 des auf Sun®-Workstations eingesetzten
SolarisTM-Betriebssystems modelliert ist, beinhaltet einen Kern 132, ein Dateisystem 134, Gerätetreiber 140
und einen Gerätetreiberschnittstellen-(device driver interface, DDI)-Rahmen 142. Solaris und Sun sind Marken
bzw. eingetragene Marken von Sun Microsystems Inc. Der Kern 116 behandelt Systemaufrufe von den Anwen-
dungen 150 wie etwa Anforderungen, auf den Speicher 104, das Dateisystem 134 oder die Einrichtungen 106
zuzugreifen. Das Dateisystem 134 und seine Beziehung zu den Geräten 106 und den Gerätetreibern 140 wird
unter Bezug auf die Fig. 2A und Fig. 2B beschrieben.

[0007] In Fig. 2A ist eine Darstellung des Dateisystems 134 auf höherer Ebene abgebildet, das von V. 2.6
und früheren Versionen des Solaris-Betriebssystems eingesetzt wird. In Solaris ist das Dateisystems 134 das
Medium, durch das auf alle Dateien, Geräte 106 und Netzschnittstellen (unter der Annahme, daß der Computer
2/28

DE 698 29 442 T2 2006.04.13
100 an ein Netz angeschlossen ist) zugegriffen wird. Diese drei unterschiedlichen Arten von Zugriffen werden
entsprechend von drei Komponenten des Dateisystems 134 bereitgestellt: einem Unix-Dateisystem 138u
(UFS), einem speziellen Dateisystem 138s (SpecFS) und einem Netz-Dateisystem 138n (NFS).

[0008] In Solaris greift eine Anwendung 150 anfänglich auf eine Datei, ein Gerät oder eine Netzschnittstelle
(alle hier als ein Ziel bezeichnet) zu, indem sie eine Öffnen- bzw. Open-Anforderung für das Ziel an das Datei-
system 134 über den Kern 132 absetzt. Das Dateisystem 134 leitet dann die Anforderung je nachdem an UFS
138u, SpecFS 138s oder NFS 138n weiter. Wenn das Ziel erfolgreich geöffnet ist, gibt das UFS, SpecFS oder
NFS ein vnode-Objekt 136 zurück, das auf die bzw. den angeforderte(n) Datei, Einrichtung oder Netzknoten
abgebildet wird. Das Dateisystem 134 bildet dann das vnode-Objekt 136 auf einen Datei-Deskriptor 174 ab,
der an die Anwendung 150 über den Kern 132 zurückgegeben wird. Die anfordernde Anwendung verwendet
anschließend den Datei-Deskriptor 174, um auf die bzw. den entsprechende(n) Datei, Einrichtung oder Netz-
knoten, die bzw. der mit dem zurückgelieferten vnode-Objekt 136 verbunden ist, zuzugreifen.

[0009] Das vnode-Objekt 136 stellt einen generischen Satz von Dateisystem-Diensten gemäß einer vno-
de/VFS-Schnittstelle oder -Schicht (VFS) 172 zur Verfügung, die als die Schnittstelle zwischen dem Kern 132
und dem Dateisystem 134 dient. Solaris stellt ferner inode-, snode- und mode-Objekte 136i, 136s, 136r bereit,
die von dem vnode-Objekt 136 erben und auch Methoden und Datenstrukturen beinhalten, die für die Typen
von Zielen angepaßt sind, die dem UFS, SpecFS bzw. NFS zugeordnet sind. Diese Klassen 136i, 136s und
136 bilden die Schnittstellen auf unterer Ebene zwischen den vnodes 136 und ihren jeweiligen Zielen. Somit
ist, wenn das UFS, SpecFS oder NFS ein vnode-Objekt zurückliefert, dieses Objekt einem entsprechenden
inode, snode oder mode zugeordnet, der die tatsächlichen Zieloperationen durchführt. Nachdem die allgemei-
ne Struktur des Solaris-Dateisystems diskutiert wurde, richtet sich der Fokus der vorliegenden Diskussion nun
auf die von Solaris verwendeten Datei-basierten Gerätezugriffsmethoden.

[0010] In Fig. 2B geben Solaris-Anwendungen 150 typischerweise Anforderungen für Gerätezugriffe an das
Dateisystem 134 aus (über den Kern 132), indem sie den logischen Namen 166 des Gerätes verwenden, das
sie geöffnet benötigen. Zum Beispiel könnte eine Anwendung 150 Zugriff auf eine SCSI-Einrichtung anfordern
mit dem Befehl: open (/dev/dsk/disk_logical_address).

[0011] Der logische Name /dev/dsk/disk_logical_address zeigt an, daß die zu öffnende Einrichtung eine Plat-
te an einer bestimmten logischen Adresse ist. In Solaris könnte die logische Adresse für eine SCSI-Platte
"c0t0d0sx" lauten, wobei "c0" die SCSI-Steuerung 0, "t0" das Ziel 0, "d0" die Platte 0 und "sx" die x-te Scheibe
bzw. Slice für die bestimmte Platte repräsentieren (ein SCSI-Plattenlaufwerk kann bis zu acht Slices haben).

[0012] Der logische Name wird von einem der Linkgeneratoren 144 zugewiesen, die im Benutzerraum gele-
gene Erweiterungen des DDI-Rahmens 142 sind, und basiert auf Information, die von dem Gerätetreiber 140
beim Hinzufügen des Gerätes bzw. der Einrichtung übergeben wird, und auf einem entsprechenden physika-
lischen Namen für das Gerät, der von dem DDI-Rahmenwerk 142 erzeugt wird. Wenn eine Instanz eines be-
stimmten Gerätetreibers 140 einem Knoten 100 zugeordnet ist, ruft das DDI-System 142 die Hinzufügen- bzw.
Attach-Routine dieses Treibers 140 auf. Der Treiber 140 weist dann einen eindeutigen lokalen Bezeichnen zu
und ruft die ddi-create-minor-nodes-Methode 146 des DDI-Rahmens 142 für jedes Gerät auf, das mit dieser
Instanz in Verbindung gebracht werden kann. Typischerweise stellt der eindeutige lokale Bezeichner einen un-
tergeordneten Namen bzw. Minor-Namen (Zusatzbezeichnung bzw. Nebennamen) (z. B. "a") und eine unter-
geordnete Nummer bzw. Minor-Nummer (Zusatzziffer bzw. Nebennummer) (z. B. "2") dar. Jedesmal, wenn sie
aufgerufen wird, erzeugt die ddi-create-minor-nodes-Methode 146 einen Blattknoten in dem DevInfo-Baum
162, der ein gegebenes Gerät repräsentiert. Weil zum Beispiel ein SCSI-Laufwerk (d. h. eine Instanz) bis zu
acht Slices bzw. Teile (d. h. Geräte) haben kann, weist der lokale SCSI-Treiber 140 eindeutige lokale Bezeich-
ner jedem der acht Slices zu und ruft die ddi-create-minor-nodes-Methode 146 mit den lokalen Bezeichnern
bis zu acht Mal auf.

[0013] Ebenso ist jedem Gerät 106 eine UFS-Datei 170 zugeordnet, die Konfigurierungsinformation für das
Zielgerät 106 bereitstellt. Der Name einer bestimmten UFS-Datei 170i ist derselbe wie ein physikalischer Name
168i, der vom physikalischen Ort des Gerätes auf dem Computer abgeleitet ist. Zum Beispiel könnte ein SC-
SI-Gerät den folgenden physikalischen Namen 168, /devices/iommu/sbus/esp1/sd@addr:minor_name, ha-
ben, wobei addr die Adresse des Gerätetreibers sd und minor_name der Minor-Name der Geräteinstanz ist,
der von dem Gerätetreiber sd zugewiesen ist. Wie physikalische Namen abgeleitet werden, wird unten unter
Bezug auf Fig. 3 beschrieben.

[0014] Um das Dateisystem 134 in die Lage zu versetzen, ein Zielgerät unter Angabe des logischen Namens
3/28

DE 698 29 442 T2 2006.04.13
des Zielgerätes zu öffnen, verwendet es eine Datenstruktur 164 des logischen Namensraumes, die logische
Dateinamen 166 auf physikalische Dateinamen 168 abbildet. Die physikalischen Namen von Geräten 106 sind
von dem Ort des Gerätes in einem Geräteinformationsbaum (DevInfo tree) 140 (in Fig. 1 abgebildet) abgelei-
tet, der die Hierarchie von Gerätetypen, Busverbindungen, Steuerungen, Treibern und dem Computersystem
100 zugeordneten Geräten repräsentiert. Jede durch einen physikalischen Namen 168 identifizierte Datei 170
enthält in ihren Attributen einen Bezeichner oder dev_t (kurz für Device Type bzw. Gerätetyp), der dem Zielge-
rät eindeutig zugeordnet ist. Dieser dev_t-Wert wird von dem Dateisystem 134 verwendet, um über das
SpecFS 138s auf das richtige Zielgerät zuzugreifen. Es wird nun unter Bezug auf Fig. 3 beschrieben, wie
dev_t-Werte zugewiesen werden und der DevInfo-Baum 140 von dem DDI-System 142 auf dem Laufenden
gehalten wird.

[0015] In Fig. 3 wird eine Darstellung eines hypothetischen DevInfo-Baumes 162 für das Computersystem
100 gezeigt. Jeder Knoten des DevInfo-Baumes 162 entspricht einer physikalischen Komponente des Gerä-
tesystems, die dem Computer 100 zugeordnet ist. Unterschiedliche Ebenen bzw. Niveaus entsprechen unter-
schiedlichen Ebenen der Gerätehierarchie. Knoten, die direkt mit einem höheren Knoten verbunden sind, stei-
len Objekte dar, die Instanzen des Objektes auf höherer Ebene sind. Folglich ist der Wurzelknoten des DevIn-
fo-Baumes immer der "/"-Knoten, unter dem die gesamte Gerätehierarchie angesiedelt ist. Die Zwischenkno-
ten (d. h. Knoten, die keine Blattknoten und Blatt-Eltern-Knoten sind) werden als Nexus- bzw. Verknüpfungs-
geräte bezeichnet und entsprechen dazwischenliegenden Strukturen wie Steuerungen, Bussen und Anschlüs-
sen bzw. Ports. Auf der nächsten Ebene oberhalb der untersten des DevInfo-Baumes befinden sich die Gerä-
tetreiber, von denen jeder ein oder mehrere Geräte exportieren oder kontrollieren kann. Auf der Blattebene sind
die tatsächlichen Geräte bzw. Einrichtungen, von denen jedes abhängig vom Gerätetyp eine Anzahl von Ge-
räteinstanzen exportieren kann. Zum Beispiel kann eine SCSI-Einrichtung bis zu sieben Instanzen haben.

[0016] Der in Fig. 3 gezeigte hypothetische DevInfo-Baum 162 repräsentiert ein Computersystem 100, das
eine Eingabe-/Ausgabe-(I/O)-Steuerung für auf Speicher abgebildete I/O-Einrichtungen (iommu) an einer phy-
sikalischen Adresse addr0 beinhaltet. Die iommu steuert bzw. verwaltet die Interaktionen der CPU mit I/O-Ein-
richtungen, die mit einem Systembus (sbus) an Adresse addr1 und einem Hochgeschwindigkeitsbus wie ei-
nem PCI-Bus an Adresse addr2 verbunden sind. Zwei SCSI-Steuerungen (esp1 und esp2) an entsprechenden
Adressen addr3 und addr4 sind zusammen mit einer Steuerung für einen Asynchron-Übertragungsmodus
(Asynchronous Transfer Mode, ATM) an addr5 mit dem sbus verbunden. Die erste SCSI-Steuerung esp1 ist
einem SCSI-Gerätetreiber (sd) an Adresse 0 (dargestellt als @0) zugeordnet, der vier SCSI-Geräteinstanzen
(dev0, dev1, dev2, dev3) verwaltet. Jede dieser Geräteinstanzen einspricht einer entsprechenden Slice bzw.
Scheibe eines einzelnen, physikalischen Gerätes 106. Die erste SCSI-Steuerung esp1 ist auch einem SC-
SI-Gerätetreiber (sd) an Adresse 1 zugeordnet, der mehrere SCSI-Geräteinstanzen (nicht abgebildet) eines
anderen physikalischen Gerätes 106 steuert.

[0017] Jedem Typ von Gerätetreiber, der bei dem Computersystem 100 verwendet werden kann, ist eine vor-
her festgelegte, eindeutige übergeordnete Nummer bzw. Major-Nummer (Hauptnummer) zugewiesen. Zum
Beispiel ist dem SCSI-Gerätetreiber sd die Major-Nummer 32 zugewiesen. Jedes Gerät ist einer Minor-Num-
mer zugeordnet, die innerhalb der Gruppe von Geräten, die von einem einzelnen Gerätetreiber gesteuert wer-
den, eindeutig ist. Zum Beispiel haben die dem Treiber sd an Adresse 0 zugeordneten Geräte dev0, dev1, dev2
und dev3 die Minor-Nummern 0, 1, 2 bzw. 3 und Minor-Namen a, b, c bzw. d. In ähnlicher Weise würden die
von dem Treiber sd an Adresse 1 gesteuerten Geräte Minor-Nummern haben, die von den den Geräten
dev0–dev3 zugeordneten verschieden sind (z. B. vier davon könnten Minor-Nummern 4-7 haben). Die Mi-
nor-Nummern und -Bezeichnungen werden von dem Eltern-Gerätetreiber 140 (Fig. 1) für jede neue Gerätein-
stanz zugewiesen (es sei daran erinnert, daß eine SCSI-Instanz ein spezielles SCSI-Laufwerk und ein SCSI
Gerät eine bestimmte Slice dieses Gerätes sein könnten). Dies stellt sicher, daß jedes von einem gegebenen
Treiber exportierte Gerät eine eindeutige Minor-Nummer und -Bezeichnung hat. Das bedeutet, ein Treiber ver-
waltet einen Minor-Nummern-Bezeichnungs-Raum.

[0018] Jede Minor-Nummer bildet, wenn sie mit der Major-Nummer seines Elterntreibers kombiniert wird, ei-
nen dev_t-Wert, der jedes Gerät eindeutig identifiziert. Zum Beispiel haben die von dem Treiber sb an Adresse
0 gesteuerten Geräte dev0, dev1, dev2 und dev3 entsprechende dev_t-Werte von (32,0), (32,1), (32,2) und
(32,3). Das SpecFS 138s unterhält eine Abbildung von dev_t-Werten zu den entsprechenden Geräten bzw.
Einrichtungen. Im Ergebnis bezeichnen alle Anforderungen an das SpecFS zum Öffnen eines Gerätes das zu
öffnende Gerät mittels seines eindeutigen dev_t-Wertes.

[0019] Der DevTree-Pfad zu einem Gerät liefert den physikalischen Namen dieses Gerätes. Zum Beispiel ist
der physikalische Name des Gerätes dev0 gegeben durch die Zeichenkette: /devices/iom-
4/28

DE 698 29 442 T2 2006.04.13
mu@addr0/sbus@addr1/esp1@addr3/sd@0:a, wobei sich sd@0:a auf das Gerät bezieht, das von dem
sd-Treiber an Adresse 0 gesteuert wird, dessen Minor-Name a ist; d. h. das Gerät dev0. Der physikalische
Name bezeichnet die spezielle Datei 170 (in Fig. 2 abgebildet) (einem snode entsprechend), die alle Informa-
tion enthält, die zum Zugriff auf das entsprechende Gerät notwendig ist. Unter anderem enthalten die Attribute
jeder speziellen Datei 170 den dev_t-Wert, der dem entsprechenden Gerät zugeordnet ist.

[0020] Wie oben erwähnt, erzeugt ein link_generator 144 den logischen Namen eines Gerätes aus dem phy-
sikalischen Namen des Gerätes gemäß einem Satz von Regeln, die auf von diesem Verknüpfungs- bzw.
Link-Generator verwaltete Geräte anwendbar sind. Zum Beispiel könnte in dem Fall des Gerätes dev0, das
von dem Treiber sd an Adresse 0 verwaltet wird, ein Link-Generator für SCSI-Geräte den folgenden logischen
Namen erzeugen, /dev/dsk/c0t0d0s0, wobei sich c0 auf die Steuerung esp1@addr3 bezieht, t0 auf die Ziel-Id
der physikalischen Platte, die von dem sd@0-Treiber gesteuert wird, d0 auf den sd@0-Treiber und s0 den Ab-
schnitt bzw. die Slice mit der Minor-Bezeichnung a und der Minor-Nummer 0 bezeichnet. Das dem sd@1-Trei-
ber zugeordnete Gerät dev0 könnte den logischen Namen /dev/dsk/c0t1d1s4 von demselben Link-Generator
144 zugewiesen bekommen. Man beachte, daß die beiden dev0-Geräte logische Namen haben, die sich in
Differenzen in den Ziel-, Platten- und Slicewerten unterscheiden. Es wird nun unter Bezug auf Fig. 4 beschrie-
ben, wie diese Infrastruktur gegenwärtig in Solaris verwendet wird, um eine Anwendung in die Lage zu verset-
zen, ein bestimmtes, auf einem Computer 100 befindliches Gerät zu öffnen.

[0021] In Fig. 4 ist ein Flußdiagramm von Operationen abgebildet, die im Speicher 104 des Computers 100
von verschiedenen Betriebssystemkomponenten während des Öffnens eines Gerätes, wie von einer Anwen-
dung 150 angefordert, durchgeführt werden. Der Speicher 104 ist in einen Nutzerspeicherbereich 104U, in
dem die Anwendungen 150 ausgeführt werden, und in einen Kernspeicherbereich 104K unterteilt, in dem die
Betriebssystemkomponenten ausgeführt werden. Dieses Diagramm zeigt mit einem Satz von beschrifteten
Pfeilen die Reihenfolge, in der die Operationen auftreten, und die Einrichtungen, die Ursprung oder Ziel jeder
Operation sind. Wo es zutrifft, geben gestrichelte Linien ein Objekt an, auf das eine Referenz übergeben wird.
Neben der Darstellung des Speichers 104 ist jede Operation, die einem beschrifteten Pfeil zugeordnet ist, de-
finiert. Die Operationen sind als Nachrichten oder Funktionsaufrufe definiert, wobei auf den Nachrichtennamen
die Daten folgen, die von der empfangenden Einheit verarbeitet oder zurückgegeben werden. Die Nachricht
(4-1), "open(logical_name)", ist zum Beispiel die von der Anwendung 150 ausgegebene Nachricht, die den
Kern 132 auffordert, das in dem Nutzerspeicherbereich 104U durch "logical_name" repräsentierte Gerät zu öff-
nen. In diesem speziellen Beispiel ist die Anwendung bestrebt, das Gerät dev2 zu öffnen.

[0022] Nach Empfang der Öffnen-Nachricht (4-1) setzt der Kern 132 die Nachricht (4-2),
"get_vnode(logival_name)", an das Dateisystem 134 ab. Diese Nachricht fordert das Dateisystem 134 auf, den
vnode des Gerätes dev2 zurückzugeben, den der Kern 132 benötigt, um die Öffnen-Operation abzuschließen.
Als Reaktion darauf konvertiert das Dateisystem 134 den logischen Namen 166 in den entsprechenden phy-
sikalischen Namen 168 mittels des logischen Namensraumes 164. Das Dateisystem 134 lokalisiert dann die
Datei, die von dem physikalischen Namen bezeichnet wird, und bestimmt den dev_t-Wert des zugehörigen Ge-
rätes aus den Attributen dieser Datei. Sobald es den dev_t-Wert erhalten hat, setzt das Dateisystem 134 die
Nachricht (4-3), "get_vnode(dev_t)", an das SpecFS 138s ab. Diese Nachricht fordert das SpecFS 138s auf,
eine Referenz auf den mit dem Gerät dev2 verbundenen vnode zurückzuliefern. Auf den Empfang der Nach-
richt (4-3) hin erzeugt das SpecFS 138s den angeforderten vnode 136 und einen snode 136s, der den vnode
136 an Gerät dev2 bindet, und liefert die Referenz auf den vnode 136 (4-4) an das Dateisystem 134 zurück.
Das Dateisystem 134 gibt dann die vnode-Referenz an den Kern zurück (4-5).

[0023] Sobald er die vnode-Referenz hat, setzt der Kern 132 eine Anforderung (4-6) an das SpecFS 138s ab,
das dem vnode 136 zugeordnete Gerät dev2 zu öffnen. Das SpecFS 138s versucht, diese Anforderung durch
Absetzen eines Öffnen-Kommandos (4-7) an den Treiber 2, von dem das SpecFS weiß, daß er das Gerät dev2
steuert, zu erfüllen. Wenn der Treiber 2 in der Lage ist, das Gerät dev2 zu öffnen, gibt er eine
open_status-Nachricht (4-8) zurück, die anzeigt, daß die Öffnen-Operation erfolgreich war. Ansonsten gibt der
Treiber 2 eine Fehleranzeige in derselben Nachricht (4-8) zurück. Das SpecFS 138s gibt dann eine ähnliche
Statusmeldung (4-9) direkt an den Kern 132 zurück. Unter der Annahme, daß "Erfolg" in der Nachricht (4-9)
zurückgegeben wurde, gibt der Kern 132 einen Datei-Deskriptor an die Anwendung 150 zurück, der eine Re-
präsentation des mit dem Gerät dev2 verbundenen vnode 136 im Nutzerspeicherraum ist (4-10). Die Anwen-
dung 150 kann, sobald sie im Besitz des Datei-Deskriptors ist, auf das Gerät dev2 über den Kern 132 und das
Dateisystem 134 mittels Dateisystemoperationen zugreifen. Die Anwendung 150 bearbeitet zum Beispiel Ein-
gabedaten von dem Gerät dev2, indem sie an den zurückgelieferten Datei-Deskriptor gerichtete Leseanforde-
rungen absetzt. Diese Dateisystem-Kommandos werden dann von dem SpecFS 138s in tatsächliche Geräte-
kommandos und die vnode- und snode-Objekte 136, 136s umgewandelt, die das Gerät dev2 verwalten.
5/28

DE 698 29 442 T2 2006.04.13
[0024] Folglich setzt Solaris Benutzer eines Computersystems 100 in die Lage, auf Einrichtungen an diesem
System 100 relativ einfach zuzugreifen. Jedoch erlauben es die von Solaris eingesetzten Methoden Benutzern
nicht, auf Einrichtungen transparent über Computer hinweg zuzugreifen, auch wenn die verschiedenen Com-
puter als Teil eines Cluster konfiguriert sind. Das bedeutet, daß eine Anwendung, die auf einem ersten Com-
puter läuft, mittels Solaris ein Gerät auf einem zweiten Computer nicht transparent öffnen kann.

[0025] Der Grund dafür, daß die aktuelle Version von Solaris keinen transparenten Gerätezugriff in der
Mehr-Computer-Situation zur Verfügung stellen kann, hat mit der Art und Weise zu tun, in der die dev_t- und
Minor-Nummern derzeit zugewiesen werden, wenn Geräte hinzugefügt werden. Gemäß Fig. 3 weist jedesmal,
wenn ein Gerät zu einem Computer 100 hinzugefügt wird, der zugeordnete Treiber des Gerätes diesem Gerät
eine Minor-Nummer zu, die innerhalb der Menge von Geräten, die von diesem Treiber gesteuert werden, ein-
deutig ist und daher auf einen eindeutigen dev_t-Wert für den Computer 100 abgebildet werden können, wenn
sie mit der Major-Nummer des Treibers kombiniert wird. Wenn jedoch dieselben Geräte und Treiber auf einem
zweiten Computer bereitgestellt würden, würden dem Treiber und den Geräten ein ähnlicher, wenn nicht iden-
tischer Satz von Major- und Minor-Nummern und dev_t-Werten zugewiesen. Wenn zum Beispiel beide Com-
puter einen SCSI-Treiber sd (Major-Nummer = 32) und vier SCSI-Geräteinstanzen hätten, die von dem SC-
SI-Treiber sd verwaltet würden, würde jeder Treiber sd denselben Satz von Minor-Nummern ihrem lokalen Satz
von SCSI-Geräten zuordnen (z. B. würden beide Sätze Minor-Nummern zwischen 0 und 3 haben). Folglich
würde unter Beachtung, daß auf ein Gerät anhand seines dev_t-Wertes zugegriffen wird, wenn eine Anwen-
dung auf einem ersten Knoten eine SCSI-Platte auf dem zweiten Knoten öffnen möchte, diese Anwendung
nicht in der Lage sein, die SCSI-Platte gegenüber dem SpecFS auf beiden Computersystemen eindeutig zu
bezeichnen.

[0026] Daher besteht ein Bedarf für ein Datei-basiertes Gerätezugriffssystem, das Anwendungen in die Lage
versetzt, wo immer sie auch ausgeführt werden, transparent auf Geräte zuzugreifen, die sich auf irgendeinem
Knoten eines Computer-Clusters befinden.

[0027] EP-A-0780778 offenbart ein System und ein Verfahren zum automatischen Montieren und Zugreifen
auf entfernte Dateisysteme in einer Netzumgebung. Ein virtuelles Dateisystem vereinfacht den Zugriff auf eine
virtuelle, logische Speichereinrichtung, wobei das Dateisystem mindestens einen Teil eines entfernten Datei-
systems beinhaltet, das von einer weiteren Einrichtung verwaltet wird, die im Computernetz angeschlossen ist.
Das Betriebssystem leitet Zugriffsanforderungen von einem Anwendungsprogramm, die die virtuelle, logische
Speichereinrichtung bezeichnen, an ein entferntes Zugriffselement zur Verarbeitung um. Wenn nötig ermög-
licht das entfernte Zugriffselement das automatische Montieren eines Elementes des entfernten Dateisystems.

ZUSAMMENFASSUNG DER ERFINDUNG

[0028] Spezielle und bevorzugte Aspekte der Erfindung werden in den beigefügten unabhängigen und abhän-
gigen Ansprüchen dargelegt. Eigenschaften der abhängigen Ansprüche können mit denen der unabhängigen
Ansprüche nach Bedarf und in anderen Kombinationen als denen, die in den Ansprüchen explizit dargelegt
werden, kombiniert werden.

[0029] Zusammengefaßt ist die vorliegende Erfindung ein System und ein Verfahren, die transparenten, glo-
balen Zugriff auf Einrichtungen bzw. Geräte auf einem Computer-Cluster bieten.

[0030] Eine Ausführungsform der Erfindung umfaßt einen gemeinsamen Betriebssystemkern, der auf jedem
Knoten, die das Cluster ausmachen, läuft, ein Dateisystem, das auf allen Knoten läuft; eine Gerätetreiber-
schnittstelle (DDI), die auf jedem Knoten läuft, ein Gerätekonfigurationssystem (DCS), das auf einem der Kno-
ten läuft, eine DCS-Datenbank, auf die das DCS und eine Mehrzahl von Gerätetreibern, die auf jedem Knoten
liegt, zugreifen können.

[0031] Jeder der Gerätetreiber verwaltet eine Art von physikalischen Geräten und ihm ist eine eindeutige, vor-
her festgelegte Major-Nummer zugeordnet. Wenn ein neues Gerät einer bestimmten Art zu einem entspre-
chenden Knoten hinzugefügt wird, wird eine Zufüge- bzw. Attach-Nachricht zu der DDI dieses Knotens ausge-
geben, die Konfigurierungsinformation für das Gerät, das hinzugefügt wird, angibt. Die DDI erzeugt mittels der
Konfigurierungsinformation einen physikalischen Namen in dem Namensraum des Dateisystems für das Gerät
und einen logischen Namen, der eine symbolische Verknüpfung mit dem physikalischen Namen ist. Der logi-
sche Name für das Gerät kann anschließend verwendet werden, um über das Dateisystem auf das Gerät zu-
zugreifen.
6/28

DE 698 29 442 T2 2006.04.13
[0032] Als Teil des Erzeugens des logischen Namens setzt das DDI eine Abbildungsanforderung an das DCS
ab, um eine globale Minor-Nummer (gmin-Nummer) für das hinzugefügte Gerät anzufordern. Die Abbildungs-
anforderungs-Nachricht umfaßt neben anderen Dingen die Major-Nummer und mindestens eine Teilmenge der
Konfigurierungsinformation.

[0033] Als Reaktion auf die Abbildungsanforderung ist das DCS dafür ausgelegt:
(a) die gmin-Nummer festzulegen,
(b) die gmin-Nummer an das DDI zurückzugeben und
(c) die gmin-Nummer, die Major-Nummer und die Teilmenge der Konfigurierungsinformation zu speichern.

[0034] Die anfordernde DDI bildet dann den logischen Namen und leitet einen dem Gerät zugeordneten
dev_t-Wert mittels der zurückgelieferten gmin-Nummer ab und aktualisiert die lokale Geräteinformation, so
daß der dev_t-Wert des Gerätes für das Dateisystem zugreifbar ist.

[0035] Durch Bereitstellen eines eindeutigen dev_t-Wertes für alle Geräte und einer Verknüpfung zwischen
dem Dateisystem und diesem dev_t-Wert bietet die vorliegende Erfindung ein globales Rahmenwerk, das es
ermöglicht, auf Geräte bzw. Einrichtungen an unterschiedlichen Knoten global zugreifen zu können. Das Datei-
system wird modifiziert, um aus diesem System Vorteile zu ziehen, so daß in dem Fall, daß ein Benutzer an-
fordert, ein bestimmtes Gerät, bezeichnet durch seinen logischen Namen, zu öffnen, der Kern bei dem Datei-
system anfragt, um den dev_t-Wert dieses Gerätes zu ermitteln, und dann bei dem DCS den Ort und die Be-
zeichnung eines Gerätes mit diesem dev_t-Wert abfragt. Sobald er den Ort und die Bezeichnung des Gerätes
erhalten hat, setzt der Kern eine Anforderung zum Öffnen an den Hostknoten für das durch das DCS identifi-
zierte Gerät ab. Auf dem Hostknoten ausgeführte Dateisystemkomponenten, die ein spezielles Dateisystem
(SpecFS) umfassen, behandeln die Anforderung zum Öffnen, indem sie an den Kern ein Handle auf ein spe-
zielles Dateiobjekt zurückliefern, das dem gewünschten Gerät zugeordnet ist. Der Kern gibt dann an den an-
fordernden Benutzer einen auf das Handle abgebildeten Datei-Deskriptor zurück, durch den der Benutzer auf
das Gerät zugreifen kann.

[0036] Nach einer bevorzugten Ausführungsform können sich das DCS, das Dateisystem, der Benutzer und
das angeforderte Gerät alle auf unterschiedlichen Knoten befinden. Um in dieser Umgebung zu funktionieren,
beinhaltet die vorliegende Erfindung ein Proxy-Dateisystem, das es dem Benutzer eines Cluster-Knotens er-
möglicht, transparent mit den Dateiobjekten zu kommunizieren, die zusammen mit einem angeforderten Gerät
auf einem anderen Knoten liegen.

[0037] Die vorliegende Erfindung kann auch einen Satz von Gerätetreiberobjekten (Device Driver Objects,
DSOs) auf jedem Knoten des Clusters beinhalten, von denen jedes eine bestimmte Klasse von Geräten ver-
waltet. Die betreffenden Geräteklassen fassen die Besonderheit zusammen, mit der einer Anforderung eines
Benutzers zum Öffnen eines bestimmten Gerätes von dem transparenten, globalen Gerätezugriffssystem im
allgemeinen und dem DCS im besonderen entsprochen werden muß. Nach einer bevorzugten Ausführungs-
form gibt es vier Geräteklassen: dev_enumerate, dev_node_specific, dev_global und dev_nodebound.

[0038] Die dev_enumerate-Klasse ist Geräten zugeordnet, die mehrere Instanzen an einem bestimmten Kno-
ten haben können, die von ihrem zugeordneten Treiber aufgezählt werden, wenn das jeweilige Geräte hinzu-
gefügt wird (z. B. mehrere SCSI-Platten). Die dev_node_specific-Klasse ist Geräten zugeordnet, von denen es
nur eine Instanz pro Knoten gibt (z. B. Kernspeicher) und die folglich von ihren Treibern nicht aufgezählt wer-
den. Die dev_global-Klasse ist für diejenigen Geräte, auf die entweder lokal oder entfernt mittels eines Treibers
zugegriffen werden kann, der auf jedem Knoten angesiedelt ist (z. B. Modems und Netzschnittstellen). Die
dev_nodebound-Klasse wird für Einrichtungen verwendet, auf die nur mittels eines Treibers auf einem be-
stimmten Knoten zugegriffen werden kann, und wenn dieser Knoten nicht verfügbar ist, dann von einem Trei-
ber auf einem anderen Knoten (z. B. hochverfügbare Einrichtungen).

[0039] Wenn Klassen verwendet werden, dann beinhaltet die Gerätekonfigurationsinformation, die von dem
Treiber an die DDI ausgegeben wird, vorzugsweise die Klasse des Gerätes. Falls verfügbar, bezieht die DDI
diese Klasseninformation in seine Abbildungsanforderung an das DCS ein. Beim Empfang einer Klasseninfor-
mation enthaltenden Abbildungsanforderung befragt das DCS sein lokales DSO zu dieser Klasse. Dieses DSO
ermittelt dann die gminor-Nummer, die dem Gerät, das hinzugefügt wird, zugewiesen werden sollte. Zum Bei-
spiel weist das DSO für die dev_enumerate-Klasse jedem dev_enumerate-Gerät eine gmin-Nummer zu, die
über das Cluster hinweg eindeutig ist, weil auf jedes aufgezählte Gerät an einem bestimmten Knoten zugegrif-
fen werden muß. Im Gegensatz dazu weist das DSO für die dev_global-Klasse jedem globalen Gerät densel-
ben gmin-Wert zu, weil es unerheblich ist, an welchem Knoten auf solche Geräte zugegriffen wird. Wie für die
7/28

DE 698 29 442 T2 2006.04.13
anderen Klassen weist das DSO für die dev_node spezifische Klasse jedem Gerät dieser Klasse denselben
gmin-Wert ungleich Null zu und das DSO für die dev_nodebound-Klasse weist jedem Gerät dieser Klasse eine
gmin-Nummer zu, die über das Cluster hinweg eindeutig ist.

[0040] Wenn die Klasseninformation von einem Treiber nicht bereitgestellt wird, behandelt die vorliegende Er-
findung das entsprechende Gerät, als wenn es von der dev_enumerate-Klasse oder der dev_global-Klasse
wäre abhängig davon, ob es ein physikalisches Gerät (dev_enumerate) oder ein Pseudo-Gerät (dev_global)
ist.

KURZBESCHREIBUNG DER ZEICHNUNGEN

[0041] Beispielhafte Ausführungsformen der Erfindung werden anschließend nur als Beispiel beschrieben un-
ter Bezug auf die beigefügten Zeichnungen, von denen:

[0042] Fig. 1 ein Blockdiagramm eines Computersystems nach dem Stand der Technik ist, das Komponenten
zeigt, die verwendet werden, um Zugriff auf Einrichtungen auf einem einzelnen Computer zur Verfügung zu
stellen;

[0043] Fig. 2A ein Blockdiagramm ist, das die Beziehungen zwischen Anwendungen, dem Betriebssystem-
kern, dem Dateisystem und den Einrichtungen nach dem Stand der Technik zeigt;

[0044] Fig. 2B ein Blockdiagramm ist, das die Beziehungen zwischen logischen Gerätenamen, physikali-
schen Namen, dem Dateisystem, Gerätetypbezeichnern (dev_t) und Geräten bzw. Einrichtungen nach dem
Stand der Technik zeigt;

[0045] Fig. 3 ein Diagramm eines beispielhaften Geräteinformationbaumes (DevInfo-Baumes) ist, der mit den
nach dem Stand der Technik verwendeten konsistent ist;

[0046] Fig. 4 ein Flußdiagramm von Operationen ist, die in dem Speicher 104 des Computersystems 100
nach dem Stand der Technik beim Öffnen eines Gerätes durchgeführt werden, wie von einer Anwendung 150
angefordert;

[0047] Fig. 5 ein Blockdiagramm eines Computerclusters ist, in dem die vorliegende Erfindung implementiert
werden kann;

[0048] Fig. 6 ein Blockdiagramm von Speicherprogrammen und Datenstrukturen ist, die die vorliegende Er-
findung wie in den repräsentativen Knoten 202 und 204 des Clusters von Fig. 5 implementiert ausmachen;

[0049] Fig. 7A ein Flußdiagramm ist, das die Operationen veranschaulicht, durch die das Gerätetreiber-
schnittstellen-(DDI)-System und das Gerätekonfigurationssystem (DCS) einen geeigneten dev_t-Wert, logi-
schen Namen und physikalischen Namen für ein Gerät einrichten, das dem Knoten 202 hinzugefügt wird;

[0050] Fig. 7B die Beziehung zwischen dem bzw. der logischen Minor-Namen/Nummer, physikalischen Na-
men und logischen Namen darstellt, die von der vorliegenden Erfindung eingerichtet werden; und

[0051] die Fig. 8A und Fig. 8B Flußdiagramme sind, die Schritte veranschaulichen, die von der vorliegenden
Erfindung durchgeführt werden als Reaktion auf eine Anforderung von einer auf einem Knoten 202-1 ausge-
führten Anwendung 150, auf ein Gerät zuzugreifen (öffnen), das sich auf einem Knoten 202-3 befindet.

BESCHREIBUNG DER BEVORZUGTEN AUSFÜHRUNGSFORM

[0052] In Fig. 5 wird ein Biockdiagramm eines Computerclusters 201 gezeigt, in dem die vorliegende Erfin-
dung implementiert werden kann. Der Cluster 201 beinhaltet eine Mehrzahl von Knoten 202 mit zugeordneten
Geräten 106 und Anwendungen 150. Wie in Fig. 1 können die Geräte 106 Hochverfügbarkeitseinrichtungen
112, Drucker 114, Kernspeicher 116, Kommunikationseinrichtungen 118 und Speichereinrichtungen 120 um-
fassen. Für die Zwecke der vorliegenden Diskussion läuft ein globales Dateisystem 206, das einen einzigen
globalen Dateiraum für alle auf dem Cluster 201 gespeicherten Dateien auf dem Laufenden hält, auf einem der
Knoten 202. Das globale Dateisystem 206 unterstützt mindestens zwei Repräsentationen der Geräte 106. Die
Repräsentation im physikalischen Namensraum (PNS) 305 ist aus dem Kernspeicher zugänglich und ent-
spricht der physikalischen Anordnung des Gerätes 106 auf den entsprechenden Knoten 202. Die Repräsenta-
8/28

DE 698 29 442 T2 2006.04.13
tion im logischen Namensraum (LNS) 304 ist eine Version des physikalischen Namensraumes 305 im Benut-
zerspeicher; d. h. jeder Eintrag in dem logischen Namensraum 304 bildet sich auf einen entsprechenden Ein-
trag in dem physikalischen Namensraum 305 ab. Die vorliegende Erfindung modifiziert viele Aspekte dieses
globalen Dateisystems 206, um einen transparenten, globalen Zugriff auf die Geräte 106 durch die Anwendun-
gen 150 zu ermöglichen. Der Cluster 201 beinhaltet auch einen Knoten 205, der ein Gerätekonfigurationssys-
tem (DCS) 208 beheimatet, das eine Schlüsselkomponente einer Ausführungsform der Erfindung ist.

[0053] In anderen Ausführungsformen könnte es eine beliebige Anzahl von globalen Dateisystemen 206 ge-
ben, von denen jedes seinen eigenen physikalischen und logischen Namensraum auf dem Laufenden hält. In
einer solchen Ausführungsform wird auf eine bestimmte Einrichtung nur durch eines der globalen Dateisyste-
me 206 und dessen zugeordneten physikalischen und logischen Namensraum zugegriffen.

[0054] Wie oben mit Bezug auf die Fig. 1–Fig. 4 beschrieben erlaubt das frühere Gerätezugriffssystem von
Solaris einen transparenten Gerätezugriff nur bei einem einzelnen Computersystem. Bestimmte Aspekte der
Art, wie der Stand der Technik die logischen Namen erzeugt, die von dem Dateisystem auf den dev_t-Wert des
Gerätes, auf das zugegriffen werden soll, abgebildet werden, sind nicht mit der Ausdehnung des gegenwärti-
gen Gerätezugriffssystems auf einen Cluster kompatibel. Unter der Annahme, daß die Sätze von Geräten
106-1, 106-2 jeweils vier SCSI-Plattenlaufwerke enthalten, würde das aktuell verwendete logische Benen-
nungssystem zum Beispiel dazu führen, daß unterschiedliche Laufwerke auf den verschiedenen Knoten 106-1,
106-2 denselben dev-t-Wert haben. Dies würde es für eine Anwendung 150-1 unmöglich machen, auf ein spe-
zielles der Plattenlaufwerke auf dem Knoten 202-2 transparent zuzugreifen. Es wird nun beschrieben, wie eine
Ausführungsform der Erfindung einen solchen transparenten globalen Gerätezugriff zur Verfügung stellt.

[0055] In Fig. 6 werden zusätzliche Details eines Repräsentanten der Knoten 202 und des Knotens 204, der
das DCS 208 beheimatet, abgebildet. Das Dateisystem 206 ist in dieser Figur nicht abgebildet, da es sich nur
auf einem bestimmten Knoten 202-2 befindet. Jeder Knoten 202 beinhaltet einen Speicher 230, in dem Be-
triebssystem-(OS)-Routinen/Objekte 240 und Datenstrukturen 300 definiert sind. Die OS-Routinen 240 bein-
halten einen Betriebssystemkern 242, ein Proxy-Dateisystem (PxFS) 244, ein spezielles Dateisystem 258, ein
Gerätetreiber-System (DDI) 270, eine Menge von Gerätetreiberobjekten (DSO) und Gerätetreiber 280.

[0056] Wie oben beschrieben, behandelt der Kern 242 Systemaufrufe von den Anwendungen 150 wie etwa
Anforderungen, auf den Speicher 230, das Dateisystem 206 oder Geräte 106 zuzugreifen. Der Kern 242 un-
terscheidet sich von dem Kern 132 (Fig. 1), da er durch die vorliegende Erfindung modifiziert wurde, um glo-
balen Gerätezugriff zu unterstützen. Das Proxy-Dateisystem (PxFS) 244 basiert auf dem Solaris-PxFS-Datei-
system, ist aber hier wie der Kern 242 modifiziert, um globalen Gerätezugriff zu unterstützen. Das PxFS 244
beinhaltet eine Sammlung von Objekten, die eine Anwendung 150-i auf einem Knoten 202-i in die Lage setzen,
nahtlos mit dem Dateisystem 206 über verschiedene Knoten 202 hinweg zu interagieren. Die PxFS-Objekte
beinhalten PxFS-Clients 246, PxFS-Server 248, f_objs (Dateiobjekte) 250, vnodes (virtuelle Dateiknoten) 252,
snodes (spezielle Dateiknoten) 254 und px_vnodes (Proxy-vnodes) 256. Jedes dieser Objekte ist in Fig. 6 als
optional (opt) bezeichnet, da sie erzeugt werden, wie es von dem PxFS 244 als Reaktion auf Operationen des
Dateisystems 206 benötigt wird.

[0057] Das DDI-System 270 (im folgenden als das DDI bezeichnet) ist ebenfalls ähnlich zu dem mit Bezug
auf den Stand der Technik (Fig. 1) beschriebenen DDI-System 142. Das DDI-System 270 ist jedoch in einer
Ausführungsform der Erfindung abgewandelt, um mit dem DCS 360 zu interagieren und physikalische und lo-
gische Namen zu erzeugen, die mit den Geräten 106 kompatibel sind, auf die auf und von den unterschiedli-
chen Knoten 202 zugegriffen werden kann. Das DDI 270 beinhaltet eine Hinzufügen-Methode 272, die jedes-
mal aufgerufen wird, wenn ein neues Gerät dem lokalen Knoten 202 hinzugefügt wird. Im Gegensatz zu der
früheren Hinzufügen-Methode ist die Hinzufügen-Methode 272. dafür ausgelegt, die Dienste des DCS 360 zu
verwenden, um einen global konsistenten physikalischen Namen für jedwedes hinzugefügte Gerät zu erzeu-
gen. Das DDI-System 270 beinhaltet auch eine Sammlung von Verknüpfungsgeneratoren 274, die eindeutige
logische Namen aus den entsprechenden physikalischen Namen erzeugen. Es gibt unterschiedliche Arten von
Verknüpfungsgeneratoren für jede unterschiedliche Art von Geräten bzw. Einrichtungen 106. Daher konstruie-
ren die Hinzufügen-Routine 272 bzw. die Verknüpfungsgeneratoren 274 die physikalischen und logischen Na-
mensräume, die die Geräte 106 auf Kern- bzw. Benutzerebene global sichtbar machen.

[0058] Eine Ausführungsform der Erfindung beinhaltet einen Satz von DSOs 290 auf jedem Knoten des Clus-
ters 200, von denen jedes eine bestimmte Klasse 312 von Einrichtungen 106 verwaltet. Die entsprechenden
Geräteklassen sind ein neuer Aspekt der vorliegenden Erfindung, die die Besonderheit abdecken, mit der einer
Benutzeranforderung, ein bestimmtes Gerät 106 zu öffnen, von dem transparenten, globalen Gerätezugriffs-
9/28

DE 698 29 442 T2 2006.04.13
system im allgemeinen und von dem DCS 372 im besonderen genügt werden muß. In der bevorzugten Aus-
führungsform gibt es vier Geräteklassen: dev_enumerate 314, dev_node_specific 316, dev_global 318 und
dev_nodebound 320; und vier entsprechende DSOs 290: DSO_enum 292, DSO_nodespec 294, DSO_global
296 und DSO_nodebound 298.

[0059] Die dev_enumerate-Klasse 314 ist Geräten 106 zugeordnet, die mehrere Instanzen an einem be-
stimmten Knoten 202 haben können, die von ihrem zugeordneten Treiber 280 durchnumeriert werden, wenn
das jeweilige Gerät hinzugefügt wird (z. B. mehrere Speichereinrichtungen 120). Die dev_node_specific-Klas-
se 316 ist Geräten 106 zugeordnet, von denen es nur eine Instanz pro Knoten gibt (z. B. den Kernspeicher
116) und die als Folge davon nicht von ihren Treibern 280 durchnumeriert werden. Die dev_global-Klasse 318
ist für jene Einrichtungen 106 vorgesehen, auf die entweder lokal oder entfernt mittels eines Treibers zugegrif-
fen werden kann, der sich auf jedem Knoten befindet (z. B. Kommunikationseinrichtungen 118). Die
dev_nodebound-Klasse wird für Geräte verwendet, auf die nur mittels eines Treibers auf einem bestimmten
Knoten zugegriffen werden kann (z. B. HA-Einrichtungen 112).

[0060] Die Treiber 280 sind ähnlich den Treibern 140, außer daß sie zusätzliche Konfigurationsinformation für
jedes Objekt, das hinzugefügt wird, mitteilen, einschließlich der Geräteklasseninformation 312, falls verfügbar.

[0061] Die Datenstrukturen 300 beinhalten einen DevInfo-Baum 302 und eine ddi_minor_nodes-Tabelle 306.
Wie viele der OS-Routinen 240 sind die Datenstrukturen 300 ähnlich den gleichnamigen Datenstrukturen 160,
die nach dem Stand der Technik verwendet werden (Fig. 1). Jede enthält jedoch wichtige Unterschiede gegen-
über dem Stand der Technik, die das Funktionieren der vorliegenden Erfindung ermöglichen. Insbesondere
enthält der DevInfo-Baum 302 zusätzliche Zwischenknoten, die benötigt werden, um Einrichtungen ausge-
wählter Klassen innerhalb des Clusters 200 zu lokalisieren. Als eine Folge der Änderungen am physikalischen
Namensraum 305, die durch den DevInfo-Baum repräsentiert werden, unterscheidet sich auch der logische
Namensraum 304 von dem logischen Namensraum 164 nach dem Stand der Technik. Schließlich enthält die
ddi_minor_nodes-Tabelle 306 im Vergleich zu der nach dem Stand der Technik verwendeten
ddi_minor_nodes-Tabelle zusätzliche Felder. Zum Beispiel enthält die vorliegende ddi_minor_nodes-Tabelle
die Felder global_minor_number, local_minor_number und (Geräte)-Klasse 308, 310 und 312 (oben beschrie-
ben); die ddi_minor_nodes-Tabelle nach dem Stand der Technik enthielt keines der Felder 308 oder 312.

[0062] Der Knoten 204 beinhaltet einen Speicher 330, in dem die OS-Routinen/-Objekte 340 und die Daten-
strukturen 370 definiert sind. Die OS-Routinen/-Objekte 340 beinhalten das Gerätekonfigurationssystem
(DCS) 360, eine map_minor-Methode 362 auf dem DCS und einen Satz von DSOs 290, die identisch zu den
bereits beschriebenen sind. Die Datenstrukturen 370 beinhalten eine DCS-Datenbank 372.

[0063] Das DCS 360, zu dem es beim Stand der Technik kein Analogon gibt, dient mindestens zwei wichtigen
Funktionen. Als erstes arbeitet das DCS 360 mit den DDIs 270, um globale Nebennummern ("Minor-Num-
mern") neu hinzugefügten Geräten zuzuweisen, die es ermöglichen, daß diese Geräte global und transparent
zugreifbar sind. Als zweites wirkt das DCS 360 mit dem Dateisystem 206 und dem PxFS 244, Anwendungen
150 in die Lage zu versetzen, auf hinzugefügte Geräte 106 transparent zuzugreifen. Die DCS-Datenbank 372
hält alle wichtigen von dem DCS 372 erzeugten Ergebnisse in persistentem Speicher. Die beiden Aspekte der
DCS 360 werden nun anschließend unter Bezug auf die Fig. 7A–B bzw. Fig. 8A–B beschrieben.

[0064] In Fig. 7A ist ein Flußdiagramm abgebildet, das die Operationen darstellt, durch die das DDI-System
in einem Knoten 202 und das DCS 360 in dem Knoten 204 einen passenden dev_t-Wert, einen logischen Na-
men und einen physikalischen Namen für ein Gerät 380, das zu dem Knoten 202 hinzugefügt wird, einrichten.
Die DDIs 270, die Verknüpfungsgeneratoren 274, das DCS 360 und Erweiterungen davon fungieren gemein-
sam als ein Geräte-Registrator für das Cluster 200. Die Operationen und Nachrichten sind in derselben Weise
wie in Fig. 4A angegeben. Bevor die in dem Flußdiagramm wiedergegebenen Operationen beschrieben wer-
den, wird unter Bezug auf Fig. 7B die Beziehung zwischen einigen der Namensräume beschrieben, die von
einer Ausführungsform der Erfindung verwaltet werden.

[0065] In Fig. 7B ist ein konzeptionelles Diagramm des Minor-Namens-/Nummern-Raumes 307, des physi-
kalischen Namensraumes 305 und des logischen Namensraumes 304 abgebildet, die in einer Ausführungs-
form der Erfindung für einen beispielhaften Cluster, der die beiden Knoten 202-1, 202-2 enthält, verwendet wer-
den. Wie unten beschrieben weist jedesmal, wenn ein Gerät 106 zu einem Knoten 202 hinzugefügt wird, des-
sen Treiber ihm eine lokale Minor-Nummer 307_num und einen Namen 307_name zu. Das DDI 270 verwendet
diese Information, um eine global eindeutige Minor-Nummer zu erzeugen und einen global eindeutigen physi-
kalischen Namen 305_name für das Gerät 106 zu bilden. Der physikalische Name 305_name lokalisiert das
10/28

DE 698 29 442 T2 2006.04.13
Gerät in der Gerätehierarchie des Clusters. Die Verknüpfungsgeneratoren 274 bilden dann den physikalischen
Namen 305_name auf einen global eindeutigen logischen Namen 304_name ab. Man beachte, daß die DDIs
270-1, 270-2 und die Verknüpfungsgeneratoren 274-1, 274-2 gemeinsam allgemeine, globale, physikalische
und logische Namensräume 305 bzw. 304 erzeugen. Im Gegensatz dazu erzeugt jeder Treiber einen Mi-
nor-Namens/Nummern-Raum nur für seinen Knoten 202. Daher bildet die Ausführungsform lokale Minor-Na-
men/Nummern auf globale physikalische und logische Namen ab. Diese globalen Namensräume sind Teil des
Dateisystems 206. Folglich kann eine Anwendung 150 auf irgendeinem Knoten 202 das Dateisystem 206 ver-
wenden, um alle Geräte 106 auf dem Cluster 200 zu sehen und darauf zuzugreifen, als wenn sie sich auf einem
einzigen Computer befinden würden. Nachdem die Namensräume beschrieben wurden, die den Rahmen für
sie bilden, wird nun eine Ausführungsform der Erfindung unter Bezug auf Fig. 7B beschrieben.

[0066] Wenn das Gerät 106 in Fig. 7A zu dem Knoten 202 hinzugefügt wird, setzt das DDI 270 eine Hinzu-
fügen-Nachricht (7-1a) an den Treiber 280 ab. Im Gegenzug setzt der Treiber 280 eine
create_ddi_minor_nodes-Nachricht (7-1b) für jedes der gerade hinzugefügten Instanz zugeordnete Gerät an
das DDI 270 ab. Die create_ddi_minor_nodes-Nachricht (7-1b) gibt die Konfiguration des Gerätes 380 ein-
schließlich einer lokalen Minor-Nummer (minor_num) 382 und eines minor_name 384 an, die vom geeigneten
Gerätetreiber 280 und einer aus den Klassen 312 ausgewählten device_class 386 zugewiesen werden. Wenn
zum Beispiel das Gerät das dritte zu dem Knoten 202 hinzugefügte SCSI-Plattenlaufwerk wäre, könnten
minor_num, minor_name und Klasse "3", "a" (was angibt, daß es die erste Scheibe bzw. Slice auf diesem Gerät
ist) bzw. "dev_enumerate" sein.

[0067] Als Reaktion auf die create_minor_nodes-Nachricht (7-1b) aktualisiert das DDI 270 die
ddi_minor_nodes-Tabelle 306, indem das local_minor_num-Feld 310 gleich dem minor_num-Wert 382 gesetzt
wird (7-2). Das DDI 270 setzt dann eine dc_map_minor-Nachricht (7-3) an das DCS 360 ab, die das DCS 360
auffordert, eine passende globale Minor-Nummer 388 für das Gerät 380 zurückzugeben. Was im vorstehenden
Satz mit "passend" gemeint ist, hängt von der Geräteklasse ab. Das bedeutet, dev_enumerate- und
dev_nodebound-Geräte erfordern eindeutige globale Minor-Nummern 388 und dev_global- und
dev_nodespecific-Geräte erfordern das nicht. Die dc_map_minor-Nachricht (7-3) hat drei Felder: (1) "gminor",
welches ein Rückgabefeld für die von dem DCS 360 erzeugte globale Minor-Nummer 388 ist; (2) "Iminor", wel-
ches die von dem Gerätetreiber 280 erzeugte lokale Minor-Nummer 384 enthält; und (3) "class", welches die
von dem Gerätetreiber 280 erzeugte Geräteklasse 386 enthält. Als Reaktion auf die map_minor-Nachricht
(7-3) setzt das DCS 360 eine ähnliche ds_map_minor-Nachricht (7-4) an das lokale DSO 290 für die in der
Nachricht (7-3) angegebene Klasse ab.

[0068] Das DSO 290 bestimmt unter anderem die globale Minor-Nummer (gmin) 388, die dem Gerät, das hin-
zugefügt wird, zugewiesen werden sollte. Wie die gmin-Nummer zugewiesen wird, hängt von der Klasse 386
des Gerätes ab. Zum Beispiel weist das DSO 292 für die dev_enumerate-Klasse 314 jedem
dev_enumerate-Gerät eine gmin-Nummer 388 zu, die über den Cluster hinweg eindeutig ist, weil auf jedes auf-
gezählte Gerät an einem bestimmten Knoten zugegriffen werden muß. Im Gegensatz dazu weist das DSO 296
für die dev_global-Klasse 318 jedem dev_global-Gerät dieselbe gmin-Nummer zu, da es unerheblich ist, an
welchem Knoten auf ein solches Gerät zugegriffen wird. Wie für die anderen Klassen weist das DSO 294 für
die dev_nodespecific-Klasse 316 jedem Gerät dieser Klasse dieselbe gmin-Nummer ungleich Null zu und das
DSO 298 weist für die dev_nodebound-Klasse 320 jedem Gerät dieser Klasse eine gmin-Nummer zu, die über
den Cluster hinweg eindeutig ist.

[0069] Die DSOs 292, 298 weisen globale Minor-Nummern zu, indem sie zuerst die DCS-Datenbank 372 be-
fragen, um festzustellen, welche globale Minor-Nummern noch verfügbar sind.

[0070] Die DCS-Datenbank 372 wird in persistentem Speicher gehalten und enthält für alle Geräte 106 in dem
Cluster 200 Felder für die Major-Nummer 390, die globale Minor-Nummer 388, die interne (oder lokale) Mi-
nor-Nummer 382 und die Geräte-Server-Id 392 (die die Server-Klasse 386 und den numerischen Wert 394 be-
inhaltet). Der Minor-Name, die Major-Nummer, die globale Minor-Nummer und die lokale Minor-Nummer wur-
den bereits beschrieben. Der numerische Wert 394 bezeichnet den Knoten 202, der der Server für das Gerät,
das hinzugefügt wird, ist. Diese Information ist für die dev_global- und dev_nodespecific-Geräte optional, da
die Kennung eines Servers für die erste Klasse unerheblich ist, und für den zweiten Fall dieselbe wie die Lo-
kation des Knotens ist, welcher Knoten auch immer auf das Gerät zugreifen möchte. Ein Beispiel der DCS-Da-
tenbank 272 ist in Tabelle 1 abgebildet.
11/28

DE 698 29 442 T2 2006.04.13
[0071] Die erste Zeile von Tabelle 1 zeigt einen Eintrag für eine tcp-Schnittstelle. Eine tcp-Schnittstelle ist ein
dev_global-Gerät, da auf sie von jedem Knoten 202 in dem Cluster 200 zugegriffen werden kann. Das tcp-Ge-
rät hat eine Major-Nummer von 42, welches der allen tcp-Treibern zugeordnete Wert ist. Man beachte, daß ihre
globalen und lokalen Minimalwerte 388, 382 und der numerische Serverwert 394 (d. h. node_id) auf Null ge-
setzt sind. Das liegt daran, daß es unerheblich ist, von welchem Knoten auf die tcp-Schnittstelle zugegriffen
wird. Folglich gibt es nur einen tcp-Eintrag in der DCS-Datenbank für den gesamten Cluster 200. Der zweite
Eintrag in Tabelle 1 ist für ein Kernspeicher-Gerät, auf welches per Voreinstellung lokal zugegriffen wird. Aus
diesem Grund ist es von der dev_nodespecific-Klasse. Die Major-Nummer 13 ist dem kmem-Gerätetreiber zu-
geordnet. Das kmem-Gerät hat einen numerischen Wert 394 von Null, da auf kmem-Geräte nicht an irgendei-
nem bestimmten Server zugegriffen wird, und identische globale und lokale Nebenwerte (12) ungleich Null.
Das ist der Fall, da für dev_nodespecific-Geräte das DCS 360 einfach eine globale Minor-Nummer zuweist, die
mit der lokalen Minor-Nummer identisch ist. In dem vorliegenden Beispiel gibt es nur einen kmem-Eintrag von
der dev_nodespecific-Vielfalt in der DCS-Datenbank 372, da es keinen Bedarf gibt, zwischen den auf den je-
weiligen Knoten 202 gelegenen kmem-Geräten zu unterscheiden.

[0072] Der dritte Eintrag ist für eine SCSI-Platte c0t0d0t0, dessen SCSI-Treiber die Major-Nummer 32 hat.
Das DCS 360 hat dem SCSI-Gerät eine globale Minor-Nummer 388 zugewiesen, die mit seiner lokalen Mi-
nor-Nummer 382 (24) übereinstimmt, da es keine anderen SCSI-Geräte gibt, die in der DCS-Datenbank 372
repräsentiert werden. Wenn jedoch ein anderes SCSI-Gerät c0t0d0t0 an einem anderen Knoten mit derselben
lokalen Nummer (24) registriert würde, würde das DCS 360 diesem SCSI eine unterschiedliche globale Num-
mer zuweisen, vielleicht 25. Um SCSI-Geräte mit denselben lokalen Nummern zu unterscheiden, enthält die
DCS-Datenbank 372 die vollständige Serverinformation. In diesem Fall ist der numerische Wert 394 auf die
hostid von Server 202 gesetzt.

[0073] Die Einträge vier bis sieben sind für vier Kernspeicher-Geräte, die als dev_enumerate-Geräte regist-
riert sind. In der bevorzugten Ausführungsform können jedesmal, wenn ein dev_nodespecific-Gerät registriert
wird, zusätzliche Einträge in der DCS-Datenbank 372 für alle Knoten 202 in dem Kern erzeugt werden, was
einem Benutzer ermöglicht, auf ein dev_nodespecific-Gerät auf einem anderen als dem lokalen Knoten zuzu-
greifen. Folglich kann das DCS 260 unter der Annahme, daß es vier Knoten 202-1, 202-2, 202-3 und 202-4
gibt, ein Kernspeicher-Gerät von der dev_enumerate-Klasse für jeden dieser Knoten registrieren. Wie bei an-
deren dev_enumerate-Geräten wird jedem kmem-Gerät eine eindeutige globale Nummer zugewiesen. Die
dev_enumerate-Information würde nicht verwendet werden, wenn ein Benutzer eine generische Anforderung
zum Öffnen eines Kernspeicher-Gerätes absetzt (z. B. open(/devices/kmem)). Die dev_enumerate-Information
würde verwendet werden, wenn ein Benutzer eine spezifische Anforderung zum Öffnen eines Kernspei-
cher-Gerätes absetzt. Zum Beispiel ermöglicht die Anforderung open(/devices/kmem0) einem Benutzer, das
kmem-Gerät auf dem Knoten 0 zu öffnen.

[0074] Der letzte Eintrag zeigt, wie ein generisches Hochverfügbarkeits-(HA)-Gerät in der DCS-Datenbank
372 dargestellt wird. Die Major-Nummer 390, die globale Minor-Nummer und die lokale Minor-Nummer werden
aus den Werten M, X1 und X1 genommen, die in der map_minor_nodes-Nachricht geliefert werden. Der nu-
merische Wert 394 wird auf die Id des Gerätes gesetzt, das an einen bestimmten Knoten gebunden ist. Diese
"Id" ist keine Knoten-Id. Vielmehr wird die Id für jeden HA-Dienst eindeutig für den Cluster 200 erzeugt.

[0075] Sobald die globale Minor-Nummer 388 für das Gerät 380 ermittelt ist, aktualisiert das entsprechende

Tabelle 1
12/28

DE 698 29 442 T2 2006.04.13
DSO 290 die DCS-Datenbank 372 mit der neuen Information (7-5) und gibt die globale Minor-Nummer 388 an
das DCS 360 zurück (7-6). Das DCS 372 gibt dann die globale Minor-Nummer 388 an das DDI 270 zurück
(7-7), welches die ddi_minor_nodes-Tabelle 306 (7-9), den logischen Namensraum 304, den physikalischen
Namensraum 305 und den dev_info-Baum 302 aktualisiert (7-9). Das DDI 270 aktualisiert die
ddi_minor_nodes-Tabelle 306, indem es die neue globale Minor-Nummer 388 dort hineinschreibt. Die Aktuali-
sierung der Namenräume 304/305 ist komplizierter und wird nun beschrieben.

[0076] Zuerst fügt das DDI 270 einen neuen Blattknoten zu dem DevInfo-Baum 302 hinzu, dessen Struktur
gegenüber der zuvor mit Bezug auf Fig. 3 beschriebenen geändert wurde, um gleich unter dem "/de-
vices"-Knoten eine zusätzliche Ebene von "/hostid"-Knoten zum Repräsentieren der Stellen im Cluster, an de-
nen dev_enumerate hinzugefügt werden, einzufügen. Man beachte, daß jeder Knoten 202 seinen eigenen De-
vInfo-Baum 270 hat, der die Geräte an diesem Knoten repräsentiert. Wie durch den physikalischen Namens-
raum dargestellt, verschmilzt jedoch die Zusammenfassung der DevInfo-Bäume mit den zusätzlichen /hos-
tid-Knoten zu einer einzigen Darstellung. (z. B. könnte ein typischer physikalischer Name mit der Zeichenkette
/devices/hostid/... beginnen). Jedem Gerät ist auf der Blattebene auch seine globale Minor-Nummer 388 zu-
geordnet, nicht seine lokale Minor-Nummer 382. Wo es darauf ankommt (d. h. für dev_enumerate-Geräte),
wird der dev_t-Wert jedes Blattknotens des DevInfo-Baumes 302 von der globalen Minor-Nummer 388 des ent-
sprechenden Gerätes und der Major-Nummer 390 seines Treiber abgeleitet. Zum Beispiel wird der physikali-
sche Pfad zu einer SCSI-Platte an einem Knoten 202-x mit einer globalen Minor-Nummer GN, einem Mi-
nor-Namen MN und Treiber sd@addry in der vorliegenden Erfindung repräsentiert als:
/devices/node_202-x/iommu@addr/sbus@addr/esp@addr/sd@addry:MN.

[0077] Dieser physikalische Name entspricht dem physikalischen Namen der UFS-Datei 170 (Fig. 2B), die
Konfigurierungsinformation für das gegebene Gerät enthält, wobei sie in ihren Attributen den von den Major-
und globalen Minor-Nummern abgeleiteten dev_t-Wert beinhaltet.

[0078] Die Verknüpfungsgeneratoren 274 der vorliegenden Erfindung leiten einen logischen Namen für das
Gerät (und für das entsprechende UFS) von mindestens einem Teil des DevInfo-Pfades und des Minor-Na-
mens ab, der von dem Treiber geliefert wird, modifiziert gemäß der von dem DCS zurückgelieferten globalen
Minor-Nummer.

[0079] Zum Beispiel angenommen, daß der Knoten 202-1 eine SCSI-Platte mit vier Abschnitten hat, denen
ursprünglich von ihrem Treiber die Minor-Namen a-d und die Minor-Nummern 0-3 zugewiesen sind, und der
Knoten 202-2 eine SCSI-Platte mit sechs Abschnitten hat, denen die Minor-Namen a-f und die Minor-Nummern
0-5 zugewiesen sind. Es sei angenommen, daß das DCS 360 für die erste SCSI-Platte die globalen Mi-
nor-Nummern 0-3 und für die zweite SCSI-Platte die globalen Minor-Nummern 4-9 zurückliefert, wenn diese
Geräte hinzugefügt werden. Mittels dieser globalen Minor-Nummern erzeugen die DDIs 270 physikalische Na-
men (unten beschrieben), und die Verknüpfungsgeneratoren 274 verwenden die DDIs 270 zum Erzeugen von
logischen Namen, die auf die physikalischen Namen wie folgt abgebildet werden:

[0080] Die den Knoten 202-1 und 202-2 zugewiesenen logischen Namen haben unterschiedliche Clus-
ter-Werte (der cx-Teil der logischen Namenszeichenkette cxt0d0sy, wobei "x" und "y" Variablen sind). Das liegt
daran, daß sich die logischen Name auf physikalische Gerätenamen abbilden, und in einem Cluster Geräten
auf unterschiedlichen Knoten unterschiedlichen Steuerungen zugeordnet sind. Zum Beispiel wird die Steue-
rung auf Knoten 202-1 als c0 und die Steuerung auf Knoten 202-2 als c1 dargestellt.

[0081] Die DDIs 270 erzeugen den physikalischen Namensraum 305 mittels derselben gmin-Information und
erzeugen eine Abbildung zwischen logischen Namen und physikalischen Namen, die Dateien bezeichnen, de-
ren Attribute die dev_t-Werte für die entsprechenden Geräte enthalten. Für das obige Beispiel wird der logische

Minor-Name vom Treiber 280 logischer Name von den Verknüpfungsgeneratoren
274

a (Knoten 202-1) /dev/dsk/c0t0d0s0
b " /dev/dsk/c0t0d0s1
c " /dev/dsk/c0t0ds2
d " /dev/dsk/c0t0d0s3
a (Knoten 202-2) /dev/dsk/c1t0d0s0
b " /dev/dsk/c1t0d0s1
...
f " /dev/dsk/c1t0d0s5
13/28

DE 698 29 442 T2 2006.04.13
Namensraum 304 und die Abbildung des logischen Namensraumes auf den physikalischen Namensraum wie
folgt aktualisiert (man beachte, daß addr für irgendeine Adresse steht):

[0082] Das gerade dargestellte Beispiel zeigt, daß die DDIs 270 logische und physikalische Namen für
dev_enumerate-Geräte erzeugen, wobei SCSI-Geräte Mitglied dieser Klassen sind. Kurz zusammengefaßt er-
fordern die Regeln zum Benennen von dev_enumerate-Geräten, daß jede von einem bestimmten Treiber (z.
B. sd) durchnumerierte Instanz eine eindeutige globale Minor-Nummer haben muß, die, wenn sie mit der Ma-
jor-Nummer ihres Treibers kombiniert wird, einen entsprechenden eindeutigen dev_t-Wert bildet. Diese Regeln
geben auch vor, daß der jeder Instanz zugeordnete physikalische Name die hostid dieser Instanz und die glo-
bale Minor-Nummer der Instanz zusätzlich zu anderen traditionellen physikalischen Pfadinformationen enthal-
ten muß. Die Regeln zum Benennen der anderen Geräte von anderen Klassen sind ähnlich zu den oben für
die dev_enumerate-Klasse beschriebenen.

[0083] Insbesondere weist das DDI 270 einem dev_nodespecific-Gerät einen logischen Namen der Form
/dev/device_name und einen physikalischen Namen der folgenden Form zu:
/devices/pseudo/driver@gmin:device_name, wobei device_name der Name 384 ist, pseudo anzeigt, daß die
Geräte dieses Typs Pseudo-Geräte sind, driver die Id des entsprechenden Treibers ist und
@gmin:device_name die globale Nummer 388 und den Gerätenamen 384 des dev_nodespecific-Gerätes an-
gibt. Zum Beispiel könnten der logische und der physikalische Name eines Kernspeicher-Gerätes /dev/kmem
bzw. /devices/pseudo/mm@12:kmem sein. Wie oben erwähnt, kann einem kmem-Gerät auch ein logischer
Name gegeben werden, der es ermöglicht, auf einem speziellen Knoten darauf zuzugreifen. Zum Beispiel kann
das DDI 270 den logischen Namen /dev/kmem0 auf den physikalischen Namen /devices/hostid0/pseu-
do/mm@0:kmem abbilden.

[0084] Für die dev_global-Klasse identifiziert jeder von dem DDI erzeugte logische Name einen gemeinsa-
men physikalischen Pfad, der von dem Dateisystem zu irgendeinem Gerät in dem Cluster 200 aufgelöst wird.
Logische Namen für diese Geräte sind von der Form /dev/device_name und werden auf physikalische Namen
der folgenden Form abgebildet: /devices/pseudo/clone@gmin:device_name, wobei device_name der Name
384 ist, der spezifisch für den Treiber ist, pseudo anzeigt, daß die Geräte dieses Typs Pseudo-Geräte sind,
clone anzeigt, daß das Gerät klonierbar ist und @gmin:device_name die globale Nummer 388 und den Gerä-
tenamen 384 des dev_global-Gerätes angibt. Zum Beispiel könnte das tcp-Gerät von Tabelle 1 einen logischen
Name /dev/tcp und einen physikalischen Name /devices/pseudo/clone@0:tcp haben. Man beachte, daß die
Ausführungsform der Erfindung nicht zuläßt, daß irgendeines der dev_global-Geräte unterscheidbar gemacht
wird wie in dem oben beschriebenen Fall der kmem-Geräte. Das bedeutet, alle dev_global-Geräte sind unun-
terscheidbar.

[0085] Ein Vorzug des klassenbasierten Benennungssystems einer Ausführungsform der Erfindung ist, daß
es mit herkömmlicher Software, die für frühere Versionen von Solaris ausgelegt ist, kompatibel ist. Zum Bei-
spiel könnte ein herkömmliches Programm eine Anforderung open(/dev/kmem) absetzen, in welchem Fall eine
Version von Solaris, die die vorliegende Erfindung einbezieht, ein Handle zu dem lokalen kmem-Gerät zurück-
liefert. Ähnliche Ergebnisse werden für dev_global- und dev_enumerate-Geräte geliefert. Es gab beim Stand
der Technik kein Konzept bzw. keinen Ansatz für dev_nodebound-Geräte.

[0086] Nachdem beschrieben wurde, wie das DDI 270 und das DCS 360 einen konsistenten globalen Na-
mensraum bilden, in dem auf unterschiedliche Klassen von Geräten auf unterschiedlichen Knoten des Clusters
200 zugegriffen werden kann, werden nun unter Bezug auf die Fig. 8A und Fig. 8B die Schritte beschrieben,
die von einer Ausführungsform der Erfindung verwendet werden, um auf eine Öffnen-Anforderung für ein Gerät

logischer Name physikalischer Name vom DevInfo-Baum 302
/dev/dsk/c0t0d0s0 /devices/node_202-1/iom-

mu@addr/sbus@addr/esp1@addr/sd@0:a
/dev/dsk/c0t0d0s1 " /esp1@addr/sd@0:b
/dev/dsk/c0t0d0s2 " /esp1@addr/sd@0:c
/dev/dsk/c0t0d0s3 " /esp1 @addr/sd@0:d
/dev/dsk/c1t0d0s0 /devices/node_202-2/iom-

mu@addr/sbus@addr/esp1@addr/sd@0:minor
/dev/dsk/c1t0d0s1 " /esp1@addr/sd@0:r
...
/dev/dsk/c1t0d0s2 " /esp1@addr/sd@0:f
/dev/dsk/c0t0d0s5 " /esp1@addr/sd@0:i
14/28

DE 698 29 442 T2 2006.04.13
auf einem anderen Knoten zu antworten.

[0087] In den Fig. 8A und Fig. 8B werden Flußdiagramme der von einer Ausführungsform der Erfindung als
Reaktion auf eine Anforderung (8-1) durchgeführten Schritte dargestellt, wobei die Anforderung von einer auf
einem Knoten 202-1 ausgeführten Anwendung 150 abgesetzt wird, um auf ein Gerät 106-2 (Fig. 8B) zuzugrei-
fen (es zu öffnen), das sich an einem Knoten 202-3 befindet. In diesem Beispiel befinden sich das Dateisystem
206 und das DCS 360 auf den Knoten 202-2 bzw. 204. Die Anwendung 150 setzt eine Öffnen-Anforderung auf
den logischen Namen des Gerätes an den Kern 242 ab. Der Kern 242 fragt dann beim Dateisystem 206 an,
um den dev_t-Wert des Gerätes festzustellen. Weil das Dateisystem auf einem anderen Knoten als der Kern
242 liegt, ist dies ein Mehrschritt-Prozeß, der die Verwendung eines Proxy-Dateisystems PxFS involviert, von
dem die meisten Aspekte bereits durch aktuelle Versionen von Solaris definiert sind. Die Ausführungsform mo-
difiziert jedoch solche Elemente des Proxy-Dateisystems wie etwa die PxFS-Clients 246 und die PxFS-Server
248, um Interaktionen mit dem DCS 360 zu unterstützen, für die es kein Analogon in früheren Versionen von
Solaris gibt. Die Interaktionen zwischen dem PxFS-Client 246, dem PxFS-Server 248 und dem Dateisystem
206 werden nun kurz beschrieben.

[0088] Ein Objekt wie der Kern 242, das Zugriff auf das Dateisystem 206 benötigt, setzt zunächst die Zu-
griffsanforderung an seinen lokalen PxFS-Client 246 ab. Der PxFS-Client hält eine Referenz auf den
PxFS-Server 248, der bei dem Dateisystem 206 angesiedelt ist. Diese Referenz setzt den PxFS-Client 246 in
die Lage, die Anforderung des Kerns an das Dateisystem 206 über den PxFS-Server 248 zu kommunizieren.
Das Dateisystem 206 führt den angeforderten Zugriff aus, erzeugt ein vnode-Objekt 252, das die angeforderte
Datei repräsentiert, und gibt eine Referenz auf das vnode-Objekt 252 an den PxFS-Server 248 zurück. Weil
die Knoten 202-1 und 202-2 verschiedene Adreßräume sind, ist die Referenz auf den vnode 252 für den
PxFS-Client 246 und den Kern 242 in dem Knoten 202-1 nutzlos. Folglich erzeugt der PxFS-Server 248 ein
Datei-Transport-Objekt (f_obj) 250, das mit dem vnode 252 verknüpft ist, und gibt eine Referenz auf das f_obj
250 an den PxFS-Client 246 zurück. Beim Empfang der f_obj-Referenz erzeugt der PxFS-Client 246 einen Pro-
xyvnode (px_vnode) 256, der mit dem f_obj 250 verknüpft ist. Der Kern 242 kann dann auf die Dateiinformation
zugreifen, die durch den vnode 252 repräsentiert wird, indem er einfach auf den lokalen px_vnode 256 zugreift.

[0089] Mittels dieses Mechanismus' setzt der Kern 242 eine Nachschlage- bzw. Lookup-Nachricht (8-2) auf
den logischen Namen des zu öffnenden Gerätes an den PxFS-Client 246 ab, der eine ähnliche Lookup-Nach-
richt (8-3) an den PxFS-Server 248 weiterleitet. Der PxFS-Server 248 setzt an das Dateisystem 206 eine
lookup(logical_name), get_vnode-Nachricht (8-4) ab, die das Dateisystem 206 auffordert, über eine logische
symbolische Verknüpfung den logical_name auf den zugehörigen physical_name abzubilden und eine Refe-
renz auf einen v_node 252 zurückzugeben, die die durch diesen physical_name bezeichnete UFS-Datei reprä-
sentiert. Wenn sich der physical_name auf ein Gerät bezieht wie in dem vorliegenden Beispiel, beinhalten die
Attribute des Gerätes den eindeutigen dev_t-Wert des Gerätes. Wie oben beschrieben gibt das Dateisystem
206 daraufhin den vnode an den PxFS-Server 248 zurück (8-5), und der PxFS-Server 248 erzeugt ein entspre-
chendes f_obj 250 und gibt die Referenz auf das f_obj 250 an den PxFS-Client 246 zurück (8-6). Der PxFS-Cli-
ent 246 erzeugt dann einen px_vnode 256, dessen Attribute die dev_t-Information für das angeforderte Gerät
beinhalten, und übergibt die Referenz auf den px_vnode 256 an den Kern 242 (8-7). Zu diesem Zeitpunkt setzt
der Kern 242 eine Öffnen-Nachricht (8-8) für den px_vnode 246 an den PxFS-Client 246 ab. Auf den Empfang
dieser Nachricht hin ermittelt der PxFS-Client 246 aus den Attributen des px_vnode, die einen dev_t-Wert be-
inhalten, daß der entsprechende vnode 252 ein Gerät repräsentiert und daß die Öffnen-Nachricht daher von
dem DCS 360 behandelt werden muß. Wenn der px_vnode 256 keinen dev_t-Wert beinhaltet, würde der
PxFS-Client 246 die Öffnen-Anforderung (8-8) durch andere Kanäle erfüllen. Wie in früheren Versionen von
Solaris implementiert führt der PxFS-Client kein Testen auf dev_t-Werte durch, da Geräte nur lokal zugänglich
sind.

[0090] Weil der px-vnode 256 einen dev_t-Wert 430 beinhaltet, setzt der PxFS-Client 246 eine Auflö-
sen-Nachricht (8-9) an das DCS 360 für das zu dem dev_t gehörige Gerät ab. Wie das DCS 360 diese Anfor-
derung behandelt, wird nun unter Bezug auf Fig. 8B beschrieben.

[0091] Mit Bezug auf Fig. 8B sieht das DCS 360 als Reaktion auf die resolve(dev_t)-Nachricht (8-9) in der
DCS-Datenbank 372 nach, um die Lage und die Kennung des Gerätes zu ermitteln, das diesem dev_t-Wert
entspricht. Konsistent mit den vorhergehenden Diskussionen der Geräteklassen 312 wird auf Geräte der
dev_enumerate- oder dev_nodebound-Klassen auf einem bestimmten Knoten zugegriffen, dessen Lage in
dem numerischen Wertefeld 394 der DCS-Datenbank 372 angegeben ist. Im Gegensatz dazu wird auf Geräte
der dev_global- oder dev_nodespecific-Klassen auf dem fokalen Knoten der anfordernden Anwendung zuge-
griffen. Sobald es die Lage des zu öffnenden Gerätes ermittelt hat, gibt das DCS 360 an den PxFS-Client 246
15/28

DE 698 29 442 T2 2006.04.13
eine Referenz (DSO_ref) auf das DSO 290 zurück (8-10), das die Geräteklasse verwaltet, zu der das angefor-
derte Gerät gehört und lokal zu dem Knoten ist, der das angeforderte Objekt beheimatet. In dem vorliegenden
Beispiel würde unter der Annahme, daß das angeforderte Gerät 106-2 von der dev_enumerate-Klasse ist und
auf dem Knoten 202-3 beheimatet ist, das zurückgelieferte DSO_ref auf das DSO_enum-Objekt 292 auf dem
Knoten 202-3 verweisen.

[0092] Nach Empfang der Nachricht (8-10) setzt der PxFS-Client 246 eine get_device_fobj-Anforderung für
das Gerät 106-2 an das referenzierte DSO 292 ab (8-11). Im Gegenzug setzt das DSO 292 eine
create_specvp()-Nachricht (8-12) ab, die das SpecFS 410 auf dem Knoten 202-3 auffordert, den snode für das
Gerät 106-2 zu kreieren und zurückzugeben (8-13). Das DSO 292 fordert daraufhin die f_obj-Referenz auf den
snode von dem PxFS-Server 248-2 an (8-14a), der das angeforderte f_obj zurückliefert (8-14b). Das DSO 292
gibt dann die f_obj-Referenz auf den snode an den PxFS-Client 246 zurück (8-15). Der Client 246 setzt dann
eine Öffnen-Anforderung (8-16) auf dieses f_obj ab, die über den PxFS-Server 248-2 zu dem SpecFS 410 geht
(8-17).

[0093] Das SpecFS 410 versucht dann, das Gerät 106-2 zu öffnen. Abhängig vom Ergebnis der Öffnen-Ope-
ration gibt das SpecFS 410 eine Status-Nachricht (8-18) zurück, die entweder Erfolg oder Fehlschlag anzeigt.
Wenn das Öffnen erfolgreich war, enthält die Status-Meldung (8-18) auch eine Referenz auf den geöffneten
snode 432. Auf den Empfang von "Erfolg" in der Status-Meldung (8-18) hin erzeugt der PxFS-Server 248-2 das
f_obj 250-2 für den geöffneten v-node 252-2 und gibt ihn an den PxFS-Client 246 zurück (8-19), der einen
px_vnode 256-2 erzeugt, der über Knoten hinweg mit dem f_obj 250-2 verknüpft ist. Als abschließenden Schritt
in der Geräte-Öffnen-Operation gibt der PxFS-Client den px_vnode 256-2 an den Kern 242 zurück (8-20), der
einen entsprechenden Dateideskriptor (fd) 434 im Benutzerraum kreiert. Der Kern 242 gibt diesen Dateides-
kriptor an die Anwendung 150-1 zurück (8-21), die dann den Dateideskriptor 434 verwenden kann, um direkt
(d. h. über den Kern 242, den PxFS-Client 246 und den px_vnode) mit dem Gerät 106-2 zu interagieren.

[0094] Während die vorliegende Erfindung unter Bezug auf einige spezielle Ausführungsformen beschrieben
wurde, ist die Beschreibung eine Veranschaulichung der Erfindung und ist nicht als Einschränkung der Erfin-
dung auszulegen. Verschiedene Abwandlungen bieten sich für Fachleute auf dem Gebiet an, ohne daß da-
durch der Geltungs- bzw. Anwendungsbereich der Erfindung verlassen wird.

Patentansprüche

1. System, welches dafür ausgelegt ist, einen globalen Zugriff auf physikalische Geräte zu gewährleisten,
welche auf einem Computercluster angeordnet sind, welches eine Mehrzahl von Knoten aufweist, wobei das
System aufweist:
ein globales Dateisystem (206),
ein Gerätekonfigurationssystem (DCS) (360),
wobei das globale Dateisystem dafür ausgelegt ist, daß es auf eine Anforderung nach Zugriff auf ein solches
physikalisches Gerät, die von einem der Knoten ausgegeben wird, reagiert, indem es eine DSO-Handhabe von
dem DCS anfordert,
zumindest ein Geräteserverobjekt (DSO) (290),
wobei das DCS dafür ausgelegt ist, daß es in Reaktion auf die Anforderung vom dem globalen Dateisystem
eine Identität eines ersten DSO bestimmt, welches zu dem angeforderten physikalischen Gerät gehört,
dadurch gekennzeichnet, daß das System weiterhin ein Proxy-Dateisystem (246, 248) aufweist, wobei das
DCS dafür ausgelegt ist, zu dem Proxy-Dateisystem eine Referenz auf das erste DSO zu tiefem,
wobei das Roxy-Dateisystem dafür ausgelegt ist, einen Dateideskriptor für den anschließenden Gebrauch
beim Zugriff auf das angeforderte physikalische Gerät bereitzustellen.

2. System nach Anspruch 1, wobei das DCS auf einem der Knoten angesiedelt ist und wobei das System
weiterhin aufweist:
einen gemeinsamen Betriebssystemkern, der auf jedem der Knoten in dem Computercluster läuft,
eine Gerätetreiberschnittstelle (DDI) (270), die auf jedem der Knoten läuft, und
eine Mehrzahl von Gerätetreibern, die auf jedem der Knoten angeordnet sind, wobei jeder der Gerätetreiber
dafür ausgelegt ist, einen Typ eines physikalischen Gerätes zu verwalten und jedem dieser Gerätetreiber eine
eindeutige größere Zahl zugeordnet ist,
jeder Gerätetreiber dafür ausgelegt ist, dann, wenn ein neues Gerät eines passenden Typs an dem entspre-
chenden Knoten angebracht wird, eine Anschlußnachricht an die DDI auszugeben, welche eine lokale Ken-
nung (locid) des neu angebrachten Gerätes anzeigt,
wobei die DDI dafür ausgelegt ist, in Reaktion auf die Anschlußnachricht eine Plananforderung an das DCS
16/28

DE 698 29 442 T2 2006.04.13
nach einer eindeutigen, globalen kleineren (gmin)-Zahl für das angeschlossene Gerät auszugeben, wobei die
Plananforderung die größere Zahl und die locid des angeschlossenen Gerätes anzeigt,
und das DCS dafür ausgelegt ist, in Reaktion auf die Plananforderung (a) die gmin-Zahl zu bestimmen, (b) die
gmin-Zahl an die DDI zu liefern und (c) die gmin-Zahl, die größere Zahl und die lokale Kennung zu speichern,
und wobei die DDI dafür ausgelegt ist, die gmin-Zahl, die von dem DCS bereitgestellt wird, und die größere
Zahl, dem angeschlossenen Gerät zuzuordnen, so daß das angeschlossene Gerät in Reaktion auf eine Anfor-
derung zum Öffnen des angeschlossenen Gerätes von dem Dateisystem aus zugänglich ist.

3. System nach Anspruch 1, wobei das DCS, das globale Dateisystem und das angeforderte Gerät sich
jeweils auf verschiedenen Knoten befinden und das Proxy-Dateisystem einen Proxy-Dateisystem-Klienten
(246) auf einem ersten Knoten und einen Proxy-Dateisystem-Server (248) auf einem zweiten Knoten aufweist,
welche ermöglichen, daß Anwendungen auf dem ersten Knoten transparent mit Dateiobjekten kommunizieren,
die gemeinsam mit dem angeforderten Gerät auf dem zweiten Knoten angeordnet sind.

4. System nach Anspruch 1, wobei das zumindest eine DSO einen Satz von Geräteserverobjekten auf je-
dem Knoten des Clusters aufweist, von welchem jeder eine entsprechende Geräteklasse verwaltet.

5. System nach Anspruch 4, wobei die Geräteklasse ein Mitglied eines Satzes von Geräteklassen ist, wel-
cher zumindest eine der folgenden umfaßt:
"dev_enumerate", für die Kennzeichnung von Geräten mit zumindest einem Auftreten, welches durch einen
besonderen Treiber verwaltet wird, wobei jedes Auftreten, das durch den besonderen Treiber auf einem be-
stimmten Knoten verwaltet wird, individuell numeriert wird,
"dev_nodespecific", für die Kennzeichnung von Geräten, die an jedem Knoten verfügbar sind und auf welche
lokal zugegriffen wird, und die eine eins-zu-eins-Beziehung mit dem Geräteverwaltungstreiber auf jedem Kno-
ten haben,
"dev_global", um Geräte zu kennzeichnen, auf welche von derartigen Gerätetreibern von irgendeinem derarti-
gen Knoten aus zugegriffen werden kann und
"dev_nodebound", welches Geräte kennzeichnet, auf welche durch einen Treiber auf einen bestimmten Kno-
ten zugegriffen werden kann, und welche eine eins-zu-eins-Beziehung mit dem Gerätetreiber haben.

6. Verfahren, welches dafür ausgelegt ist, einen globalen Zugriff auf physikalische Geräte zu gewähren,
welche auf einem Computercluster angeordnet sind, welches eine Mehrzahl von Knoten aufweist, wobei das
Verfahren die Schritte aufweist.
Reagieren eines globalen Dateisystems (206) auf eine Zugriffsanforderung für den Zugriff auf ein solches phy-
sikalisches Gerät, welche von einem der Knoten (202) ausgegeben wird, in dem eine DSO-Handhabe von ei-
nem Gerätekonfigurationssystem (DCS) (208) angefordert wird,
wobei das DCS in Reaktion auf die Zugriffsanforderung von dem globalen Dateisystem eine Identität eines ers-
ten Geräteserverobjektes (DSO) (290) bestimmt, welche der Anforderung nach dem physikalischen Gerät zu-
geordnet ist, dadurch gekennzeichnet, daß das Verfahren weiterhin die Schritte aufweist, daß an ein Pro-
xy-Dateisystem (246, 248) eine Referenz bzw. Bezugnahme auf das erste DSO bereitgestellt wird,
wobei das Proxy-Dateisystem einen Dateideskriptor für den nachfolgenden Gebrauch beim Zugriff auf das an-
geforderte physikalische Gerät liefert.

7. Verfahren nach Anspruch 6, welches weiterhin die Schritte aufweist:
jeder aus einer Mehrzahl von Gerätetreibern gibt, wenn ein neues Gerät eines geeigneten Typs an einen ent-
sprechenden Knoten angeschlossen wird, eine Anschlußnachricht an eine am selben Platz angeordnete Ge-
rätetreiberschnittstelle (DDI) (270) aus, welche eine lokale Kennung (locid) des neu angeschlossenen Gerätes
anzeigt, wobei jeder der Gerätetreiber dafür ausgelegt ist, einen Typ eines physikalischen Gerätes zu verwal-
ten und jedem der Gerätetreiber eine eindeutige größere Zahl zugeordnet ist,
in Reaktion auf die Anschlußnachricht ausgegeben einer Plananforderung an das DCS nach einer eindeutigen,
globalen kleineren (gmin)-Zahl für das neue Gerät durch die DDI, wobei die Plananforderung die größere Zahl
und die locid des neuen Gerätes anzeigt,
in Reaktion auf die Plananforderung: (a) Bestimmen der gmin-Zahl und (b) Liefern der gmin-Zahl zu der DDI
durch das DCS, und
wobei die DDI die gmin-Zahl, die durch das DCS geliefert wird und die größere Zahl, dem neuen Gerät zuord-
net, so daß auf das neue Gerät in Reaktion auf eine Anforderung zum Öffnen des neuen Gerätes von dem
globalen Dateisystem aus zugegriffen werden kann.

8. Verfahren nach Anspruch 7, welches weiterhin die Schritte aufweist:
Ausgeben von Gerätekonfigurationsinformation an die DDI durch den Treiber, einschließlich der Klasseninfor-
17/28

DE 698 29 442 T2 2006.04.13
mation für das neue Gerät, falls verfügbar, und
Einbeziehen der Klasseninformation, falls verfügbar, in die Plananforderung durch die DDI.

9. Verfahren nach Anspruch 8, welches weiterhin die Schritte aufweist:
nach Empfang der Plananforderung Untersuchen eines lokalen DSO, welches den Geräten zugeordnet ist, de-
ren Klasse dieselbe ist, wie diejenige des neuen Gerätes, durch das DCS, und
durch das DSO Bestimmen der gmin-Zahl, die dem neuen Gerät zugeordnet werden soll.

10. Verfahren nach Anspruch 9, welches weiterhin den Schritt aufweist:
Zugreifen auf das neue Gerät, als ob das neue Gerät zu der dev_enumerate-Klasse gehört, einschließlich Ge-
rät, mit zumindest einmaligem Auftreten, welches durch einen bestimmten Treiber verwaltet wird, wenn die
Klasseninformation durch den Gerätetreiber nicht bereitgestellt wird, wobei jeder Fall des Auftretens, welches
durch den bestimmten Treiber auf einem bestimmten Knoten verwaltet wird, einzeln numeriert wird.

Es folgen 10 Blatt Zeichnungen
18/28

DE 698 29 442 T2 2006.04.13
Anhängende Zeichnungen
19/28

DE 698 29 442 T2 2006.04.13
20/28

DE 698 29 442 T2 2006.04.13
21/28

DE 698 29 442 T2 2006.04.13
22/28

DE 698 29 442 T2 2006.04.13
23/28

DE 698 29 442 T2 2006.04.13
24/28

DE 698 29 442 T2 2006.04.13
25/28

DE 698 29 442 T2 2006.04.13
26/28

DE 698 29 442 T2 2006.04.13
27/28

DE 698 29 442 T2 2006.04.13
28/28

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

