

US00RE50204E

(19) United States

(12) Reissued Patent

Preiss et al.

(10) Patent Number: US RE50,204 E

(45) Date of Reissued Patent: Nov. 12, 2024

(54) PERFORATING GUN AND DETONATOR ASSEMBLY

(71) Applicant: DynaEnergetics Europe GmbH,

Troisdorf (DE)

(72) Inventors: Frank Haron Preiss, Bonn (DE); Thilo

Scharf, Letterkenny (IE); Liam

McNelis, Bonn (DE)

(73) Assignee: DynaEnergetics Europe GmbH,

Troisdorf (DE)

(21) Appl. No.: 16/287,150

(22) Filed: Feb. 27, 2019

Related U.S. Patent Documents

Reissue of:

(64) Patent No.: 9,581,422
Issued: Feb. 28, 2017
Appl. No.: 14/932,865
Filed: Nov. 4, 2015

U.S. Applications:

(63) Continuation of application No. 14/767,058, filed as application No. PCT/EP2014/065752 on Jul. 22, 2014, now Pat. No. 9,605,937.

(30) Foreign Application Priority Data

Aug. 26, 2013 (DE) 102013109227.6

(51) Int. Cl. F42C 19/12 (2006.01) E21B 43/1185 (2006.01)

(52) U.S. Cl. CPC *F42C 19/12* (2013.01); *E21B 43/1185*

(58) Field of Classification Search

CPC F42C 19/12; E21B 43/1185 See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

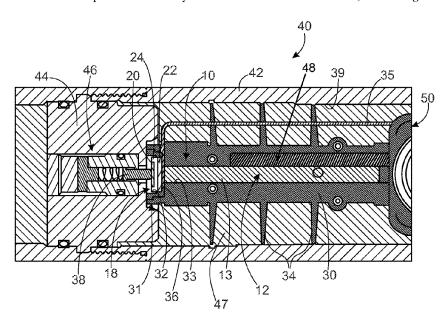
214,754 A 4/1879 Brock et al. 2,216,359 A 10/1940 Spencer (Continued)

FOREIGN PATENT DOCUMENTS

CA 2021396 A1 1/1991 CA 2003166 A1 5/1991 (Continued)

OTHER PUBLICATIONS

Bear Manufacturing, LLC; Defendant Bear Manufacturing, LLC's Answer, Affirmative Defenses and Counterclaim in Response to Plaintiffs' Complaint for Civil Action No. 3:21-cv-00185-M; dated Mar. 22, 2021; 41 pages.


(Continued)

Primary Examiner — Jeffrey R Jastrzab (74) Attorney, Agent, or Firm — Womble Bond Dickinson (US) LLP

(57) ABSTRACT

According to an aspect, a perforating gun assembly and a detonator assembly are provided. The detonator assembly includes at least a shell, and more than one electrically contactable component that is configured for being electrically contactably received by the perforating gun assembly without using a wired electrical connection, but rather forms the electrical connection merely by contact with at least one of the more than one electrically contactable components. According to an aspect, the detonator assembly includes a selective detonator assembly. A method of assembling the perforating gun assembly including the detonator assembly is also provided.

17 Claims, 4 Drawing Sheets

(2013.01)

US RE50,204 E

Page 2

(56)		Refere	ences Cited	4,039,239			Cobaugh et al.
	Ţ	J.S. PATEN	T DOCUMENTS	4,058,061 4,064,935			Mansur, Jr. et al. Mohaupt
	,			4,071,096		1/1978	
	2,228,873	A 1/194	l Hardt et al.	4,080,898		3/1978	
	2,264,450		l Mounce	4,084,147 4,085,397		4/1978 4/1978	Mlyniec et al.
	2,308,004 . 2,326,406 .		3 Hart 3 Lloyd	4,107,453		8/1978	
	2,358,466		4 Miller	4,132,171			Pawlak et al.
	2,418,486		7 Smylie	4,140,188		2/1979	
	2,543,814		1 Thompson et al.	4,172,421 4,182,216		1/1979	Regalbuto DeCaro
	2,598,651		2 Spencer 2 Conrad	4,208,966		6/1980	
	2,618,343 . 2,637,402 .		Baker et al.	4,216,721			Marziano et al.
	2,640,547		Baker et al.	4,220,087		9/1980	
	2,649,046		3 Oliver	4,250,960			Chammas Coultas et al.
	2,655,993 . 2,681,114 .		3 Lloyd 4 Conrad	4,261,263 4,266,613		5/1981	
	2,692,023		4 Conrad 4 Conrad	4,284,235		8/1981	Diermayer et al.
	2,695,064		4 Ragan et al.	4,290,486			Regalbuto
	2,696,259		4 Greene	4,306,628			Adams, Jr. et al.
	2,708,408		5 Sweetman	4,312,273 4,319,526		1/1982 3/1982	DerMott
	2,742,856 . 2,761,384 .		5 Fieser et al. 5 Sweetman	4,345,646		8/1982	
	2,766,690		5 Lebourg	4,363,529		12/1982	
	2,785,631		7 Blanchard	4,387,773			McPhee
	2,815,816		7 Baker	4,393,946 4,429,741		2/1984	Pottier et al. Hyland
	2,873,675 <i>2</i> ,889,775 <i>2</i>		Debourg Owen	4,430,939			Harrold
	2,906,339		Griffin	4,485,741			Moore et al.
	2,946,283	A 7/196) Udry	4,491,185			McClure
	2,979,904		l Royer	4,496,008 4,512,418			Pottier et al. Regalbuto et al.
	2,996,591 . 3,024,843 .		1 Thomas 2 Dean	4,523,649		6/1985	
	3,036,636		2 Clark	4,523,650			Sehnert et al.
	3,040,659	A 6/196	2 Mcculleugh	4,530,396		7/1985	
	3,055,430		2 Campbell	4,534,423 4,541,486			Regalbuto Wetzel et al.
	3,076,507 3,080,005		3 Sweetman 3 Porter	4,566,544			Bagley et al.
	RE25,407		3 Lebourg	4,574,892		3/1986	Grigar et al.
	3,094,166		3 Mccullough	4,576,233			George
	3,128,702		4 Christopher	4,583,602 4,598,775		4/1986 7/1986	Ayers Vann et al.
	3,154,632 . 3,158,680 .		4 Browne 4 Lovitt et al.	4,609,056			Colle, Jr. et al.
	3,170,400		5 Nelson	4,609,057		9/1986	Walker et al.
	3,186,485	A 6/196	5 Owen	4,617,997			Jennings, Jr.
	RE25,846		5 Campbell	4,619,320 4,620,591		10/1986	Adnyana et al. Terrell et al.
	3,209,692 3,211,093		5 George 5 Mccullough et al.	4,621,396			Walker et al.
	3,211,222		5 Myers	4,629,001			Miller et al.
	3,220,480	A 11/196	5 Myers	4,640,354			Boisson
	3,233,674		6 Kurt	4,643,097 4,650,009		2/1987	Chawla et al. McClure et al.
	3,244,232 . 3,246,707 .		6 Myers 6 Bell	4,657,089		4/1987	
	3,264,989		6 Rucker	4,660,910			Sharp et al.
	3,264,994	A 8/196	5 Kurt	4,662,450	A	5/1987	Haugen
	3,298,437		7 Conrad	4,670,729		6/1987	
	3,320,884 3,327,792		7 Kowalick et al. 7 Boop	4,730,793 4,744,424			Thurber, Jr. et al.
	3,374,735		8 Moore	4,747,424			Lendermon et al. Donovan et al.
	3,398,803		8 Kurt et al.	4,753,170			Regalbuto et al.
	3,414,071 . 3,415,321 .		8 Alberts	4,762,067			Barker et al.
	3,498,376		8 Venghiattis 9 Sizer et al.	4,766,813			Winter et al.
	3,504,723		Cushman et al.	4,769,734			Heinemeyer et al.
	3,565,188		l Hakala	4,776,393 4,790,383		10/1988 12/1988	
	D222,469		l Flummer	4,796,708			Lembcke
	3,621,916 3,630,284		l Smith, Jr. l Fast et al.	4,798,244		1/1989	Trost
	3,650,212		2 Bauer	4,800,815		1/1989	Appledom et al.
	3,659,658		2 Brieger	4,830,120		5/1989	Stout
	3,712,376 .		Young et al.	4,840,231 4,852,494		6/1989	
	D227,763 S 3,762,470		3 Hand 3 Eggleston	4,852,494		8/1989 8/1989	Williams Mohaupt
	3,859,921			4,869,171		9/1989	Abouav
	4,003,433	A 1/197	7 Goins	4,884,506	A	12/1989	Guerreri
	4,007,790		7 Henning	4,889,183		12/1989	Sommers et al.
	4,007,796		7 Boop 7 Schneider, Jr.	5,006,833		4/1991 6/1991	Marlowe et al.
	4,034,673	A //19/	, Schneider, Jr.	5,024,270	A	0/1991	Bostick

US RE50,204 E Page 3

(56) Refe	erences Cited		Menzel et al.
II C DATE	ENT DOCUMENTS		2 Austin et al. 2 Gilbert, Jr. et al.
U.S. PAIE	ENT DOCUMENTS		Walker
5,027,708 A * 7/1	991 Gonzalez F42D 1/04		Dittrich et al.
3,027,700 11 771	102/202.1	6,582,251 B1 6/2003	Burke et al.
5,038,682 A 8/19	991 Marsden		Eddy et al.
	991 Carisella et al.		Chen et al. Moss
	991 Montgomery et al. 991 Carisella et al.		George
	992 Huber F42B 3/124	6,702,009 B1 3/2004	Drury et al.
2,000,113 11 2/1	102/200		Muller et al.
	992 Abouav		Badger et al. Trotechaud
	992 Bocker et al.		Lerche et al.
	992 Sumner 992 Nguyen	6,763,883 B2 7/2004	Green et al.
	992 Michaluk	, ,	Jackson
5,159,145 A 10/19	992 Carisella et al.		Mackenzie Barlow et al.
	992 Carisella et al.		Myers, Jr. et al.
	992 Langston 993 Aureal et al.	6,918,334 B2 7/2005	Trotechaud
	993 Huber et al.		Nordaas
5,322,019 A 6/19	994 Hyland		5 Starr et al. 5 Sullivan et al.
5,347,929 A * 9/1	994 Lerche E21B 43/1185		5 Hosie et al.
5 250 410 A 10/1	102/202.14	7,093,664 B2 8/2000	Todd et al.
	994 Carmichael 994 Edwards et al.	.,,	Cook et al.
	995 Arend		Forman et al.
5,392,860 A 2/19	995 Ross		Quinn Muscarella
	995 Turano et al.		Starr et al.
	995 Littleford 995 Schmidt et al.	7,182,625 B2 2/200'	Machado et al.
	996 Ellis	7,193,527 B2 * 3/200′	Hall G01V 11/002
5,503,077 A 4/19	996 Motley	7,228,906 B2 6/200°	7 Snider et al. 175/40
	996 Baugh et al.		Gurjar et al.
	996 Wilcox et al. 996 Walters et al.		Oosterling et al.
	996 Bethel et al.	7,278,482 B2 10/200°	
5,571,986 A 11/1	996 Snider et al.		7 Scott B Lerche E21B 41/00
	997 Bethel et al.	7,547,278 BZ 3/2000	102/215
	997 Lussier et al. 997 Nicholas et al.	7,347,279 B2 3/2008	B Li et al.
5,703,319 A 12/19	997 Fritz et al.	7,353,879 B2 4/2008	3 Todd et al.
5,732,869 A 3/1	998 Hirtl		Ring et al.
	998 Bonbrake et al.		Mooney, Jr. et al.
, ,	998 Snider et al. 998 Wesson et al.		Wintill et al.
	998 Myers, Jr. et al.	7,431,075 B2 10/2008	Brooks et al.
5,816,343 A 10/19	998 Markel et al.	7,441,601 B2 10/2003 7,487,827 B2 2/2009	George et al. Tiernan
	998 Chiacchio et al.		Doane et al.
	998 Nice 999 Davison et al.		Howell et al.
	999 George et al.		George et al.
D418,210 S 12/19	999 Roesch	7,540,758 B2 6/2009 7,565,927 B2 7/2009	
	999 Burleson et al.		Gerez et al. Hummel et al.
	000 Burleson et al. 000 Snider et al.	7,591,212 B2 9/2009	Myers, Jr. et al.
	000 Beukes et al.		Murray
	000 Murray et al.) Barton et al.) Briquet et al.
	000 Carisella		Loehr et al.
	001 Snider et al. 001 Dittrich et al.	7,748,457 B2 7/2010	Walton et al.
	001 Burleson et al.		Loehr
	001 George) Li et al.) Goodman et al.
	001 Capers et al. 001 Zierolf		Vidal
	001 Ziefon 002 Gissler	7,775,279 B2 8/2010	Marya et al.
6,354,374 B1 3/2	002 Edwards et al.		Stewart et al.
	002 Lerche et al.		Turley et al. Chan et al.
	002 Brooks et al.		Behrmann et al.
	002 Duguet 002 Frazier	7,901,247 B2 3/201	Ring
	002 Kothari et al.		Schicks
6,414,905 B1 7/2	002 Owens et al.		Jakaboski et al.
	002 Duguet et al.		Hummel et al. Moore
	002 Tite et al. 002 Watson		Finke et al.
6,439,121 B1 8/20	002 Gillingham	8,028,624 B2 10/201	Mattson
6,467,387 B1 10/29	002 Espinosa et al.	8,066,083 B2 11/201	Hales et al.

US RE50,204 E Page 4

(56)			Referen	ces Cited		9,598,942			Wells et al.
		U.S.	PATENT	DOCUMENTS		9,605,937 9,677,363	B2	6/2017	Eitschberger et al. Schacherer et al. Schacherer et al.
	8.069.789	B2 *	12/2011	Hummel	F42B 3/103	9,689,223 9,689,240			LaGrange et al.
	, ,				102/202.12	9,695,673 9,702,211		7/2017 7/2017	Latiolais Tinnen
	8,074,737 8,079,296			Hill et al. Barton et al.		9,709,373			Hikone et al.
	8,091,477			Brooks et al.		9,726,005			Hallundbaek et al. Baker et al.
	8,127,846		3/2012 3/2012	Hill et al.		9,771,769 9,835,006	B2	12/2017	George et al.
	8,136,439 8,141,434			Kippersund et al.		9,879,501	B2	1/2018	Hammer et al.
	8,141,639	B2		Gartz et al.		9,995,115 10,018,018			Kasperski Cannon et al.
	8,151,882 8,157,022			Grigar et al. Bertoja et al.		10,036,236	B1	7/2018	Sullivan et al.
	8,165,714	B2	4/2012	Mier et al.		10,077,626 10,077,641			Xu et al. Rogman et al.
	8,181,718 8,182,212			Burleson et al. Parcell		10,151,181			Lopez et al.
	8,186,259			Burleson et al.		10,167,691			Zhang et al.
	8,186,425			Smart et al.		10,190,398 10,267,611			Goodman et al. Lownds et al.
	8,230,788 8,230,946			Brooks et al. Crawford et al.		10,352,144	B2	7/2019	Entchev et al.
	8,256,337			Hill E2		10,422,195 10,428,595			LaGrange et al. Bradley et al.
	8,322,426	B2	12/2012	Wright et al.	89/1.15	10,429,161			Parks et al.
	8,336,437			Barlow et al.		10,429,938 D873,373			Chakra et al.
	8,388,374			Grek et al.		10,689,955			Hartman et al. Mauldin et al.
	8,395,878 8,397,741		3/2013	Stewart et al. Bisset		2002/0020320	A1	2/2002	Lebaudy et al.
	8,413,727	B2	4/2013	Holmes		2002/0062991 2002/0129940			Farrant et al. Yang et al.
	8,443,915 8,451,137			Storm, Jr. et al. Bonavides et al.		2003/0000411		1/2003	Cernocky E21B 43/1185
	8,468,944			Givens et al.		2002/0000702	A 1 *	1/2002	102/200 F21D 47/12
	8,469,087 8,474,533		6/2013	Gray Miller et al.		2003/0000703	AI	1/2003	Cernocky E21B 47/12 166/55.1
	D689,590		9/2013			2003/0001753			Cernocky et al.
	8,561,683			Wood et al.		2004/0141279 2004/0211862		7/2004 10/2004	Amano et al.
	8,576,090 8,596,378			Erche et al. Mason et al.		2005/0011390	A1	1/2005	Jennings
	8,661,978	B2	3/2014	Backhus et al.		2005/0178282 2005/0183610			Brooks et al. Barton et al.
	8,678,666 8,689,868			Scadden et al. Lerche et al.		2005/0186823			Ring et al.
	8,695,506			Lanclos		2005/0194146		9/2005	Barker et al.
	8,746,144			Givens et al.		2005/0218260 2005/0229805			Corder et al. Myers, Jr. et al.
	8,752,486 8,770,271			Robertson et al. Fielder et al.		2006/0081374	Al	4/2006	Bland et al.
	D712,013	S		Mather et al.		2007/0125540 2007/0158071			Gerez et al. Mooney, Jr. et al.
	8,807,003 8,833,441			Le et al. Fielder et al.		2008/0047716			McKee et al.
	8,863,665	B2	10/2014	DeVries et al.		2008/0110612		5/2008 5/2008	Prinz et al.
	8,869,887 8,875,787			Deere et al. Tassaroli		2008/0110632 2008/0134922			Grattan et al.
	8,881,816			Glenn et al.		2008/0149338			Goodman et al.
	8,881,836 8,884,778		11/2014	Ingram Lerche et al.		2008/0173204 2008/0173240			Anderson et al. Furukawahara et al.
	8,943,943			Tassaroli		2008/0264639	A1	10/2008	Parrott et al.
	8,960,093			Preiss et al.		2009/0050322 2009/0159285			Hill et al. Goodman
	8,960,288 9,080,405			Sampson Carisella		2009/0139283			Green et al.
	9,080,433		7/2015	Anclos et al.		2009/0272529	A1		Crawford
	9,145,763 9,145,764			Sites, Jr. Burton et al.		2009/0301723 2010/0000789		1/2009	Gray Barton et al.
	9,181,790	B2	11/2015	Mace et al.		2010/0000789			Fanucci et al.
	9,194,219 9,206,675			Hardesty et al. Hales et al.		2010/0089643	A1	4/2010	
	9,284,819			Tolman et al.		2010/0096131 2010/0107917		4/2010 5/2010	Hill et al.
	9,284,824			Fadul et al.		2010/0107917			Strickland
	9,317,038 9,328,559			Ozick et al. Schwarz et al.		2010/0230104			Nölke et al.
	9,347,755	B2	5/2016	Backhus et al.		2010/0252323 2010/0286800			Goodman et al. Lerche et al.
	9,359,863 9,383,237			Streich et al. Wiklund et al.		2010/0280800			Tinnen et al.
	9,476,272	B2	10/2016	Carisella et al.		2011/0024116			McCann et al.
	9,482,069 9,488,024		11/2016	Powers Hoffman et al.		2011/0042069 2011/0301784			Bailey et al. Oakley et al.
	9,494,021			Parks et al.		2012/0006217			Anderson
	9,523,271			Bonavides et al.		2012/0085538			Guerrero et al.
	9,581,422 9,587,466			Preiss et al. Burguieres et al.		2012/0094553 2012/0160483			Fujiwara et al. Carisella
				· ·					

US RE50,204 E

Page 5

(56)	Referen	ices Cited	CN CN	102878877 A	1/2013			
U.S. PATENT		T DOCUMENTS		103993861 A 104499977 A 104481492 B	8/2014 4/2015 6/2019			
2012/0199031 A1*	8/2012	Lanclos E21B 43/118	ED	102007007498 0088516 A1	10/2015 9/1983			
2012/0199352 A1	8/2012	Lanclos et al.	EP EP	0416915 A2	3/1991			
2012/0241169 A1		Hales et al. Thomson et al.	EP EP	0180520 B1 332287 B1	5/1991 7/1992			
2012/0242135 A1 2012/0247769 A1		Schacherer et al.	EP	679859 A2	11/1995			
2012/0247771 A1*		Black E21B 43/118	HD.	694157 B1 2702349 B1	8/2001 11/2015			
2012/0209261 4.1	11/2012	166/29	7 EP	2310616 B1	10/2017			
2012/0298361 A1 2013/0008639 A1		Sampson Tassaroli	EP	3077612 B1	5/2020			
2013/0043074 A1	2/2013	Tassaroli	GB GB	2065750 B 2383236 B	6/1983 1/2004			
2013/0062055 A1 2013/0118342 A1		Tolman et al. Tassaroli	JP	2003329399 A	11/2003			
2013/0118342 A1 2013/0199843 A1	8/2013		RU	2087693 C1	8/1997			
2013/0248174 A1		Dale et al.	RU RU	2204706 C1 30160 U1	5/2003 6/2003			
2013/0256464 A1 2014/0033939 A1		Belik et al. Priess et al.	RU	2221141 C1	1/2004			
2014/0053750 A1		Lownds et al.	RU RU	2295694 C2 2312981 C2	3/2007 12/2007			
2014/0060839 A1 2014/0131035 A1		Wang et al. Entchev et al.	RU	93521 U1	4/2010			
2014/0151033 A1 2014/0166370 A1	6/2014		RU	98047 U1	9/2010			
2014/0318766 A1	10/2014		RU RU	100552 U1 2434122 C2	12/2010 11/2011			
2015/0075783 A1 2015/0176386 A1		Angman et al. Castillo et al.	RU	2439312 C1	1/2012			
2015/0226044 A1		Ursi et al.	RU	2633904 C1	10/2017			
2015/0260496 A1		Backhus et al.	RU Wo	2659934 C2 ³ 9721067 A1	* 7/2018 B01D 61/20 6/1997			
2015/0330192 A1 2015/0356403 A1		Rogman et al. Storm, Jr.	WO	2000020821 A1	4/2000			
2016/0061572 A1	3/2016	Eitschberger et al.	WO WO	0133029 A2 WO-0159401 A1	5/2001 8/2001			
2016/0084048 A1		Harrigan et al.	WO	WO-2009091422 A2	7/2009			
2016/0168961 A1 2016/0186511 A1	6/2016	Parks et al. Coronado et al.	WO	2009091422 A3	3/2010			
2016/0202033 A1	7/2016	Shahinpour et al.	WO WO	2011160099 A1 2012006357 A2	12/2011 1/2012			
2016/0281466 A1 2017/0030693 A1		Richards Preiss et al.	WO	2012135101 A2	10/2012			
2017/0030093 A1 2017/0044865 A1		Sabins et al.	WO	2012106640 A3	11/2012			
2017/0268320 A1		Angman et al.	WO WO	2012149584 A1 2014046670 A1	11/2012 3/2014			
2017/0276465 A1 2017/0298716 A1		Parks et al. McConnell et al.	WO	2014089194 A1	6/2014			
2017/0314373 A9	11/2017	Bradley et al.	WO WO	2014178725 A1 WO-2015006869 A1	11/2014 1/2015			
2017/0328134 A1 2018/0080298 A1		Sampson et al. Covalt et al.	wo	2015134719 A1	9/2015			
2018/0080298 A1 2018/0080300 A1		Angstmann et al.	WO	2016100064 A1	6/2016			
2018/0094910 A1		Ashton et al.	WO WO	2016100269 A1 2017041772 A1	6/2016 3/2017			
2018/0106121 A1 2018/0119529 A1		Griffin et al. Goyeneche	WO	2017125745 A1	7/2017			
2018/0120066 A1	5/2018	Khatiwada et al.	WO WO	2018136808 A1 2018213768 A1	7/2018 11/2018			
2018/0148995 A1		Burky et al.	""	2010213700 711	11/2010			
2018/0202789 A1 2018/0231361 A1		Parks et al. Wicks et al.		OTHER PIT	BLICATIONS			
2018/0274356 A1	9/2018			OTHERTO	BEICH HONG			
2018/0363424 A1		Schroeder et al.	Dyna	energetics Europe GMBH	, OSO Perforating, LLC, SWM			
2019/0106962 A1 2019/0162056 A1		Lee et al. Sansing	Intern	national, LLC and Bear N	Manufacturing, LLC; Joint Claim			
2019/0219375 A1		Parks et al.	Const	ruction Statement for North	hern District of Texas Civil Action			
2019/0234188 A1		Goyeneche			192 and 3:21-cv-00185; dated Sep.			
2019/0366272 A1 2020/0063537 A1		Eitschberger et al. Langford et al.	,	021; 29 pages.				
2020/0199983 A1		Preiss et al.		energetics Europe GMBH; Pa GR2021-00078; dated Aug	atent Owner's Preliminary Response . 19, 2021; 114 pages.			
FOREIGN PATENT DOCUMENTS			Dyna	Dynaenergetics Europe GMBH; Plaintiff's Preliminary Infringement Contentions for Civil Action No. 6:21-cv-01110; dated Jul. 6,				
CA 2821	.506 A1	1/2015	2021;	6 pages.				
CA 2824	1838 A1	2/2015			DynaEnergetics' Preliminary Claim			
	7897 A	9/1986			ence for Civil Action No. 4:21-cv-			
CN 2661 CN 2821		12/2004 9/2006); dated Aug. 4, 2021; 10 p Diversified Manufacturing	g, LP and Dynaenergetics Europe			
CN 2823	3549	10/2006			on Statement for Civil Action No.			
	1750 C 1890 A	11/2006 4/2009	3:20-6	cv-00376; dated Jul. 8, 202	21; 14 pages.			
	1635 A	6/2009		-	, LP; Defendant G&H Diversified			
	837 B	4/2010			ounter—Claim Plaintiffs' Counter— -cv-00376; dated Apr. 19, 2021; 13			
	1848 U 1910 U	11/2010 3/2011	pages		0. 00570, dated Apr. 15, 2021, 15			
			r &**					

OTHER PUBLICATIONS

G&H Diversified Manufacturing, LP; Defendants' Preliminary Invalidity Contentions for Civil Action No. 3:20-cv-00376; dated May 6, 2021; 20 pages.

G&H Diversified Manufacturing, LP; Plaintiff and Counterclaim Defendant G&H Diversified Manufacturing, LP and Counterclaim Defendant Yellow Jacket Oil Tools, LLC's First Supplemental Proposed Constructions; dated Jun. 24, 2021; 7 pages.

G&H Diversified Manufacturing, LP; Plaintiff and Counterclaim Defendant G&H Diversified Manufacturing, LP and Counterclaim Defendant Yellow Jacket Oil Tools, LLC's Proposed Constructions; dated Jun. 10, 2021; 7 pages.

G&H Diversified Manufacturing, LP; Redated Petition for Post Grant Review for PGR2021-00078; dated May 10, 2021; 20 pages. G&H Diversified Manufacturing, LP; Reply to Preliminary Response for PGR No. PGR2021-00078; dated Sep. 14, 2021; 18 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit AU.S. Pat. No. 10,844,697 vs Castel; dated Aug. 30, 2021; 88 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit B U.S. Pat. No. 10,844,697 vs Goodman; dated Aug. 30, 2021; 36 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit C U.S. Pat. No. 10,844,697 vs Hromas; dated Aug. 30, 2021; 27 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit D U.S. Pat. No. 10,844,697 vs Boop 768; dated Aug. 30, 2021; 35 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit E U.S. Pat. No. 10,844,697 vs Boop 792; dated Aug. 30, 2021; 52 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LC; Exhibit F U.S. Pat. No. 10,844,697 vs Boop 378; dated Aug. 30, 2021; 34 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LC; Exhibit G U.S. Pat. No. 10,844,697 vs Bickford; dated Aug. 30, 2021; 7 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit H U.S. Pat. No. 10,844,697 vs Black; dated Aug. 30, 2021; 33 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit I U.S. Pat. No. 10,844,697 vs Rogman; dated Aug. 30, 2021; 59 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit J U.S. Pat. No. 10,844,697 vs Burton; dated Aug. 30, 2021; 57 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit K U.S. Pat. No. 10,844,697 vs Borgfeld; dated Aug. 30, 2021; 36 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit LU.S. Pat. No. 10,844,697 vs Boop '383; dated Aug. 30, 2021; 24 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit M U.S. Pat. No. 10,844,697 vs Boop '992; dated Aug. 30, 2021; 14 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit N U.S. Pat. No. 10,844,697 vs Deere; dated Aug. 30, 2021; 14 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit O U.S. Pat. No. 10,844,697 vs Harrigan Provisional; dated Aug. 30, 2021; 26 pages. GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit PU.S. Pat. No. 10,844,697 vs Burke '251; dated Aug. 30, 2021; 7 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LC; Exhibit Q U.S. Pat. No. 10,844,697 vs Runkel; dated Aug. 30, 2021; 7 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit R U.S. Pat. No. 10,844,697 vs Tassaroli; dated Aug. 30, 2021; 10 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit S U.S. Pat. No. 10,844,697 vs Harrigan '048; dated Aug. 30, 2021; 7 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit T U.S. Pat. No. 10,844,697 vs Select-Fire System; dated Aug. 30, 2021; 36 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit U U.S. Pat. No. 10,844,697 vs New Select—Fire System; dated Aug. 30, 2021; 37 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit V U.S. Pat. No. 10,844,697 vs EWAPS; dated Aug. 30, 2021; 17 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit W U.S. Pat. No. 10,844,697 vs SafeJet System; dated Aug. 30, 2021; 17 pages.

GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; GR Energy's Preliminary Invalidity Contentions for Civil Action No. 6:21-cv-00085-ADA; dated Aug. 30, 2021; 18 pages.

Heard, Preston; Declaration for PGR2021-00078; dated Aug. 19, 2021; 5 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Defendants' Preliminary Invalidity Contentions for Civil Action No. 6:21-cv-00349-ADA; dated Aug. 30, 2021; 22 pages. Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A1 U.S. Pat. No. 5,155,293 to Barton vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 21 pages. Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A10 U.S. Publication No. 8,869,887 to Deere, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 10 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A11 U.S. Pat. No. 4,457,383 to Boop vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 22 pages. Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A12 U.S. Patent Application Pub. No. 2012/0247771 to Black, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 26 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A13 U.S. Publication No. 2016/0084048 to Harrigan, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 14 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A14 U.S. Patent Application No. 2010/0065302 to Nesbitt vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 15 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A15 U.S. Pat. No. 3,173,992 to Boop vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 17 pages. Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A16 U.S. Pat. No. 6,506,083 to Bickford, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 17 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A17 U.S. Pat. No. 8,387,533 to Runkel vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 16 pages. Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A18 U.S. Pat. No. 8,943,943 to Tassaroli vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 7 pages. Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A19 U.S. Pat. No. 7,762,331 to Goodman. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 28 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A2 U.S. Pat. No. 6,582,251 to Burke, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 15 pages.

Brinsden, Mark; Declaration of Mark Brinsden; dated Sep. 30, 2021; 51 pages.

Canadian Intellectual Property Office; Office Action for CA Application No. 3,070,118; dated Nov. 17, 2021; 3 pages.

OTHER PUBLICATIONS

Dynaenergetics Europe GMBH; Reply Under 37 C.F.R. §1.111 Amendment Under 37 C.F.R. §1.121 for U.S. Appl. No. 16/585,790; dated Feb. 20, 2020; 18 pages.

Dynaenergetics Europe, GMBH; Patent Owner's Preliminary Response for PGR No. 2021-00097; dated Oct. 29, 2021; 110 pages.

Fayard, Alfredo; Declaration of Alfredo Fayard; dated Oct. 18, 2021; 13 pages.

G&H Diversified Manufacturing, LP; Defendant G&H Diversified Manufacturing, LP's Opening Claim Construction Brief; dated Oct. 18, 2021; 25 pages.

GR Energy Services Operating Gp Llc, Gr Energy Services Management, LP and GR Energy Services, LLC; GR Energy's Opening Claim Construction Brief; dated Oct. 18, 2021; 23 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Defendants' Opening Claim Construction Brief; dated Oct. 18, 2021; 27 pages.

Hunting Titan, Inc.; Defendant's Supplemental Brief on Claim Construction; dated Nov. 5, 2021; 9 pages.

International Searching Authority; International Search Report and Written Opinion for International Application No. PCT/US2020/032879; dated Aug. 20, 2020; 9 pages.

Meehan, Nathan; Declaration of D. Nathan Meehan, Ph.D, P.E; dated Oct. 18, 2021; 86 pages.

Nextier Completion Solutions Inc.; Defendant NexTier Completion Solution Inc.'s Opening Claim Construction Brief; dated Oct. 18, 2021; 26 pages.

Nexus Perforating LLC; Nexus Perforating LLC's Responsive Claim Construction Brief for Civil Action No. 4:21-cv-00280; dated Nov. 3, 2021; 31 pages.

Norwegian Industrial Property Office; Office Action for No. U.S. Appl. No. 20/210,799; dated Oct. 30, 2021; 2 pages.

Patent Trial and Appeals Board; Decision Granting Institution of Post Grant Review, PGR No. PGR2021-00097; dated Jan. 6, 2022; 92 pages.

Perfx Wireline Services, LLC; Defendant PerfX Wireline Services, LLC's Opening Claim Construction Brief; dated Oct. 18, 2021; 23 pages.

Promperforator LLC, Perforating Systems Design and Manufacturing, 2014, 36 pgs., http://www.promperforator.ru/upload/file/katalog_eng_2014.pdf.

Rodgers, John; Declaration of John Rodgers, Ph.D for PGR Case No. PGR2021-00097; dated Oct. 28, 2021; 124 pages.

Rodgers, John; Videotaped Deposition of John Rodgers; dated Jul. 29, 2021; 49 pages.

Schlumberger; Lina Pradilla, Wireline Efficiency in Unconventional Plays—The Argentinean Experience, including excerpted image from slide 13; dated 2013; 16 pages http://www.perforators.org/wpcontent/uploads/2015/10/SLAP_47_Wireline_Efficiency_Unconventional Plays.pdf.

Shelby Sullivan; Declaration of Shelby Sullivan; dated Oct. 18, 2021; 9 pages.

SWM International, LLC and Nextier Completion Solutions LLC; Petitioner's Preliminary Reply To Patent Owner's Preliminary Response for Case No. PGR2021-00097; dated Nov. 15, 2021; 11 pages.

United States Patent and Trademark Office; Decision Granting Institution of Post-Grant Review 35 U.S.C. §324 for PGR2021-00078; dated Nov. 1, 2021; 87 pages.

United States Patent and Trademark Office; Final Office Action for U.S. Appl. No. 16/809,729; dated Nov. 18, 2021; 16 pages.

United States Patent and Trademark Office; Information Disclosure Statement for U.S. Appl. No. 16/293,508; dated Dec. 10, 2020; 7 pages.

United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 16/809,729; dated Feb. 3, 2022; 6 pages. United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/352,728; dated Oct. 25, 2021; 9 pages. United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 17/221,219; dated Jan. 13, 2022; 11 pages.

United States Patent and Trademark Office; Notices of Allowabilty for U.S. Appl. No. 16/585,790; dated Jul. 31, 2020 and Mar. 18, 2020; Response to Office Action for U.S. Appl. No. 16/585,790; dated Nov. 12, 2019; 26 pages.

United States Patent and Trademark Office; Office Action and Response to Office Action for U.S. Appl. No. 16/585,790; dated Nov. 12, 2019 and Feb. 12, 2020; 21 pages.

United States Patent and Trademark Office; Office Action in Ex Parte Reexamination for U.S. Pat. No. 10,844,697; mailed Jan. 26, 2022; 10 pages.

United States Patent and Trademark Office; Order Granting Request for Ex Parte Reexamination; dated Nov. 1, 2021; 14 pages.

Williams, John; Declaration of Dr. John Williams; dated Oct. 18, 2021; 9 pages.

Wooley, Gary; Declaration of Gary E. Wooley for Civil Action Nos. 6:20-cv-01110-ADA and 6:20-CV-01201-ADA; dated Oct. 18, 2021; 12 pages.

Wooley, Gary; Declaration of Gary R. Wooley for Civil Action No. 3:20-cv-00376; dated Jul. 8, 2021; 11 pages.

Wooley, Gary; Declaration of Gary R. Wooley for Civil Action No. 3:21-cv-00192-M; dated Aug. 17, 2021; 18 pages.

Wooley, Gary; Transcript of Gary Wooley for Civil Action No. 3:21-cv-00192-M; dated Sep. 2, 2021; 26 pages.

Canadian Intellectual Property Office; Notice of Allowance for CA Application No. 2,941,648; dated Feb. 2, 2022; 1 page.

G&H Diversified Manufacturing, LP; Petitioner's Oral Argument Presentation for PGR No. PGR2021-00078; dated Jul. 26, 2022; 65 pages.

Hunting Titan, Inc.; Defendant Hunting Titan, Inc.'s Opposition to Plaintiff's Motion for Summary Judgement for Civil Action No. 4:20-cv-02123; dated Mar. 30, 2022; 37 pages.

Hunting Titan, Inc.; Defendant Hunting Titan, Inc.'s Opposed Motion for Leave to Amend Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Nov. 19, 2021; 17 pages.

Hunting Titan, Inc.; Defendant's Final Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Jan. 7, 2022; 54 pages.

Hunting Titan, Inc.; Defendant's Preliminary Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Aug. 6, 2021; 52 pages. Hunting Titan, Inc.; Exhibit 1 to Defendant Hunting Titan, Inc.'s Opposed Motion for Leave to Amend Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Nov. 19, 2021; 64 pages.

Hunting Titan, Inc.; Exhibit 2 to Defendant Hunting Titan, Inc.'s Opposed Motion for Leave to Amend Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Nov. 19, 2021; 33 pages. Hunting Titan, Inc.; Exhibit 3 to Defendant Hunting Titan, Inc.'s Opposed Motion for Leave to Amend Invalidity Contentions for

Civil Action No. 4:20-cv-02123; dated Nov. 19, 2021; 24 pages. Hunting Titan, Inc.; Exhibit 4 to Defendant Hunting Titan, Inc.'s Opposed Motion for Leave to Amend Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Nov. 19, 2021; 9 pages.

Hunting Titan, Inc.; Exhibit 5 to Defendant Hunting Titan, Inc.'s Opposed Motion for Leave to Amend Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Nov. 19, 2021; 5 pages.

Hunting Titan, Inc.; Exhibit 6 to Defendant Hunting Titan, Inc.'s Opposed Motion for Leave to Amend Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Nov. 19, 2021; 4 pages.

Hunting Titan, Inc.; Exhibit 7 to Defendant Hunting Titan, Inc.'s Opposed Motion for Leave to Amend Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Nov. 19, 2021; 6 pages.

Hunting Titan, Inc.; Exhibit A to Defendant's Preliminary Invalidity Contentions, Invalidity of U.S. Pat. No. 10,429,161; dated Aug. 6, 2021; 93 pages.

Hunting Titan, Inc.; Exhibit B to Defendant's Preliminary Invalidity Contentions, Invalidity of U.S. Pat. No. 10,472,938; dated Aug. 6, 2021; 165 pages.

Hunting Titan, Inc.; Exhibit C to Defendant's Final Invalidity Contentions, Invalidity of U.S. Patent No. 10,429, 161; dated Jan. 7, 2022; 3 pages.

Hunting Titan, Inc.; Exhibit D to Defendant's Final Invalidity Contentions, Invalidity of U.S. Pat. No. 10,472,938; dated Jan. 7, 2022; 6 pages.

INPI Argentina; Office Action for Application No. 20190101834; dated Aug. 22, 2022; 3 pages.

OTHER PUBLICATIONS

INPI Argentina; Office Action for Application No. 20190101835; dated Aug. 29, 2022; 3 pages.

Norwegian Industrial Property Office; Office Action for No. U.S. Appl. No. 20/180,507; dated Sep. 29, 2022; 2 pages.

United States District Court for the Northern District of Texas Dallas Division; Memorandum Opinion and Order in Civil Action No. 3:21-cv-00192-M; Mar. 23, 2022; 34 pages (order is redacted to protect confidential information; redacted order has not yet been filed by the Court).

United States District Court for the Northern District of Texas Dallas Division; Memorandum Opinion and Order in Civil Action No. 3:21-cv-00188-M; Mar. 23, 2022; 35 pages (order is redacted to protect confidential information; redacted order has not yet been filed by the Court).

United States Patent and Trademark Office; Ex Parte Quayle Action for U.S. Appl. No. 16/809,729; dated Jun. 20, 2022; 4 pages. United States Patent and Trademark Office; Ex Parte Quayle Action for U.S. Appl. No. 17/352,728; dated Jun. 20, 2022; 6 pages.

United States Patent and Trademark Office; Final Office Action for U.S. Appl. No. 16/540,484; dated Apr. 27, 2022; 12 pages.

United States Patent and Trademark Office; Final Office Action for U.S. Appl. No. 17/352,728; dated Mar. 9, 2022; 9 pages.

United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/007,574; dated May 6, 2022; 10 pages. United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/221,219; dated Aug. 3, 2022; 8 pages.

United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/809,729; dated Sep. 21, 2022; 7 pages.

United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 17/007,574; dated Sep. 26, 2022; 8 pages.

United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 17/352,728; dated Sep. 21, 2022; 8 pages.

Dynaenergetics Europe GMBH; Patent Owner's Preliminary Response for PGR2020-00072; dated Oct. 23, 2020; 108 pages.

Dynaenergetics Europe GMBH; Patent Owner's Preliminary Response for PGR2020-00080; dated Nov. 18, 2020; 119 pages.

Dynaenergetics Europe; Complaint and Demand for Jury Trial, Civil Action No. 6:20-ev-1110; dated Dec. 4, 2020; 15 pages.

Dynaenergetics Europe; DynaEnergetics Celebrates Grand Opening of DynaStage Manufacturing and Assembly Facilities in Blum, Texas; dated Nov. 16, 2018; 3 pages.

Dynaenergetics Europe; DynaEnergetics exhibition and product briefing; 2013; 15 pages.

Dynaenergetics Europe; DynaStage Gun System; May 2014; 2 pages.

Hunting Titan Inc.; Petition for Post Grant Review of U.S. Pat. No. 10,472,938; dated Aug. 12, 2020; 198 pages.

Hunting Titan; ControlFire RF-Safe Assembly Gun Loading Manual; 33 pages.

Hunting Titan; ControlFire User Manual; 2014; 56 pages.

International Searching Authority; International Preliminary Report on Patentability for International Application No. PCT/IB2019/000537; dated Dec. 10, 2020; 11 pages.

International Searching Authority; International Preliminary Report on Patentability for International Application No. PCT/IB2019/000526; dated Dec. 10, 2020; 10 pages.

International Searching Authority; International Preliminary Report on Patentability International Application No. PCT/EP2019/063966; dated Dec. 10, 2020; 7 pages.

Norwegian Industrial Property Office; Office Action for No. U.S. Appl. No. 20/171,759; mailed Oct. 30, 2020; 2 pages.

Patent Trial and Appeal Board; Decision Granting Patent Owner's Request for Rehearing and Motion to Amend for IPR2018-00600; dated Jul. 6, 2020; 27 pages.

Preiss Frank et al.; Lowering Total Cost of Operations Through Higher Perforating Efficiency while simultaneously enhancing safety; 26 pages.

Rodgers, John; Declaration for PGR2020-00072; dated Oct. 23, 2020; 116 pages.

Rodgers, John; Declaration for PGR2020-00080; dated Nov. 18, 2020; 142 pages.

Salt Warren et al.; New Perforating Gun System Increases Safety and Efficiency; dated Apr. 1, 2016; 11 pages.

Scharf Thilo; Declaration for PGR2020-00080; dated Nov. 16, 2020; 16 pages.

Scharf, Thilo; Declaration for PGR2020-00072; dated Oct. 22, 2020; 13 pages.

Sharma, Gaurav; Hunting Plc Is Not In A Race To The Bottom, Says Oilfield Services Firm's CEO; dated Sep. 10, 2019; retrieved on Nov. 18, 2020; 6 pages.

Spears & Associates; Global Wireline Market; dated Oct. 15, 2019; 143 pages.

Stifel; Why the Big Pause? Balancing Long-Term Value with Near-Term Headwinds. Initiating Coverage of Oilfield Svcs and Equipment; dated Sep. 10, 2018; 207 pages.

United States Patent and Trademark Office; Final Office Action of U.S. Appl. No. 16/809,729, dated Nov. 3, 2020; 19 pages.

United States Patent and Trademark Office; Non-Final Office Action of U.S. Appl. No. 15/920,800; dated Dec. 9, 2020; 6 pages.

United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 29/733,080; Oct. 20, 2020; 9 pages.

United States Patent and Trademark Office; Restriction Requirement for U.S. Appl. No. 17/007,574; dated Oct. 23, 2020; 6 pages. World Oil; DynaEnergetics expands DynaStage factory-assembled, well perforating systems; dated Mar. 14, 2017; 2 pages.

Dynaenergetics, Selection Perforating Switch, Product Information Sheet, May 27, 2011, 1 pg.

Dynaenergetics, Electronic Top Fire Detonator, Product Information Sheet, Jul. 30, 2013 1 pg.

German Patent Office, Office Action dated May 22, 2014, in German: See Office Action for German Patent Application No. 10 2013 109 227.6, which is in the same family as PCT Application No. PCT/EP2014/065752, 8 pgs.

PCT Search Report and Written Opinion, mailed May 4, 2015: See Search Report and Written opinion for PCT Application No. PCT/EP2014/065752, 12 pgs.

SIPO, Search Report dated Mar. 29, 2017, in Chinese: See Search Report for CN App. No. 201480040456.9, which is in the same family as PCT App. No. PCT/CA2014/050673, 12 & 3 pgs.

Jim Gilliat/Kaled Gasmi, New Select-Fire System, Baker Hughes, Presentation—2013 Asia-Pacific Perforating Symposium, Apr. 29, 2013, 16 pgs., http://www.perforators.org/presentations.php.

Dynaenergetics, DYNAselect Electronic Detonator 0015 SFDE RDX 1.4S, Product Information, Dec. 16, 2011, 1 pg.

Dynaenergetics, DYNAselect Electronic Detonator 0015 SFDE RDX 1.4B, Product Information, Dec. 16, 2011, 1 pg.

United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 15/920,812; dated Feb. 3, 2021; 5 pages.

Babu et al., Programmable Electronic Delay Device for Detonator, Defence Science Journal, May 2013, 3 pages, vol. 63, No. 3, https://doaj.org/article/848a537b12ae4a8b835391bec9.

Intellectual Property India; First Examination Report for IN Application No. 201947035642; dated Nov. 27, 2020; 5 pages.

Norwegian Industrial Property Office; Notice of Allowance for NO Application No. 20171759; dated Apr. 23, 2021; 2 pages.

Owen Oil Tools; CoreLab Safe Ignition System Owen Det Bodies; dated 2015; 12 pages.

United States Patent and Trademark Office; Advisory Action Before the Filing of an Appeal Brief for U.S. Appl. No. 16/540,484; mailed

on May 19, 2021; 3 pages. United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 16/809,729; dated Jun. 22, 2021; 15 pages.

United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/221,219; dated Jun. 17, 2021; 10 pages.

United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 17/007,574; dated May 21, 2021; 8 pages.

United States District Court for the Southern District of Texas Houston Division, Case 4:19-cv-01611 for U.S. Pat. No. 9,581,422B2, Plaintiffs' Motion to Dismiss and Exhibits, dated Jun. 17, 2019, 63 pgs.

OTHER PUBLICATIONS

United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Reply In Support of Patent Owner's Motion to Amend, dated Mar. 21, 2019, 15 pgs.

United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, DynaEnergetics GmbH & Co. KG's Patent Owner Preliminary Response, dated May 22, 2018, 47 pgs. United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Order Granting Precedential Opinion Panel, Paper No. 46, dated Nov. 7, 2019, 4 pgs.

United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Decision, Granting Patent Owner's Request for Hearing and Granting Patent Owner's Motion to Amend, dated Jul. 6, 2020, 27 pgs.

United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Opening Submission to Precedential Opinion Panel, dated Dec. 20, 2019, 21 pgs. United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Request for Hearing, dated Sep. 18, 2019, 19 pgs.

United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Responsive Submission to Precedential Opinion Panel, dated Jan. 6, 2020, 16 pgs. United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Sur-reply, dated Mar. 21, 2019, 28 pgs.

United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Additional Briefing to the Precedential Opinion Panel, dated Dec. 20, 2019, 23 pgs.

United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Opposition to Patent Owner's Motion to Amend, dated Mar. 7, 2019, 30 pgs.

United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Reply Briefing to the Precedential Opinion Panel, dated Jan. 6, 2020, 17 pgs.

United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Reply in Inter Partes Review of Patent No. 9,581,422, dated Mar. 7, 2019, 44 pgs.

United States Patent and Trademark Office, Case PGR 2020-00072 for U.S. Patent No. 10,429, 161 B2, Petition for Post Grant Review of Claims 1-20 of U.S. Patent No. 10,429, 161 Under 35 U.S.C. §§ 321-28 and 37 C.F. R. §§42.200 Et Seq., dated Jun. 30, 2020, 109 pages.

United States Patent and Trademark Office, Office Action of U.S. Appl. No. 15/117,228, dated May 31, 2018, 9 pgs.

United States Patent and Trademark Office, Office Action of U.S. Appl. No. 15/617,344, dated Jan. 23, 2019, 5 pgs.

United States Patent and Trademark Office, Office Action of U.S. Appl. No. 15/788,367, dated Oct. 22, 2018, 6 pgs.

United States Patent and Trademark Office, Office Action of U.S. Appl. No. 15/920,800, dated Dec. 27, 2019, 6 pgs.

United States Patent and Trademark Office, Office Action of U.S. Appl. No. 15/920,812, dated Dec. 27, 2019, 6 pgs.

United States Patent and Trademark Office, Office Action of U.S. Appl. No. 15/920,812, dated May 27, 2020, 5 pgs.

United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/026,431, dated Jul. 30, 2019, 10 pgs.

United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/359,540, dated Aug. 14, 2019, 9 pgs.

United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/359,540, dated May 3, 2019, 11 pgs.

United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/540,484, dated Oct. 4, 2019, 12 pgs.

United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/809,729, dated Jun. 19, 2020, 9 pgs.

United States Patent and Trademark Office, Office Action of U.S. Appl. No. 29/733,080, dated Jun. 26, 2020, 8 pgs.

United States Patent and Trademark Office; Final Office Action of U.S. Appl. No. 16/540,484; dated Mar. 30, 2020; 12 pgs.

United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/387,696; issued on Jan. 29, 2020; 7 pages.

United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 15/920,800; dated July, 7 2020; 7 pages.

USPTO; Notice of Allowance for U.S. Appl. No. 14/904,788; mailed Jul. 6, 2016; 8 pages.

USPTO; Supplemental Notice of Allowability for U.S. Appl. No. 14/904,788; mailed Jul. 21, 2016; 2 pages.

Albert, Larry et al.; New Perforating Switch Technology Advances Safety & Reliability for Horizontal Completions; Unconventional Resources Tech. Conference; Jul. 20-22, 2015; 7 pgs.

Bear Manufacturing, LLC; Defendant's Preliminary Invalidity Contentions; dated Aug. 4, 2021; 23 pages.

drillingmatters.org; Definition of "sub"; dated Aug. 25, 2018; 2 pages.

Markel, Dan; Declaration regarding the SafeJet System for PGR2021-00097; dated Jul. 15, 2021; 21 pages.

New Oxford American Dictionary Third Edition; Definition of "end"; dated 2010; 3 pages.

Oilfield Glossary; Definition of Perforating Gun; dated Feb. 26, 2013; 2 pages.

oilgasglossary.com; Definition of "sub"; dated Nov. 20, 2008; 1 page.

Olsen, Steve; Declaration regarding the SafeJet System for PGR2021-00097; dated Jul. 16, 2021; 25 pages.

Oso Perforating, LLC; Defendant's Preliminary Invalidity Contentions for Civil Action No. 3:21-cv-00188-M; dated Aug. 4, 2021; 23 pages.

Oso Perforating, LLC; Exhibit A1 U.S. Patent No. 5, 155,293 to Barton vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 21 pages.

Oso Perforating, LLC; Exhibit A10 U.S. Pat. No. 8,869,887 to Deere, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 10 pages.

Oso Perforating, LLC; Exhibit A11 U.S. Pat. No. 4,457,383 to Boop. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 22 pages.

Oso Perforating, LLC; Exhibit A12 U.S. Publication No. 2012/0247771 to Black, et al. vs. Asserted Claims of U. S. Patent No. 10,844,697; dated Aug. 4, 2021; 26 pages.

Oso Perforating, LLC; Exhibit A13 U.S. Publication No. 2016/0084048 to Harrigan, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 14 pages.

Oso Perforating, LLC; Exhibit A14 U.S. Publication No. 2010/0065302 to Nesbitt vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 15 pages.

Oso Perforating, LLC; Exhibit A15 U.S. Pat. No. 3,173,992 to Boop vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 17 pages.

Oso Perforating, LLC; Exhibit A16 U.S. Pat. No. 6,506,083 to Bickford, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 17 pages.

Oso Perforating, LLC; Exhibit A17 U.S. Pat. No. 8,387,533 to Runkel vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 16 pages.

Oso Perforating, LLC; Exhibit A18 U.S. Pat. No. 8,943,943 to Tassaroli vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 7 pages.

Oso Perforating, LLC; Exhibit A19 U.S. Pat. No. 7,762,331 to Goodman vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 28 pages.

Oso Perforating, LLC; Exhibit A2 U.S. Pat. No. 6,582,251 to Burke, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 15 pages.

Oso Perforating, LLC; Exhibit A20 U.S. Publication No. 2012/01999352 to Lanclos vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 24 pages.

Oso Perforating, LLC; Exhibit A21 "3.12-in Frac Gun" Publication and 3.12-in Frac Gun System by Sclumberger vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 26 pages.

Oso Perforating, LLC; Exhibit A23 Amit Govil, "Selective Perforation: A Game Changer in Perforating Technology—Case Study,"

OTHER PUBLICATIONS

2012 European and West African Perforating Symposium ("EWAPS") vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 17 pages.

Oso Perforating, LLC; Exhibit A24 Schlumberger SafeJet System vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 26 pages.

Oso Perforating, LLC; Exhibit A3 U.S. Pat. No. 7,901,247 to Ring vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 19 pages.

Oso Perforating, LLC; Exhibit A4 U.S. Pat. No. 9,145,764 to Burton, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 18 pages.

Oso Perforating, LLC; Exhibit A5 U.S. Pat. No. 9,175,553 to McCann, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 26 pages.

Oso Perforating, LLC; Exhibit A6 U.S. Pat. No. 9,689,223 to Schacherer, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 8 pages.

Oso Perforating, LLC; Exhibit A7 WO 2014/089194 to Rogman, et al vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 16 pages.

Oso Perforating, LLC; Exhibit A8 U.S. Publication No. 2008/0073081 to Frazier, et al. vs. Asserted Claims of U.S. Patent No. 10,844,697; dated Aug. 4, 2021; 33 pages.

Oso Perforating, LLC; Exhibit A9 U.S. Pat. No. 9,065,201 to Borgfeld, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 14 pages.

Perfx Wireline Services, LLC; PerfX Wireline Services, LLC's Preliminary Invalidity Contentions for Civil Action No. 1:20-CV-03665; dated Jul. 2, 2021; 4 pages.

Perfx Wireline Services, LLC; Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the Dynawell Gun System Exhibit A; dated Jul. 2, 2021; 42 pages.

Perfx Wireline Services, LLC; Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the LRI Gun System Exhibit B; dated Jul. 2, 2021; 33 pages.

Perfx Wireline Services, LLC; Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the Owen Oil Tools System Exhibit C; dated Jul. 2, 2021; 64 pages.

Perfx Wireline Services, LLC; Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the Select Fire System Exhibit D; dated Jul. 2, 2021; 49 pages.

Perfx Wireline Services, LLC; Invalidity Chart for U.S. Pat. No. 10,844,697 in view of U.S. Pat. No. 10,077,641 Exhibit H; dated Jul. 2, 2021; 41 pages.

Perfx Wireline Services, LLC; Invalidity Chart for U.S. Pat. No. 10,844,697 in view of U.S. Pat. No. 4,007,796 Exhibit F; dated Jul. 2, 2021; 40 pages.

Perfx Wireline Services, LLC; Invalidity Chart for U.S. Pat. No. 10,844,697 in view of U.S. Pat. No. 5,042,594 Exhibit E; dated Jul. 2, 2021; 38 pages.

Perfx Wireline Services, LLC; Invalidity Chart for U.S. Pat. No. 10,844,697 in view of U.S. Pat. No. 9,145,764 Exhibit G; dated Jul. 2, 2021; 58 pages.

Rodgers, John; Declaration for Civil Action No. 3:21-cv-00192-M; dated May 27, 2021; 42 pages.

Schlumberger; Field Test Database Print Out Showing uses of the SafeJet System; dated May 11, 2015; 10 pages.

SWM International, LLC and Nextier Oil Completion Solutions, LLC; Petition for Post Grant Review PGR No. 2021-00097; dated Jul. 20, 2021; 153 pages.

SWM International, LLC; Defendant's P.R. 3-3 and 3-4 Preliminary Invalidity Contentions; dated Aug. 4, 2021; 28 pages.

SWM International, LLC; Ex. A-1 Invalidity of U.S. Pat. No. 10,844,697 Over the SafeJet System; dated Aug. 4, 2021; 15 pages. SWM International, LLC; Ex. A-1A Invalidity of U.S. Pat. No. 10,844,697 Over the SafeJet System in view of Backhus; dated Aug. 4, 2021; 4 pages.

SWM International, LLC; Ex. A-1B Invalidity of U.S. Pat. No. 10,844,697 Over the SafeJet System in view of Harrigan; dated Aug. 4, 2021; 3 pages.

SWM International, LLC; Ex. A-2 Invalidity of U.S. Pat. No. 10,844,697 Over Goodman; dated Aug. 4, 2021; 11 pages.

SWM International, LLC; Ex. A-2A Invalidity of U.S. Pat. No. 10,844,697 Over Goodman in view of Backhus; dated Aug. 4, 2021; 3 pages.

Dynaenergetics Europe; Complaint and Demand for Jury Trial, Civil Action No. 1:20-cv-03665; dated Dec. 15, 2020; 8 pages. SWM International, LLC; Ex. A-2B Invalidity of U.S. Pat. No. 10,844,697 Over Goodman in view of Harrigan; dated Aug. 4, 2021;

SWM International, LLC; Ex. A-3 Invalidity of U.S. Pat. No. 10,844,697 Over Harrigan; dated Aug. 4, 2021; 13 pages.

SWM International, LLC; Ex. A-4 Invalidity of U.S. Pat. No. 10,844,697 Over Burton; dated Aug. 4, 2021; 11 pages.

SWM International, LLC; Ex. A-5 Invalidity of U.S. Pat. No. 10,844,697 Over Rogman; dated Aug. 4, 2021; 10 bages.

SWM International; Drawing of SafeJet System; dated Jul. 20, 2021; 1 page.

SWM International; Photographs of SafeJet System; dated Jul. 20, 2021; 9 pages.

United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 16/540,484; dated Aug. 9, 2021; 12 pages.

United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 15/920,812; dated Aug. 4, 2021; 5 pages.

Wooley, Gary R.; Declaration in Support of Petition for Post Grant Review of U.S. Pat. No. 10,844,697 for PGR2021-00097; dated Jul. 17, 2021; 90 pages.

Intellectual Property India, Office Action of IN Application No. 201647004496, dated Jun. 7, 2019, 6 pgs.

U.S. Patent Trial and Appeal Board, Final Written Decision, Case IPR2018-00600 re U.S. Pat. No. 9,581,422, entered Aug. 20, 2019, 31 pages

Perfx's Wireline Services, LLC; Exhibit B-3: Invalidity Chart for U.S. Patent No. D904,475 in view of the Owen Oil Tools Tandem Sub; dated Aug. 30, 2021; 10 pages.

Perfx's Wireline Services, LLC; Exhibit B-4: Invalidity Chart for U.S. Patent No. D904,475 in view of the XConnect Tandem Sub; dated Aug. 30, 2021; 1 page.

Perfx's Wireline Services, LLC; Exhibit B-5: Invalidity Chart for U.S. Patent No. D904,475 in view of the SafeJet Disposable Bulkhead; dated Aug. 30, 2021; 15 pages.

Perfx's Wireline Services, LLC; Exhibit B-6: Invalidity Chart for U.S. Patent No. D904,475 in view of Chinese Patent Application No. CN110424930A; dated Aug. 30, 2021; 9 pages.

Perfx's Wireline Services, LLC; Exhibit B-7: Invalidity Chart for U.S. Patent No. D904,475 in view of U.S. Patent Publication No. 2020/0308938; dated Aug. 30, 2021; 8 pages.

Perfx's Wireline Services, LLC; Xconnect, LLC's Preliminary Invalidity Contentions for Civil Action No. 6:21-cv-00371-ADA; dated Aug. 30, 2021; 7 pages.

Rodgers, John; Claim Construction Declaration for Civil Action No. 3:21-cv-00185; dated Sep. 28, 2021; 41 pages.

Rodgers, John; Claim Construction Declaration for Civil Action No. 3:21-cv-00188; dated Sep. 28, 2021; 42 pages.

Rodgers, John; Declaration for Civil Action No. 3:20-CV-00376; dated Jul. 8, 2021; 32 pages.

Rodgers, John; Declaration for PGR2021-00078; dated Aug. 19, 2021; 137 pages.

Salt, et al.; New Perforating Gun System Increases Saftey and Efficiency; Journal of Petroleum Technology; dated Apr. 1, 2016; Weatherford; https://jpt.spe.org/new-perforating-gun-system-increases-safety-and-efficiency; 11 pages.

SWM International, LLC; Defendant's P.R. 4-1 Disclosure of Proposed Terms and Claim Elements for Construction for Civil Action No. 3:21-cv-00192-M; dated Aug. 24, 2021; 5 pages.

Tolteq; iSeries MWD System; dated 2021; 9 pages.

United States District Court for the Southern District of Texas; Joint Claim Construction Statement for Civil Action No. 3:20-cv-00376; dated Jul. 8, 2021; 14 pages.

OTHER PUBLICATIONS

United States District Court for the Southern District of Texas; Joint Claim Construction Statement for Civil Action No. 4:20-cv-02123; dated Aug. 27, 2021; 14 pages.

United States District Court for the Western District of Texas; Order Granting in Part & Denying on Part Defendants' Motion to Dismiss for Improper Venue or to Transfer Venue Pursuant to 28 U.S.C. § 1404(a) for Civil Action No. 6:20-CV-01110-ADA; dated Aug. 5, 2021; 16 pages.

United States Patent and Trademark Office; Final Office Action for U.S. Appl. No. 17/221,219; dated Aug. 24, 2021; 14 pages.

United States Patent and Trademark Office; Patent Assignment for U.S. Appl. No. 61/733,129; dated Jan. 25, 2013; 2 pages.

United States Patent and Trademark Office; U.S. Provisional U.S. Appl. No. 61/739,592; dated Dec. 19, 2012; 65 pages.

United States Patent Trial and Appeal Board; Record of Oral Hearing held Feb. 18, 2020 for IPR dated 2018-00600; dated Feb. 18, 2020; 27 pages.

Wetechnologies; Downhole Connectors, High Pressure HP / HT & Medium Pressure MP/MT; dated Apr. 3, 2016; http://wetechnologies.com/products/hp-ht-downhole/; 3 pages.

Yellow Jacket Oil Tools, LLC; Defendant Yellow Jacket Oil Tools, LLC's Answer to Plaintiffs' First Amended Complaint for Civil Action No. 6:20-cv-01110; dated Aug. 10, 2021; 13 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, Lp; Defendants' Preliminary Invalidity Contentions for Civil Action No. 6:20-cv-01110-ADA; dated Aug. 30, 2021; 21 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-1 BakerHughes Select-Fire; dated Aug. 30, 2021; 33 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-10 U.S. Patent No. 7.762,331 to Goodman; dated Aug. 30, 2021; 4 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-11 U.S. Patent Publication No. 2016 0084048 A1 to Harrigan et al.; dated Aug. 30, 2021; 4 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-12 U.S. Appl. No. 61/819,196 to Harrigan et al.; dated Aug. 30, 2021; 26 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-13 U.S. Pat. No. 9,874,083 to Logan; dated Aug. 30, 2021; 18 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-14 New Select-Fire System; dated Aug. 30, 2021; 33 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-15 U.S. Pat. No. 10,077,641 to Rogman; dated Aug. 30, 2021; 36 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-16 U.S. Provisional Application No. 61/733,129 to Rogman; dated Aug. 30, 2021; 55 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-17 U.S. Pat. No. 8,387,533 to Runkel; dated Aug. 30, 2021; 5 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-18 Schlumberger SafeJet; dated Aug. 30, 2021; 13 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-19 U.S. Pat. No. 7,226,303 to Shaikh; dated Aug. 30, 2021; 4 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-2 U.S. Pat. No. 6,506,083 to Bickford et al.; dated Aug. 30, 2021; 3 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-20 U.S. Pat. No. 3,943,943 to Carlos Jose Tassaroli; dated Aug. 30, 2021; 7 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-3 U.S. Patent Pub. No. US 2012/0247771 A1 to Black et al.; dated Aug. 30, 2021; 30 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-4 U.S. Pat. No. 4,457,383 to Gene T. Boop; dated Aug. 30, 2021; 22 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-5 U.S. Pat. No. 3,173,229 to Gene T. Boop; dated Aug. 30, 2021; 12 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-6 U.S. Pat. No. 9,065,201 to Borgfeld et al.; dated Aug. 30, 2021; 3 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-7 U.S. Pat. No. 6,582,251 to Burke et al.; dated Aug. 30, 2021; 3 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-8 U.S. Patent Publication No. 2013/0126237 A1 to Burton; dated Aug. 30, 2021; 3 pages.

Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-9 Selective perforation: A Game Changer in Peforating Technology—Case Study; dated Aug. 30, 2021; 13 pages.

Baumann et al.; Perforating Innovations—Shooting Holes in Performance Models; Oilfield Review, Autumn 2014, vol. 26, Issue No. 3 pp. 14-31; 18 pages.

C&J Energy Services; Gamechanger Perforating System Description; 2018; 1 pages.

C&J Energy Services; Gamechanger Perforating System Press Release; 2018; 4 pages.

CT Corporation System; Proof of Service of the Complaint; dated May 1, 2020; 39 pages.

Dynaenergetics Europe Gmbh; Principal and Response Brief of Cross-Appellant for United States Court of Appeals case No. 2020-2163, -2191; dated Jan. 11, 2021; 95 pages.

Dynaenergetics Europe; Complaint and Demand for Jury Trial, Civil Action No. 6:20-cv-01201; dated Dec. 30, 2020; 12 pages. Dynaenergetics Europe; Plaintiffs' Pending Motion For Reconsideration for Civil Action No. 4:17-cv-03784; dated Jan. 21, 2021; 4

G&H Diversified Manufacturing, LP; Complaint for Declaratory Judgement for Civil Action No. 3:20-cv-00376; dated Dec. 14, 2020; 7 pages.

McBride Michael; Declaration for IPR2021-00082; dated Oct. 20, 2020; 3 pages.

Nextier Oilfield Solutions Inc; Petition for Inter Partes Review No. IPR2021-00082; dated Oct. 21, 2020; 111 pages.

Nexus Perforating LLC; Complaint and Demand for Jury Trial for Civil Case No. 4:20-cv-01539; dated Apr. 30, 2020; 11 pages.

Nexus Perforating; Double Nexus Connect (Thunder Gun System) Description; Retrieved from the internet Jan. 27, 2021; 6 pages. Parrott, Robert; Declaration for IPR2021-00082; dated Oct. 20, 2020; 110 pages.

Smithson, Anthony; Declaration Declaration for IPR2021-00082; dated Oct. 16, 2020; 2 pages.

United States District Court Southern District of Texas Houston and Galveston Divisions; Seventh Supplemental Order; Sep. 17, 2020; 3 pages.

United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/007,574; dated Jan. 29, 2021; 11 pages.

United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/809,729; dated Jan. 26, 2021; 9 pages.

United States Patent Trial and Appeal Board; Decision Denying Institution of Post-Grant Review; PGR No. 2020-00072; dated Jan. 19, 2021; 38 pages.

United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 16/585,790, dated Nov. 12, 2019, which cites U.S. Pat. No. 9,677,363 to Schacherer et al., 9 pgs.

Baker Hughes; SurePerf Rapid Select-Fire System Perforate production zones in a single run; 2012; 2 pages.

Brazilian Patent and Trademark Office; Search Report for BR Application No. BR112015033010-0; mailed May 5, 2020; (4 pages).

Burndy, Bulkhead Ground Connector, Mechanical Summary Sheet, The Grounding Superstore, Jul. 15, 2014, 1 page, https://www.burndy.com/docs/default-source/cutsheets/bulkhead-connect.

Canadian Intellectual Property Office; Notice of Allowance for CA Appl. No. 2,821,506; mailed Jul. 31, 2019; 1 page.

OTHER PUBLICATIONS

Canadian Intellectual Property Office; Office Action for CA Appl. No. 2,821,506; mailed Mar. 21, 2019; 4 pages.

Dalia Abdallah et al., Casing Corrosion Measurement to Extend Asset Life, Dec. 31, 2013, 14 pgs., https://www.slb.com/-/media/files/oilfield-review/2-casing-corr-2-english.

Djresource, Replacing Signal and Ground Wire, May 1, 2007, 2 pages, http://www.djresource.eu/Topics/story/110/Technics-SL-Replacing-Signal-and-Ground-Wire/.

Dynaenergetics GmbH & Co. KG; Patent Owner's Precedential Opinion Panel Request for Case IPR2018-00600; Sep. 18, 2019, 2 pg.

Dynaenergetics; DynaStage Solution—Factory Assembled Performance-Assured Perforating Systems; 6 pages.

EP Patent Office—International Searching Authority, PCT Search Report and Written Opinion for PCT Application No. PCT/EP2014/065752, mailed May 4, 2015, 12 pgs.

Eric H. Findlay, Jury Trial Demand in Civil Action No. 6:20-cv-00069-ADA, dated Apr. 22, 2020, 32 pages.

European Patent Office; International Search Report and Written Opinion for PCT Application No. PCT/EP2014/065752 mailed May 4, 2015; 12 pgs.

European Patent Office; Invitation to Correct Deficiencies noted in the Written Opinion for European App. No. 15721178.0; issued Dec. 13, 2016; 2 pages.

European Patent Office; Office Action for EP App. No. 15721178.0; issued Sep. 6, 2018; 5 pages.

Federal Institute of Industrial Property; Decision of Granting for RU Appl. No. 2016104882/03(007851); May 17, 2018; 15 pages (English translation 4 pages).

Federal Institute of Industrial Property; Decision on Granting a Patent for Invention Russian App. No 2016139136/03(062394); issued Nov. 8, 2018; 20 pages (Eng Translation 4 pages); Concise Statement of Relevance: Search Report at 17-18 of Russianlanguage document lists several 'A' references based on RU application claims.

Federal Institute of Industrial Property; Inquiry for RU App. No. 2016104882/03(007851); dated Feb. 1, 2018; 7 pages, English Translation 4 pages.

Federal Institute of Industrial Property; Inquiry for RU Application No. 2016110014/03(015803); issued Feb. 1, 2018; 6 pages (Eng. Translation 4 pages).

GB Intellectual Property Office; Examination Report for GB Appl. No. 1717516.7; Apr. 13, 2018; 3 pages.

GB Intellectual Property Office; Notification of Grant for GB Appl. No. 1717516.7; Oct. 9, 2018; 2 pages.

GB Intellectual Property Office; Search Report for GB. Appl. No. 1700625.5; mailed Dec. 21, 2017; 5 pages.

Hunting Titan, Inc., U.S. Appl. No. 62/621,999 titled Cluster Gun System and filed Jan. 25, 2018, which is a priority application of International App. No. PCT/US2019/015255 published as WO2019/

148009, Aug. 1, 2019, 7 pages, WIPO. Hunting Titan, Inc., U.S. Appl. No. 62/627,591 titled Cluster Gun System and filed Feb. 7, 2018, which is a priority application of International App. No. PCT/US2019/015255 published as WO2019/148009, Aug. 1, 2019, 7 pages, WIPO.

Hunting Titan, Inc., U.S. Appl. No. 62/736,298 titled Starburst Cluster Gun and filed Sep. 25, 2018, which is a priority application of International App. No. PCT/US2019/015255 published as International Publication No. WO2019/148009, Aug. 1, 2019, 34 pages, WIPO

Industrial Property Office, Czech Republic; Office Action for CZ App. No. PV 2017-675; Jul. 18, 2018; 2 bages; Concise Statement of Relevance: Examiner's objection of CZ application claims 1, 7, and 16 based on US Pub No. 20050194146 alone or in combination with WO Pub No. 2001059401.

Industrial Property Office, Czech Republic; Office Action for CZ App. No. PV 2017-675; Oct. 26, 2018; 2 pages.

Industrial Property Office, Czech Republic; Office Action; CZ App. No. PV 2017-675; Dec. 17, 2018; 2 pages.

Instituto Nacional De La Propiedad Industrial; Office Action for AR Appl. No. 20140102653; issued May 9, 2019 (1 page).

International Searching Authority, International Preliminary Report on Patentability for PCT App. No.PCT/EP2014/065752; Mar. 1, 2016, 10 pgs.

International Searching Authority; International Preliminary Report on Patentability for PCT Appl. No. PCT/CA2014/050673; issued Jan. 19, 2016; 5 pages.

International Searching Authority; International Search Report and Written Opinion for PCT App. No. PCT/EP2015/059381; Nov. 23, 2015; 14 pages.

Jet Research Centers, Capsule Gun Perforating Systems, Alvarado, Texas, 26 pgs., https://www.jetresearch.com/content/dam/jrc/Documents/Books_Catalogs/07_Cap_Gun.pdf.

Norwegian Industrial Property Office; Office Action and Search Report for NO App. No. 20171759; Jan. 14, 2020; 6 pages.

Norwegian Industrial Property Office; Office Action for NO Appl. No. 20160017; mailed Dec. 4, 2017; 2 pages.

Norwegian Industrial Property Office; Opinion for NO Appl. No. 20171759; mailed Apr. 5, 2019; 1 page.

Owen Oil Tools, E & B Select Fire Side Port, Tandem Sub, Apr. 2010, 2 pgs., https://www.corelab.com/owen/cms/docs/Canada/10A_eandbsystem-01.0-c.pdf.

Owen Oil Tools, Expendable Perforating Guns, Jul. 2008, 7 pgs., https://www.corelab.com/owen/cms/docs/Canada/10A_erhsc-01.0-c.pdf.

Owens Oil Tools, E & B Select Fire Side Port Tandem Sub Assembly, 2009, 9 pgs., https://www.corelab.com/owen/CMS/docs/Manuals/gunsys/MAN-30-XXX-0002-96-R00.pdf.

Robert Parrott, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Declaration regarding Patent Invalidity, dated Jun. 29, 2020, 146 pages.

State Intellectual Property Office People's Republic of China; First Office Action for Chinese App. No. 201811156092.7; issued Jun. 16, 2020; 6 pages (Eng Translation 8 pages).

State Intellectual Property Office, P.R. China; First Office Action for CN App. No. 201480047092.7; Issued on Apr. 24, 2017.

State Intellectual Property Office, P.R. China; First Office Action with full translation for CN App. No. 201480040456.9; issued Mar. 29, 2017; 12 pages (English translation 17 pages).

State Intellectual Property Office, P.R. China; Notification to Grant Patent Right for Chinese App. No. 201580011132.7; issued Apr. 3, 2019; 2 pages (Eng. Translation 2 pages).

State Intellectual Property Office, P.R. China; Notification to Grant Patent Right for CN App. No. 201480040456.9; Jun. 12, 2018; 2 pages (English translation 2 pages).

State Intellectual Property Office, P.R. China; Second Office Action for CN App. No. 201480040456.9; Issued Nov. 29, 2017; 5 pages (English translation 1 page).

State Intellectual Property Office, P.R. China; Second Office Action for CN App. No. 201480047092.7; Issued Jan. 4, 2018; 3 pages. UK Examination Report of United Kingdom Patent Application No. GB1600085.3, which is in the same family as U.S. Pat. No. 9,702,680 issued Jul. 11, 2017, mailed Mar. 9, 2016, 1 pg.

United States District Court for the Southern District of Texas Houston Division, Case 4:19-cv-01611 for U.S. Pat. No. 9,581,422B2, Plaintiff's Complaint and Exhibits, dated May 2, 2019, 26 pgs.

United States District Court for the Southern District of Texas Houston Division, Case 4:19-cv-01611 for U.S. Pat. No. 9,581,422B2, Defendant's Answers, Counterclaims and Exhibits, dated May 28, 2019, 135 pgs.

Corelab, RF-Safe Green Detonator, Data Sheet, Jul. 26, 2017, 2 pages.

Dynaenergetics Europe; Complaint and Demand for Jury Trial, Civil Action No. 6:20-cv-00069; dated Jan. 30, 2020; 9 pages. Dynaenergetics Europe; Complaint and Demand for Jury Trial, Civil Action No. 4:17-cv-03784; dated Dec. 14, 2017; 7 pages. Dynaenergetics Europe; Exhibit B Invalidity Claim Chart for Civil Action No. 4:19-cv-01611; dated May 2, 2019; 52 pages.

Dynaenergetics Europe; Exhibit C Invalidity Claim Chart for Civil Action No. 4:17-cv-03784; dated Jul. 13, 2020; 114 pages.

OTHER PUBLICATIONS

Dynaenergetics Europe; Plaintiffs' Local Patent Rule 3-1 Infringement Contentions for Civil Action No. 4:19- cv-01611; dated May 25, 2018; 10 Pages.

Dynaenergetics Europe; Plaintiffs' Motion to Dismiss Defendants' Counterclaim and to strike Affirmative Defenses, Civil Action No. 4:17-cv-03784; dated Feb. 20, 2018; 9 pages.

Dynaenergetics Europe; Plaintiffs' Preliminary Claim Constructions and Identification of Extrinsic Evidence Civil Action No. 4:17-cv-03784; dated Aug. 3, 2018; 9 pages.

Dynaenergetics Europe; Plaintiffs' Preliminary Infringement Contentions, Civil Action No. 6:20-cv-00069-ADA; dated Apr. 22, 2020; 32 pages.

Dynaenergetics Europe; Plaintiffs' Reply in Support of Motion to Dismiss and Strike for Civil Action No. 6:20-cv-00069-ADA; dated Apr. 29, 2020; 15 pages.

Dynaenergetics Europe; Plaintiffs Response to Defendant Hunting Titan Ins' Inoperative First Amended Answer, Affirmative Defenses, and Counterclaims for Civil Action No. 6:20-cv-00069-ADA; dated May 13, 2020.

Dynaenergetics Europe; Plaintiffs' Response to Defendants' Answer to Second Amended Complaint Civil Action No. 6:20-cv-00069-ADA; dated May 26, 2020; 18 pages.

Farinago, et al.; Long Gun Deployment Systems IPS-12-28; presented at International Perforating Symposium, Apr. 26-28, 2012; 11 pages.

GB Intellectual Property Office, Combined Search and Examination Report for GB App. No. 1717516.7, dated Feb. 27, 2018, 6 pgs. GB Intellectual Property Office, Combined Search and Examination Report for GB App. No. GB1700625.5, dated Jul. 7, 2017, 5 pages. Hunting Titan Ltd.; Defendants' Answer and Counterclaims, Civil Action No. 4:19-cv-01611, consolidated to Civil Action No. 4:17-cv-03784; dated May 28, 2019; 21 pages.

Hunting Titan Ltd.; Petition for Inter Partes Review of U.S. Pat. No. 9,581,422 Case No. IPR2018-00600; dated Feb. 16, 2018; 93 pages. Hunting Titan Ltd.; Defendants' Answer and Counterclaims, Civil Action No. 6:20-cv-00069; dated Mar. 17, 2020; 30 pages.

Hunting Titan Ltd.; Defendants' Answer to First Amended Complaint and Counterclaims, Civil Action No. 6:20- cv-00069; dated Apr. 6, 2020; 30 pages.

Hunting Titan Ltd.; Defendants' Answer to Second Amended Complaint and Counterclaims, Civil Action No. 6:20- ev-00069; dated May 12, 2020; 81 pages.

Hunting Titan Ltd.; Defendants Invalidity Contentions Pursuant to Patent Rule 3-3, Civil Action No. 4:17-cv-03784; dated Jul. 6, 2018; 29 pages.

Hunting Titan Ltd.; Defendants' Objections and Responses to Plaintiffs' First Set of Interrogatories, Civil Action No. 4:17-cv-03784; dated Jun. 11, 2018.

Hunting Titan Ltd.; Defendants' Opposition to Plaintiffs' Motion to Dismiss and Strike Defendants' Amended Counterclaim and Affirmative Defenses for Unenforceability due to Inequitable Conduct for Civil Action No. 4:17-cv-03784; dated Apr. 24, 2018; 8 pages. International Search Report and Written Opinion of International App. No. PCT/EP2020/058241, mailed Aug. 10, 2020, which is in the same family as U.S. Appl. No. 16/542,890, 18 pgs.

merriam-webster.com, Insulator Definition, https://www.merriam-webster.com/dictionary/insulator, Jan. 31, 2018, 4 pages.

Parrot, Robert; Declaration, PGR 2020-00080; dated Aug. 11, 2020; 400 pages.

Schlumberger; Selective Perforation: A Game Changer in Perforating Technology—Case Study; issued 2012; 14 pages.

Tom Smylie, New Safety Detonators for the Industry's consideration, presented at Explosives Safety & Security Conference, Feb. 23-24, 2005, 20 pages.

United States Patent and Trademark Office, Notice of Allowance for U.S. Appl. No. 16/585,790, mailed Jun. 19, 2020, 16 pgs.

United States Patent and Trademark Office, Provisional U.S. Appl. No. 61/733,129; filed Dec. 4, 2012; 10 pages.

United States Patent and Trademark Office, Provisional U.S. Appl. No. 61/819,196; filed May 3, 2013; 10 pages.

United States Patent and Trademark Office; Notice of Allowability for U.S. Appl. No. 14/908,788; dated Dec. 27, 2017; 5 pages.

United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 15/920,812, mailed Aug. 18, 2020; 5 pages.

United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/585,790, mailed on Aug. 5, 2020; 15 pages. United States Patent and Trademark Office; Office Action of U.S.

United States Patent and Trial Appeal Board; Final Written Decision on IPR2018-00600; issued Aug. 20, 2019; 31 pages.

Appl. No. 16/540,484, dated Aug. 20, 2020, 10 pgs.

USPTO, U.S. Pat. No. 438305A, issued on Oct. 14, 1890 to T.A. Edison, 2 pages.

WIPO, International Search Report for International Application No. PCT/CA2014/050673, mailed Oct. 9, 2014, 3 pgs.

WIPO, Written Opinion of International Searching Authority for PCT Application No. PCT/CA2014/050673, mailed Oct. 9, 2014, 4

Austin Powder Company, A-140 F & Block, Detonator & Block Assembly, 2 pgs.

Owen Oil Tools & Pacific Scientific; Side Block for Side Initiation, 1 pg.

SIPO, Office Action dated Jun. 27, 2018: See Office Action for CN App. No. 201580011132.7, which is in the same family as PCT App. No. PCT/US2015/18906, 9 pgs. & 5 pgs.

Amit Govil, Selective Perforation: A Game Changer in Perforating Technology—Case Study, presented at the 2012 European and West African Perforating Symposium, Schlumberger, Nov. 7-9. 2012, 14 pgs.

Dynaenergetics, DYNAselect System, information downloaded from website, Jul. 3, 2013, 2 pgs., http://www.dynaenergetics.com/.

GB Intellectual Property Office, Search Report for App. No. GB 1700625.5, which is in the same family as U.S. Pat. No. 9,494,021, dated Jul. 7, 2017, 5 pgs.

International Search Report and Written Opinion of International Application No. PCT/US2015/018906, Jul. 10, 2015, 12 pgs.

Dynaenergetics, Gun Assembly, Products Summary Sheet, May 7, 2004, 1 pg.

GB Intellectual Property Office, Office Action dated Feb. 27, 2018, See Office Action for App. No. GB 1717516.7, which is the same family as PCT App. No. PCT/CA2014/050673, 6 pg.

Dynaenergetics, Selective Perforating Switch, information downloaded from website, Jul. 3, 2013, 2 pgs.,http://www.dynaenergetics.com/.

Hunting Titan, Wireline Top Fire Detonator Systems, Product Information Sheet, 1 pg.

Hunting Titan Inc., Petition for Inter Parties Review of U.S. Pat. No. 9581422, filed Feb. 16, 2018, 93 pgs.

Dynaenergetics GMBH & Co. KG, Patent Owner's Response to Hunting Titan's Petition for Inter Parties Review, filed Dec. 6, 2018, 73 pgs.

Dynaenergetics GMBH & Co. KG, Patent Owner's Motion to Amend, filed Dec. 6, 2018, 53 pgs.

U.S. Patent Trial and Appeal Board, Institution of Inter Partes Review, Case IPR2018-00600, issued on Aug. 21, 2018, 9 pgs. International Written Opinion of International Application No.

PCT/CA2014/050673, mailed Oct. 9, 2014, 4 pgs.

International Search Report of International Application No. PCT/CA2014/050673, mailed Oct. 9, 2014, 3 pgs.

UK Examination Report of United Kingdom Patent Application No. GB1600085.3, which is in the same family as U.S. Pat. 9,494,021, mailed Mar. 9, 2016, 1 pg.

Fiip, Search Report dated Feb. 1, 2018, in Russian: See Search Report for RU App. No. 2016104882/03, which is in the same family as PCT App. No. PCT/CA2014/050673, 7 pgs.

World Intellectual Property Office, Search Report for GB Patent App. No. GB1700625.5, which is in the same family as PCT App No. PCT/CA2014/050673, dated Jul. 7, 2017, 5 pages.

Norwegan Industrial Property Office, Office Action for NO U.S. Appl. No. 20/160,017, which is in the same family as PCT App No. PCT/CA2014/050673, dated Jun. 15, 2017, 3 pgs.

OTHER PUBLICATIONS

Jet Research Center Inc., Red RF Safe Detonators Brochure, 2008, 2 pgs., www.jetresearch.com.

Jet Research Center Inc., JRC Catalog, 36 pgs., www.jetresearch.com.

Horizontal Wireline Services, Presentation of a completion method of shale demonstrated through an example of Marcellus Shale, Pennsylvania, USA, Presented at 2012 International Perforating Symposium (Apr. 26-28, 2012), 17 pages.

Smylie, New Safe and Secure Detonators for the Industry's consideration, Presented at Explosives Safety & Security Conference Marathon Oil Co, Houston, Feb. 23-24, 2005, 20 pages.

Schlumberger, Combining and Customizing Technologies for Perforating Horizontal Wells in Algeria, Presented at 2011 MENAPS Middle East and North Africa Perforating Symposium, Nov. 28-30, 2011, 20 pages.

Baker Hughes, Long Gun Deployment Systems IPS-12-28, Presented at 2012 International Perforating Symposium, Apr. 26-28, 2011, 11 pages.

Owen Oil Tools, Recommended Practice for Oilfield Explosive Safety, Presented at 2011 MENAPS Middle East and North Africa Perforating Symposium, Nov. 28-30, 2011, 6 pages.

Norwegan Industrial Property Office, Search Report for NO U.S. Appl. No. 20/160,017, which is in the same family as PCT App No. PCT/CA2014/050673, dated Jun. 15, 2017, 2 pgs.

Fiip, Search Report dated Feb. 1, 2018, in English See Search Report for RU App. No. 2016104882/03, which is in the same family as PCT App. No. PCT/CA2014/050673, 4 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A20 U.S. Patent Application No. 2012/0199352 to Lanclos vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 24 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A21 "3.12-in Frac Gun" Publication and 3.12-in Frac Gun System, both by Schlumberger vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 26 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A22 "New Select-Fire System" Publication and Select-Fire System, both by BakerHughes vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 14 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A23 Amit Govil, "Selective Perforation: A Game Changer in Perforating Technology—Case Study," 2012 European and West African Perforating Symposium vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 17 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A24 Schlumberger SafeJet System vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 26 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A3 U.S. Pat. No. 7,901,247 to Ring vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 19 pages. Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A4 U.S. Pat. No. 9,145,764 to Burton, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 18 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A5 U.S. Pat. No. 9,175,553 to Mcann, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 26 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A6 U.S. Pat. No. 9,689,223 to Schacherer vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 8 pages. Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A7 International (PCT) Publication No. WO2014/089194 to Rogman, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 16 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A8 U.S. Patent Application Pub. No. 2008/0073081 to Frazier, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 33 pages.

Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A9 U.S. Pat. No. 9,065,201 to Borgfeld, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 14 pages.

Hunting Titan, Inc.; Defendant's Answer, Affirmative Defenses, and Counterclaims to Plaintiffs' Second Amended Complaint for Civil Action No. 4:20-cv-02123; dated Sep. 10, 2021; 77 pages.

Hunting Titan, Inc.; Defendant's Responsive Claim Construction Brief for Civil Action No. 4:20-cv-02123; dated Oct. 1, 2021; 31 pages.

Hunting Titan, Inc; Petitioner's Sur-Reply on Patent Owner's Motion to Amend for IPR No. 2018-00600; dated Apr. 11, 2019; 17 pages. Logan, et al.; International Patent Application No. PCT/CA2013/050986; dated Dec. 18, 2013; 54 pages.

Nextier Completion Solutions Inc.; Defendant Nextier Completion Solutions Inc.'s First Amended Answer and Counterclaims to Plaintiffs' First Amended Complaint for Civil Action No. 6:20-CV-01201; dated Jun. 28, 2021; 17 pages.

Nextier Completion Solutions Inc.; Defendant's Preliminary Invalidity Contentions for Civil Action No. 6:20-cv-01201-ADA; dated Aug. 30, 2021; 21 pages.

Nextier Completion Solutions Inc.; Exhibit A-1 BakerHughes Select-Fire; dated Aug. 30, 2021; 33 pages.

Nextier Completion Solutions Inc.; Exhibit A-10 U.S. Pat. No. 7,762,331 to Goodman; dated Aug. 30, 2021; 4 pages.

Nextier Completion Solutions Inc.; Exhibit A-11 U.S. Patent Publication No. 2016/0084048 A1 to Harrigan et al.; dated Aug. 30, 2021; 4 pages.

Nextier Completion Solutions Inc.; Exhibit A-12 Provisional U.S. Appl. No. 61/819,196 to Harrigan et al.; dated Aug. 30, 2021; 26 pages.

Nextier Completion Solutions Inc.; Exhibit A-13 U.S. Pat. No. 9,874,083 to Logan; dated Aug. 30, 2021; 18 pages.

Nextier Completion Solutions Inc.; Exhibit A-14 New Select-Fire System; dated Aug. 30, 2021; 33 pages.

Nextier Completion Solutions Inc.; Exhibit A-15 U.S. Pat. No. 10,077,641 to Rogman; dated Aug. 30, 2021; 36 pages.

Nextier Completion Solutions Inc.; Exhibit A-16 Provisional U.S. Appl. No. 61/733,129 to Rogman; dated Aug. 30, 2021; 55 pages. Nextier Completion Solutions Inc.; Exhibit A-17 U.S. Pat. No. 8,387,533 to Runkel; dated Aug. 30, 2021; 5 pages.

Nextier Completion Solutions Inc.; Exhibit A-18 Schlumberger SafeJet; dated Aug. 30, 2021; 13 pages.

Nextier Completion Solutions Inc.; Exhibit A-19 U.S. Pat. No. 7,226,303 to Shaikh; dated Aug. 30, 2021; 4 pages.

Nextier Completion Solutions Inc.; Exhibit A-2 U.S. Pat. No. 6,506,083 to Bickford et al.; dated Aug. 30, 2021; 3 pages.

Nextier Completion Solutions Inc.; Exhibit A-20 U.S. Pat. No. 8,943,943 to Carlos Jose Tassaroli; dated Aug. 30, 2021; 7 pages. Nextier Completion Solutions Inc.; Exhibit A-3 U.S. Patent Pub. No. US 2012/0247771 A1 to Black et al.; dated Aug. 30, 2021; 30 pages

Nextier Completion Solutions Inc.; Exhibit A-4 U.S. Pat. No. 4,457,383 to Gene T. Boop; dated Aug. 30, 2021; 22 pages.

Nextier Completion Solutions Inc.; Exhibit A-5 U.S. Pat. No. 3,173,229 to Gene T. Boop; dated Aug. 30, 2021; 12 pages.

Nextier Completion Solutions Inc.; Exhibit A-6 U.S. Pat. No. 9,065,201 to Borgfeld et al.; dated Aug. 30, 2021; 3 pages.

Nextier Completion Solutions Inc.; Exhibit A-7 U.S. Pat. No. 6,582,251 to Burke et al.; dated Aug. 30, 2021; 3 pages.

Nextier Completion Solutions Inc.; Exhibit A-8 U.S. Patent Publication No. 2013/0126237 A1 to Burton; dated Aug. 30, 2021; 3 pages.

Nextier Completion Solutions Inc.; Exhibit A-9 Selective perforation: A Game Changer in Peforating Technology- Case Study, dated Aug. 30, 2021; 13 pages.

Nexus Perforating LLC; Nexus Preliminary Claim Construction and Extrinsic Evidence for Civil Action No. 4:21-cv-00280; dated Aug. 4, 2021; 6 pages.

Perfx's Wireline Services, LLC; Exhibit A-1: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the Dynawell Gun System; dated Aug. 30, 2021; 30 pages.

OTHER PUBLICATIONS

Perfx's Wireline Services, LLC; Exhibit A-2: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the LRI Gun System; dated Aug. 30, 2021; 29 pages.

Perfx's Wireline Services, LLC; Exhibit A-3: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the Owen Dil Tools System; dated Aug. 30, 2021; 42 pages.

Perfx's Wireline Services, LLC; Exhibit A-4: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the Select Fire System; dated Aug. 30, 2021; 32 pages.

Perfx's Wireline Services, LLC; Exhibit A-5: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of U.S. Pat. No. 5,042,594; dated Aug. 30, 2021; 27 pages.

Perfx's Wireline Services, LLC; Exhibit A-6: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of U.S. Pat. No. 4,007,796; dated Aug. 30, 2021; 23 pages.

Perfx's Wireline Services, LLC; Exhibit A-7: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of U.S. Pat. No. 9,145,764; dated Aug. 30, 2021; 36 pages.

Perfx's Wireline Services, LLC; Exhibit A-8: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of U.S. Pat. No. 10,077,6414; dated Aug. 30, 2021; 29 pages.

Perfx's Wireline Services, LLC; Exhibit A-9: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the SafeJet System; dated Aug. 30, 2021; 18 pages.

Perfx's Wireline Services, LLC; Exhibit B-1: Invalidity Chart for U.S. Pat. No. D. 904,475 in view of the Dynawell Tandem Sub; dated Aug. 30, 2021; 10 pages.

Perfx's Wireline Services, LLC; Exhibit B-2: Invalidity Chart for U.S. Pat. No. D. 904,475 in view of the LRI Tandem Subassembly; dated Aug. 30, 2021; 12 pages.

United States District Court for the Southern District of Texas; Memorandum Opinion and Order for Civil Action No. H-20-2123; dated Sep. 19, 2022; 115 pages.

United States Patent and Trial Appeal Board; Final Written Decision on PGR2021-00078; issued Oct. 28, 2022; 139 pages.

IPR2018-00600, Exhibit 3001, Patent Owner's Precedential Opinion Panel Request Letter in regard to Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, dated Sep. 18, 2019, 2 pg.

United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Motion to Amend, dated Dec. 6, 2018, 53 pgs.

Buche & Associates, P.C.; Rule 501 Citation of Prior Art and Written "Claim Scope Statements" in U.S. Pat. No. 10,844,697; dated Mar. 3, 2021; 24 pages.

Canadian Intellectual Property Office; Office Action for CA Application No. 2,941,648; dated Mar. 15, 2021; 3 pages.

Canadian Intellectual Property Office; Office Action for CA Application No. 3,070,118; dated Mar. 16, 2021; 3 pages.

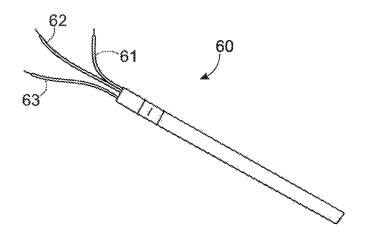
Corelab Owen Oil Tools; Expendable Perforating Guns Description; https://www.corelab.com/owen/cms/docs/Canada/10A_erhsc-01.0-c.pdf; 2008; 7 pages.

Dynaenergetics Europe GMBH; Complaint and Demand for Jury Trial for Civil Action No. 4:21-cv-00280; dated Jan. 28, 2021; 55 pages.

Halliburton; Wireline and Perforating Advances in Perforating; dated Nov. 2012; 12 pages.

Hunting Titan; Electrical Cable Heads Brochure; http://www.hunting-intl.com/media/1967991/ElectricalCableHeads.pdf; 2014; 3 pages. United States Patent and Trademark Office; Final Office Action for U.S. Appl. No. 16/540,484; dated Feb. 19, 2021; 12 pages.

United States Patent Trial and Appeal Board; Institution Decision for PGR 2020-00080; dated Feb. 12, 2021; 15 pages.


Vigor Petroleum; Perforating Gun Accessories Product Description; https://www.vigordrilling.com/completion-tools/perforating-gunaccessories.html; 2021; 1 page.

Dynaenergetics, Selective Perforating Switch, information downloaded from website, Jul. 3, 2013, http://www.dynaenergetics.com/. Dynaenergetics, Electronic Top Fire Detonator, Product Information Sheet, Jul. 30, 2013.

PCT Search Report and Written Opinion, mailed May 4, 2015: See Search Report and Written opinion for PCT Application No. PCT/EP2014/065752.

Jim Gilliat/Khaled Gasmi, New Select-Fire System, Baker Hughes, Presentation—2013 Asia-Pacific Perforating Symposium, Apr. 29, 2013.

* cited by examiner

Prior Art

FIG. 1

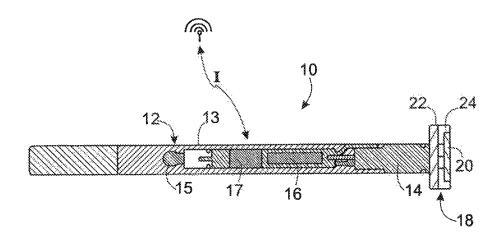


FIG. 2

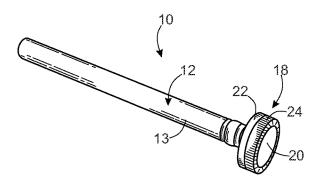


FIG. 3

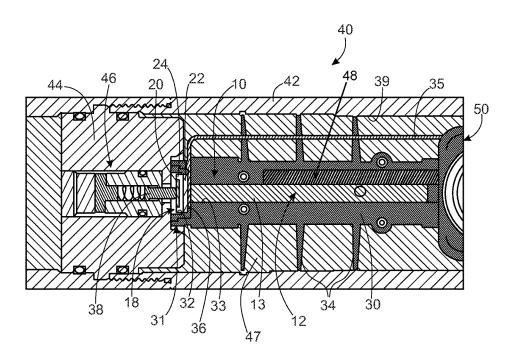


FIG. 4

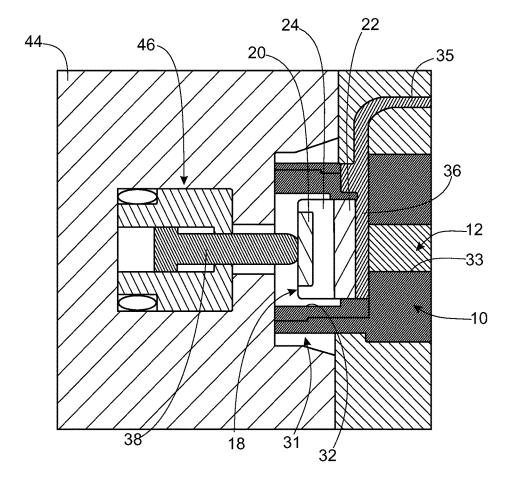


FIG. 5

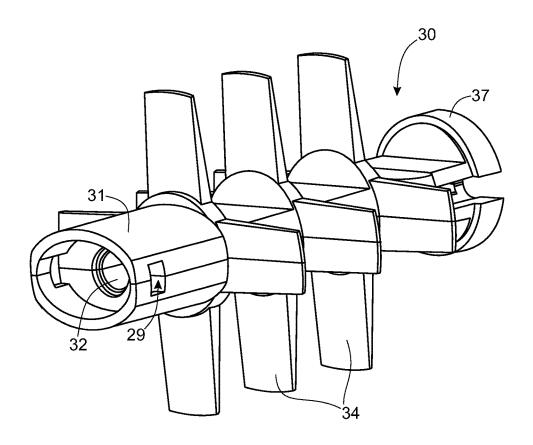


FIG. 6

PERFORATING GUN AND DETONATOR ASSEMBLY

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue; a claim printed with strikethrough indicates that the claim was canceled, disclaimed, or held invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation Application of U.S. ¹⁵ application Ser. No. 14/767,058 filed Aug. 11, 2015, and claims priority to PCT Application No. PCT/EP2014/065752 filed Jul. 22, 2014, which claims priority to German Patent Application No. 102013109227.6 filed Aug. 26, 2013, each of which is incorporated herein by reference in its ²⁰ entirety.

FIELD

Devices and methods for selective actuation of wellbore ²⁵ tools are generally described. In particular, devices and methods for selective arming of a detonator assembly of a perforating gun assembly are generally described.

BACKGROUND

Hydrocarbons, such as fossil fuels (e.g. oil) and natural gas, are extracted from underground wellbores extending deeply below the surface using complex machinery and explosive devices. Once the wellbore is established by 35 placement of cases after drilling, a perforating gun assembly, or train or string of multiple perforating gun assemblies, are lowered into the wellbore, and positioned adjacent one or more hydrocarbon reservoirs in underground formations. The perforating gun has explosive charges, typically shaped, 40 hollow or projectile charges, which are ignited to create holes in the casing and to blast through the formation so that the hydrocarbons can flow through the casing. Once the perforating gun(s) is properly positioned, a surface signal actuates an ignition of a fuse, which in turn initiates a 45 detonating cord, which detonates the shaped charges to penetrate/perforate the casing and thereby allow formation fluids to flow through the perforations thus formed and into a production string. The surface signal typically travels from the surface along electrical wires that run from the surface 50 to one or more detonators positioned within the perforating gun assembly.

Assembly of a perforating gun requires assembly of multiple parts, which typically include at least the following components: a housing or outer gun barrel within which is 55 positioned an electrical wire for communicating from the surface to initiate ignition, a percussion initiator and/or a detonator, a detonating cord, one or more charges which are held in an inner tube, strip or carrying device and, where necessary, one or more boosters. Assembly typically 60 includes threaded insertion of one component into another by screwing or twisting the components into place, optionally by use of a tandem adapter. Since the electrical wire must extend through much of the perforating gun assembly, it is easily twisted and crimped during assembly. In addition, 65 when a wired detonator is used it must be manually connected to the electrical wire, which has lead to multiple

2

problems. Due to the rotating assembly of parts, the wires can become torn, twisted and/or crimped/nicked, the wires may be inadvertently disconnected, or even mis-connected in error during assembly, not to mention the safety issues associated with physically and manually wiring live explosives.

According to the prior art and as shown in FIG. 1, the wired detonator 60 has typically been configured such that wires must be physically, manually connected upon configuration of the perforating gun assembly. As shown herein, the wired detonator 60 typically has three (or more) wires, (although it is possible to have one or more wires whereby one wire could also be a contact (as described in greater detail below and as found, for instance, in a spring-contact detonator, commercially available from DynaEnergetics GmbH & Co. KG without the benefit of selectivity) and whereby a second connection would be through a shell or head of the detonator), which require manual, physical connection once the wired detonator is placed into the perforating gun assembly. For detonators with a wired integrated switch for selective perforating, the wires typically include at least a signal-in wire 61, a signal-out wire 62 and a ground wire 63, while it is possible that only two wires are provided and the third or ground connection is made by connecting the third wire to the shell or head of the. In a typical manual, physical connection, the wires extending along the perforating gun are matched to the wires of the detonator, and an inner metallic portion of one wire is twisted together with an inner metallic portion of the matched wire using an electrical connector cap or wire nut or a scotch-lock type connector.

The detonator assembly described herein does away with the wired connection by providing a wirelessly-connectable, selective detonator, more specifically, a detonator configured to be received within a detonator positioning assembly through a wireless connection—that is, without the need to attach wires to the detonator. For the sake of clarity, the term "wireless" does not refer to a WiFi connection. The detonator assembly described herein solves the problems associated with the wired detonator of the prior art in that it is simple to assemble and is almost impossible to falsely connect.

BRIEF DESCRIPTION

An embodiment provides a wirelessly-connectable selective detonator assembly configured for being electrically contactably received within a perforating gun assembly without using a wired electrical connection according to claim 1.

Another embodiment provides a perforating gun assembly including the wirelessly-connectable selective detonator assembly and a detonator positioning assembly according to the independent assembly claim.

Another embodiment provides a method of assembling the perforating gun assembly according to the independent method claim.

BRIEF DESCRIPTION OF THE FIGURES

A more particular description briefly described above will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments and are not therefore to be considered to be limiting of its scope, exemplary embodiments will be described and explained

with additional specificity and detail through the use of the accompanying drawings in which:

FIG. 1 is a perspective view of a wired detonator according to the prior art;

FIG. 2 is a cross-sectional side view of a wirelessly-5 connectable selective detonator assembly according to an aspect;

FIG. 3 is a perspective view of the detonator assembly according to FIG. 1;

FIG. 4 is a partial cross-sectional side view a perforating 10 gun assembly including the detonator assembly seated within a detonator positioning assembly according to an aspect;

FIG. **5** is an exploded cross-sectional side view of FIG. **4** showing an electrically contactingly electrical connection ¹⁵ without using a wired electrical connection according to an aspect; and

FIG. 6 is a perspective view of the detonator positioning assembly according to an aspect, showing an assembly as if a wired detonator were used.

Various features, aspects, and advantages of the embodiments will become more apparent from the following detailed description, along with the accompanying figures in which like numerals represent like components throughout the figures and text. The various described features are not 25 necessarily drawn to scale, but are drawn to emphasize specific features relevant to embodiments.

DETAILED DESCRIPTION

Reference will now be made in detail to embodiments. Each example is provided by way of explanation, and is not meant as a limitation and does not constitute a definition of all possible embodiments.

In an embodiment, a detonator assembly is provided that is capable of being positioned or placed into a perforating gun assembly with minimal effort, by means of placement/ positioning within a detonator positioning assembly. In an embodiment, the detonator positioning assembly includes the detonator assembly positioned within the detonator 40 positioning assembly, which is positioned within the perforating gun assembly. The detonator assembly electrically contactably forms an electrical connection without the need of manually and physically connecting, cutting or crimping wires as required in a wired electrical connection. Rather, 45 the detonator assembly described herein is a wirelessly-connectable selective detonator assembly.

In an embodiment, the detonator assembly is particularly suited for use with a modular perforating gun assembly as described in a Canadian Patent Application No. 2,824,838 50 filed Aug. 26, 2013, entitled PERFORATION GUN COMPONENTS AND SYSTEM, (hereinafter "the Canadian Application"), which is incorporated herein by reference in its entirety. The Canadian Application describes a modular-type perforating gun which means that at least some of the 55 components are typically snapped, clicked, or plugged together, rather than screwed, twisted or rotated together as discussed above. That is, the modular perforating gun includes components that are fit together using studs or pins protruding from one component, that are frictionally fit into 60 recessed areas or sockets in an adjoining component.

As used herein, the term "wireless" means that the detonator assembly itself is not manually, physically connected within the perforating gun assembly as has been traditionally done with wired connections, but rather merely makes 65 electrical contact through various components as described herein to form the electrical connections. Thus, the signal is 4

not being wirelessly transmitted, but is rather being relayed through electrical cables/wiring within the perforating gun assembly through the electrical contacts.

Now referring to FIGS. 2 and 3, according to an embodiment, a wirelessly-connectable selective detonator assembly 10 is provided for use in a perforating gun assembly 40. The detonator assembly 10 includes a detonator shell 12 and a detonator head 18 and is configured for being electrically contactably received within a perforating gun assembly 40 without using a wired electrical connection, that is without connecting one or more wires directly to the detonator assembly 10.

In an embodiment, the detonator shell 12 is configured as a housing or casing, typically a metallic, which houses at least a detonator head plug 14, a fuse head 15, an electronic circuit board 16 and explosive components. According to one aspect, the fuse head 15 could be any device capable of converting an electric signal into an explosion. In an embodiment shown in FIG. 2, the detonator shell 12 is 20 shaped as a hollow cylinder. The electronic circuit board 16 is connected to the fuse head 14 and is configured to allow for selective detonation of the detonator assembly 10. In an embodiment, the electronic circuit board 16 is configured to wirelessly and selectively receive an ignition signal I, (typically a digital code uniquely configured for a specific detonator), to fire the perforating gun assembly 40. By "selective" what is meant is that the detonator assembly is configured to receive one or more specific digital sequence (s), which differs from a digital sequence that might be used to arm and/or detonate another detonator assembly in a different, adjacent perforating gun assembly, for instance, a train of perforating gun assemblies. So, detonation of the various assemblies does not necessarily have to occur in a specified sequence. Any specific assembly can be selectively detonated. In an embodiment, the detonation occurs in a down-up or bottom-up sequence.

The detonator head 18 extends from one end of the detonator shell 12, and includes more than one electrical contacting component including an electrically contactable line-in portion 20 and an electrically contactable line-out portion 22, according to an aspect. According to one aspect, the detonator assembly 10 may also include an electrically contactable ground portion 13. In an embodiment, the detonator head 18 may be disk-shaped. In another embodiment, at least a portion of the detonator shell 12 is configured as the ground portion 13. The line-in portion 20, the line-out portion 22 and the ground portion 13 are configured to replace the wired connection of the prior art wired detonator 60 and to complete the electrical connection merely by contact with other electrical contacting components. In this way, the line-in portion 20 of the detonator assembly 10 replaces the signal-in wire 61 of the wired detonator 60, the line-out portion 22 replaces the signal-out wire 62 and the ground portion 13 replaces the ground wire 63. Thus, when placed into a detonator positioning assembly 30 (see FIG. 4) as discussed in greater detail below, the line-in portion 20, the line-out portion 22 and the ground portion 13 of the detonator assembly 10 make an electrical connection by merely making contact with corresponding electrical contacting components (also as discussed in greater detail below). That is, the detonator assembly 10 is wirelessly connectable only by making and maintaining electrical contact of the electrical contacting components to replace the wired electrical connection and without using a wired electrical connection.

The detonator head 18 also includes an insulator 24, which is positioned between the line-in portion 20 and the

line-out portion 22. The insulator 24 functions to electrically isolate the line-in portion 20 from the line-out portion 22. Insulation may also be positioned between other lines of the detonator head. As discussed above and in an embodiment, it is possible for all of the contacts to be configured as part of the detonator head 18 (not shown), as found, for instance, in a banana connector used in a headphone wire assembly in which the contacts are stacked longitudinally along a central axis of the connector, with the insulating portion situated between them.

In an embodiment, a capacitor 17 is positioned or otherwise assembled as part of the electronic circuit board 16. The capacitor 17 is configured to be discharged to initiate the detonator assembly 10 upon receipt of a digital firing sequence via the ignition signal I, the ignition signal being 15 electrically relayed directly through the line-in portion 20 and the line-out portion 22 of the detonator head 18. In a typical arrangement, a first digital code is transmitted downhole to and received by the electronic circuit board. Once it is confirmed that the first digital code is the correct code for 20 that specific detonator assembly, an electronic gate is closed and the capacitor is charged. Then, as a safety feature, a second digital code is transmitted to and received by the electronic circuit board. The second digital code, which is also confirmed as the proper code for the particular detona- 25 tor, closes a second gate, which in turn discharges the capacitor via the fuse head to initiate the detonation.

In an embodiment, the detonator assembly 10 may be fluid disabled. "Fluid disabled" means that if the perforating gun has a leak and fluid enters the gun system then the 30 detonator is disabled by the presence of the fluid and hence the explosive train is broken. This prevents a perforating gun from splitting open inside a well if it has a leak and plugging the wellbore, as the hardware would burst open. In an embodiment, the detonator assembly 10 is a selective fluid 35 disabled electronic (SFDE) detonator assembly.

The detonator assembly 10 according to an aspect can be either an electric or an electronic detonator. In an electric detonator, a direct wire from the surface is electrically contactingly connected to the detonator assembly and power 40 is increased to directly initiate the fuse head. In an electronic detonator assembly, circuitry of the electronic circuit board within the detonator assembly is used to initiate the fuse

In an embodiment, the detonator assembly 10 may be 45 immune, that is, will not unintentionally fire or be armed by stray current or voltage and/or radiofrequency (RF) signals to avoid inadvertent firing of the perforating gun. Thus, in this embodiment, the assembly is provided with means for ensuring immunity to high stray current or voltage and/or 50 RF signals, such that the detonator assembly 10 is not initiated through random radio frequency signals, stray voltage or stray current. In other words, the detonator assembly 10 is configured to avoid unintended initiation and would fail safe.

The detonator assembly 10 is configured to be electrically contactingly received within the detonator positioning assembly 30, in which an embodiment is depicted in FIGS. 4-6, which is seated or positioned within the perforating gun assembly 40, without using the wired electrical connection. 60 In an embodiment, the perforating gun assembly 40 is a modular assembly as discussed above. The detonator positioning assembly 30 is also configured for electrically contactingly receiving the detonator assembly 10 without using the wired electrical connection.

In an embodiment and as shown in FIG. 6, a sleeve 31 extends from one end of the detonator positioning assembly

6

30. As shown herein, the detonator positioning assembly 30 includes a connecting portion 37 extending from the end opposite the sleeve 31, which is useful in a modular assembly and that would have studs or recesses extending from or recessed into the connecting portion (not shown). The sleeve 31 is configured to receive and hold in place, in at least a semi-fixed position, the detonator head 18 of the detonator assembly 10. As used herein, "hold" means to enclose within bounds, to limit or hold back from movement or to keep in a certain position. As shown herein, the detonator positioning assembly 30 includes a portion that extends from the sleeve 31 in which a wire-receiving hole 29 is provided for insertion of electrical wires extending along the length of the perforating gun assembly. With reference again to FIG. 6, also shown are directional locking fins 34 engageable with corresponding complementarily-shaped structures 47 housed within the perforating gun housing 42, upon a rotation of a top connector (not shown), to lock a position of the top connector along the length of the carrier 42, as more fully described in the Canadian Application.

With particular reference to FIG. 4, the detonator positioning assembly 30 is positioned within the perforating gun assembly 40 and functions to receive and hold in place the detonator assembly 10 according to an aspect. In addition, the detonator positioning assembly 30 also functions to provide electrical contacting components for wirelessly-connectably electrically receiving the detonator assembly 10 as will be discussed in greater detail below.

The detonator positioning assembly 30 abuts and connects or snap-fits to grounding means, depicted herein as the gun body or barrel or carrier or housing 42, for grounding the detonator assembly 10. A tandem seal adapter 44 is configured to seal inner components within the perforating gun housing 42 from the outside environment using sealing means. The tandem seal adapter 44 seals adjacent perforating gun assemblies (not shown) from each other, along with a bulkhead assembly 46.

The bulkhead assembly 46 functions to relay a line-in contact-initiating pin 38 for wirelessly electrically contacting the line-in portion 20 of the detonator head 18.

Turning again to the detonator positioning assembly 30, in a preferred embodiment, the sleeve 31 includes a recessed portion 32 that includes an opening on one end and a base on the opposite end of the recessed portion. Preferably, the sleeve 31 also includes a bore 33 positioned at the base, more preferably in the center of the base of the recessed portion 32. The bore 33 extends within and along at least a portion of a length of the detonator positioning assembly 30 such that when the detonator assembly 10 is positioned within the sleeve 31, the detonator shell 12 is positioned in the bore 33.

In an embodiment, the recessed portion 32 and the detonator head 18 are complementarily sized and shaped to receive and seat/be received and seated, respectively, in at 55 least a semi-fixed position within the detonator positioning assembly 30.

In yet another embodiment, the sleeve 31 includes a line-out contact-receiving portion 36 configured for electrically contactingly engaging the line-out portion 22 of the detonator head 18 to form a first electrical connection. In other words, the electrical connection is made only by contact with the line-out portion of the detonator head 18 . . . that is by merely physically touching.

Preferably, a line-in contact-initiating pin 38 is provided and configured for electrically contactingly engaging the line-in portion 20 of the detonator head 18 to form a second electrical connection, and the ground portion 13 is config-

ured for electrically contactingly engaging an inner wall or surface of the gun carrier 42, otherwise referred to as a ground contact-receiving portion 39, to form a third electrical connection. The connection is made, in this embodiment, via an integral ground connection in the detonator positioning assembly 30 and the locking fins 34. In an embodiment, the detonator positioning assembly 30 and the locking fins 34 may be made from conductive material. Thus, when the detonator assembly 10 is positioned within the detonator positioning assembly 30, the first, second and third electrical connections are completed without using a wired electrical connection. In an embodiment, the line-out contact-receiving portion 36 is positioned at the base of the recessed portion 32 of the sleeve 31.

In an embodiment, the line-in contact-initiating pin 38, 15 the line-out contact-receiving portion 36 and the ground contact-receiving portion 39, as well as the line-in portion 20, the line-out portion 22 and the ground portion 13 are physically isolated from each other.

In an embodiment, a through wire **35** extends between the 20 line-out contact-receiving portion **36** of the perforating gun assembly **40** to an adjacent perforating gun assembly in a multiple gun arrangement or train.

In an embodiment, a detonating cord **48** is positioned within the detonator positioning assembly **30**, adjacent to the 25 bore **33**, such that at least a portion of the detonating cord **48** is in side-by-side contact with at least a portion of the detonator shell **12** at the end opposite the detonator head **18**.

In operation and in an embodiment, the ignition signal I is received by the detonator assembly 10, which ignites the 30 detonating cord 48, which in turn ignites each of the charge(s) 50 attached to the detonating cord. Transmission of the signal I is conducted along the through wire 35, without the need to manually connect the through wire 35 to the detonator assembly 10, that is, without using a wired 35 electrical connection, while the electrical contacts are completed upon placement of the detonator assembly 10 into the detonator positioning assembly 30.

According to an aspect, a method of assembling the perforating gun assembly 40 without using a wired electrical 40 connection is also provided. The method includes the steps of positioning the detonator positioning assembly 30 within the perforating gun assembly 40 and positioning a wirelessly-connectable selective electronic detonator assembly 10 within the detonator positioning assembly 30. In yet 45 another embodiment, the method includes assembling a modular perforating gun assembly and the method includes frictionally fitting or snap-fitting components together.

The components and methods illustrated are not limited to the specific embodiments described herein, but rather, features illustrated or described as part of one embodiment can be used on or in conjunction with other embodiments to yield yet a further embodiment. It is intended that all such modifications and variations are included. Further, steps described in the method may be utilized independently and 55 separately from other steps described herein.

While the device and method have been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof 60 without departing from the intended scope. In addition, many modifications may be made to adapt a particular situation or material to the teachings found herein without departing from the essential scope thereof.

In this specification and the claims that follow, reference 65 will be made to a number of terms that have the following meanings. The singular forms "a," "an" and "the" include

8

plural referents unless the context clearly dictates otherwise. Furthermore, references to "one embodiment," "an embodiment," and the like are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Terms such as "first," "second," etc. are used to identify one element from another, and unless otherwise specified are not meant to refer to a particular order or number of elements.

As used herein, the terms "may" and "may be" indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of "may" and "may be" indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances an event or capacity can be expected, while in other circumstances the event or capacity cannot occur—this distinction is captured by the terms "may" and "may be."

As used in the claims, the word "comprises" and its grammatical variants logically also subtend and include phrases of varying and differing extent such as for example, but not limited thereto, "consisting essentially of" and "consisting of."

Advances in science and technology may make equivalents and substitutions possible that are not now contemplated by reason of the imprecision of language; these variations should be covered by the appended claims. This written description uses examples to disclose the device and method, including the best mode, and also to enable any person of ordinary skill in the art to practice the device and method, including making and using any devices or systems and performing any incorporated methods. The patentable scope thereof is defined by the claims, and may include other examples that occur to those of ordinary skill in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

What is claimed is:

[1. A wireless detonator assembly configured for being electrically contactably received within a perforating gun assembly without using a wired electrical connection, comprising:

a shell configured for housing components of the detonator assembly;

more than one electrical contact component, wherein at least one of the electrical contact components extends from the shell and further wherein the electrical contact component comprises an electrically contactable line-in portion, an electrically contactable line-out portion and an electrically contactable ground portion, the ground portion in combination with the line-in portion and the line-out portion being configured to replace the wired electrical connection to complete an electrical connection merely by contact;

an insulator positioned between the line-in portion and the line-out portion, wherein the insulator electrically isolates the line-in portion from the line-out portion; and means for selective detonation housed within the shell, wherein the detonator assembly is configured for electri-

cally contactably forming the electrical connection merely by the contact.]

- [2. The wireless detonator assembly of claim 1, wherein the means for selective detonation further comprise an electronic circuit board and means for receiving an ignition signal.]
- [3. The wireless detonator assembly of claim 2, further 5 comprising a capacitor positioned on the electronic circuit board, the capacitor configured to be discharged to initiate the detonator assembly upon receipt of a digital firing sequence via an ignition signal, the ignition signal being electrically relayed directly through the line-in portion and 10 the line-out portion.]
- [4. The wireless detonator assembly of claim 2, further comprising means for ensuring immunity to stray current or voltage or radio frequency signals, such that the detonator assembly is not unintentionally armed or initiated.]
 - [5. A perforating gun assembly, comprising:
 - a wirelessly-connectable selective detonator assembly configured for being electrically contactably received within the perforating gun assembly without using a 20 wired electrical connection, the detonator assembly comprising:
 - a shell configured for housing components of the detonator assembly;
 - more than one electrically contactable component, 25 wherein at least one of the electrical contact components extends from the shell and further wherein the electrical contact component comprises an electrically contactable line-in portion, an electrically contactable line-out portion, and an electrically contactable ground portion, the ground portion in combination with the line-in portion and the line-out portion being configured to replace the wired electrical connection to complete an electrical connection merely by contact;
 - an insulator positioned between the line-in portion and the line-out portion, wherein the insulator electrically isolates the line-in portion from the line-out portion; and means for selective detonation of the detonator assembly, wherein the means for selective detonation is housed within the shell, and the detonator assembly configured for electrically contactably forming the electrical connection merely by the contact and without the need of manually and physically connecting wires.]
- [6. The perforating gun assembly of claim 5, wherein the means for selective detonation further comprise an electronic circuit board and means for receiving an ignition signal.]
- [7. The perforating gun assembly of claim 6, further comprising a capacitor positioned on the electronic circuit board, the capacitor being configured to be discharged to 50 initiate the detonator assembly upon receipt of a digital firing sequence via an ignition signal, and the ignition signal being electrically relayed directly through the line-in portion and the line-out portion.]
- [8. The perforating gun assembly of claim 5, further 55 comprising a detonating cord positioned within the perforating gun assembly such that at least a portion of the detonating cord is in contact with the detonator assembly.]
- [9. The perforating gun assembly of claim 8, wherein the detonator assembly is configured for initiating the detonating cord without the detonating cord having to be attached to the detonator assembly.]
- [10. The perforating gun assembly of claim 8, wherein the detonating cord is positioned in side-by-side contact with at least a portion of the shell.]
- [11. The perforating gun assembly of claim 5, further comprising means for ensuring immunity to stray current or

10

voltage or radio frequency signals, such that the detonator assembly is not unintentionally armed or initiated.]

- [12. A method of assembling a perforating gun assembly without using a wired electrical connection, comprising: positioning a wirelessly-connectable selective detonator
 - assembly within the perforating gun assembly, wherein the detonator assembly comprises:
 - a shell configured for housing components of the detonator assembly;
 - more than one electrically contactable component, wherein at least one of the electrical contact components extends from the shell and further wherein the electrical contact component comprises an electrically contactable line-in portion, an electrically contactable line-out portion, and an electrically contactable ground portion, the ground portion in combination with the line-in portion and the line-out portion being configured to replace the wired electrical connection to complete a wireless electrical connection merely by contact:
 - an insulator positioned between the line-in portion and the line-out portion, wherein the insulator electrically isolates the line-in portion from the line-out portion; and means for selective detonation of the detonator assembly,
 - electrically contactingly connecting the detonator assembly such that the detonator assembly electrically contactably forms the wireless electrical connection merely by the contact and without the need of manually and physically connecting wires.
- [13. The method of assembling the perforating gun assembly of claim 12, further comprising:
 - positioning a detonator positioning assembly within the perforating gun assembly; and
 - positioning the wirelessly-connectable selective detonator assembly within the detonator positioning assembly.]
- [14. The method of assembling the perforating gun assembly of claim 12, further comprising:
 - positioning a detonating cord within the perforating gun assembly such that at least a portion of the detonating cord is in contact with the detonator assembly.]
- [15. The method of assembling the perforating gun assembly of claim 14, further comprising:
 - initiating the detonating cord without the detonating cord having to be attached to the detonator assembly.]
 - 16. A perforating gun, comprising:
 - a perforating gun housing;
 - a tandem seal adapter, wherein the perforating gun housing is connected at a first end to the tandem seal adapter and the tandem seal adapter is configured for sealing an interior of the perforating gun housing from an interior of an adjacent perforating gun housing and for being positioned between the interior of the perforating gun housing and the interior of the adjacent perforating gun housing;
 - a carrying device positioned within the perforating gun housing and configured for holding at least one shaped charge; and
 - a wirelessly-connectable selective detonator assembly contained entirely within the perforating gun housing and configured for being electrically contactably received within the perforating gun housing without using a wired electrical connection, the detonator assembly comprising:
 - a shell configured for housing components of the detonator assembly:
 - more than one electrically contactable component, wherein at least one of the electrically contactable

components extends from the shell and further wherein the more than one electrically contactable component comprises an electrically contactable line-in portion, an electrically contactable line-out portion, and an electrically contactable ground portion, the ground 5 portion in combination with the line-in portion and the line-out portion being configured to replace a wired electrical connection to complete an electrical connection within the perforating gun housing merely by contact;

- an insulator positioned between the line-in portion and the line-out portion, wherein the insulator electrically isolates the line-in portion from the line-out portion; and
- an electronic circuit board configured to allow for selec- 15 tive detonation of the detonator assembly,
- wherein the electronic circuit board is housed within the shell, and the detonator assembly is configured for electrically contactably forming the electrical connection within the perforating gun housing merely by the 20 contact and without the need of manually and physically connecting wires.
- 17. The perforating gun of claim 16, wherein the electronic circuit board is in electrical communication with the line-in portion.
- 18. The perforating gun of claim 17, further comprising a capacitor positioned on the electronic circuit board, the capacitor being configured to be discharged to initiate the detonator assembly upon receipt of an ignition signal, and the ignition signal being electrically relayed directly through 30 the line-in portion and the line-out portion.
- 19. The perforating gun of claim 16, further comprising a detonating cord positioned within the perforating gun housing such that at least a portion of the detonating cord is in contact with the detonator assembly.
- 20. The perforating gun of claim 16, wherein the detonator assembly is configured for initiating a detonating cord positioned within the perforating gun housing without the detonating cord having to be attached to the detonator assembly.
- 21. The perforating gun of claim 19, wherein the detonating cord is positioned in side-by-side contact with at least a portion of the shell.
- 22. The perforating gun of claim 16, wherein the detonator assembly is configured for preventing initiation in 45 response to stray current or voltage or radio frequency signals.
- 23. A wirelessly connectable detonator assembly and detonator positioning assembly for orienting the wirelessly connectable detonator assembly in a perforating gun, comprising:
 - the wirelessly connectable detonator assembly, wherein the wirelessly connectable detonator assembly comprises
 - a shell containing detonator components;
 - an electrically contactable line-in portion in electrical communication with the detonator components;
 - an electrically contactable line-out portion in electrical communication with the line-in portion; and,
 - an electrical ground connection; and,
 - the detonator positioning assembly, wherein the detonator positioning assembly is configured for receiving the wirelessly connectable detonator assembly in the perforating gun, and the detonator positioning assembly includes a contactable ground portion.
- 24. The wirelessly connectable detonator assembly and detonator positioning assembly of claim 23, wherein the

12

detonator components comprise an electronic circuit board, wherein the electronic circuit board is configured to initiate explosive components in response to receipt of an ignition signal.

- 25. The wirelessly connectable detonator assembly and detonator positioning assembly of claim 24, wherein the shell and the detonator assembly positioner are positioned in a gun carrier, and the gun carrier is in electrical communication with the contactable ground portion.
- 26. The wirelessly connectable detonator assembly and detonator positioning assembly of claim 24, further wherein the detonator positioning assembly aligns the shell such that the explosive components are ballistically connected with a detonating cord.
- 27. An arrangement of wirelessly connectable perforating guns, comprising:
- a first wirelessly connectable perforating gun comprising a first wirelessly connectable detonator assembly and a first detonator positioning assembly for receiving the first wirelessly connectable detonator assembly in the first wirelessly connectable perforating gun, wherein
- the first wirelessly connectable detonator assembly includes
 - a first shell containing detonator components,
 - a first electrically contactable line-in portion in electrical communication with the detonator components in the first shell,
 - a first electrically contactable line-out portion in electrical communication with the first electrically contactable line-in portion, and
 - a first electrical ground connection, wherein
 - the first detonator positioning assembly receives the first wirelessly connectable detonator assembly in the first wirelessly connectable perforating gun, and the first detonator positioning assembly positioner includes a contactable ground portion configured for electrically contacting the first electrical ground connection of the first detonator assembly:
- a second wirelessly connectable perforating gun comprising a second wirelessly connectable detonator assembly and a second detonator positioning assembly for receiving the second wirelessly connectable detonator assembly in the second wirelessly connectable perforating gun, wherein
- the second wirelessly connectable detonator assembly includes
 - a second shell comprising detonator components,
 - a second electrically contactable line-in portion in electrical communication with the detonator components in the second shell, and
 - a second electrical ground connection,
 - wherein the first electrically contactable line-out portion of the first wirelessly connectable detonator assembly is in electrical communication with the second electrically contactable line-in portion of the second wirelessly connectable detonator assembly, and
- the second detonator positioning assembly receives the second wirelessly connectable detonator assembly in the second wirelessly connectable perforating gun, and includes a contactable ground portion;
- a seal adapter positioned between the first wirelessly connectable perforating gun and the second wireless connectable perforating gun; and

- a line-in contact initiating pin positioned in the seal adapter, the line-in contact initiating pin in electrical contact with the second electrically contactable line-in portion of the second wirelessly connectable detonator assembly without the use of a wired electrical connection, such that the line-in contact initiating pin relays an ignition signal from the first electrically contactable line-out portion of the first wirelessly connectable detonator assembly to the second electrically contactable line-in portion of the second wirelessly connectable detonator assembly.
- 28. The arrangement of wirelessly connectable perforating guns of claim 27, wherein:
 - the detonator components of the first shell comprise a first electronic circuit board, wherein the first electronic 15 circuit board is configured to selectively detonate a first explosive component in response to the ignition signal; and
 - the detonator components of the second shell comprise a second electronic circuit board, wherein the second 20 electronic circuit board is configured to selectively detonate a second explosive component in response to receipt of the ignition signal.

14

- 29. The arrangement of wirelessly connectable perforating guns of claim 27, further comprising:
 - a through wire in electrical contact with the first electrically contactable line-out portion of the first wirelessly connectable detonator assembly and the second electrically connectable line-in portion of the second wirelessly connectable detonator assembly.
- 30. The arrangement of wirelessly connectable perforating guns of claim 29, wherein the through wire extends between the first electrically connectable line-out portion of the first wirelessly connectable detonator assembly and the line-in contact initiating pin.
- 31. The arrangement of wirelessly connectable perforating guns of claim 27, wherein the second shell defines a central axis and the line-in contact initiating pin contacts the second electrically connectable line-in portion of the second wirelessly connectable detonator assembly at a point on the central axis.
- 32. The arrangement of wirelessly connectable perforating guns of claim 27, wherein the first shell and the second shell are each shaped as a hollow cylinder.

* * * * *