(19) (19 DE 698 29 442 T2 2006.04.13

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Ubersetzung der europiischen Patentschrift
(97) EP 0 889 400 B1 s1)yIntcle: GO6F 9/445 (2006.01)
(21) Deutsches Aktenzeichen: 698 29 442.4 GO6F 17/30 (2006.01)

(96) Europaisches Aktenzeichen: 98 305 133.5
(96) Europaischer Anmeldetag: 29.06.1998
(97) Erstverdffentlichung durch das EPA: 07.01.1999
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 23.03.2005
(47) Veroffentlichungstag im Patentblatt: 13.04.2006

(30) Unionsprioritat: (84) Benannte Vertragsstaaten:
885024 30.06.1997 us DE, FR, GB, NL, SE
(73) Patentinhaber: (72) Erfinder:
Sun Microsystems, Inc., Santa Clara, Calif., US Viswanathan, Srinivasan, Fremont, California
94536, US; Nazari, Siamak, Arcadia, California
(74) Vertreter: 91006, US; Swaroop, Anil, Loma Linda, California
Dr. Weber, Dipl.-Phys. Seiffert, Dr. Lieke, 65183 92354, US; Khalidi, Yousef, Sunnyvale, California
Wiesbaden 94086, US

(54) Bezeichnung: System und Verfahren fiir transparenten, globalen Zugang zu physikalischen Geréten in einem
Rechnersystem

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte europédische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebihr entrichtet worden ist (Art. 99 (1) Europaisches Patentliibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 698 29442 T2 2006.04.13

Beschreibung

[0001] Die vorliegende Erfindung bezieht sich allgemein auf Systeme und Verfahren zum Zugriff auf physika-
lische Gerate bzw. Einrichtungen, die an einen Computer angeschlossen sind und insbesondere auf Systeme
und Verfahren zum Zugriff auf physikalische Einrichtungen an einem Computer-Cluster.

HINTERGRUND DER ERFINDUNG

[0002] Es ist flr Unix-basierte Computeranwendungen immer Ublicher geworden, dal® sie auf einem Cluster
beheimatet sind, der eine Mehrzahl von Computern umfalit. Es ist das Ziel von Cluster-Betriebssystemen, den
Betrieb des Clusters flir Anwendungen/Benutzer so transparent zu machen, als wenn es sich um einen einzel-
nen Computer handeln wiirde. Zum Beispiel stellt ein Cluster typischerweise ein globales Dateisystem bereit,
das einen Benutzer in die Lage versetzt, alle herkémmlichen Dateien auf dem Cluster zu sehen und auf sie
zuzugreifen unabhangig davon, wo die Dateien gelegen sind. Diese Transparenz gilt jedoch nicht fir einen Ge-
ratezugriff auf einem Cluster.

[0003] Typischerweise wird Geratezugriff auf Unix-basierten Systemen durch eine spezielles Dateisystem
(z.B. SpecFS) bereitgestellt, das Gerate wie Dateien behandelt. Dieses spezielle Dateisystem wird nur auf ei-
nem einzelnen Knoten betrieben. Das bedeutet, dall es nur einen Benutzer auf einem bestimmten Knoten in
die Lage versetzt, Gerate an diesem Knoten zu sehen und auf sie zuzugreifen, was dem Ziel einer globalen
Sichtbarkeit von Geraten auf einem Cluster zuwiderlauft. Diese Einschrankungen rihren sowohl von der feh-
lenden Koordination zwischen den speziellen Dateisystemen, die auf unterschiedlichen Knoten laufen, als
auch von der fehlenden Strategie fur das Benennen von Geraten her, um der globalen Sichtbarkeit von Gera-
ten bzw. Einrichtungen Rechnung zu tragen. Diese Aspekte eines Zugriffsystems auf Gerate nach dem Stand
der Technik werden nun unter Bezug auf die Fig. 1-Fig. 4 beschrieben.

[0004] In Fig. 1 ist ein Blockdiagramm eines herkdmmlichen Computersystems 100 abgebildet, das eine zen-
trale Verarbeitungseinheit (Central Processing Unit, CPU) 102, einen Hochgeschwindigkeitsspeicher 104, eine
Mehrzahl von physikalischen Einrichtungen 106 und eine Gruppe von physikalischen Gerateschnittstellen 108
beinhaltet (z. B. Busse oder andere elektronische Schnittstellen), die die CPU 102 in die Lage versetzen, Daten
zu steuern und mit dem Speicher 102 und den physikalischen Einrichtungen 106 auszutauschen. Der Speicher
102 kann ein wabhlfrei zugreifbarer Speicher (Random Access Memory, RAM) oder ein Cachespeicher sein.

[0005] Die physikalischen Einrichtungen 106 kdnnen Hochverfiigbarkeitseinrichtungen 112, Drucker 114,
Kernspeicher 116, Kommunikationseinrichtungen 118 und Speichereinrichtungen 120 (z. B. Plattenlaufwerke)
umfassen, sind jedoch nicht darauf beschrankt. Drucker 114 und Speichereinrichtungen 120 sind wohlbekannt.
Hochverflgbarkeitseinrichtungen 112 umfassen Einrichtungen wie Speichereinheiten oder Drucker, die tber
zugeordnete Sekundar- bzw. Ersatzeinrichtungen verfligen. Solche Einrichtungen sind hochverfiigbar, da die
Sekundareinrichtungen beim Ausfall einer Primareinrichtung fur ihre entsprechenden Primar- bzw. Hauptein-
richtungen einspringen kénnen. Der Kernspeicher 116 ist ein programmierter Bereich des Speichers 102, der
das Erfassen und Berichten von Statistiken zur Systemleistung bzw. zum Systemdurchsatz beinhaltet. Die
Kommunikationseinrichtungen 118 umfassen Modems, ISDN-Schnittstellenkarten, Netzschnittstellenkarten
und andere Arten von Kommunikationseinrichtungen. Die Einrichtungen bzw. "Gerate" 106 kdnnen auch Pseu-
do-Einrichtungen 122 umfassen, die Software-Einrichtungen sind, die nicht einer tatsachlichen physikalischen
Einrichtung bzw. einem tatsachlichen physikalischen Gerat zugeordnet sind.

[0006] Der Speicher 104 des Computers 100 kann ein Betriebssystem 130, Anwendungsprogramme 150 und
Datenstrukturen 160 speichern. Das Betriebssystem 130 wird in der CPU 102 ausgefiihrt, solange der Com-
puter 100 in Betrieb ist und Systemdienste fiir den Prozessor 102 und die in der CPU 102 ausgefiihrten An-
wendungen 150 bereitstellt. Das Betriebssystem 130, das auf V. 2.6 des auf Sun®-Workstations eingesetzten
Solaris™-Betriebssystems modelliert ist, beinhaltet einen Kern 132, ein Dateisystem 134, Geratetreiber 140
und einen Geratetreiberschnittstellen-(device driver interface, DDI)-Rahmen 142. Solaris und Sun sind Marken
bzw. eingetragene Marken von Sun Microsystems Inc. Der Kern 116 behandelt Systemaufrufe von den Anwen-
dungen 150 wie etwa Anforderungen, auf den Speicher 104, das Dateisystem 134 oder die Einrichtungen 106
zuzugreifen. Das Dateisystem 134 und seine Beziehung zu den Geraten 106 und den Geratetreibern 140 wird
unter Bezug auf die Fig. 2A und Fig. 2B beschrieben.

[0007] In Fig. 2A ist eine Darstellung des Dateisystems 134 auf hoherer Ebene abgebildet, das von V. 2.6

und friheren Versionen des Solaris-Betriebssystems eingesetzt wird. In Solaris ist das Dateisystems 134 das
Medium, durch das auf alle Dateien, Gerate 106 und Netzschnittstellen (unter der Annahme, da der Computer

2/28

DE 698 29442 T2 2006.04.13

100 an ein Netz angeschlossen ist) zugegriffen wird. Diese drei unterschiedlichen Arten von Zugriffen werden
entsprechend von drei Komponenten des Dateisystems 134 bereitgestellt: einem Unix-Dateisystem 138u
(UFS), einem speziellen Dateisystem 138s (SpecFS) und einem Netz-Dateisystem 138n (NFS).

[0008] In Solaris greift eine Anwendung 150 anfanglich auf eine Datei, ein Gerat oder eine Netzschnittstelle
(alle hier als ein Ziel bezeichnet) zu, indem sie eine Offnen- bzw. Open-Anforderung fiir das Ziel an das Datei-
system 134 Gber den Kern 132 absetzt. Das Dateisystem 134 leitet dann die Anforderung je nachdem an UFS
138u, SpecFS 138s oder NFS 138n weiter. Wenn das Ziel erfolgreich gedffnet ist, gibt das UFS, SpecFS oder
NFS ein vnode-Objekt 136 zuriick, das auf die bzw. den angeforderte(n) Datei, Einrichtung oder Netzknoten
abgebildet wird. Das Dateisystem 134 bildet dann das vnode-Objekt 136 auf einen Datei-Deskriptor 174 ab,
der an die Anwendung 150 tiber den Kern 132 zurlickgegeben wird. Die anfordernde Anwendung verwendet
anschlieBend den Datei-Deskriptor 174, um auf die bzw. den entsprechende(n) Datei, Einrichtung oder Netz-
knoten, die bzw. der mit dem zurtckgelieferten vnode-Objekt 136 verbunden ist, zuzugreifen.

[0009] Das vnode-Objekt 136 stellt einen generischen Satz von Dateisystem-Diensten gemaf einer vno-
de/VFS-Schnittstelle oder -Schicht (VFS) 172 zur Verfligung, die als die Schnittstelle zwischen dem Kern 132
und dem Dateisystem 134 dient. Solaris stellt ferner inode-, snode- und mode-Objekte 136i, 136s, 136r bereit,
die von dem vnode-Objekt 136 erben und auch Methoden und Datenstrukturen beinhalten, die fur die Typen
von Zielen angepaldt sind, die dem UFS, SpecFS bzw. NFS zugeordnet sind. Diese Klassen 136i, 136s und
136 bilden die Schnittstellen auf unterer Ebene zwischen den vnodes 136 und ihren jeweiligen Zielen. Somit
ist, wenn das UFS, SpecFS oder NFS ein vnode-Objekt zuriickliefert, dieses Objekt einem entsprechenden
inode, snode oder mode zugeordnet, der die tatsachlichen Zieloperationen durchfiihrt. Nachdem die allgemei-
ne Struktur des Solaris-Dateisystems diskutiert wurde, richtet sich der Fokus der vorliegenden Diskussion nun
auf die von Solaris verwendeten Datei-basierten Geratezugriffsmethoden.

[0010] In Fig. 2B geben Solaris-Anwendungen 150 typischerweise Anforderungen fir Geratezugriffe an das
Dateisystem 134 aus (Uber den Kern 132), indem sie den logischen Namen 166 des Gerates verwenden, das
sie gedffnet bendtigen. Zum Beispiel konnte eine Anwendung 150 Zugriff auf eine SCSI-Einrichtung anfordern
mit dem Befehl: open (/dev/dsk/disk_logical _address).

[0011] Der logische Name /dev/dsk/disk_logical_address zeigt an, dal® die zu 6ffnende Einrichtung eine Plat-
te an einer bestimmten logischen Adresse ist. In Solaris kdnnte die logische Adresse fur eine SCSI-Platte
"c0t0d0sx" lauten, wobei "c0" die SCSI-Steuerung 0, "t0" das Ziel 0, "d0" die Platte 0 und "sx" die x-te Scheibe
bzw. Slice fir die bestimmte Platte reprasentieren (ein SCSI-Plattenlaufwerk kann bis zu acht Slices haben).

[0012] Der logische Name wird von einem der Linkgeneratoren 144 zugewiesen, die im Benutzerraum gele-
gene Erweiterungen des DDI-Rahmens 142 sind, und basiert auf Information, die von dem Geratetreiber 140
beim Hinzufligen des Gerates bzw. der Einrichtung Ubergeben wird, und auf einem entsprechenden physika-
lischen Namen fiir das Gerat, der von dem DDI-Rahmenwerk 142 erzeugt wird. Wenn eine Instanz eines be-
stimmten Geratetreibers 140 einem Knoten 100 zugeordnet ist, ruft das DDI-System 142 die Hinzufligen- bzw.
Attach-Routine dieses Treibers 140 auf. Der Treiber 140 weist dann einen eindeutigen lokalen Bezeichnen zu
und ruft die ddi-create-minor-nodes-Methode 146 des DDI-Rahmens 142 fir jedes Gerat auf, das mit dieser
Instanz in Verbindung gebracht werden kann. Typischerweise stellt der eindeutige lokale Bezeichner einen un-
tergeordneten Namen bzw. Minor-Namen (Zusatzbezeichnung bzw. Nebennamen) (z. B. "a") und eine unter-
geordnete Nummer bzw. Minor-Nummer (Zusatzziffer bzw. Nebennummer) (z. B. "2") dar. Jedesmal, wenn sie
aufgerufen wird, erzeugt die ddi-create-minor-nodes-Methode 146 einen Blattknoten in dem Devinfo-Baum
162, der ein gegebenes Gerat reprasentiert. Weil zum Beispiel ein SCSI-Laufwerk (d. h. eine Instanz) bis zu
acht Slices bzw. Teile (d. h. Gerate) haben kann, weist der lokale SCSI-Treiber 140 eindeutige lokale Bezeich-
ner jedem der acht Slices zu und ruft die ddi-create-minor-nodes-Methode 146 mit den lokalen Bezeichnern
bis zu acht Mal auf.

[0013] Ebenso ist jedem Gerat 106 eine UFS-Datei 170 zugeordnet, die Konfigurierungsinformation fir das
Zielgerat 106 bereitstellt. Der Name einer bestimmten UFS-Datei 170i ist derselbe wie ein physikalischer Name
168i, der vom physikalischen Ort des Gerates auf dem Computer abgeleitet ist. Zum Beispiel kdnnte ein SC-
Sl-Gerat den folgenden physikalischen Namen 168, /devices/iommu/sbus/esp1/sd@addr:minor_name, ha-
ben, wobei addr die Adresse des Geratetreibers sd und minor_name der Minor-Name der Gerateinstanz ist,
der von dem Geratetreiber sd zugewiesen ist. Wie physikalische Namen abgeleitet werden, wird unten unter
Bezug auf Fig. 3 beschrieben.

[0014] Um das Dateisystem 134 in die Lage zu versetzen, ein Zielgerat unter Angabe des logischen Namens

3/28

DE 698 29442 T2 2006.04.13

des Zielgerates zu 6ffnen, verwendet es eine Datenstruktur 164 des logischen Namensraumes, die logische
Dateinamen 166 auf physikalische Dateinamen 168 abbildet. Die physikalischen Namen von Geraten 106 sind
von dem Ort des Gerates in einem Gerateinformationsbaum (Devinfo tree) 140 (in Fig. 1 abgebildet) abgelei-
tet, der die Hierarchie von Geratetypen, Busverbindungen, Steuerungen, Treibern und dem Computersystem
100 zugeordneten Geraten reprasentiert. Jede durch einen physikalischen Namen 168 identifizierte Datei 170
enthalt in ihren Attributen einen Bezeichner oder dev_t (kurz fiir Device Type bzw. Geratetyp), der dem Zielge-
rat eindeutig zugeordnet ist. Dieser dev_t-Wert wird von dem Dateisystem 134 verwendet, um Uber das
SpecFS 138s auf das richtige Zielgerat zuzugreifen. Es wird nun unter Bezug auf Fig. 3 beschrieben, wie
dev_t-Werte zugewiesen werden und der Devinfo-Baum 140 von dem DDI-System 142 auf dem Laufenden
gehalten wird.

[0015] In Fig. 3 wird eine Darstellung eines hypothetischen Devinfo-Baumes 162 fiir das Computersystem
100 gezeigt. Jeder Knoten des Devinfo-Baumes 162 entspricht einer physikalischen Komponente des Gera-
tesystems, die dem Computer 100 zugeordnet ist. Unterschiedliche Ebenen bzw. Niveaus entsprechen unter-
schiedlichen Ebenen der Geratehierarchie. Knoten, die direkt mit einem héheren Knoten verbunden sind, stei-
len Objekte dar, die Instanzen des Objektes auf héherer Ebene sind. Folglich ist der Wurzelknoten des Devin-
fo-Baumes immer der "/"-Knoten, unter dem die gesamte Geratehierarchie angesiedelt ist. Die Zwischenkno-
ten (d. h. Knoten, die keine Blattknoten und Blatt-Eltern-Knoten sind) werden als Nexus- bzw. Verknipfungs-
gerate bezeichnet und entsprechen dazwischenliegenden Strukturen wie Steuerungen, Bussen und Anschlis-
sen bzw. Ports. Auf der nachsten Ebene oberhalb der untersten des Devinfo-Baumes befinden sich die Gera-
tetreiber, von denen jeder ein oder mehrere Gerate exportieren oder kontrollieren kann. Auf der Blattebene sind
die tatsachlichen Gerate bzw. Einrichtungen, von denen jedes abhangig vom Geratetyp eine Anzahl von Ge-
rateinstanzen exportieren kann. Zum Beispiel kann eine SCSI-Einrichtung bis zu sieben Instanzen haben.

[0016] Der in Fig. 3 gezeigte hypothetische Devinfo-Baum 162 reprasentiert ein Computersystem 100, das
eine Eingabe-/Ausgabe-(I/O)-Steuerung fur auf Speicher abgebildete I/O-Einrichtungen (iommu) an einer phy-
sikalischen Adresse addr0 beinhaltet. Die iommu steuert bzw. verwaltet die Interaktionen der CPU mit I/O-Ein-
richtungen, die mit einem Systembus (sbus) an Adresse addr1 und einem Hochgeschwindigkeitsbus wie ei-
nem PCI-Bus an Adresse addr2 verbunden sind. Zwei SCSI-Steuerungen (esp1 und esp2) an entsprechenden
Adressen addr3 und addr4 sind zusammen mit einer Steuerung fiir einen Asynchron-Ubertragungsmodus
(Asynchronous Transfer Mode, ATM) an addr5 mit dem sbus verbunden. Die erste SCSI-Steuerung esp1 ist
einem SCSI-Geratetreiber (sd) an Adresse 0 (dargestellt als @0) zugeordnet, der vier SCSI-Gerateinstanzen
(dev0, dev1, dev2, dev3) verwaltet. Jede dieser Gerateinstanzen einspricht einer entsprechenden Slice bzw.
Scheibe eines einzelnen, physikalischen Gerates 106. Die erste SCSI-Steuerung esp1 ist auch einem SC-
Sl-Geratetreiber (sd) an Adresse 1 zugeordnet, der mehrere SCSI-Gerateinstanzen (nicht abgebildet) eines
anderen physikalischen Gerates 106 steuert.

[0017] Jedem Typ von Geratetreiber, der bei dem Computersystem 100 verwendet werden kann, ist eine vor-
her festgelegte, eindeutige tbergeordnete Nummer bzw. Major-Nummer (Hauptnummer) zugewiesen. Zum
Beispiel ist dem SCSI-Geratetreiber sd die Major-Nummer 32 zugewiesen. Jedes Gerat ist einer Minor-Num-
mer zugeordnet, die innerhalb der Gruppe von Geraten, die von einem einzelnen Geratetreiber gesteuert wer-
den, eindeutig ist. Zum Beispiel haben die dem Treiber sd an Adresse 0 zugeordneten Gerate dev0, dev1, dev2
und dev3 die Minor-Nummern 0, 1, 2 bzw. 3 und Minor-Namen a, b, ¢ bzw. d. In dhnlicher Weise wirden die
von dem Treiber sd an Adresse 1 gesteuerten Gerate Minor-Nummern haben, die von den den Geraten
dev0O-dev3 zugeordneten verschieden sind (z. B. vier davon kénnten Minor-Nummern 4-7 haben). Die Mi-
nor-Nummern und -Bezeichnungen werden von dem Eltern-Geratetreiber 140 (Fig. 1) fur jede neue Geratein-
stanz zugewiesen (es sei daran erinnert, daf3 eine SCSI-Instanz ein spezielles SCSI-Laufwerk und ein SCSI
Geréat eine bestimmte Slice dieses Gerates sein kdnnten). Dies stellt sicher, dal jedes von einem gegebenen
Treiber exportierte Gerat eine eindeutige Minor-Nummer und -Bezeichnung hat. Das bedeutet, ein Treiber ver-
waltet einen Minor-Nummern-Bezeichnungs-Raum.

[0018] Jede Minor-Nummer bildet, wenn sie mit der Major-Nummer seines Elterntreibers kombiniert wird, ei-
nen dev_t-Wert, der jedes Gerat eindeutig identifiziert. Zum Beispiel haben die von dem Treiber sb an Adresse
0 gesteuerten Gerate dev0, dev1, dev2 und dev3 entsprechende dev_t-Werte von (32,0), (32,1), (32,2) und
(32,3). Das SpecFS 138s unterhalt eine Abbildung von dev_t-Werten zu den entsprechenden Geraten bzw.
Einrichtungen. Im Ergebnis bezeichnen alle Anforderungen an das SpecFS zum Offnen eines Gerates das zu
offnende Gerat mittels seines eindeutigen dev_t-Wertes.

[0019] Der DevTree-Pfad zu einem Gerat liefert den physikalischen Namen dieses Gerates. Zum Beispiel ist
der physikalische Name des Gerates dev0 gegeben durch die Zeichenkette: /devices/iom-

4/28

DE 698 29442 T2 2006.04.13

mu@addr0/sbus@addr1/esp1@addr3/sd@0:a, wobei sich sd@0:a auf das Gerat bezieht, das von dem
sd-Treiber an Adresse 0 gesteuert wird, dessen Minor-Name a ist; d. h. das Gerat dev0. Der physikalische
Name bezeichnet die spezielle Datei 170 (in Fig. 2 abgebildet) (einem snode entsprechend), die alle Informa-
tion enthalt, die zum Zugriff auf das entsprechende Gerat notwendig ist. Unter anderem enthalten die Attribute
jeder speziellen Datei 170 den dev_t-Wert, der dem entsprechenden Gerat zugeordnet ist.

[0020] Wie oben erwahnt, erzeugt ein link_generator 144 den logischen Namen eines Gerates aus dem phy-
sikalischen Namen des Gerates gemal einem Satz von Regeln, die auf von diesem Verknipfungs- bzw.
Link-Generator verwaltete Gerate anwendbar sind. Zum Beispiel konnte in dem Fall des Gerates dev0, das
von dem Treiber sd an Adresse 0 verwaltet wird, ein Link-Generator fir SCSI-Gerate den folgenden logischen
Namen erzeugen, /dev/dsk/c0t0d0s0, wobei sich c0 auf die Steuerung esp1@addr3 bezieht, t0 auf die Ziel-Id
der physikalischen Platte, die von dem sd@0-Treiber gesteuert wird, d0 auf den sd@0-Treiber und sO den Ab-
schnitt bzw. die Slice mit der Minor-Bezeichnung a und der Minor-Nummer 0 bezeichnet. Das dem sd@1-Trei-
ber zugeordnete Gerat dev0 kdnnte den logischen Namen /dev/dsk/cOt1d1s4 von demselben Link-Generator
144 zugewiesen bekommen. Man beachte, daft die beiden dev0-Gerate logische Namen haben, die sich in
Differenzen in den Ziel-, Platten- und Slicewerten unterscheiden. Es wird nun unter Bezug auf Fig. 4 beschrie-
ben, wie diese Infrastruktur gegenwartig in Solaris verwendet wird, um eine Anwendung in die Lage zu verset-
zen, ein bestimmtes, auf einem Computer 100 befindliches Gerat zu 6ffnen.

[0021] In Fig. 4 ist ein FluBdiagramm von Operationen abgebildet, die im Speicher 104 des Computers 100
von verschiedenen Betriebssystemkomponenten wahrend des Offnens eines Geréates, wie von einer Anwen-
dung 150 angefordert, durchgefiihrt werden. Der Speicher 104 ist in einen Nutzerspeicherbereich 104U, in
dem die Anwendungen 150 ausgefihrt werden, und in einen Kernspeicherbereich 104K unterteilt, in dem die
Betriebssystemkomponenten ausgefiuhrt werden. Dieses Diagramm zeigt mit einem Satz von beschrifteten
Pfeilen die Reihenfolge, in der die Operationen auftreten, und die Einrichtungen, die Ursprung oder Ziel jeder
Operation sind. Wo es zutrifft, geben gestrichelte Linien ein Objekt an, auf das eine Referenz tibergeben wird.
Neben der Darstellung des Speichers 104 ist jede Operation, die einem beschrifteten Pfeil zugeordnet ist, de-
finiert. Die Operationen sind als Nachrichten oder Funktionsaufrufe definiert, wobei auf den Nachrichtennamen
die Daten folgen, die von der empfangenden Einheit verarbeitet oder zurlickgegeben werden. Die Nachricht
(4-1), "open(logical_name)", ist zum Beispiel die von der Anwendung 150 ausgegebene Nachricht, die den
Kern 132 auffordert, das in dem Nutzerspeicherbereich 104U durch "logical_name" reprasentierte Gerat zu o6ff-
nen. In diesem speziellen Beispiel ist die Anwendung bestrebt, das Gerat dev2 zu 6ffnen.

[0022] Nach Empfang der Offnen-Nachricht (4-1) setzt der Kern 132 die Nachricht (4-2),
"get_vnode(logival_name)", an das Dateisystem 134 ab. Diese Nachricht fordert das Dateisystem 134 auf, den
vnode des Gerates dev2 zuriickzugeben, den der Kern 132 benétigt, um die Offnen-Operation abzuschlieRen.
Als Reaktion darauf konvertiert das Dateisystem 134 den logischen Namen 166 in den entsprechenden phy-
sikalischen Namen 168 mittels des logischen Namensraumes 164. Das Dateisystem 134 lokalisiert dann die
Datei, die von dem physikalischen Namen bezeichnet wird, und bestimmt den dev_t-Wert des zugehdérigen Ge-
rates aus den Attributen dieser Datei. Sobald es den dev_t-Wert erhalten hat, setzt das Dateisystem 134 die
Nachricht (4-3), "get_vnode(dev_t)", an das SpecFS 138s ab. Diese Nachricht fordert das SpecFS 138s auf,
eine Referenz auf den mit dem Gerat dev2 verbundenen vnode zurlickzuliefern. Auf den Empfang der Nach-
richt (4-3) hin erzeugt das SpecFS 138s den angeforderten vnode 136 und einen snode 136s, der den vnode
136 an Gerat dev2 bindet, und liefert die Referenz auf den vnode 136 (4-4) an das Dateisystem 134 zur(ck.
Das Dateisystem 134 gibt dann die vnode-Referenz an den Kern zurlick (4-5).

[0023] Sobald er die vnode-Referenz hat, setzt der Kern 132 eine Anforderung (4-6) an das SpecFS 138s ab,
das dem vnode 136 zugeordnete Gerat dev2 zu 6ffnen. Das SpecFS 138s versucht, diese Anforderung durch
Absetzen eines Offnen-Kommandos (4-7) an den Treiber 2, von dem das SpecFS weil}, daR er das Gerat dev2
steuert, zu erflllen. Wenn der Treiber 2 in der Lage ist, das Gerat dev2 zu o6ffnen, gibt er eine
open_status-Nachricht (4-8) zuriick, die anzeigt, daB die Offnen-Operation erfolgreich war. Ansonsten gibt der
Treiber 2 eine Fehleranzeige in derselben Nachricht (4-8) zurlick. Das SpecFS 138s gibt dann eine ahnliche
Statusmeldung (4-9) direkt an den Kern 132 zurlick. Unter der Annahme, daf} "Erfolg" in der Nachricht (4-9)
zurlickgegeben wurde, gibt der Kern 132 einen Datei-Deskriptor an die Anwendung 150 zurtiick, der eine Re-
prasentation des mit dem Gerat dev2 verbundenen vnode 136 im Nutzerspeicherraum ist (4-10). Die Anwen-
dung 150 kann, sobald sie im Besitz des Datei-Deskriptors ist, auf das Gerat dev2 tber den Kern 132 und das
Dateisystem 134 mittels Dateisystemoperationen zugreifen. Die Anwendung 150 bearbeitet zum Beispiel Ein-
gabedaten von dem Gerat dev2, indem sie an den zuriickgelieferten Datei-Deskriptor gerichtete Leseanforde-
rungen absetzt. Diese Dateisystem-Kommandos werden dann von dem SpecFS 138s in tatsachliche Gerate-
kommandos und die vnode- und snode-Objekte 136, 136s umgewandelt, die das Gerat dev2 verwalten.

5/28

DE 698 29442 T2 2006.04.13

[0024] Folglich setzt Solaris Benutzer eines Computersystems 100 in die Lage, auf Einrichtungen an diesem
System 100 relativ einfach zuzugreifen. Jedoch erlauben es die von Solaris eingesetzten Methoden Benutzern
nicht, auf Einrichtungen transparent tiber Computer hinweg zuzugreifen, auch wenn die verschiedenen Com-
puter als Teil eines Cluster konfiguriert sind. Das bedeutet, dall eine Anwendung, die auf einem ersten Com-
puter lauft, mittels Solaris ein Gerat auf einem zweiten Computer nicht transparent 6ffnen kann.

[0025] Der Grund dafiir, dal die aktuelle Version von Solaris keinen transparenten Geratezugriff in der
Mehr-Computer-Situation zur Verfuigung stellen kann, hat mit der Art und Weise zu tun, in der die dev_t- und
Minor-Nummern derzeit zugewiesen werden, wenn Gerate hinzugefligt werden. GemaR Fig. 3 weist jedesmal,
wenn ein Gerat zu einem Computer 100 hinzugefiigt wird, der zugeordnete Treiber des Gerates diesem Gerat
eine Minor-Nummer zu, die innerhalb der Menge von Geraten, die von diesem Treiber gesteuert werden, ein-
deutig ist und daher auf einen eindeutigen dev_t-Wert fir den Computer 100 abgebildet werden kénnen, wenn
sie mit der Major-Nummer des Treibers kombiniert wird. Wenn jedoch dieselben Gerate und Treiber auf einem
zweiten Computer bereitgestellt wirden, wiirden dem Treiber und den Geréaten ein ahnlicher, wenn nicht iden-
tischer Satz von Major- und Minor-Nummern und dev_t-Werten zugewiesen. Wenn zum Beispiel beide Com-
puter einen SCSI-Treiber sd (Major-Nummer = 32) und vier SCSI-Gerateinstanzen hatten, die von dem SC-
Sl-Treiber sd verwaltet wiirden, wiirde jeder Treiber sd denselben Satz von Minor-Nummern ihrem lokalen Satz
von SCSI-Geraten zuordnen (z. B. wirden beide Satze Minor-Nummern zwischen 0 und 3 haben). Folglich
wirde unter Beachtung, daf® auf ein Gerat anhand seines dev_t-Wertes zugegriffen wird, wenn eine Anwen-
dung auf einem ersten Knoten eine SCSI-Platte auf dem zweiten Knoten 6ffnen méchte, diese Anwendung
nicht in der Lage sein, die SCSI-Platte gegentiber dem SpecFS auf beiden Computersystemen eindeutig zu
bezeichnen.

[0026] Daher besteht ein Bedarf fir ein Datei-basiertes Geratezugriffssystem, das Anwendungen in die Lage
versetzt, wo immer sie auch ausgefiihrt werden, transparent auf Gerate zuzugreifen, die sich auf irgendeinem
Knoten eines Computer-Clusters befinden.

[0027] EP-A-0780778 offenbart ein System und ein Verfahren zum automatischen Montieren und Zugreifen
auf entfernte Dateisysteme in einer Netzumgebung. Ein virtuelles Dateisystem vereinfacht den Zugriff auf eine
virtuelle, logische Speichereinrichtung, wobei das Dateisystem mindestens einen Teil eines entfernten Datei-
systems beinhaltet, das von einer weiteren Einrichtung verwaltet wird, die im Computernetz angeschlossen ist.
Das Betriebssystem leitet Zugriffsanforderungen von einem Anwendungsprogramm, die die virtuelle, logische
Speichereinrichtung bezeichnen, an ein entferntes Zugriffselement zur Verarbeitung um. Wenn nétig ermdg-
licht das entfernte Zugriffselement das automatische Montieren eines Elementes des entfernten Dateisystems.

ZUSAMMENFASSUNG DER ERFINDUNG

[0028] Spezielle und bevorzugte Aspekte der Erfindung werden in den beigefiigten unabhangigen und abhan-
gigen Ansprichen dargelegt. Eigenschaften der abhangigen Anspriche kdnnen mit denen der unabhangigen
Anspriche nach Bedarf und in anderen Kombinationen als denen, die in den Anspriichen explizit dargelegt
werden, kombiniert werden.

[0029] Zusammengefaldt ist die vorliegende Erfindung ein System und ein Verfahren, die transparenten, glo-
balen Zugriff auf Einrichtungen bzw. Gerate auf einem Computer-Cluster bieten.

[0030] Eine Ausfiihrungsform der Erfindung umfaft einen gemeinsamen Betriebssystemkern, der auf jedem
Knoten, die das Cluster ausmachen, lauft, ein Dateisystem, das auf allen Knoten lauft; eine Geratetreiber-
schnittstelle (DDI), die auf jedem Knoten lauft, ein Geratekonfigurationssystem (DCS), das auf einem der Kno-
ten lauft, eine DCS-Datenbank, auf die das DCS und eine Mehrzahl von Geratetreibern, die auf jedem Knoten
liegt, zugreifen kdnnen.

[0031] Jeder der Geratetreiber verwaltet eine Art von physikalischen Geraten und ihm ist eine eindeutige, vor-
her festgelegte Major-Nummer zugeordnet. Wenn ein neues Gerat einer bestimmten Art zu einem entspre-
chenden Knoten hinzugefigt wird, wird eine Zufiige- bzw. Attach-Nachricht zu der DDI dieses Knotens ausge-
geben, die Konfigurierungsinformation fir das Gerat, das hinzugefligt wird, angibt. Die DDI erzeugt mittels der
Konfigurierungsinformation einen physikalischen Namen in dem Namensraum des Dateisystems fir das Gerat
und einen logischen Namen, der eine symbolische Verknupfung mit dem physikalischen Namen ist. Der logi-
sche Name flr das Gerat kann anschlieRend verwendet werden, um Uber das Dateisystem auf das Gerat zu-
zugreifen.

6/28

DE 698 29442 T2 2006.04.13

[0032] Als Teil des Erzeugens des logischen Namens setzt das DDI eine Abbildungsanforderung an das DCS
ab, um eine globale Minor-Nummer (gmin-Nummer) fir das hinzugefligte Gerat anzufordern. Die Abbildungs-
anforderungs-Nachricht umfalt neben anderen Dingen die Major-Nummer und mindestens eine Teilmenge der
Konfigurierungsinformation.

[0033] Als Reaktion auf die Abbildungsanforderung ist das DCS dafiir ausgelegt:
(a) die gmin-Nummer festzulegen,
(b) die gmin-Nummer an das DDI zuriickzugeben und
(c) die gmin-Nummer, die Major-Nummer und die Teilmenge der Konfigurierungsinformation zu speichern.

[0034] Die anfordernde DDI bildet dann den logischen Namen und leitet einen dem Gerat zugeordneten
dev_t-Wert mittels der zurtickgelieferten gmin-Nummer ab und aktualisiert die lokale Gerateinformation, so
dafd der dev_t-Wert des Gerates fir das Dateisystem zugreifbar ist.

[0035] Durch Bereitstellen eines eindeutigen dev_t-Wertes fiir alle Gerate und einer Verknipfung zwischen
dem Dateisystem und diesem dev_t-Wert bietet die vorliegende Erfindung ein globales Rahmenwerk, das es
ermdglicht, auf Gerate bzw. Einrichtungen an unterschiedlichen Knoten global zugreifen zu kénnen. Das Datei-
system wird modifiziert, um aus diesem System Vorteile zu ziehen, so daf} in dem Fall, daf3 ein Benutzer an-
fordert, ein bestimmtes Gerat, bezeichnet durch seinen logischen Namen, zu 6ffnen, der Kern bei dem Datei-
system anfragt, um den dev_t-Wert dieses Gerates zu ermitteln, und dann bei dem DCS den Ort und die Be-
zeichnung eines Gerates mit diesem dev_t-Wert abfragt. Sobald er den Ort und die Bezeichnung des Gerates
erhalten hat, setzt der Kern eine Anforderung zum Offnen an den Hostknoten fiir das durch das DCS identifi-
zierte Gerat ab. Auf dem Hostknoten ausgeflihrte Dateisystemkomponenten, die ein spezielles Dateisystem
(SpecFS) umfassen, behandeln die Anforderung zum Offnen, indem sie an den Kern ein Handle auf ein spe-
zielles Dateiobjekt zurtickliefern, das dem gewtinschten Gerat zugeordnet ist. Der Kern gibt dann an den an-
fordernden Benutzer einen auf das Handle abgebildeten Datei-Deskriptor zuriick, durch den der Benutzer auf
das Gerat zugreifen kann.

[0036] Nach einer bevorzugten Ausflihrungsform kénnen sich das DCS, das Dateisystem, der Benutzer und
das angeforderte Gerat alle auf unterschiedlichen Knoten befinden. Um in dieser Umgebung zu funktionieren,
beinhaltet die vorliegende Erfindung ein Proxy-Dateisystem, das es dem Benutzer eines Cluster-Knotens er-
moglicht, transparent mit den Dateiobjekten zu kommunizieren, die zusammen mit einem angeforderten Geréat
auf einem anderen Knoten liegen.

[0037] Die vorliegende Erfindung kann auch einen Satz von Geratetreiberobjekten (Device Driver Objects,
DSOs) auf jedem Knoten des Clusters beinhalten, von denen jedes eine bestimmte Klasse von Geraten ver-
waltet. Die betreffenden Gerateklassen fassen die Besonderheit zusammen, mit der einer Anforderung eines
Benutzers zum Offnen eines bestimmten Gerates von dem transparenten, globalen Geratezugriffssystem im
allgemeinen und dem DCS im besonderen entsprochen werden mufl. Nach einer bevorzugten Ausfiihrungs-
form gibt es vier Gerateklassen: dev_enumerate, dev_node_specific, dev_global und dev_nodebound.

[0038] Die dev_enumerate-Klasse ist Geraten zugeordnet, die mehrere Instanzen an einem bestimmten Kno-
ten haben kénnen, die von ihrem zugeordneten Treiber aufgezahlt werden, wenn das jeweilige Gerate hinzu-
geflgt wird (z. B. mehrere SCSI-Platten). Die dev_node_specific-Klasse ist Geraten zugeordnet, von denen es
nur eine Instanz pro Knoten gibt (z. B. Kernspeicher) und die folglich von ihren Treibern nicht aufgezahlt wer-
den. Die dev_global-Klasse ist fur diejenigen Gerate, auf die entweder lokal oder entfernt mittels eines Treibers
zugegriffen werden kann, der auf jedem Knoten angesiedelt ist (z. B. Modems und Netzschnittstellen). Die
dev_nodebound-Klasse wird fur Einrichtungen verwendet, auf die nur mittels eines Treibers auf einem be-
stimmten Knoten zugegriffen werden kann, und wenn dieser Knoten nicht verfligbar ist, dann von einem Trei-
ber auf einem anderen Knoten (z. B. hochverfiigbare Einrichtungen).

[0039] Wenn Klassen verwendet werden, dann beinhaltet die Geratekonfigurationsinformation, die von dem
Treiber an die DDI ausgegeben wird, vorzugsweise die Klasse des Gerates. Falls verfiigbar, bezieht die DDI
diese Klasseninformation in seine Abbildungsanforderung an das DCS ein. Beim Empfang einer Klasseninfor-
mation enthaltenden Abbildungsanforderung befragt das DCS sein lokales DSO zu dieser Klasse. Dieses DSO
ermittelt dann die gminor-Nummer, die dem Gerat, das hinzugefugt wird, zugewiesen werden sollte. Zum Bei-
spiel weist das DSO fiir die dev_enumerate-Klasse jedem dev_enumerate-Gerat eine gmin-Nummer zu, die
Uber das Cluster hinweg eindeutig ist, weil auf jedes aufgezahlte Gerat an einem bestimmten Knoten zugegrif-
fen werden muf. Im Gegensatz dazu weist das DSO fiir die dev_global-Klasse jedem globalen Gerat densel-
ben gmin-Wert zu, weil es unerheblich ist, an welchem Knoten auf solche Gerate zugegriffen wird. Wie fir die

7/28

DE 698 29442 T2 2006.04.13

anderen Klassen weist das DSO fiir die dev_node spezifische Klasse jedem Gerat dieser Klasse denselben
gmin-Wert ungleich Null zu und das DSO fiir die dev_nodebound-Klasse weist jedem Gerat dieser Klasse eine
gmin-Nummer zu, die Uber das Cluster hinweg eindeutig ist.

[0040] Wenn die Klasseninformation von einem Treiber nicht bereitgestellt wird, behandelt die vorliegende Er-
findung das entsprechende Gerat, als wenn es von der dev_enumerate-Klasse oder der dev_global-Klasse
ware abhangig davon, ob es ein physikalisches Gerat (dev_enumerate) oder ein Pseudo-Gerat (dev_global)
ist.

KURZBESCHREIBUNG DER ZEICHNUNGEN

[0041] Beispielhafte Ausfiihrungsformen der Erfindung werden anschlieend nur als Beispiel beschrieben un-
ter Bezug auf die beigefligten Zeichnungen, von denen:

[0042] Fig. 1 ein Blockdiagramm eines Computersystems nach dem Stand der Technik ist, das Komponenten
zeigt, die verwendet werden, um Zugriff auf Einrichtungen auf einem einzelnen Computer zur Verfigung zu
stellen;

[0043] Fig. 2A ein Blockdiagramm ist, das die Beziehungen zwischen Anwendungen, dem Betriebssystem-
kern, dem Dateisystem und den Einrichtungen nach dem Stand der Technik zeigt;

[0044] Fig. 2B ein Blockdiagramm ist, das die Beziehungen zwischen logischen Geratenamen, physikali-
schen Namen, dem Dateisystem, Geratetypbezeichnern (dev_t) und Geraten bzw. Einrichtungen nach dem
Stand der Technik zeigt;

[0045] Fig. 3 ein Diagramm eines beispielhaften Gerateinformationbaumes (Devinfo-Baumes) ist, der mit den
nach dem Stand der Technik verwendeten konsistent ist;

[0046] Fig. 4 ein FluRdiagramm von Operationen ist, die in dem Speicher 104 des Computersystems 100
nach dem Stand der Technik beim Offnen eines Gerates durchgefiihrt werden, wie von einer Anwendung 150
angefordert;

[0047] Fig. 5 ein Blockdiagramm eines Computerclusters ist, in dem die vorliegende Erfindung implementiert
werden kann;

[0048] Fig. 6 ein Blockdiagramm von Speicherprogrammen und Datenstrukturen ist, die die vorliegende Er-
findung wie in den reprasentativen Knoten 202 und 204 des Clusters von Fig. 5 implementiert ausmachen,;

[0049] Fig. 7A ein FluRdiagramm ist, das die Operationen veranschaulicht, durch die das Geratetreiber-
schnittstellen-(DDI)-System und das Geratekonfigurationssystem (DCS) einen geeigneten dev_t-Wert, logi-
schen Namen und physikalischen Namen fiir ein Gerat einrichten, das dem Knoten 202 hinzugefiigt wird;

[0050] Fiq. 7B die Beziehung zwischen dem bzw. der logischen Minor-Namen/Nummer, physikalischen Na-
men und logischen Namen darstellt, die von der vorliegenden Erfindung eingerichtet werden; und

[0051] die Fig. 8A und Fig. 8B FluRdiagramme sind, die Schritte veranschaulichen, die von der vorliegenden
Erfindung durchgefliihrt werden als Reaktion auf eine Anforderung von einer auf einem Knoten 202-1 ausge-
fuhrten Anwendung 150, auf ein Gerat zuzugreifen (6ffnen), das sich auf einem Knoten 202-3 befindet.

BESCHREIBUNG DER BEVORZUGTEN AUSFUHRUNGSFORM

[0052] In Fig. 5 wird ein Biockdiagramm eines Computerclusters 201 gezeigt, in dem die vorliegende Erfin-
dung implementiert werden kann. Der Cluster 201 beinhaltet eine Mehrzahl von Knoten 202 mit zugeordneten
Geraten 106 und Anwendungen 150. Wie in Fig. 1 kénnen die Gerate 106 Hochverflugbarkeitseinrichtungen
112, Drucker 114, Kernspeicher 116, Kommunikationseinrichtungen 118 und Speichereinrichtungen 120 um-
fassen. Fur die Zwecke der vorliegenden Diskussion lauft ein globales Dateisystem 206, das einen einzigen
globalen Dateiraum fir alle auf dem Cluster 201 gespeicherten Dateien auf dem Laufenden halt, auf einem der
Knoten 202. Das globale Dateisystem 206 unterstitzt mindestens zwei Reprasentationen der Gerate 106. Die
Reprasentation im physikalischen Namensraum (PNS) 305 ist aus dem Kernspeicher zuganglich und ent-
spricht der physikalischen Anordnung des Gerates 106 auf den entsprechenden Knoten 202. Die Reprasenta-

8/28

DE 698 29442 T2 2006.04.13

tion im logischen Namensraum (LNS) 304 ist eine Version des physikalischen Namensraumes 305 im Benut-
zerspeicher; d. h. jeder Eintrag in dem logischen Namensraum 304 bildet sich auf einen entsprechenden Ein-
trag in dem physikalischen Namensraum 305 ab. Die vorliegende Erfindung modifiziert viele Aspekte dieses
globalen Dateisystems 206, um einen transparenten, globalen Zugriff auf die Gerate 106 durch die Anwendun-
gen 150 zu ermdglichen. Der Cluster 201 beinhaltet auch einen Knoten 205, der ein Geratekonfigurationssys-
tem (DCS) 208 beheimatet, das eine Schlisselkomponente einer Ausfihrungsform der Erfindung ist.

[0053] In anderen Ausfihrungsformen kénnte es eine beliebige Anzahl von globalen Dateisystemen 206 ge-
ben, von denen jedes seinen eigenen physikalischen und logischen Namensraum auf dem Laufenden halt. In
einer solchen Ausfiihrungsform wird auf eine bestimmte Einrichtung nur durch eines der globalen Dateisyste-
me 206 und dessen zugeordneten physikalischen und logischen Namensraum zugegriffen.

[0054] Wie oben mit Bezug auf die Fig. 1-Fig. 4 beschrieben erlaubt das friihere Geratezugriffssystem von
Solaris einen transparenten Geratezugriff nur bei einem einzelnen Computersystem. Bestimmte Aspekte der
Art, wie der Stand der Technik die logischen Namen erzeugt, die von dem Dateisystem auf den dev_t-Wert des
Geréates, auf das zugegriffen werden soll, abgebildet werden, sind nicht mit der Ausdehnung des gegenwarti-
gen Geratezugriffssystems auf einen Cluster kompatibel. Unter der Annahme, dal die Satze von Geraten
106-1, 106-2 jeweils vier SCSI-Plattenlaufwerke enthalten, wirde das aktuell verwendete logische Benen-
nungssystem zum Beispiel dazu flihren, dal} unterschiedliche Laufwerke auf den verschiedenen Knoten 106-1,
106-2 denselben dev-t-Wert haben. Dies wirde es fur eine Anwendung 150-1 unmdglich machen, auf ein spe-
zielles der Plattenlaufwerke auf dem Knoten 202-2 transparent zuzugreifen. Es wird nun beschrieben, wie eine
Ausfuhrungsform der Erfindung einen solchen transparenten globalen Geratezugriff zur Verfigung stellt.

[0055] In Fig. 6 werden zusatzliche Details eines Reprasentanten der Knoten 202 und des Knotens 204, der
das DCS 208 beheimatet, abgebildet. Das Dateisystem 206 ist in dieser Figur nicht abgebildet, da es sich nur
auf einem bestimmten Knoten 202-2 befindet. Jeder Knoten 202 beinhaltet einen Speicher 230, in dem Be-
triebssystem-(OS)-Routinen/Objekte 240 und Datenstrukturen 300 definiert sind. Die OS-Routinen 240 bein-
halten einen Betriebssystemkern 242, ein Proxy-Dateisystem (PxFS) 244, ein spezielles Dateisystem 258, ein
Geratetreiber-System (DDI) 270, eine Menge von Geratetreiberobjekten (DSO) und Geratetreiber 280.

[0056] Wie oben beschrieben, behandelt der Kern 242 Systemaufrufe von den Anwendungen 150 wie etwa
Anforderungen, auf den Speicher 230, das Dateisystem 206 oder Gerate 106 zuzugreifen. Der Kern 242 un-
terscheidet sich von dem Kern 132 (Eig. 1), da er durch die vorliegende Erfindung modifiziert wurde, um glo-
balen Geratezugriff zu unterstitzen. Das Proxy-Dateisystem (PxFS) 244 basiert auf dem Solaris-PxFS-Datei-
system, ist aber hier wie der Kern 242 modifiziert, um globalen Geratezugriff zu unterstitzen. Das PxFS 244
beinhaltet eine Sammlung von Objekten, die eine Anwendung 150-i auf einem Knoten 202-i in die Lage setzen,
nahtlos mit dem Dateisystem 206 Uber verschiedene Knoten 202 hinweg zu interagieren. Die PxFS-Objekte
beinhalten PxFS-Clients 246, PxFS-Server 248, f_objs (Dateiobjekte) 250, vnodes (virtuelle Dateiknoten) 252,
snodes (spezielle Dateiknoten) 254 und px_vnodes (Proxy-vnodes) 256. Jedes dieser Objekte ist in Fig. 6 als
optional (opt) bezeichnet, da sie erzeugt werden, wie es von dem PxFS 244 als Reaktion auf Operationen des
Dateisystems 206 bendtigt wird.

[0057] Das DDI-System 270 (im folgenden als das DDI bezeichnet) ist ebenfalls ahnlich zu dem mit Bezug
auf den Stand der Technik (Eig. 1) beschriebenen DDI-System 142. Das DDI-System 270 ist jedoch in einer
Ausfuhrungsform der Erfindung abgewandelt, um mit dem DCS 360 zu interagieren und physikalische und lo-
gische Namen zu erzeugen, die mit den Geraten 106 kompatibel sind, auf die auf und von den unterschiedli-
chen Knoten 202 zugegriffen werden kann. Das DDI 270 beinhaltet eine Hinzufligen-Methode 272, die jedes-
mal aufgerufen wird, wenn ein neues Gerat dem lokalen Knoten 202 hinzugefiigt wird. Im Gegensatz zu der
friGheren Hinzufligen-Methode ist die Hinzufiigen-Methode 272. dafiir ausgelegt, die Dienste des DCS 360 zu
verwenden, um einen global konsistenten physikalischen Namen fiir jedwedes hinzugefiigte Gerat zu erzeu-
gen. Das DDI-System 270 beinhaltet auch eine Sammlung von Verkniipfungsgeneratoren 274, die eindeutige
logische Namen aus den entsprechenden physikalischen Namen erzeugen. Es gibt unterschiedliche Arten von
Verknlpfungsgeneratoren fir jede unterschiedliche Art von Geraten bzw. Einrichtungen 106. Daher konstruie-
ren die Hinzufiigen-Routine 272 bzw. die Verknipfungsgeneratoren 274 die physikalischen und logischen Na-
mensraume, die die Gerate 106 auf Kern- bzw. Benutzerebene global sichtbar machen.

[0058] Eine Ausfiihrungsform der Erfindung beinhaltet einen Satz von DSOs 290 auf jedem Knoten des Clus-
ters 200, von denen jedes eine bestimmte Klasse 312 von Einrichtungen 106 verwaltet. Die entsprechenden
Gerateklassen sind ein neuer Aspekt der vorliegenden Erfindung, die die Besonderheit abdecken, mit der einer
Benutzeranforderung, ein bestimmtes Gerat 106 zu 6ffnen, von dem transparenten, globalen Geratezugriffs-

9/28

DE 698 29442 T2 2006.04.13

system im allgemeinen und von dem DCS 372 im besonderen gentigt werden muf3. In der bevorzugten Aus-
fuhrungsform gibt es vier Gerateklassen: dev_enumerate 314, dev_node_specific 316, dev_global 318 und
dev_nodebound 320; und vier entsprechende DSOs 290: DSO_enum 292, DSO_nodespec 294, DSO_global
296 und DSO_nodebound 298.

[0059] Die dev_enumerate-Klasse 314 ist Geraten 106 zugeordnet, die mehrere Instanzen an einem be-
stimmten Knoten 202 haben kénnen, die von ihrem zugeordneten Treiber 280 durchnumeriert werden, wenn
das jeweilige Gerat hinzugefligt wird (z. B. mehrere Speichereinrichtungen 120). Die dev_node_specific-Klas-
se 316 ist Geraten 106 zugeordnet, von denen es nur eine Instanz pro Knoten gibt (z. B. den Kernspeicher
116) und die als Folge davon nicht von ihren Treibern 280 durchnumeriert werden. Die dev_global-Klasse 318
ist fir jene Einrichtungen 106 vorgesehen, auf die entweder lokal oder entfernt mittels eines Treibers zugegrif-
fen werden kann, der sich auf jedem Knoten befindet (z. B. Kommunikationseinrichtungen 118). Die
dev_nodebound-Klasse wird fiir Gerate verwendet, auf die nur mittels eines Treibers auf einem bestimmten
Knoten zugegriffen werden kann (z. B. HA-Einrichtungen 112).

[0060] Die Treiber 280 sind ahnlich den Treibern 140, aul3er daf} sie zusatzliche Konfigurationsinformation fir
jedes Objekt, das hinzugefligt wird, mitteilen, einschlieRlich der Gerateklasseninformation 312, falls verflgbar.

[0061] Die Datenstrukturen 300 beinhalten einen Devinfo-Baum 302 und eine ddi_minor_nodes-Tabelle 306.
Wie viele der OS-Routinen 240 sind die Datenstrukturen 300 &hnlich den gleichnamigen Datenstrukturen 160,
die nach dem Stand der Technik verwendet werden (Fig. 1). Jede enthalt jedoch wichtige Unterschiede gegen-
Uber dem Stand der Technik, die das Funktionieren der vorliegenden Erfindung ermdéglichen. Insbesondere
enthalt der Devinfo-Baum 302 zusatzliche Zwischenknoten, die bendtigt werden, um Einrichtungen ausge-
wahlter Klassen innerhalb des Clusters 200 zu lokalisieren. Als eine Folge der Anderungen am physikalischen
Namensraum 305, die durch den Devinfo-Baum reprasentiert werden, unterscheidet sich auch der logische
Namensraum 304 von dem logischen Namensraum 164 nach dem Stand der Technik. SchlieRlich enthalt die
ddi_minor_nodes-Tabelle 306 im Vergleich zu der nach dem Stand der Technik verwendeten
ddi_minor_nodes-Tabelle zusatzliche Felder. Zum Beispiel enthalt die vorliegende ddi_minor_nodes-Tabelle
die Felder global_minor_number, local_minor_number und (Gerate)-Klasse 308, 310 und 312 (oben beschrie-
ben); die ddi_minor_nodes-Tabelle nach dem Stand der Technik enthielt keines der Felder 308 oder 312.

[0062] Der Knoten 204 beinhaltet einen Speicher 330, in dem die OS-Routinen/-Objekte 340 und die Daten-
strukturen 370 definiert sind. Die OS-Routinen/-Objekte 340 beinhalten das Geratekonfigurationssystem
(DCS) 360, eine map_minor-Methode 362 auf dem DCS und einen Satz von DSOs 290, die identisch zu den
bereits beschriebenen sind. Die Datenstrukturen 370 beinhalten eine DCS-Datenbank 372.

[0063] Das DCS 360, zu dem es beim Stand der Technik kein Analogon gibt, dient mindestens zwei wichtigen
Funktionen. Als erstes arbeitet das DCS 360 mit den DDIs 270, um globale Nebennummern ("Minor-Num-
mern") neu hinzugeflgten Geraten zuzuweisen, die es ermdglichen, daf} diese Geréate global und transparent
zugreifbar sind. Als zweites wirkt das DCS 360 mit dem Dateisystem 206 und dem PxFS 244, Anwendungen
150 in die Lage zu versetzen, auf hinzugefiigte Gerate 106 transparent zuzugreifen. Die DCS-Datenbank 372
halt alle wichtigen von dem DCS 372 erzeugten Ergebnisse in persistentem Speicher. Die beiden Aspekte der
DCS 360 werden nun anschlieRend unter Bezug auf die Fig. 7A-B bzw. Fig. 8A-B beschrieben.

[0064] In Fig. 7A ist ein FluRdiagramm abgebildet, das die Operationen darstellt, durch die das DDI-System
in einem Knoten 202 und das DCS 360 in dem Knoten 204 einen passenden dev_t-Wert, einen logischen Na-
men und einen physikalischen Namen fiir ein Gerat 380, das zu dem Knoten 202 hinzugefligt wird, einrichten.
Die DDIs 270, die Verknupfungsgeneratoren 274, das DCS 360 und Erweiterungen davon fungieren gemein-
sam als ein Gerate-Registrator fur das Cluster 200. Die Operationen und Nachrichten sind in derselben Weise
wie in Fig. 4A angegeben. Bevor die in dem FluRdiagramm wiedergegebenen Operationen beschrieben wer-
den, wird unter Bezug auf Fig. 7B die Beziehung zwischen einigen der Namensraume beschrieben, die von
einer Ausfihrungsform der Erfindung verwaltet werden.

[0065] In Fig. 7B ist ein konzeptionelles Diagramm des Minor-Namens-/Nummern-Raumes 307, des physi-
kalischen Namensraumes 305 und des logischen Namensraumes 304 abgebildet, die in einer Ausfiihrungs-
form der Erfindung fur einen beispielhaften Cluster, der die beiden Knoten 202-1, 202-2 enthalt, verwendet wer-
den. Wie unten beschrieben weist jedesmal, wenn ein Gerat 106 zu einem Knoten 202 hinzugefligt wird, des-
sen Treiber ihm eine lokale Minor-Nummer 307_num und einen Namen 307_name zu. Das DDI 270 verwendet
diese Information, um eine global eindeutige Minor-Nummer zu erzeugen und einen global eindeutigen physi-
kalischen Namen 305 _name fir das Gerat 106 zu bilden. Der physikalische Name 305_name lokalisiert das

10/28

DE 698 29442 T2 2006.04.13

Gerat in der Geratehierarchie des Clusters. Die Verknipfungsgeneratoren 274 bilden dann den physikalischen
Namen 305_name auf einen global eindeutigen logischen Namen 304 _name ab. Man beachte, daf3 die DDIs
270-1, 270-2 und die Verknipfungsgeneratoren 274-1, 274-2 gemeinsam allgemeine, globale, physikalische
und logische Namensraume 305 bzw. 304 erzeugen. Im Gegensatz dazu erzeugt jeder Treiber einen Mi-
nor-Namens/Nummern-Raum nur fur seinen Knoten 202. Daher bildet die Ausflihrungsform lokale Minor-Na-
men/Nummern auf globale physikalische und logische Namen ab. Diese globalen Namensraume sind Teil des
Dateisystems 206. Folglich kann eine Anwendung 150 auf irgendeinem Knoten 202 das Dateisystem 206 ver-
wenden, um alle Gerate 106 auf dem Cluster 200 zu sehen und darauf zuzugreifen, als wenn sie sich auf einem
einzigen Computer befinden wirden. Nachdem die Namensraume beschrieben wurden, die den Rahmen fir
sie bilden, wird nun eine Ausfiihrungsform der Erfindung unter Bezug auf Fig. 7B beschrieben.

[0066] Wenn das Gerat 106 in Fig. 7A zu dem Knoten 202 hinzugefugt wird, setzt das DDI 270 eine Hinzu-
fugen-Nachricht (7-1a) an den Treiber 280 ab. Im Gegenzug setzt der Treiber 280 eine
create_ddi_minor_nodes-Nachricht (7-1b) fiir jedes der gerade hinzugefligten Instanz zugeordnete Gerat an
das DDI 270 ab. Die create_ddi_minor_nodes-Nachricht (7-1b) gibt die Konfiguration des Gerates 380 ein-
schlief3lich einer lokalen Minor-Nummer (minor_num) 382 und eines minor_name 384 an, die vom geeigneten
Geratetreiber 280 und einer aus den Klassen 312 ausgewahlten device_class 386 zugewiesen werden. Wenn
zum Beispiel das Gerat das dritte zu dem Knoten 202 hinzugefligte SCSI-Plattenlaufwerk ware, kénnten
minor_num, minor_name und Klasse "3", "a" (was angibt, daf} es die erste Scheibe bzw. Slice auf diesem Geréat
ist) bzw. "dev_enumerate" sein.

[0067] Als Reaktion auf die create_minor_nodes-Nachricht (7-1b) aktualisiert das DDI 270 die
ddi_minor_nodes-Tabelle 306, indem das local_minor_num-Feld 310 gleich dem minor_num-Wert 382 gesetzt
wird (7-2). Das DDI 270 setzt dann eine dc_map_minor-Nachricht (7-3) an das DCS 360 ab, die das DCS 360
auffordert, eine passende globale Minor-Nummer 388 fiir das Gerat 380 zurlickzugeben. Was im vorstehenden
Satz mit "passend" gemeint ist, hangt von der Gerateklasse ab. Das bedeutet, dev_enumerate- und
dev_nodebound-Gerate erfordern eindeutige globale Minor-Nummern 388 und dev_global- und
dev_nodespecific-Gerate erfordern das nicht. Die dc_map_minor-Nachricht (7-3) hat drei Felder: (1) "gminor",
welches ein Rickgabefeld fiir die von dem DCS 360 erzeugte globale Minor-Nummer 388 ist; (2) "Iminor", wel-
ches die von dem Geratetreiber 280 erzeugte lokale Minor-Nummer 384 enthalt; und (3) "class", welches die
von dem Geratetreiber 280 erzeugte Gerateklasse 386 enthalt. Als Reaktion auf die map_minor-Nachricht
(7-3) setzt das DCS 360 eine ahnliche ds_map_minor-Nachricht (7-4) an das lokale DSO 290 fiir die in der
Nachricht (7-3) angegebene Klasse ab.

[0068] Das DSO 290 bestimmt unter anderem die globale Minor-Nummer (gmin) 388, die dem Gerat, das hin-
zugefugt wird, zugewiesen werden sollte. Wie die gmin-Nummer zugewiesen wird, hangt von der Klasse 386
des Gerates ab. Zum Beispiel weist das DSO 292 fir die dev_enumerate-Klasse 314 jedem
dev_enumerate-Gerat eine gmin-Nummer 388 zu, die Uber den Cluster hinweg eindeutig ist, weil auf jedes auf-
gezahlte Gerat an einem bestimmten Knoten zugegriffen werden muf3. Im Gegensatz dazu weist das DSO 296
fur die dev_global-Klasse 318 jedem dev_global-Gerat dieselbe gmin-Nummer zu, da es unerheblich ist, an
welchem Knoten auf ein solches Gerat zugegriffen wird. Wie fiir die anderen Klassen weist das DSO 294 fur
die dev_nodespecific-Klasse 316 jedem Gerat dieser Klasse dieselbe gmin-Nummer ungleich Null zu und das
DSO 298 weist fur die dev_nodebound-Klasse 320 jedem Gerat dieser Klasse eine gmin-Nummer zu, die Uber
den Cluster hinweg eindeutig ist.

[0069] Die DSOs 292, 298 weisen globale Minor-Nummern zu, indem sie zuerst die DCS-Datenbank 372 be-
fragen, um festzustellen, welche globale Minor-Nummern noch verfiigbar sind.

[0070] Die DCS-Datenbank 372 wird in persistentem Speicher gehalten und enthalt fir alle Gerate 106 in dem
Cluster 200 Felder fur die Major-Nummer 390, die globale Minor-Nummer 388, die interne (oder lokale) Mi-
nor-Nummer 382 und die Gerate-Server-ld 392 (die die Server-Klasse 386 und den numerischen Wert 394 be-
inhaltet). Der Minor-Name, die Major-Nummer, die globale Minor-Nummer und die lokale Minor-Nummer wur-
den bereits beschrieben. Der numerische Wert 394 bezeichnet den Knoten 202, der der Server fur das Gerat,
das hinzugeflgt wird, ist. Diese Information ist fir die dev_global- und dev_nodespecific-Gerate optional, da
die Kennung eines Servers fur die erste Klasse unerheblich ist, und fiir den zweiten Fall dieselbe wie die Lo-
kation des Knotens ist, welcher Knoten auch immer auf das Gerat zugreifen méchte. Ein Beispiel der DCS-Da-
tenbank 272 ist in Tabelle 1 abgebildet.

11/28

DE 698 29442 T2 2006.04.13

Tabelle 1
Gerat Major globale interne Gerate-Server-ld 392:
(kein Feld) 390 Minor 388 Minor 382 | Server numerischer
Klasse 386 Wert 394

tcp 42 0 0 dev_global 0
kmem 13 12 12 dev_node_spec 0
disk 32 24 24 dev_enum node id
¢2t0d0s0
kmem 13 1 12 dev_enum node 0 id
kmem 13 2 12 dev_enum node 1 id
kmem 13 3 12 dev_enum node 2 id
kmem 13 4 12 dev_enum node 3id
HA-Geréate M X1 X1 dev_nodebound id

[0071] Die erste Zeile von Tabelle 1 zeigt einen Eintrag fir eine tcp-Schnittstelle. Eine tcp-Schnittstelle ist ein
dev_global-Gerat, da auf sie von jedem Knoten 202 in dem Cluster 200 zugegriffen werden kann. Das tcp-Ge-
rat hat eine Major-Nummer von 42, welches der allen tcp-Treibern zugeordnete Wert ist. Man beachte, dal ihre
globalen und lokalen Minimalwerte 388, 382 und der numerische Serverwert 394 (d. h. node_id) auf Null ge-
setzt sind. Das liegt daran, daf es unerheblich ist, von welchem Knoten auf die tcp-Schnittstelle zugegriffen
wird. Folglich gibt es nur einen tcp-Eintrag in der DCS-Datenbank fir den gesamten Cluster 200. Der zweite
Eintrag in Tabelle 1 ist fiir ein Kernspeicher-Gerat, auf welches per Voreinstellung lokal zugegriffen wird. Aus
diesem Grund ist es von der dev_nodespecific-Klasse. Die Major-Nummer 13 ist dem kmem-Geratetreiber zu-
geordnet. Das kmem-Gerat hat einen numerischen Wert 394 von Null, da auf kmem-Gerate nicht an irgendei-
nem bestimmten Server zugegriffen wird, und identische globale und lokale Nebenwerte (12) ungleich Null.
Das ist der Fall, da fiir dev_nodespecific-Gerate das DCS 360 einfach eine globale Minor-Nummer zuweist, die
mit der lokalen Minor-Nummer identisch ist. In dem vorliegenden Beispiel gibt es nur einen kmem-Eintrag von
der dev_nodespecific-Vielfalt in der DCS-Datenbank 372, da es keinen Bedarf gibt, zwischen den auf den je-
weiligen Knoten 202 gelegenen kmem-Geraten zu unterscheiden.

[0072] Der dritte Eintrag ist fir eine SCSI-Platte c0t0d0t0, dessen SCSI-Treiber die Major-Nummer 32 hat.
Das DCS 360 hat dem SCSI-Gerat eine globale Minor-Nummer 388 zugewiesen, die mit seiner lokalen Mi-
nor-Nummer 382 (24) Gbereinstimmt, da es keine anderen SCSI-Gerate gibt, die in der DCS-Datenbank 372
reprasentiert werden. Wenn jedoch ein anderes SCSI-Gerat c0t0d0t0 an einem anderen Knoten mit derselben
lokalen Nummer (24) registriert wiirde, wiirde das DCS 360 diesem SCSI eine unterschiedliche globale Num-
mer zuweisen, vielleicht 25. Um SCSI-Gerate mit denselben lokalen Nummern zu unterscheiden, enthalt die
DCS-Datenbank 372 die vollstandige Serverinformation. In diesem Fall ist der numerische Wert 394 auf die
hostid von Server 202 gesetzt.

[0073] Die Eintrage vier bis sieben sind fiir vier Kernspeicher-Gerate, die als dev_enumerate-Gerate regist-
riert sind. In der bevorzugten Ausfiihrungsform kénnen jedesmal, wenn ein dev_nodespecific-Gerat registriert
wird, zusatzliche Eintrage in der DCS-Datenbank 372 fir alle Knoten 202 in dem Kern erzeugt werden, was
einem Benutzer ermdglicht, auf ein dev_nodespecific-Gerat auf einem anderen als dem lokalen Knoten zuzu-
greifen. Folglich kann das DCS 260 unter der Annahme, daf} es vier Knoten 202-1, 202-2, 202-3 und 202-4
gibt, ein Kernspeicher-Gerat von der dev_enumerate-Klasse fir jeden dieser Knoten registrieren. Wie bei an-
deren dev_enumerate-Geraten wird jedem kmem-Gerat eine eindeutige globale Nummer zugewiesen. Die
dev_enumerate-Information wiirde nicht verwendet werden, wenn ein Benutzer eine generische Anforderung
zum Offnen eines Kernspeicher-Gerétes absetzt (z. B. open(/devices/kmem)). Die dev_enumerate-Information
wiirde verwendet werden, wenn ein Benutzer eine spezifische Anforderung zum Offnen eines Kernspei-
cher-Gerates absetzt. Zum Beispiel ermdglicht die Anforderung open(/devices/kmem0) einem Benutzer, das
kmem-Gerat auf dem Knoten 0 zu 6ffnen.

[0074] Der letzte Eintrag zeigt, wie ein generisches Hochverfiigbarkeits-(HA)-Gerat in der DCS-Datenbank
372 dargestellt wird. Die Major-Nummer 390, die globale Minor-Nummer und die lokale Minor-Nummer werden
aus den Werten M, X1 und X1 genommen, die in der map_minor_nodes-Nachricht geliefert werden. Der nu-
merische Wert 394 wird auf die Id des Gerates gesetzt, das an einen bestimmten Knoten gebunden ist. Diese
"Id" ist keine Knoten-Id. Vielmehr wird die Id fiir jeden HA-Dienst eindeutig fiir den Cluster 200 erzeugt.

[0075] Sobald die globale Minor-Nummer 388 fiir das Gerat 380 ermittelt ist, aktualisiert das entsprechende

12/28

DE 698 29442 T2 2006.04.13

DSO 290 die DCS-Datenbank 372 mit der neuen Information (7-5) und gibt die globale Minor-Nummer 388 an
das DCS 360 zurlick (7-6). Das DCS 372 gibt dann die globale Minor-Nummer 388 an das DDI 270 zurtick
(7-7), welches die ddi_minor_nodes-Tabelle 306 (7-9), den logischen Namensraum 304, den physikalischen
Namensraum 305 und den dev_info-Baum 302 aktualisiert (7-9). Das DDI 270 aktualisiert die
ddi_minor_nodes-Tabelle 306, indem es die neue globale Minor-Nummer 388 dort hineinschreibt. Die Aktuali-
sierung der Namenraume 304/305 ist komplizierter und wird nun beschrieben.

[0076] Zuerst flugt das DDI 270 einen neuen Blattknoten zu dem Devinfo-Baum 302 hinzu, dessen Struktur
gegeniber der zuvor mit Bezug auf Fig. 3 beschriebenen geandert wurde, um gleich unter dem "/de-
vices"-Knoten eine zusatzliche Ebene von "/hostid"-Knoten zum Reprasentieren der Stellen im Cluster, an de-
nen dev_enumerate hinzugefiigt werden, einzufiigen. Man beachte, daf} jeder Knoten 202 seinen eigenen De-
vinfo-Baum 270 hat, der die Gerate an diesem Knoten reprasentiert. Wie durch den physikalischen Namens-
raum dargestellt, verschmilzt jedoch die Zusammenfassung der Devinfo-Baume mit den zusatzlichen /hos-
tid-Knoten zu einer einzigen Darstellung. (z. B. kdnnte ein typischer physikalischer Name mit der Zeichenkette
/devices/hostid/... beginnen). Jedem Gerat ist auf der Blattebene auch seine globale Minor-Nummer 388 zu-
geordnet, nicht seine lokale Minor-Nummer 382. Wo es darauf ankommt (d. h. flr dev_enumerate-Gerate),
wird der dev_t-Wert jedes Blattknotens des Devinfo-Baumes 302 von der globalen Minor-Nummer 388 des ent-
sprechenden Gerates und der Major-Nummer 390 seines Treiber abgeleitet. Zum Beispiel wird der physikali-
sche Pfad zu einer SCSI-Platte an einem Knoten 202-x mit einer globalen Minor-Nummer GN, einem Mi-
nor-Namen MN und Treiber sd@addry in der vorliegenden Erfindung reprasentiert als:
/devices/node_202-x/iommu@addr/sbus@addr/esp@addr/sd@addry:MN.

[0077] Dieser physikalische Name entspricht dem physikalischen Namen der UFS-Datei 170 (Fig. 2B), die
Konfigurierungsinformation fiir das gegebene Gerat enthalt, wobei sie in ihren Attributen den von den Major-
und globalen Minor-Nummern abgeleiteten dev_t-Wert beinhaltet.

[0078] Die Verkniipfungsgeneratoren 274 der vorliegenden Erfindung leiten einen logischen Namen fiir das
Gerat (und fir das entsprechende UFS) von mindestens einem Teil des Devinfo-Pfades und des Minor-Na-
mens ab, der von dem Treiber geliefert wird, modifiziert gemafl der von dem DCS zurtickgelieferten globalen
Minor-Nummer.

[0079] Zum Beispiel angenommen, dal® der Knoten 202-1 eine SCSI-Platte mit vier Abschnitten hat, denen
urspriinglich von ihrem Treiber die Minor-Namen a-d und die Minor-Nummern 0-3 zugewiesen sind, und der
Knoten 202-2 eine SCSI-Platte mit sechs Abschnitten hat, denen die Minor-Namen a-f und die Minor-Nummern
0-5 zugewiesen sind. Es sei angenommen, dafl® das DCS 360 fir die erste SCSI-Platte die globalen Mi-
nor-Nummern 0-3 und fir die zweite SCSI-Platte die globalen Minor-Nummern 4-9 zuriickliefert, wenn diese
Geréate hinzugefiigt werden. Mittels dieser globalen Minor-Nummern erzeugen die DDIs 270 physikalische Na-
men (unten beschrieben), und die Verknipfungsgeneratoren 274 verwenden die DDIs 270 zum Erzeugen von
logischen Namen, die auf die physikalischen Namen wie folgt abgebildet werden:

Minor-Name vom Treiber 280 logischer Name von den VerknlUpfungsgeneratoren
274

a (Knoten 202-1) /dev/dsk/c0t0d0s0

b" /dev/dsk/c0t0d0s1

c" /dev/dsk/c0t0ds2

d" /dev/dsk/c0t0d0s3

a (Knoten 202-2) /dev/dsk/c1t0d0s0

b" /dev/dsk/c1t0d0s1

£ /dev/dsk/c1t0d0s5

[0080] Die den Knoten 202-1 und 202-2 zugewiesenen logischen Namen haben unterschiedliche Clus-
ter-Werte (der cx-Teil der logischen Namenszeichenkette cxt0d0sy, wobei "x" und "y" Variablen sind). Das liegt
daran, dal sich die logischen Name auf physikalische Geratenamen abbilden, und in einem Cluster Geraten
auf unterschiedlichen Knoten unterschiedlichen Steuerungen zugeordnet sind. Zum Beispiel wird die Steue-
rung auf Knoten 202-1 als c0 und die Steuerung auf Knoten 202-2 als c1 dargestellt.

[0081] Die DDIs 270 erzeugen den physikalischen Namensraum 305 mittels derselben gmin-Information und

erzeugen eine Abbildung zwischen logischen Namen und physikalischen Namen, die Dateien bezeichnen, de-
ren Attribute die dev_t-Werte fiir die entsprechenden Gerate enthalten. Fir das obige Beispiel wird der logische

13/28

DE 698 29442 T2 2006.04.13

Namensraum 304 und die Abbildung des logischen Namensraumes auf den physikalischen Namensraum wie
folgt aktualisiert (man beachte, daf} addr fiir irgendeine Adresse steht):

logischer Name physikalischer Name vom Devinfo-Baum 302

/dev/dsk/c0t0d0s0 /devices/node_202-1/iom-
mu@addr/sbus@addr/esp1@addr/sd@0:a

/dev/dsk/c0t0d0s1 " lesp1@addr/sd@0:b

/dev/dsk/c0t0d0s2 " lesp1@addr/sd@0:c

/dev/dsk/c0t0d0s3 " lesp1 @addr/sd@0:d

/dev/dsk/c1t0d0s0 /devices/node_202-2/iom-
mu@addr/sbus@addr/esp1@addr/sd@0:minor

/dev/dsk/c1t0d0s1 " lesp1@addr/sd@0:r

/dev/dsk/c1t0d0s2 " lesp1@addr/sd@0:f

/dev/dsk/c0t0d0s5 " lesp1@addr/sd@0:i

[0082] Das gerade dargestellte Beispiel zeigt, dal die DDIs 270 logische und physikalische Namen flr
dev_enumerate-Gerate erzeugen, wobei SCSI-Gerate Mitglied dieser Klassen sind. Kurz zusammengefalit er-
fordern die Regeln zum Benennen von dev_enumerate-Geraten, dal} jede von einem bestimmten Treiber (z.
B. sd) durchnumerierte Instanz eine eindeutige globale Minor-Nummer haben muf3, die, wenn sie mit der Ma-
jor-Nummer ihres Treibers kombiniert wird, einen entsprechenden eindeutigen dev_t-Wert bildet. Diese Regeln
geben auch vor, dald der jeder Instanz zugeordnete physikalische Name die hostid dieser Instanz und die glo-
bale Minor-Nummer der Instanz zusatzlich zu anderen traditionellen physikalischen Pfadinformationen enthal-
ten muR. Die Regeln zum Benennen der anderen Gerate von anderen Klassen sind ahnlich zu den oben fir
die dev_enumerate-Klasse beschriebenen.

[0083] Insbesondere weist das DDI 270 einem dev_nodespecific-Gerat einen logischen Namen der Form
/dev/device_name und einen physikalischen Namen der folgenden Form zu:
/devices/pseudo/driver@gmin:device_name, wobei device_name der Name 384 ist, pseudo anzeigt, dal} die
Gerate dieses Typs Pseudo-Gerate sind, driver die Id des entsprechenden Treibers ist und
@gmin:device_name die globale Nummer 388 und den Geratenamen 384 des dev_nodespecific-Gerates an-
gibt. Zum Beispiel kdnnten der logische und der physikalische Name eines Kernspeicher-Gerates /dev/ikmem
bzw. /devices/pseudo/mm@12:kmem sein. Wie oben erwahnt, kann einem kmem-Gerat auch ein logischer
Name gegeben werden, der es erméglicht, auf einem speziellen Knoten darauf zuzugreifen. Zum Beispiel kann
das DDI 270 den logischen Namen /dev/kmemO auf den physikalischen Namen /devices/hostidO/pseu-
do/mm@0:kmem abbilden.

[0084] Fur die dev_global-Klasse identifiziert jeder von dem DDI erzeugte logische Name einen gemeinsa-
men physikalischen Pfad, der von dem Dateisystem zu irgendeinem Gerat in dem Cluster 200 aufgelost wird.
Logische Namen fur diese Gerate sind von der Form /dev/device_name und werden auf physikalische Namen
der folgenden Form abgebildet: /devices/pseudo/clone@gmin:device_name, wobei device_name der Name
384 ist, der spezifisch flr den Treiber ist, pseudo anzeigt, dal® die Gerate dieses Typs Pseudo-Gerate sind,
clone anzeigt, dal} das Gerat klonierbar ist und @gmin:device_name die globale Nummer 388 und den Gera-
tenamen 384 des dev_global-Gerates angibt. Zum Beispiel kbnnte das tcp-Gerat von Tabelle 1 einen logischen
Name /dev/tcp und einen physikalischen Name /devices/pseudo/clone@0:tcp haben. Man beachte, dal} die
Ausfiuhrungsform der Erfindung nicht zulaft, dafd irgendeines der dev_global-Gerate unterscheidbar gemacht
wird wie in dem oben beschriebenen Fall der kmem-Gerate. Das bedeutet, alle dev_global-Gerate sind unun-
terscheidbar.

[0085] Ein Vorzug des klassenbasierten Benennungssystems einer Ausfiihrungsform der Erfindung ist, daf3
es mit herkdmmlicher Software, die fur frihere Versionen von Solaris ausgelegt ist, kompatibel ist. Zum Bei-
spiel kdnnte ein herkdmmliches Programm eine Anforderung open(/dev/kmem) absetzen, in welchem Fall eine
Version von Solaris, die die vorliegende Erfindung einbezieht, ein Handle zu dem lokalen kmem-Gerat zurick-
liefert. Ahnliche Ergebnisse werden fiir dev_global- und dev_enumerate-Geréte geliefert. Es gab beim Stand
der Technik kein Konzept bzw. keinen Ansatz fir dev_nodebound-Gerate.

[0086] Nachdem beschrieben wurde, wie das DDI 270 und das DCS 360 einen konsistenten globalen Na-
mensraum bilden, in dem auf unterschiedliche Klassen von Geraten auf unterschiedlichen Knoten des Clusters
200 zugegriffen werden kann, werden nun unter Bezug auf die Eig. 8A und Eig. 8B die Schritte beschrieben,
die von einer Ausfiihrungsform der Erfindung verwendet werden, um auf eine Offnen-Anforderung fiir ein Gerat

14/28

DE 698 29442 T2 2006.04.13

auf einem anderen Knoten zu antworten.

[0087] In den Fig. 8A und Fig. 8B werden FluRdiagramme der von einer Ausfiihrungsform der Erfindung als
Reaktion auf eine Anforderung (8-1) durchgefiihrten Schritte dargestellt, wobei die Anforderung von einer auf
einem Knoten 202-1 ausgefihrten Anwendung 150 abgesetzt wird, um auf ein Gerat 106-2 (Fig. 8B) zuzugrei-
fen (es zu 6ffnen), das sich an einem Knoten 202-3 befindet. In diesem Beispiel befinden sich das Dateisystem
206 und das DCS 360 auf den Knoten 202-2 bzw. 204. Die Anwendung 150 setzt eine Offnen-Anforderung auf
den logischen Namen des Gerates an den Kern 242 ab. Der Kern 242 fragt dann beim Dateisystem 206 an,
um den dev_t-Wert des Gerates festzustellen. Weil das Dateisystem auf einem anderen Knoten als der Kern
242 liegt, ist dies ein Mehrschritt-Prozel, der die Verwendung eines Proxy-Dateisystems PxFS involviert, von
dem die meisten Aspekte bereits durch aktuelle Versionen von Solaris definiert sind. Die Ausfihrungsform mo-
difiziert jedoch solche Elemente des Proxy-Dateisystems wie etwa die PxFS-Clients 246 und die PxFS-Server
248, um Interaktionen mit dem DCS 360 zu unterstitzen, fur die es kein Analogon in friheren Versionen von
Solaris gibt. Die Interaktionen zwischen dem PxFS-Client 246, dem PxFS-Server 248 und dem Dateisystem
206 werden nun kurz beschrieben.

[0088] Ein Objekt wie der Kern 242, das Zugriff auf das Dateisystem 206 bendtigt, setzt zunachst die Zu-
griffsanforderung an seinen lokalen PxFS-Client 246 ab. Der PxFS-Client halt eine Referenz auf den
PxFS-Server 248, der bei dem Dateisystem 206 angesiedelt ist. Diese Referenz setzt den PxFS-Client 246 in
die Lage, die Anforderung des Kerns an das Dateisystem 206 Gber den PxFS-Server 248 zu kommunizieren.
Das Dateisystem 206 fiihrt den angeforderten Zugriff aus, erzeugt ein vnode-Objekt 252, das die angeforderte
Datei reprasentiert, und gibt eine Referenz auf das vnode-Objekt 252 an den PxFS-Server 248 zurlick. Weil
die Knoten 202-1 und 202-2 verschiedene Adre3raume sind, ist die Referenz auf den vnode 252 firr den
PxFS-Client 246 und den Kern 242 in dem Knoten 202-1 nutzlos. Folglich erzeugt der PxFS-Server 248 ein
Datei-Transport-Objekt (f_obj) 250, das mit dem vnode 252 verknUpft ist, und gibt eine Referenz auf das f_obj
250 an den PxFS-Client 246 zurtck. Beim Empfang der f_obj-Referenz erzeugt der PxFS-Client 246 einen Pro-
xyvnode (px_vnode) 256, der mit dem f_obj 250 verknupft ist. Der Kern 242 kann dann auf die Dateiinformation
zugreifen, die durch den vnode 252 reprasentiert wird, indem er einfach auf den lokalen px_vnode 256 zugreift.

[0089] Mittels dieses Mechanismus' setzt der Kern 242 eine Nachschlage- bzw. Lookup-Nachricht (8-2) auf
den logischen Namen des zu 6ffnenden Gerates an den PxFS-Client 246 ab, der eine ahnliche Lookup-Nach-
richt (8-3) an den PxFS-Server 248 weiterleitet. Der PxFS-Server 248 setzt an das Dateisystem 206 eine
lookup(logical_name), get_vnode-Nachricht (8-4) ab, die das Dateisystem 206 auffordert, Uber eine logische
symbolische Verknipfung den logical name auf den zugehdrigen physical_name abzubilden und eine Refe-
renz auf einen v_node 252 zurlickzugeben, die die durch diesen physical_name bezeichnete UFS-Datei repra-
sentiert. Wenn sich der physical_name auf ein Gerat bezieht wie in dem vorliegenden Beispiel, beinhalten die
Attribute des Gerates den eindeutigen dev_t-Wert des Gerates. Wie oben beschrieben gibt das Dateisystem
206 daraufhin den vnode an den PxFS-Server 248 zurlick (8-5), und der PxFS-Server 248 erzeugt ein entspre-
chendes f_obj 250 und gibt die Referenz auf das f_obj 250 an den PxFS-Client 246 zurlick (8-6). Der PxFS-Cli-
ent 246 erzeugt dann einen px_vnode 256, dessen Attribute die dev_t-Information fiir das angeforderte Gerat
beinhalten, und tbergibt die Referenz auf den px_vnode 256 an den Kern 242 (8-7). Zu diesem Zeitpunkt setzt
der Kern 242 eine Offnen-Nachricht (8-8) fiir den px_vnode 246 an den PxFS-Client 246 ab. Auf den Empfang
dieser Nachricht hin ermittelt der PxFS-Client 246 aus den Attributen des px_vnode, die einen dev_t-Wert be-
inhalten, daR der entsprechende vnode 252 ein Gerét reprasentiert und daR die Offnen-Nachricht daher von
dem DCS 360 behandelt werden muf3. Wenn der px_vnode 256 keinen dev_t-Wert beinhaltet, wiirde der
PxFS-Client 246 die Offnen-Anforderung (8-8) durch andere Kanéle erfiillen. Wie in frilheren Versionen von
Solaris implementiert fuhrt der PxFS-Client kein Testen auf dev_t-Werte durch, da Gerate nur lokal zuganglich
sind.

[0090] Weil der px-vnode 256 einen dev_t-Wert 430 beinhaltet, setzt der PxFS-Client 246 eine Auflo-
sen-Nachricht (8-9) an das DCS 360 fir das zu dem dev_t gehérige Gerat ab. Wie das DCS 360 diese Anfor-
derung behandelt, wird nun unter Bezug auf Fig. 8B beschrieben.

[0091] Mit Bezug auf Fig. 8B sieht das DCS 360 als Reaktion auf die resolve(dev_t)-Nachricht (8-9) in der
DCS-Datenbank 372 nach, um die Lage und die Kennung des Gerates zu ermitteln, das diesem dev_t-Wert
entspricht. Konsistent mit den vorhergehenden Diskussionen der Gerateklassen 312 wird auf Gerate der
dev_enumerate- oder dev_nodebound-Klassen auf einem bestimmten Knoten zugegriffen, dessen Lage in
dem numerischen Wertefeld 394 der DCS-Datenbank 372 angegeben ist. Im Gegensatz dazu wird auf Gerate
der dev_global- oder dev_nodespecific-Klassen auf dem fokalen Knoten der anfordernden Anwendung zuge-
griffen. Sobald es die Lage des zu 6ffnenden Gerates ermittelt hat, gibt das DCS 360 an den PxFS-Client 246

15/28

DE 698 29442 T2 2006.04.13

eine Referenz (DSO_ref) auf das DSO 290 zuriick (8-10), das die Gerateklasse verwaltet, zu der das angefor-
derte Gerat gehort und lokal zu dem Knoten ist, der das angeforderte Objekt beheimatet. In dem vorliegenden
Beispiel wiirde unter der Annahme, dal das angeforderte Gerat 106-2 von der dev_enumerate-Klasse ist und
auf dem Knoten 202-3 beheimatet ist, das zurlickgelieferte DSO_ref auf das DSO_enum-Objekt 292 auf dem
Knoten 202-3 verweisen.

[0092] Nach Empfang der Nachricht (8-10) setzt der PxFS-Client 246 eine get_device_fobj-Anforderung fir
das Gerat 106-2 an das referenzierte DSO 292 ab (8-11). Im Gegenzug setzt das DSO 292 eine
create_specvp()-Nachricht (8-12) ab, die das SpecFS 410 auf dem Knoten 202-3 auffordert, den snode flr das
Gerat 106-2 zu kreieren und zurlickzugeben (8-13). Das DSO 292 fordert daraufhin die f_obj-Referenz auf den
snode von dem PxFS-Server 248-2 an (8-14a), der das angeforderte f_obj zuriickliefert (8-14b). Das DSO 292
gibt dann die f_obj-Referenz auf den snode an den PxFS-Client 246 zurtick (8-15). Der Client 246 setzt dann
eine Offnen-Anforderung (8-16) auf dieses f_obj ab, die (iber den PxFS-Server 248-2 zu dem SpecFS 410 geht
(8-17).

[0093] Das SpecFS 410 versucht dann, das Gerat 106-2 zu 6ffnen. Abhangig vom Ergebnis der Offnen-Ope-
ration gibt das SpecFS 410 eine Status-Nachricht (8-18) zuriick, die entweder Erfolg oder Fehlschlag anzeigt.
Wenn das Offnen erfolgreich war, enthalt die Status-Meldung (8-18) auch eine Referenz auf den gedffneten
snode 432. Auf den Empfang von "Erfolg" in der Status-Meldung (8-18) hin erzeugt der PxFS-Server 248-2 das
f_obj 250-2 fir den gedffneten v-node 252-2 und gibt ihn an den PxFS-Client 246 zurtick (8-19), der einen
px_vnode 256-2 erzeugt, der Uber Knoten hinweg mit dem f_obj 250-2 verknUipft ist. Als abschlieBenden Schritt
in der Gerate-Offnen-Operation gibt der PxFS-Client den px_vnode 256-2 an den Kern 242 zuriick (8-20), der
einen entsprechenden Dateideskriptor (fd) 434 im Benutzerraum kreiert. Der Kern 242 gibt diesen Dateides-
kriptor an die Anwendung 150-1 zurtck (8-21), die dann den Dateideskriptor 434 verwenden kann, um direkt
(d. h. Gber den Kern 242, den PxFS-Client 246 und den px_vnode) mit dem Gerat 106-2 zu interagieren.

[0094] Wahrend die vorliegende Erfindung unter Bezug auf einige spezielle Ausfiihrungsformen beschrieben
wurde, ist die Beschreibung eine Veranschaulichung der Erfindung und ist nicht als Einschrankung der Erfin-
dung auszulegen. Verschiedene Abwandlungen bieten sich fir Fachleute auf dem Gebiet an, ohne daf} da-
durch der Geltungs- bzw. Anwendungsbereich der Erfindung verlassen wird.

Patentanspriiche

1. System, welches daflr ausgelegt ist, einen globalen Zugriff auf physikalische Gerate zu gewahrleisten,
welche auf einem Computercluster angeordnet sind, welches eine Mehrzahl von Knoten aufweist, wobei das
System aufweist:
ein globales Dateisystem (206),
ein Geratekonfigurationssystem (DCS) (360),
wobei das globale Dateisystem dafiir ausgelegt ist, dal3 es auf eine Anforderung nach Zugriff auf ein solches
physikalisches Gerat, die von einem der Knoten ausgegeben wird, reagiert, indem es eine DSO-Handhabe von
dem DCS anfordert,
zumindest ein Gerateserverobjekt (DSO) (290),
wobei das DCS dafur ausgelegt ist, dall es in Reaktion auf die Anforderung vom dem globalen Dateisystem
eine ldentitat eines ersten DSO bestimmt, welches zu dem angeforderten physikalischen Gerat gehort,
dadurch gekennzeichnet, dal das System weiterhin ein Proxy-Dateisystem (246, 248) aufweist, wobei das
DCS dafir ausgelegt ist, zu dem Proxy-Dateisystem eine Referenz auf das erste DSO zu tiefem,
wobei das Roxy-Dateisystem dafiir ausgelegt ist, einen Dateideskriptor flir den anschlieBenden Gebrauch
beim Zugriff auf das angeforderte physikalische Gerat bereitzustellen.

2. System nach Anspruch 1, wobei das DCS auf einem der Knoten angesiedelt ist und wobei das System
weiterhin aufweist:
einen gemeinsamen Betriebssystemkern, der auf jedem der Knoten in dem Computercluster lauft,
eine Geratetreiberschnittstelle (DDI) (270), die auf jedem der Knoten lauft, und
eine Mehrzahl von Geratetreibern, die auf jedem der Knoten angeordnet sind, wobei jeder der Geratetreiber
dafir ausgelegt ist, einen Typ eines physikalischen Gerates zu verwalten und jedem dieser Geratetreiber eine
eindeutige gréRere Zahl zugeordnet ist,
jeder Geratetreiber dafiir ausgelegt ist, dann, wenn ein neues Gerat eines passenden Typs an dem entspre-
chenden Knoten angebracht wird, eine AnschluBnachricht an die DDI auszugeben, welche eine lokale Ken-
nung (locid) des neu angebrachten Gerates anzeigt,
wobei die DDI daflir ausgelegt ist, in Reaktion auf die Anschluf3nachricht eine Plananforderung an das DCS

16/28

DE 698 29442 T2 2006.04.13

nach einer eindeutigen, globalen kleineren (gmin)-Zahl fir das angeschlossene Gerat auszugeben, wobei die
Plananforderung die gréfere Zahl und die locid des angeschlossenen Gerates anzeigt,

und das DCS dafur ausgelegt ist, in Reaktion auf die Plananforderung (a) die gmin-Zahl zu bestimmen, (b) die
gmin-Zahl an die DDI zu liefern und (c) die gmin-Zahl, die gréRere Zahl und die lokale Kennung zu speichern,
und wobei die DDI dafir ausgelegt ist, die gmin-Zahl, die von dem DCS bereitgestellt wird, und die gréRere
Zahl, dem angeschlossenen Gerat zuzuordnen, so dal’ das angeschlossene Gerat in Reaktion auf eine Anfor-
derung zum Offnen des angeschlossenen Gerates von dem Dateisystem aus zuganglich ist.

3. System nach Anspruch 1, wobei das DCS, das globale Dateisystem und das angeforderte Gerat sich
jeweils auf verschiedenen Knoten befinden und das Proxy-Dateisystem einen Proxy-Dateisystem-Klienten
(246) auf einem ersten Knoten und einen Proxy-Dateisystem-Server (248) auf einem zweiten Knoten aufweist,
welche ermdglichen, dal® Anwendungen auf dem ersten Knoten transparent mit Dateiobjekten kommunizieren,
die gemeinsam mit dem angeforderten Gerat auf dem zweiten Knoten angeordnet sind.

4. System nach Anspruch 1, wobei das zumindest eine DSO einen Satz von Gerateserverobjekten auf je-
dem Knoten des Clusters aufweist, von welchem jeder eine entsprechende Gerateklasse verwaltet.

5. System nach Anspruch 4, wobei die Gerateklasse ein Mitglied eines Satzes von Gerateklassen ist, wel-
cher zumindest eine der folgenden umfaft:
"dev_enumerate", fir die Kennzeichnung von Geraten mit zumindest einem Auftreten, welches durch einen
besonderen Treiber verwaltet wird, wobei jedes Auftreten, das durch den besonderen Treiber auf einem be-
stimmten Knoten verwaltet wird, individuell numeriert wird,
"dev_nodespecific", fur die Kennzeichnung von Geraten, die an jedem Knoten verflgbar sind und auf welche
lokal zugegriffen wird, und die eine eins-zu-eins-Beziehung mit dem Gerateverwaltungstreiber auf jedem Kno-
ten haben,
"dev_global", um Gerate zu kennzeichnen, auf welche von derartigen Geratetreibern von irgendeinem derarti-
gen Knoten aus zugegriffen werden kann und
"dev_nodebound", welches Gerate kennzeichnet, auf welche durch einen Treiber auf einen bestimmten Kno-
ten zugegriffen werden kann, und welche eine eins-zu-eins-Beziehung mit dem Geratetreiber haben.

6. Verfahren, welches dafiir ausgelegt ist, einen globalen Zugriff auf physikalische Gerate zu gewahren,
welche auf einem Computercluster angeordnet sind, welches eine Mehrzahl von Knoten aufweist, wobei das
Verfahren die Schritte aufweist.

Reagieren eines globalen Dateisystems (206) auf eine Zugriffsanforderung fir den Zugriff auf ein solches phy-
sikalisches Gerat, welche von einem der Knoten (202) ausgegeben wird, in dem eine DSO-Handhabe von ei-
nem Geratekonfigurationssystem (DCS) (208) angefordert wird,

wobei das DCS in Reaktion auf die Zugriffsanforderung von dem globalen Dateisystem eine Identitat eines ers-
ten Gerateserverobjektes (DSO) (290) bestimmt, welche der Anforderung nach dem physikalischen Gerat zu-
geordnet ist, dadurch gekennzeichnet, dal3 das Verfahren weiterhin die Schritte aufweist, da® an ein Pro-
xy-Dateisystem (246, 248) eine Referenz bzw. Bezugnahme auf das erste DSO bereitgestellt wird,

wobei das Proxy-Dateisystem einen Dateideskriptor fiir den nachfolgenden Gebrauch beim Zugriff auf das an-
geforderte physikalische Gerat liefert.

7. Verfahren nach Anspruch 6, welches weiterhin die Schritte aufweist:
jeder aus einer Mehrzahl von Geréatetreibern gibt, wenn ein neues Gerat eines geeigneten Typs an einen ent-
sprechenden Knoten angeschlossen wird, eine AnschluRnachricht an eine am selben Platz angeordnete Ge-
ratetreiberschnittstelle (DDI) (270) aus, welche eine lokale Kennung (locid) des neu angeschlossenen Gerates
anzeigt, wobei jeder der Geratetreiber daflir ausgelegt ist, einen Typ eines physikalischen Gerates zu verwal-
ten und jedem der Geratetreiber eine eindeutige gréfere Zahl zugeordnet ist,
in Reaktion auf die Anschluf3nachricht ausgegeben einer Plananforderung an das DCS nach einer eindeutigen,
globalen kleineren (gmin)-Zahl fir das neue Gerat durch die DDI, wobei die Plananforderung die gréfiere Zahl
und die locid des neuen Gerates anzeigt,
in Reaktion auf die Plananforderung: (a) Bestimmen der gmin-Zahl und (b) Liefern der gmin-Zahl zu der DDI
durch das DCS, und
wobei die DDI die gmin-Zahl, die durch das DCS geliefert wird und die gréfiere Zahl, dem neuen Gerat zuord-
net, so dal auf das neue Gerét in Reaktion auf eine Anforderung zum Offnen des neuen Geréates von dem
globalen Dateisystem aus zugegriffen werden kann.

8. Verfahren nach Anspruch 7, welches weiterhin die Schritte aufweist:
Ausgeben von Geratekonfigurationsinformation an die DDI durch den Treiber, einschliellich der Klasseninfor-

17/28

DE 698 29442 T2 2006.04.13

mation fur das neue Geréat, falls verfigbar, und
Einbeziehen der Klasseninformation, falls verfligbar, in die Plananforderung durch die DDI.

9. Verfahren nach Anspruch 8, welches weiterhin die Schritte aufweist:
nach Empfang der Plananforderung Untersuchen eines lokalen DSO, welches den Geraten zugeordnet ist, de-
ren Klasse dieselbe ist, wie diejenige des neuen Gerates, durch das DCS, und
durch das DSO Bestimmen der gmin-Zahl, die dem neuen Gerat zugeordnet werden soll.

10. Verfahren nach Anspruch 9, welches weiterhin den Schritt aufweist:
Zugreifen auf das neue Gerat, als ob das neue Gerat zu der dev_enumerate-Klasse gehort, einschliel3lich Ge-
rat, mit zumindest einmaligem Auftreten, welches durch einen bestimmten Treiber verwaltet wird, wenn die
Klasseninformation durch den Geratetreiber nicht bereitgestellt wird, wobei jeder Fall des Auftretens, welches
durch den bestimmten Treiber auf einem bestimmten Knoten verwaltet wird, einzeln numeriert wird.

Es folgen 10 Blatt Zeichnungen

18/28

DE 698 29442 T2 2006.04.13

Anhangende Zeichnungen

29l wneg- OJujAaQd
09! uainpnisusleq
05} _ uebunpuemy (qiuysa sap puels)
op | 9pou” Joulw” djeald Ipp)
il ualojelsuabsbunydnuian .n .mVH rvH
44" uswyey-1aa
ovi 1aqianeiessn)
Gol wnessuawep Jayasieiisiud
ol wneisuaiep 18yosibo
sgel g4oads
ugel S3N
ngel S4dn
[AA* SdO SPOUA
sogl sopous
SSPOUA -
Ve WM _—“ wayshsivleq o]
01 cel Lwiax NdO
hmco_.oaw ocl wisysAssqgalieg
801 \ n -
TAA" ajesabopnas
cm__muwMM_mow ocl uabunjyouudIaydladg
) 8Ll uabunyouuld-"Wwoy 4ﬂ\/
Ve oLl Jayoradsuiay 001}
ooL | vt Jaxonig
seren | Cli 9jele-vH

19/28

DE 698 29442 T2 2006.04.13

(qiuyoa] 19p pues) (qiuyoay 19p puels)

q4z ‘O1d . VT ' Old
90}
(Mese 4/ S uateleq
9oL~ —— | N -
> ("Aap) SINAUAY [19, | = \. x
* 1 \ !
[} \ [}
" v Y
" uger) | neer |)
_ S4N |\ | san |
' \ '
b f ONF] \ « !
vaimea-S 4N (Sopousy @
~o 1 19EL -7 Jggl
_ 7T Cpous
- L vel . wnes y 9€l
sweN JayosiexisAud woysksisreq susuEN . —
//- Jayosiboj ¢l
891 U9IYOS-G-§/AJOPOUA
p h
v N pel
SueN Jayosibol p11 10idisepiaeq
“~ go1 .

05— oSt

20/28

DE 698 29442 T2 2006.04.13

(y'ze)

(uyoa] Jop puess) FAP) (p=uiw)
¢ ‘oL (e'2¢) . (2'ze) (1'ze) (0'ze) =¥ Asp
0ASp ¢ on@m
(e=uiw) (z=uw) (l=uiw) (o=uiw) (ze=lew) (ze=lew)

SIppe@ Yippe® cippe®
WLV ydse Jdsa

| Ippe@
snqgs

0:ppe
nwwo

¢l

21/28

DE 698 29442 T2 2006.04.13

(uyoay Jap pueis)
v "OId

0L Jayoiads ~

((espoun)ioyduosap ajy)uinias (0L-v)
{(smeys"uado)uinal (6-v)
(snyeys " uado)uimal (8-p)
‘(znep)uado (L-v)

‘(apoun)uado (9-¥)

‘(apouna)uiniai (G-p)

‘(spoun)uiniai (p-p)

‘(3" Aep)apouniab (e-p)
‘(aweu~|eoib0o))apour3eb (2-1)
‘(aweu"jedibopuado (L-p)

MP01 Yoioiagqiaydiadsulay

OF| wneg-ojujAaQg

rAL [ET] 1 j18qall

\ 2

J8)jeyoswinajelan)

yel

wneisuawep Jayosibo

NY0l YyodlalagiaydiadsiazinN

22/28

DE 698 29442 T2 2006.04.13

) & |

€-0C1
e-8ll
€-9LL
e-vLl
(AN

uabumyouuiaiayoledg
uabunjysuule- WWoy
Jayoradsuiay

J@xonqg

rIv-YH

(A TAS
c-8Ll
¢9ll
cvil
[ArASS

uabunjysuulaiaysiadg L-021
uaBuNYLILIS- IO L-8L1}
Jaysiadsuiay 1-9L1

Jayonid -
9jeIe0-YH _—H-M__H _P‘

uabBunjyouuiziayoladg
uabunjysuuis- Wwo|
Jayoladsuiay

Je)onuq

3ele-vYH

h €-901 Qﬁmop

voT

usjouy|

¢-901 m@m&

¢-¢0c
_ usjouy

L0C 49ISN|O

_

ﬁ 1-901 amieo u

L-0G1

MUY

00¢

23/28

DE 698 29442 T2 2006.04.13

9 "OIA

0Z€ puUnogapou Aap
‘gL € |eqolb AP ‘gL g dyI0adsapouTASp ‘YL E 9jelaWwnua ASp

N\

cl

asse|ysjelan),

e 14133

Jaquinu Jouiw” |Bo0]

_ 80¢
Jaquinu Joulw jeqolb

rAX> suequsiea SOQ
0.¢€ uanpinasusleq
14815 Joujw dew

06¢ _S0osd

c9¢t Jouiw™ dew

09¢ Soda

ove apjelaousunnoy- SO
oce Jayoiadg

- y0Z usiouy]

90l 9kI8Y

Qo€ S3poU” Joujw ipp

c0€ wneg-ojujaaQg

oom uainpruisuaieq

08¢ 15q1911918199

86¢ punogapou OSq

962 leqol6”0sa

v6¢ oadsspou OSQ

414 wnua 0Ssag

06¢ sOSa

v.lc cmhoumhm:wmmmcemacvzg

cle uabnynzuiy

0l¢ wasAs-1aq

85¢ S4oads

95¢ (3do) sepoun™xd

1414 (ydo) sapous

2se (do) sapoua

0S¢ (1do) slqo™}

8t (1do) semss SIXd

ave (1do) syuaip S4Xd

1444 SdXd
L_¢ve Wy

ove apialao/ UaURNOY SO

omN J8yoledg

-

¢0¢ uajouy

24/28

DE 698 29442 T2 2006.04.13

((leA wnu—gQ 'adAy sq ‘Jouiwub

‘wa)sAsajy ajepdn (g-2)
‘(qoutwb) wnyas (£-2)

Joujwy ‘Jofew) aseqejep” $OQ ajepdn (9-2)

(Joutwb) uinyay (5-2)

‘(zouiwib ‘Joujw ‘Jolew) Jouiw—dew™sp (y-2)

'(ssejo “Joujwib ‘Jouiwy; ‘Jofew) Jouiwdew op (g-2)
(sse)o ‘Jouw) ‘Jouiwb) sepousouiw 1pp ayepdn (6-2)'(2-2)
:(98€ sse0 'P8E aweu Joulw ‘ZEE WNU™Joulw) SapouJouiw” 8jeald” 1pp (qiL-2)

YL "OlA
V6¢ - 98¢ 2se 88¢ - 06€
baMm Jayosuswnu SSBJD JOAISS Ul [eusdju| uiw jeqojbjiofew
- Z6¢E > \ N-ze
- a

ooc

l

Zl€
suequalea-§ (]

-(g)

06¢

ﬁ .95SED,
i} 0sa

Qyoene (e}-2)

awneJisuawen
ayosiexisAyd/ayosibon Vs 90¢

- 50€/b0E | sopouTiounuTIpp

087

Jaqiail

-(8)

\
voz -

(e)

zo0z-

25/28

DE 698 29442 T2 2006.04.13

¢-/0€ wney
-UJBWIWNN/-SUSWEN-IOUIN

qaL *dOld

JayosiexisAyd

GOE Wneisuswep 2-202 usiouy
/

. [

$0€ wnel
-suauwiep 1ayosibo

‘l\‘ /
cvit
n@ > ¢-0L¢ > Jojesauab
1ad \ ﬂ -sbunydnuxysap
"!’ \\\
- /
[WELIETTR L P_.%MN , \ > Burm.wmﬁcmmm
I/ -sBunydnuiap
aweN mom
\
1-20€ E.:mm / /

-UWIBWIWNN/-SUBWEN-JOUIN

hwErﬂh:zl 10¢
sweN L0€

120 veiouy

sweN $OE

26/28

DE 698 29442 T2 2006.04.13

V8 *Old

(XA
yuequaea-SO(J

(6)

f VQN uajouy /

_ogy
‘(¥ "Aap) anjosai (6-8)

‘(epoun—xd) uado (g-8)

‘(G Asp=upe)apourxd) uinyal (2-8)
‘(217 fqgo ™)) wmai (9-8)

!(apoun) uimal (g-8)

(aweujeoisAyd) eapounT}ab ‘()dndooj (-8)
*(aweu jesibo)) dnyooj (g-8)
‘(awreuJeaib0o]) dnyooj (z-8)
{(aweueo160)) uado (1-8)

(9]

8¥e
FIEVNETS

SdXd

- Z2-202 usiouy

()

~ L-€0Cuarouy

27/28

DE 698 29442 T2 2006.04.13

a8 "Old

(ps) wimai (0z-8)

‘lqo~} pauado uinjal (61-8)
‘apous pauado uinjas (g1-8)
‘() uado Dads (21-8)
{(Iqo™}) uado (91-8)

{(lqo") wimai (g1-8)

‘(fqo™y) wma (ay1-8)
‘(apoun) [qo 3196 (ey|-g)

P

nlNON uajouy

[AA>
uequaleag N Q

‘(apous) uinyas (g}
!0 daoads™a)eas0 (Z1-8)
‘(" Aap) [qoyao1nep 196 (11-8)

8)

[VON usjouy

‘jar" 0sqa) umas (01-8)
‘(¥ Aap) anjosal (6-8)

¢-95¢

~ L-20¢ usjouy

28/28

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

