wo 2017/039946 A 1[I I NPF V00O 0 0 O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

9 March 2017 (09.03.2017)

WIPOIPCT

(10) International Publication Number

WO 2017/039946 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Patent Classification:
GO6N 3/08 (2006.01) GO6K 9/62 (2006.01)
GO6N 99/00 (2010.01)

International Application Number:
PCT/US2016/045636

International Filing Date:
4 August 2016 (04.08.2016)

Filing Language: English
Publication Language: English
Priority Data:

62/213,591 2 September 2015 (02.09.2015) US
15/077,873 22 March 2016 (22.03.2016) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: MAJUMDAR, Somdeb; 5775 Morehouse
Drive, San Diego, California 92121-1714 (US). TOWAL,
Regan Blythe; 5775 Morehouse Drive, San Diego, Cali-
fornia 92121-1714 (US).

Agents: LENKIN, Alan M. et al.; Seyfarth Shaw LLP,
Suite 3500, 2029 Century Park Fast, Los Angeles, Califor-
nia 90067-3021 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(34

Title: ENFORCED SPARSITY FOR CLASSIFICATION

600
\-‘
/_602
... = FC1 P ES - Classifier
FIG. 6

(57) Abstract: An apparatus for classifying an input includes a classifier and a feature extractor. The feature extractor is contigured
to generate a feature vector based on the input. The feature vector is also configured to set a number of elements of the feature vector
to zero to produce a sparse feature vector. The sparse feature vector has the same dimensions as the feature vector generated by the
feature extractor. However, the sparse feature vector includes fewer non-zero elements than the feature vector generated by the fea -
ture extractor. The feature vector is further configured to forward the sparse feature vector to the classifier to classity the input.

WO 2017/039946 PCT/US2016/045636

ENFORCED SPARSITY FOR CLASSIFICATION

CROSS-REFERENCE TO RELATED APPLICATION

[0001] The present application claims the benefit of U.S. Provisional Patent
Application No. 62/213,591, filed on September 2, 2015, and titled “ENFORCED
SPARSITY FOR CLASSIFICATION,” the disclosure of which is expressly

incorporated by reference herein in its entirety.

BACKGROUND
Field

[0002] Certain aspects of the present disclosure generally relate to machine learning
and, more particularly, to improving systems and methods of feature extraction and

classification.

Background

[0003] An artificial neural network, which may comprise an interconnected group of
artificial neurons (e.g., neuron models), is a computational device or represents a

method to be performed by a computational device.

[0004] Convolutional neural networks are a type of feed-forward artificial neural
network. Convolutional neural networks may include collections of neurons that each
have a receptive field and that collectively tile an input space. Convolutional neural
networks (CNNs) have numerous applications. In particular, CNNs have broadly been

used in the area of pattern recognition and classification.

[0005] Deep learning architectures, such as deep belief networks and deep
convolutional networks, are layered neural networks architectures in which the output of
a first layer of neurons becomes an input to a second layer of neurons, the output of a
second layer of neurons becomes and input to a third layer of neurons, and so on. Deep
neural networks may be trained to recognize a hierarchy of features and so they have
increasingly been used in object recognition applications. Like convolutional neural
networks, computation in these deep learning architectures may be distributed over a

population of processing nodes, which may be configured in one or more computational

WO 2017/039946 PCT/US2016/045636

chains. These multi-layered architectures may be trained one layer at a time and may be

fine-tuned using back propagation.

[0006] Other models are also available for object recognition. For example, support
vector machines (SVMs) are learning tools that can be applied for classification.
Support vector machines include a separating hyperplane (e.g., decision boundary) that
categorizes data. The hyperplane is defined by supervised learning. A desired
hyperplane increases the margin of the training data. In other words, the hyperplane

should have the greatest minimum distance to the training examples.

[0007] Although these solutions achieve excellent results on a number of
classification benchmarks, their computational complexity can be prohibitively high.

Additionally, training of the models may be challenging.
SUMMARY

[0008] In an aspect of the present disclosure, an apparatus for classifying an input is
disclosed. The apparatus includes a classifier and a feature extractor. The feature
extractor is configured to generate a feature vector from the input. The feature vector is
also configured to set a number of elements of the feature vector to zero to produce a
sparse feature vector. The sparse feature vector has the same dimensions as the feature
vector generated by the feature extractor. The sparse feature vector includes fewer non-
zero elements than the feature vector generated by the feature extractor. The feature
vector is further configured to forward the sparse feature vector to a classifier to classify

the input.

[0009] In another aspect of the present disclosure, a method for classifying an input
is disclosed. The method includes generating a feature vector from the input. The
method also includes setting a number of elements of the feature vector to zero to
produce a sparse feature vector. The sparse feature vector has the same dimensions as
the generated feature vector. The sparse feature vector also includes fewer non-zero
elements than the generated feature vector. The method further includes forwarding the

sparse feature vector to a classifier to classify the input.

[0010] In yet another aspect of the present disclosure, an apparatus for classifying

an input is disclosed. The apparatus includes means for generating a feature vector from

WO 2017/039946 PCT/US2016/045636

the input. The apparatus also includes means for setting a number of elements of the
feature vector to zero to produce a sparse feature vector. The sparse feature vector has
the same dimensions as the generated feature vector. The sparse feature vector also
includes fewer non-zero elements than the generated feature vector. The apparatus
further includes means for forwarding the sparse feature vector to a classifier to classify

the input.

[0011] In still another aspect of the present disclosure, a non-transitory computer-
readable medium is presented. The non-transitory computer-readable medium has
encoded thereon program code for classifying. The program code is executed by a
processor and includes program code to generate a feature vector from the input. The
program code also includes program code to set a number of elements of the feature
vector to zero to produce a sparse feature vector. The sparse feature vector has the same
dimensions as the generated feature vector. The sparse feature vector also includes
fewer non-zero elements than the generated feature vector. The program code further
includes program code to forward the sparse feature vector to a classifier to classify the

input.

[0012] Additional features and advantages of the disclosure will be described below.
It should be appreciated by those skilled in the art that this disclosure may be readily
utilized as a basis for modifying or designing other structures for carrying out the same
purposes of the present disclosure. It should also be realized by those skilled in the art
that such equivalent constructions do not depart from the teachings of the disclosure as
set forth in the appended claims. The novel features, which are believed to be
characteristic of the disclosure, both as to its organization and method of operation,
together with further objects and advantages, will be better understood from the
following description when considered in connection with the accompanying figures. It
is to be expressly understood, however, that each of the figures is provided for the
purpose of illustration and description only and is not intended as a definition of the

limits of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The features, nature, and advantages of the present disclosure will become

more apparent from the detailed description set forth below when taken in conjunction

WO 2017/039946 PCT/US2016/045636

with the drawings in which like reference characters identify correspondingly

throughout.

[0014] FIGURE 1 illustrates an example implementation of designing a neural
network using a system-on-a-chip (SOC), including a general-purpose processor in

accordance with certain aspects of the present disclosure.

[0015] FIGURE 2 illustrates an example implementation of a system in accordance

with aspects of the present disclosure.

[0016] FIGURE 3A is a diagram illustrating a neural network in accordance with

aspects of the present disclosure.

[0017] FIGURE 3B is a block diagram illustrating an exemplary deep convolutional

network (DCN) in accordance with aspects of the present disclosure.

[0018] FIGURE 4 is a block diagram illustrating an exemplary software architecture
that may modularize artificial intelligence (AI) functions in accordance with aspects of

the present disclosure.

[0019] FIGURE 5 is a block diagram illustrating the run-time operation of an Al

application on a smartphone in accordance with aspects of the present disclosure.

[0020] FIGURE 6 is a block diagram illustrating an exemplary machine learning

model including a feature extractor in accordance with aspects of the present disclosure.

[0021] FIGURE 7 illustrates a method for feature extraction and input classification

according to aspects of the present disclosure.

DETAILED DESCRIPTION

[0022] The detailed description set forth below, in connection with the appended
drawings, is intended as a description of various configurations and is not intended to
represent the only configurations in which the concepts described herein may be
practiced. The detailed description includes specific details for the purpose of providing
a thorough understanding of the various concepts. However, it will be apparent to those

skilled in the art that these concepts may be practiced without these specific details. In

WO 2017/039946 PCT/US2016/045636

some instances, well-known structures and components are shown in block diagram

form in order to avoid obscuring such concepts.

[0023] Based on the teachings, one skilled in the art should appreciate that the scope
of the disclosure is intended to cover any aspect of the disclosure, whether implemented
independently of or combined with any other aspect of the disclosure. For example, an
apparatus may be implemented or a method may be practiced using any number of the
aspects set forth. In addition, the scope of the disclosure is intended to cover such an
apparatus or method practiced using other structure, functionality, or structure and
functionality in addition to or other than the various aspects of the disclosure set forth.

It should be understood that any aspect of the disclosure disclosed may be embodied by

one or more elements of a claim.

[0024] The word “exemplary” is used herein to mean “serving as an example,
instance, or illustration.” Any aspect described herein as “exemplary” is not necessarily

to be construed as preferred or advantageous over other aspects.

[0025] Although particular aspects are described herein, many variations and
permutations of these aspects fall within the scope of the disclosure. Although some
benefits and advantages of the preferred aspects are mentioned, the scope of the
disclosure is not intended to be limited to particular benefits, uses or objectives. Rather,
aspects of the disclosure are intended to be broadly applicable to different technologies,
system configurations, networks and protocols, some of which are illustrated by way of
example in the figures and in the following description of the preferred aspects. The
detailed description and drawings are merely illustrative of the disclosure rather than
limiting, the scope of the disclosure being defined by the appended claims and

equivalents thereof.

Enforced Sparsity for Classification

[0026] In a classification task, the feature vectors output via a feature extractor may
often be dense (e.g., containing many non-zero elements). Having such dense feature
vectors may adversely affect memory requirements and classifier latency. Further,
having a large number of feature vector elements with small, non-zero feature values

may represent a noisy feature vector, which in turn may reduce classification accuracy.

WO 2017/039946 PCT/US2016/045636

[0027] Aspects of the present disclosure are directed to improved feature extraction
and classification accuracy. In the present disclosure, an enforced sparsity (ES) process
is employed such that only a top K number or percentage of feature values or elements
of a given feature vector are retained. The other values may be set to zero (0), thereby
producing a sparse feature vector having fewer non-zero values than the given feature
vector. The dimensions of the feature vector (e.g., the number of elements in the feature
vector), however, may be maintained. By increasing the sparsity of the feature vector,
less memory may be used to store features for retraining, for example. Furthermore,
higher sparsity may also improve classifier performance (e.g., speed of classification

and accuracy).

[0028] FIGURE 1 illustrates an example implementation of the aforementioned
enforced sparsity and feature extraction using a system-on-a-chip (SOC) 100, which
may include a general-purpose processor (CPU) or multi-core general-purpose
processors (CPUs) 102 in accordance with certain aspects of the present disclosure.
Variables (e.g., neural signals and synaptic weights), system parameters associated with
a computational device (e.g., neural network with weights), delays, frequency bin
information, and task information may be stored in a memory block associated with a
neural processing unit (NPU) 108, in a memory block associated with a CPU 102, in a
memory block associated with a graphics processing unit (GPU) 104, in a memory
block associated with a digital signal processor (DSP) 106, in a dedicated memory block
118, or may be distributed across multiple blocks. Instructions executed at the general-
purpose processor 102 may be loaded from a program memory associated with the CPU

102 or may be loaded from a dedicated memory block 118.

[0029] The SOC 100 may also include additional processing blocks tailored to
specific functions, such as a GPU 104, a DSP 106, a connectivity block 110, which may
include fourth generation long term evolution (4G LTE) connectivity, unlicensed Wi-Fi
connectivity, USB connectivity, Bluetooth connectivity, and the like, and a multimedia
processor 112 that may, for example, detect and recognize gestures. In one
implementation, the NPU is implemented in the CPU, DSP, and/or GPU. The SOC 100
may also include a sensor processor 114, image signal processors (ISPs), and/or

navigation 120, which may include a global positioning system.

WO 2017/039946 PCT/US2016/045636

[0030] The SOC 100 may be based on an ARM instruction set. In an aspect of the
present disclosure, the instructions loaded into the general-purpose processor 102 may
comprise code for receiving a feature vector from a feature extractor. The instructions
loaded into the general-purpose processor 102 may also comprise code for retaining a
percentage of elements of the feature vector to produce a sparse feature vector.
Furthermore, the instructions loaded into the general-purpose processor 102 may also

comprise code for forwarding the sparse feature vector to a classifier.

[0031] FIGURE 2 illustrates an example implementation of a system 200 in
accordance with certain aspects of the present disclosure. As illustrated in FIGURE 2,
the system 200 may have multiple local processing units 202 that may perform various
operations of methods described herein. Each local processing unit 202 may comprise a
local state memory 204 and a local parameter memory 206 that may store parameters of
a neural network. In addition, the local processing unit 202 may have a local (neuron)
model program (LMP) memory 208 for storing a local model program, a local learning
program (LLP) memory 210 for storing a local learning program, and a local connection
memory 212. Furthermore, as illustrated in FIGURE 2, each local processing unit 202
may interface with a configuration processor unit 214 for providing configurations for
local memories of the local processing unit, and with a routing connection processing

unit 216 that provides routing between the local processing units 202.

[0032] Deep learning architectures may perform an object recognition task by
learning to represent inputs at successively higher levels of abstraction in each layer,
thereby building up a useful feature representation of the input data. In this way, deep
learning addresses a major bottleneck of traditional machine learning. Prior to the
advent of deep learning, a machine learning approach to an object recognition problem
may have relied heavily on human engineered features, perhaps in combination with a
shallow classifier. A shallow classifier may be a two-class linear classifier, for
example, in which a weighted sum of the feature vector components may be compared
with a threshold to predict to which class the input belongs. Human engineered features
may be templates or kernels tailored to a specific problem domain by engineers with
domain expertise. Deep learning architectures, in contrast, may learn to represent

features that are similar to what a human engineer might design, but through training.

WO 2017/039946 PCT/US2016/045636

Furthermore, a deep network may learn to represent and recognize new types of features

that a human might not have considered.

[0033] A deep learning architecture may learn a hierarchy of features. If presented
with visual data, for example, the first layer may learn to recognize relatively simple
features, such as edges, in the input stream. In another example, if presented with
auditory data, the first layer may learn to recognize spectral power in specific
frequencies. The second layer, taking the output of the first layer as input, may learn to
recognize combinations of features, such as simple shapes for visual data or
combinations of sounds for auditory data. For instance, higher layers may learn to
represent complex shapes in visual data or words in auditory data. Still higher layers

may learn to recognize common visual objects or spoken phrases.

[0034] Deep learning architectures may perform especially well when applied to
problems that have a natural hierarchical structure. For example, the classification of
motorized vehicles may benefit from first learning to recognize wheels, windshields,
and other features. These features may be combined at higher layers in different ways

to recognize cars, trucks, and airplanes.

[0035] Neural networks may be designed with a variety of connectivity patterns. In
feed-forward networks, information is passed from lower to higher layers, with each
neuron in a given layer communicating to neurons in higher layers. A hierarchical
representation may be built up in successive layers of a feed-forward network, as
described above. Neural networks may also have recurrent or feedback (also called top-
down) connections. In a recurrent connection, the output from a neuron in a given layer
may be communicated to another neuron in the same layer. A recurrent architecture
may be helpful in recognizing patterns that span more than one of the input data chunks
that are delivered to the neural network in a sequence. A connection from a neuron in a
given layer to a neuron in a lower layer is called a feedback (or top-down) connection.
A network with many feedback connections may be helpful when the recognition of a
high-level concept may aid in discriminating the particular low-level features of an

input.

[0036] Referring to FIGURE 3 A, the connections between layers of a neural

network may be fully connected 302 or locally connected 304. In a fully connected

WO 2017/039946 PCT/US2016/045636

network 302, a neuron in a first layer may communicate its output to every neuron in a
second layer, so that each neuron in the second layer will receive input from every
neuron in the first layer. Alternatively, in a locally connected network 304, a neuron in
a first layer may be connected to a limited number of neurons in the second layer. A
convolutional network 306 may be locally connected, and is further configured such that
the connection strengths associated with the inputs for each neuron in the second layer
are shared (e.g., 308). More generally, a locally connected layer of a network may be
configured so that each neuron in a layer will have the same or a similar connectivity
pattern, but with connections strengths that may have different values (e.g., 310, 312,
314, and 316). The locally connected connectivity pattern may give rise to spatially
distinct receptive fields in a higher layer, because the higher layer neurons in a given
region may receive inputs that are tuned through training to the properties of a restricted

portion of the total input to the network.

[0037] Locally connected neural networks may be well suited to problems in which
the spatial location of inputs is meaningful. For instance, a network 300 designed to
recognize visual features from a car-mounted camera may develop high layer neurons
with different properties depending on their association with the lower versus the upper
portion of the image. Neurons associated with the lower portion of the image may learn
to recognize lane markings, for example, while neurons associated with the upper

portion of the image may learn to recognize traffic lights, traffic signs, and the like.

[0038] A deep convolutional network (DCN) may be trained with supervised
learning. During training, a DCN may be presented with an image, such as a cropped
image of a speed limit sign 326, and a “forward pass” may then be computed to produce
an output 322. The output 322 may be a vector of values corresponding to features such
as “sign,” “60,” and “100.” The network designer may want the DCN to output a high
score for some of the neurons in the output feature vector, for example the ones
corresponding to “sign” and “60” as shown in the output 322 for a network 300 that has
been trained. Before training, the output produced by the DCN is likely to be incorrect,
and so an error may be calculated between the actual output and the target output. The
weights of the DCN may then be adjusted so that the output scores of the DCN are more
closely aligned with the target.

WO 2017/039946 PCT/US2016/045636

[0039] To adjust the weights, a learning algorithm may compute a gradient vector
for the weights. The gradient may indicate an amount that an error would increase or
decrease if the weight were adjusted slightly. At the top layer, the gradient may
correspond directly to the value of a weight connecting an activated neuron in the
penultimate layer and a neuron in the output layer. In lower layers, the gradient may
depend on the value of the weights and on the computed error gradients of the higher
layers. The weights may then be adjusted so as to reduce the error. This manner of
adjusting the weights may be referred to as “back propagation” as it involves a

“backward pass” through the neural network.

[0040] In practice, the error gradient of weights may be calculated over a small
number of examples, so that the calculated gradient approximates the true error
gradient. This approximation method may be referred to as stochastic gradient descent.
Stochastic gradient descent may be repeated until the achievable error rate of the entire

system has stopped decreasing or until the error rate has reached a target level.

[0041] After learning, the DCN may be presented with new images 326 and a
forward pass through the network may yield an output 322 that may be considered an

inference or a prediction of the DCN.

[0042] Deep belief networks (DBNs) are probabilistic models comprising multiple
layers of hidden nodes. DBNs may be used to extract a hierarchical representation of
training data sets. A DBN may be obtained by stacking up layers of Restricted
Boltzmann Machines (RBMs). An RBM is a type of artificial neural network that can
learn a probability distribution over a set of inputs. Because RBMs can learn a
probability distribution in the absence of information about the class to which each
input should be categorized, RBMs are often used in unsupervised learning. Using a
hybrid unsupervised and supervised paradigm, the bottom RBMs of a DBN may be
trained in an unsupervised manner and may serve as feature extractors, and the top
RBM may be trained in a supervised manner (on a joint distribution of inputs from the

previous layer and target classes) and may serve as a classifier.

[0043] Deep convolutional networks (DCN5s) are networks of convolutional
networks, configured with additional pooling and normalization layers. DCNs have

achieved state-of-the-art performance on many tasks. DCNs can be trained using

10

WO 2017/039946 PCT/US2016/045636

supervised learning in which both the input and output targets are known for many
exemplars and are used to modify the weights of the network by use of gradient descent

methods.

[0044] DCNs may be feed-forward networks. In addition, as described above, the
connections from a neuron in a first layer of a DCN to a group of neurons in the next
higher layer are shared across the neurons in the first layer. The feed-forward and
shared connections of DCNs may be exploited for fast processing. The computational
burden of a DCN may be much less, for example, than that of a similarly sized neural

network that comprises recurrent or feedback connections.

[0045] The processing of each layer of a convolutional network may be considered
a spatially invariant template or basis projection. If the input is first decomposed into
multiple channels, such as the red, green, and blue channels of a color image, then the
convolutional network trained on that input may be considered three-dimensional, with
two spatial dimensions along the axes of the image and a third dimension capturing
color information. The outputs of the convolutional connections may be considered to
form a feature map in the subsequent layer 318 and 320, with each element of the
feature map (e.g., 320) receiving input from a range of neurons in the previous layer
(e.g., 318) and from each of the multiple channels. The values in the feature map may
be further processed with a non-linearity, such as a rectification, max(0,x). Values from
adjacent neurons may be further pooled, which corresponds to down sampling, and may
provide additional local invariance and dimensionality reduction. Normalization, which
corresponds to whitening, may also be applied through lateral inhibition between

neurons in the feature map.

[0046] The performance of deep learning architectures may increase as more
labeled data points become available or as computational power increases. Modern
deep neural networks are routinely trained with computing resources that are thousands
of times greater than what was available to a typical researcher just fifteen years ago.
New architectures and training paradigms may further boost the performance of deep
learning. Rectified linear units may reduce a training issue known as vanishing
gradients. New training techniques may reduce over-fitting and thus enable larger
models to achieve better generalization. Encapsulation techniques may abstract data in

a given receptive field and further boost overall performance.

11

WO 2017/039946 PCT/US2016/045636

[0047] FIGURE 3B is a block diagram illustrating an exemplary deep convolutional
network 350. The deep convolutional network 350 may include multiple different types
of layers based on connectivity and weight sharing. As shown in FIGURE 3B, the
exemplary deep convolutional network 350 includes multiple convolution blocks (e.g.,
C1 and C2). Each of the convolution blocks may be configured with a convolution
layer, a normalization layer (LNorm), and a pooling layer. The convolution layers may
include one or more convolutional filters, which may be applied to the input data to
generate a feature map. Although only two convolution blocks are shown, the present
disclosure is not so limiting, and instead, any number of convolutional blocks may be
included in the deep convolutional network 350 according to design preference. The
normalization layer may be used to normalize the output of the convolution filters. For
example, the normalization layer may provide whitening or lateral inhibition. The
pooling layer may provide down sampling aggregation over space for local invariance

and dimensionality reduction.

[0048] The parallel filter banks, for example, of a deep convolutional network may
be loaded on a CPU 102 or GPU 104 of an SOC 100, optionally based on an ARM
instruction set, to achieve high performance and low power consumption. In alternative
embodiments, the parallel filter banks may be loaded on the DSP 106 or an ISP 116 of
an SOC 100. In addition, the DCN may access other processing blocks that may be
present on the SOC, such as processing blocks dedicated to sensors 114 and navigation

120.

[0049] The deep convolutional network 350 may also include one or more fully
connected layers (e.g., FC1 and FC2). The deep convolutional network 350 may further
include a logistic regression (LR) layer. Between each layer of the deep convolutional
network 350 are weights (not shown) that are to be updated. The output of each layer
may serve as an input of a succeeding layer in the deep convolutional network 350 to
learn hierarchical feature representations from input data (e.g., images, audio, video,

sensor data and/or other input data) supplied at the first convolution block C1.

[0050] FIGURE 4 is a block diagram illustrating an exemplary software architecture
400 that may modularize artificial intelligence (AI) functions. Using the architecture,

applications 402 may be designed that may cause various processing blocks of an SOC

12

WO 2017/039946 PCT/US2016/045636

420 (for example a CPU 422, a DSP 424, a GPU 426 and/or an NPU 428) to perform

supporting computations during run-time operation of the application 402.

[0051] The Al application 402 may be configured to call functions defined in a user
space 404 that may, for example, provide for the detection and recognition of a scene
indicative of the location in which the device currently operates. The AT application
402 may, for example, configure a microphone and a camera differently depending on
whether the recognized scene is an office, a lecture hall, a restaurant, or an outdoor
setting such as a lake. The Al application 402 may make a request to compiled program
code associated with a library defined in a SceneDetect application programming
interface (API) 406 to provide an estimate of the current scene. This request may
ultimately rely on the output of a deep neural network configured to provide scene

estimates based on video and positioning data, for example.

[0052] A run-time engine 408, which may be compiled code of a Runtime
Framework, may be further accessible to the Al application 402. The Al application
402 may cause the run-time engine, for example, to request a scene estimate at a
particular time interval or triggered by an event detected by the user interface of the
application. When caused to estimate the scene, the run-time engine may in turn send a
signal to an operating system 410, such as a Linux Kernel 412, running on the SOC 420.
The operating system 410, in turn, may cause a computation to be performed on the
CPU 422, the DSP 424, the GPU 426, the NPU 428, or some combination thereof. The
CPU 422 may be accessed directly by the operating system, and other processing blocks
may be accessed through a driver, such as a driver 414-418 for a DSP 424, for a GPU
426, or for an NPU 428. In the exemplary example, the deep neural network may be
configured to run on a combination of processing blocks, such as a CPU 422 and a GPU

426, or may be run on an NPU 428, if present.

[0053] FIGURE 5 is a block diagram illustrating the run-time operation 500 of an
Al application on a smartphone 502. The Al application may include a pre-process
module 504 that may be configured (using for example, the JAVA programming
language) to convert the format of an image 506 and then crop and/or resize the image
508. The pre-processed image may then be communicated to a classify application 510
that contains a SceneDetect Backend Engine 512 that may be configured (using for

example, the C programming language) to detect and classify scenes based on visual

13

WO 2017/039946 PCT/US2016/045636

input. The SceneDetect Backend Engine 512 may be configured to further preprocess
514 the image by scaling 516 and cropping 518. For example, the image may be scaled
and cropped so that the resulting image is 224 pixels by 224 pixels. These dimensions
may map to the input dimensions of a neural network. The neural network may be
configured by a deep neural network block 520 to cause various processing blocks of
the SOC 100 to further process the image pixels with a deep neural network. The
results of the deep neural network may then be thresholded 522 and passed through an
exponential smoothing block 524 in the classify application 510. The smoothed results

may then cause a change of the settings and/or the display of the smartphone 502.

[0054] In one configuration, a machine learning model is configured for generating
a feature vector from an input. The model is also configured for setting a number of
elements of the feature vector to zero to produce a sparse feature vector. The machine
learning model is further configured for forwarding the sparse feature vector to a
classifier. The machine learning model includes generating means, setting means,
and/or forwarding means. In one aspect, the generating means, setting means, and/or
forwarding means may be the general-purpose processor 102, program memory
associated with the general-purpose processor 102, memory block 118, local processing
units 202, and or the routing connection processing units 216 configured to perform the
functions recited. In another configuration, the aforementioned means may be any
module or any apparatus configured to perform the functions recited by the

aforementioned means.

[0055] According to certain aspects of the present disclosure, each local processing
unit 202 may be configured to determine parameters of the neural network based upon
desired one or more functional features of the neural network, and develop the one or
more functional features towards the desired functional features as the determined

parameters are further adapted, tuned and updated.

[0056] FIGURE 6 is a block diagram illustrating an exemplary machine learning
model 600 including a feature extractor 602 in accordance with aspects of the present
disclosure. Referring to FIGURE 6, a fully connected layer FC1 and an enforced
sparsity unity of a feature extractor 602 are shown. In some aspects, the fully connected
layer may, for example comprise a layer (e.g., the last layer) of a deep convolutional

network (DCN) or other network.

14

WO 2017/039946 PCT/US2016/045636

[0057] The fully connected layer FC1 may supply a feature vector to an enforced
sparsity (ES) unit. In this exemplary configuration, an input (e.g., image pixels, speech,
or the like) may be passed through multiple layers of the DCN to extract certain features

and output a feature vector via the fully connected layer FC1.

[0058] Typically, DCNs may employ rectifier linear units (ReLUs) or parametric
rectifier linear units (PReLUs) to rectify the data. ReLUs rectify the data by setting the
negative feature vector values to 0, and keeping the positive values. PReLUs, on the
other hand, keep positive feature vector values and scale the negative values linearly.
Both, however, produce feature vectors with increased memory consumption and
heightened latency in training and inference compared to the proposed methods of

enforced sparsity.

[0059] In accordance with aspects of the present disclosure, enforced sparsity may
be applied via the ES unit. That is, the data included in the feature vector may be
supplied to the enforced sparsity (ES) unit to sparsify the data or render the data sparse.
Using the ES unit, the top K% of data elements may be maintained, where K is an
integer number. That is, the K number of elements or K% of elements having the
highest value may be retained. The remaining elements of the feature vector may be set
to zero. As such, a sparse feature vector having the same dimensions or number of
elements as the supplied feature vector may be produced including non-zero values for

only the K number of elements or K% of elements.

[0060] In some aspects, the value of K may be computed or determined offline. For
example, the value of K may be determined based on a parameter sweep across various

K values between 0% and 100%.

[0061] Conversely, the value of K may also be determined online. For example, the
value of K may be determined by retaining a set of training and validation samples from

a user and performing a sweep across K.

[0062] Although the ES unit is shown in FIGURE 6 as external to the DCN, in some
aspects, the ES unit may be incorporated within the DCN or other network. In one
example, sparsity may be incorporated in the DCN by applying a least absolute errors
(L1) cost function as part of the training procedure of the DCN or other feature

extractor. In some aspects, the cost function may be configured to penalize the number

15

WO 2017/039946 PCT/US2016/045636

of non-zero elements included in the feature vector. Furthermore, minimizing the L1
norm of the error may force the number of non-zero feature values to a smaller number.
As such, the DCN may learn a sparsity factor, and in some cases, a most favorable or

desirable sparsity factor of the feature vector.

[0063] In a DCN, training progresses by making the weight updates as a function of
the error between the predicted label and the actual label. This error is the penalty term
and one goal is to reduce the error to zero. In accordance with aspects of the present
disclosure, a second penalty term may be added. The second penalty term may
comprise a norm of the activations of the layer for which sparsity is desired. Because
the goal is to minimize the number of non-zero elements in the feature vector, this
second penalty term may in some aspects, comprise a count of the number of non-zero

terms in that layer. The count of non-zero terms may be the LO norm.

[0064] However, this quantity would not be differentiable and may lead to difficulty
in training the network (e.g., using back propagation, which uses the gradient of the cost
function to drive weight updates). Accordingly, in some aspects, the L1 norm (sum of
the absolute values of the terms instead of count of terms) may be used as the second
penalty term. By enforcing a small sum of absolute, a number of the terms may be
indirectly forced to go towards zero (or very small numbers that can be thresholded

down to zero).

[0065] In this paradigm an “optimal” number of non-zero terms (e.g., K) may be
determined as part of the cost function minimization. In this case, the number of non-
zero terms may be considered optimal because it or minimizes error as well as

maximizes sparsity.

[0066] In one example, a feature vector including elements F[-102-35794-12]
may be supplied to the ES unit. The ES unit may, for example, be configured to keep
the top 20% of the feature vector values or elements. Accordingly, the ES unit may
determine the top two (2) elements or feature values of the ten (10) elements of the
feature vector. Thus, the ES unit may output a modified feature vector #’J0000079
0 0 0] with a sparsity of non-zero feature values or elements. Accordingly, a sparse

feature may be output via the ES unit and supplied to a classifier.

16

WO 2017/039946 PCT/US2016/045636

[0067] In some aspects, the ES unit may retain at most K% of the feature vector.
Alternatively, the ES unit may retain the top K% of absolute values, positive values, or
negative values of the feature vector elements. In addition, selecting the top K% is an
instantiation for selecting the surviving feature values or the non-zero elements of the

feature vector.

[0068] The sparse feature vector may be particularly beneficial as it may reduce
memory consumption for storing features for retraining. The increased sparsity may
also help enable faster classifier training and inference as fewer computations are
performed. In addition, the sparse feature vector may improve classifier accuracy.
Furthermore, sparse feature vectors also help to perform tasks that involve calculating
distances in feature space between two or more feature vectors, for example, to form
clusters of “similar” features, or build a simpler classifier like “nearest neighbor

classifiers.”

[0069] In some aspects, the element values of the modified feature vector may be
binarized or quantized. For instance, in the example above, the binarized version of F
maybe F7J00000 110 00]. The sparse feature vector may in turn be presented to a

classifier.

[0070] In a second example, the element values may be quantized. In this example,
all “surviving quantities” or the K highest values may be encoded with a 1 and all others
with a 0. For instance, if the desired sparsity is 80% and the vector size is 10, then 8 of
the lowest quantities may be set to 0 and the two surviving quantities (e.g. highest

element values) to 1.

[0071] FIGURE 7 illustrates a method 700 for feature extraction and input
classification. In block 702, the process generates a feature vector from an input. The
input may be an image, a voice, speech, or other input data. In block 704, the process
sets a number of elements of the feature vector to zero to produce a sparse feature
vector. The sparse feature vector has the same dimensions as the generated feature

vector and includes fewer non-zero elements than the generated feature vector.

[0072] In some aspects, the number of elements may be determined based on a

performance metric such as a classifier latency, classifier accuracy, classifier speed

2

17

WO 2017/039946 PCT/US2016/045636

and/or a memory utilization, for example. The performance metric may be determined

on-device (e.g., on the device performing the classification task) or off-device.

[0073] Furthermore, in block 706, the process forwards the sparse feature vector to
a classifier. In some aspects, the process may further or quantize the elements of the

sparse feature vector to further reduce memory consumption.

[0074] In some aspect, the process may further train the feature extractor to
determine the number of elements of the feature vector to retain. The training may
include the application of a cost function that penalizes low sparsity of the feature
vector. In some aspects, the cost function may include least absolute errors (. /-norm)

or L0 norm regularization.

[0075] In some aspects, the method 700 may be performed by the SOC 100
(FIGURE 1) or the system 200 (FIGURE 2). That is, each of the elements of the
method 700 may, for example, but without limitation, be performed by the SOC 100 or
the system 200 or one or more processors (e.g., CPU 102 and local processing unit 202)

and/or other components included therein.

[0076] The various operations of methods described above may be performed by
any suitable means capable of performing the corresponding functions. The means may
include various hardware and/or software component(s) and/or module(s), including,
but not limited to, a circuit, an application specific integrated circuit (ASIC), or
processor. Generally, where there are operations illustrated in the figures, those
operations may have corresponding counterpart means-plus-function components with

similar numbering.

[0077] As used herein, the term “determining” encompasses a wide variety of
actions. For example, “determining” may include calculating, computing, processing,
deriving, investigating, looking up (e.g., looking up in a table, a database or another data
structure), ascertaining and the like. Additionally, “determining” may include receiving
(e.g., receiving information), accessing (e.g., accessing data in a memory) and the like.
Furthermore, “determining” may include resolving, selecting, choosing, establishing

and the like.

18

WO 2017/039946 PCT/US2016/045636

[0078] As used herein, a phrase referring to “at least one of” a list of items refers to
any combination of those items, including single members. As an example, “at least

one of: a, b, or ¢” is intended to cover: a, b, ¢, a-b, a-c, b-c, and a-b-c.

[0079] The various illustrative logical blocks, modules and circuits described in
connection with the present disclosure may be implemented or performed with a
general-purpose processor, a digital signal processor (DSP), an application specific
integrated circuit (ASIC), a field programmable gate array signal (FPGA) or other
programmable logic device (PLD), discrete gate or transistor logic, discrete hardware
components or any combination thereof designed to perform the functions described
herein. A general-purpose processor may be a microprocessor, but in the alternative,
the processor may be any commercially available processor, controller, microcontroller
or state machine. A processor may also be implemented as a combination of computing
devices, e.g., a combination of a DSP and a microprocessor, a plurality of
Mmicroprocessors, one or more microprocessors in conjunction with a DSP core, or any

other such configuration.

[0080] The steps of a method or algorithm described in connection with the present
disclosure may be embodied directly in hardware, in a software module executed by a
processor, or in a combination of the two. A software module may reside in any form
of storage medium that is known in the art. Some examples of storage media that may
be used include random access memory (RAM), read only memory (ROM), flash
memory, erasable programmable read-only memory (EPROM), electrically erasable
programmable read-only memory (EEPROM), registers, a hard disk, a removable disk,
a CD-ROM and so forth. A software module may comprise a single instruction, or
many instructions, and may be distributed over several different code segments, among
different programs, and across multiple storage media. A storage medium may be
coupled to a processor such that the processor can read information from, and write
information to, the storage medium. In the alternative, the storage medium may be

integral to the processor.

[0081] The methods disclosed herein comprise one or more steps or actions for
achieving the described method. The method steps and/or actions may be interchanged

with one another without departing from the scope of the claims. In other words, unless

19

WO 2017/039946 PCT/US2016/045636

a specific order of steps or actions is specified, the order and/or use of specific steps

and/or actions may be modified without departing from the scope of the claims.

[0082] The functions described may be implemented in hardware, software,
firmware, or any combination thereof. If implemented in hardware, an example
hardware configuration may comprise a processing system in a device. The processing
system may be implemented with a bus architecture. The bus may include any number
of interconnecting buses and bridges depending on the specific application of the
processing system and the overall design constraints. The bus may link together various
circuits including a processor, machine-readable media, and a bus interface. The bus
interface may be used to connect a network adapter, among other things, to the
processing system via the bus. The network adapter may be used to implement signal
processing functions. For certain aspects, a user interface (e.g., keypad, display, mouse,
joystick, etc.) may also be connected to the bus. The bus may also link various other
circuits such as timing sources, peripherals, voltage regulators, power management
circuits, and the like, which are well known in the art, and therefore, will not be

described any further.

[0083] The processor may be responsible for managing the bus and general
processing, including the execution of software stored on the machine-readable media.
The processor may be implemented with one or more general-purpose and/or special-
purpose processors. Examples include microprocessors, microcontrollers, DSP
processors, and other circuitry that can execute software. Software shall be construed
broadly to mean instructions, data, or any combination thereof, whether referred to as
software, firmware, middleware, microcode, hardware description language, or
otherwise. Machine-readable media may include, by way of example, random access
memory (RAM), flash memory, read only memory (ROM), programmable read-only
memory (PROM), erasable programmable read-only memory (EPROM), electrically
erasable programmable Read-only memory (EEPROM), registers, magnetic disks,
optical disks, hard drives, or any other suitable storage medium, or any combination
thereof. The machine-readable media may be embodied in a computer-program

product. The computer-program product may comprise packaging materials.

[0084] In a hardware implementation, the machine-readable media may be part of

the processing system separate from the processor. However, as those skilled in the art

20

WO 2017/039946 PCT/US2016/045636

will readily appreciate, the machine-readable media, or any portion thereof, may be
external to the processing system. By way of example, the machine-readable media
may include a transmission line, a carrier wave modulated by data, and/or a computer
product separate from the device, all which may be accessed by the processor through
the bus interface. Alternatively, or in addition, the machine-readable media, or any
portion thereof, may be integrated into the processor, such as the case may be with
cache and/or general register files. Although the various components discussed may be
described as having a specific location, such as a local component, they may also be
configured in various ways, such as certain components being configured as part of a

distributed computing system.

[0085] The processing system may be configured as a general-purpose processing
system with one or more microprocessors providing the processor functionality and
external memory providing at least a portion of the machine-readable media, all linked
together with other supporting circuitry through an external bus architecture.
Alternatively, the processing system may comprise one or more neuromorphic
processors for implementing the neuron models and models of neural systems described
herein. As another alternative, the processing system may be implemented with an
application specific integrated circuit (ASIC) with the processor, the bus interface, the
user interface, supporting circuitry, and at least a portion of the machine-readable media
integrated into a single chip, or with one or more field programmable gate arrays
(FPGAs), programmable logic devices (PLDs), controllers, state machines, gated logic,
discrete hardware components, or any other suitable circuitry, or any combination of
circuits that can perform the various functionality described throughout this disclosure.
Those skilled in the art will recognize how best to implement the described functionality
for the processing system depending on the particular application and the overall design

constraints imposed on the overall system.

[0086] The machine-readable media may comprise a number of software modules.
The software modules include instructions that, when executed by the processor, cause
the processing system to perform various functions. The software modules may include
a transmission module and a receiving module. Each software module may reside in a
single storage device or be distributed across multiple storage devices. By way of

example, a software module may be loaded into RAM from a hard drive when a

21

WO 2017/039946 PCT/US2016/045636

triggering event occurs. During execution of the software module, the processor may
load some of the instructions into cache to increase access speed. One or more cache
lines may then be loaded into a general register file for execution by the processor.
When referring to the functionality of a software module below, it will be understood
that such functionality is implemented by the processor when executing instructions
from that software module. Furthermore, it should be appreciated that aspects of the
present disclosure result in improvements to the functioning of the processor, computer,

machine, or other system implementing such aspects.

[0087] If implemented in software, the functions may be stored or transmitted over
as one or more instructions or code on a computer-readable medium. Computer-
readable media include both computer storage media and communication media
including any medium that facilitates transfer of a computer program from one place to
another. A storage medium may be any available medium that can be accessed by a
computer. By way of example, and not limitation, such computer-readable media can
comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other medium that can be used to
carry or store desired program code in the form of instructions or data structures and
that can be accessed by a computer. Additionally, any connection is properly termed a
computer-readable medium. For example, if the software is transmitted from a website,
server, or other remote source using a coaxial cable, fiber optic cable, twisted pair,
digital subscriber line (DSL), or wireless technologies such as infrared (IR), radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. Disk and disc, as used herein, include compact disc (CD), laser disc, optical
disc, digital versatile disc (DVD), floppy disk, and Blu-ray® disc where disks usually
reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in
some aspects computer-readable media may comprise non-transitory computer-readable
media (e.g., tangible media). In addition, for other aspects computer-readable media
may comprise transitory computer- readable media (e.g., a signal). Combinations of the

above should also be included within the scope of computer-readable media.

[0088] Thus, certain aspects may comprise a computer program product for

performing the operations presented herein. For example, such a computer program

22

WO 2017/039946 PCT/US2016/045636

product may comprise a computer-readable medium having instructions stored (and/or
encoded) thereon, the instructions being executable by one or more processors to
perform the operations described herein. For certain aspects, the computer program

product may include packaging material.

[0089] Further, it should be appreciated that modules and/or other appropriate
means for performing the methods and techniques described herein can be downloaded
and/or otherwise obtained by a user terminal and/or base station as applicable. For
example, such a device can be coupled to a server to facilitate the transfer of means for
performing the methods described herein. Alternatively, various methods described
herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium
such as a compact disc (CD) or floppy disk, etc.), such that a user terminal and/or base
station can obtain the various methods upon coupling or providing the storage means to
the device. Moreover, any other suitable technique for providing the methods and

techniques described herein to a device can be utilized.

[0090] It is to be understood that the claims are not limited to the precise
configuration and components illustrated above. Various modifications, changes and
variations may be made in the arrangement, operation and details of the methods and

apparatus described above without departing from the scope of the claims.

23

WO 2017/039946 PCT/US2016/045636

CLAIMS
WHAT IS CLAIMED IS:

1. An apparatus for classifying an input, comprising:

a classifier; and
a feature extractor, the feature extractor configured:

to generate a feature vector from the input;

to set a number of elements of the feature vector to zero to produce a
sparse feature vector, the sparse feature vector having same dimensions as the
generated feature vector and including fewer non-zero elements than the
generated feature vector; and

to forward the sparse feature vector to the classifier to classify the input.

2. The apparatus of claim 1, in which the feature extractor is further configured to

determine the number of elements based at least in part on a performance metric.

3. The apparatus of claim 2, in which the feature extractor is further configured to

compute the performance metric on-device.

4. The apparatus of claim 2, in which the feature extractor is further configured to

compute the performance metric off-device.

5. The apparatus of claim 1, in which the feature extractor is trained to determine

the number of elements of the feature vector to retain.

6. The apparatus of claim 5, in which the feature extractor is trained using a cost

function that penalizes low sparsity of the feature vector.

7. The apparatus of claim 6, in which the cost function includes an L1 norm or LO
norm.
8. The apparatus of claim 1, in which the feature extractor is further configured to

binarize elements of the sparse feature vector.

24

WO 2017/039946 PCT/US2016/045636

0. The apparatus of claim 1, in which the feature extractor is further configured to

quantize elements of the sparse feature vector.

10. A method for classifying an input, comprising:

generating a feature vector from the input;

setting a number of elements of the feature vector to zero to produce a sparse
feature vector, the sparse feature vector having same dimensions as the generated
feature vector and including fewer non-zero elements than the generated feature vector;
and

forwarding the sparse feature vector to a classifier to classify the input.

11. The method of claim 10, further comprising determining the number of elements

based at least in part on a performance metric.

12. The method of claim 11, further comprising computing the performance metric

on-device.

13. The method of claim 11, further comprising computing the performance metric

off-device.

14. The method of claim 10, further comprising determining the number of elements

of the feature vector to retain.

15. The method of claim 14, in which the determining comprises training a feature

extractor using a cost function that penalizes low sparsity of the feature vector.

16. The method of claim 15, in which the cost function includes an L1 norm or LO
norm.
17. The method of claim 10, further comprising binarizing elements of the sparse

feature vector.

18. The method of claim 10, further comprising quantizing elements of the sparse

feature vector.

25

WO 2017/039946 PCT/US2016/045636

19. An apparatus for classifying an input, comprising:

means for generating a feature vector from the input;

means for setting a number of elements of the feature vector to zero to produce a
sparse feature vector, the sparse feature vector having same dimensions as the generated

feature vector and including fewer non-zero elements than the generated feature vector;

and

means for forwarding the sparse feature vector to a classifier to classify the
input.
20. A non-transitory computer-readable medium having encoded thereon program

code for classifying an input, the program code being executed by a processor and
comprising:

program code to generate a feature vector from the input;

program code to set a number of elements of the feature vector to zero to
produce a sparse feature vector, the sparse feature vector having same dimensions as the
generated feature vector and including fewer non-zero elements than the generated
feature vector; and

program code to forward the sparse feature vector to a classifier to classify the

input.

26

WO 2017/039946

100

1/8

PCT/US2016/045636

1024

1044

106

108

110

I
1

CPUs

MULTIMEDIA
GPU
DSP SENSORS
NPUs ISPs

MEMORY
CONNECTIVITY
NAVIGATION

—112

—114

—116

—118

—120

FIG. 1

PCT/US2016/045636

WO 2017/039946

2/8

¢ O

[11u) SuIssadoid 807

AJOWRAN

weI3orq

weI3orq
uorddUU0)) Surured | ADOIAT 1290

820 820 [PPOIN [E00°]
™ [4¥4 J 01¢ J 80¢C ~ >
AJOWRAN CIowop _

IRjoweIRd
[290] QJe)g [£90] _
90z - voz -~ _
_
3uIss9001 . _
uoneIngyuo.) . _
_
AIOWRIN weidoid _
uondauuU0)) Jururea| 5 :mﬁwo%%o _
8207 820 [PPON [B00T _
[4¥4 J 01¢ J 80¢C \ “
> KIOWSN o >
Iopuweled OUWRIN _
890 QJe)S [800] _
_
907 - voz -~ _
131U SuISSad0I{ [BJ07] _
14%4 ~

3urssa001qd
uornIUUo))
3unnoy

WO 2017/039946 PCT/US2016/045636

3/8
302 304 306
FULLY CONNECTED LOCALLY CONNECTED CONVOLUTIONAL

30
h 18 0 CLASSFICATION 322

R A R

FEATUREMAPS FEATUREMAPS .\ n \

25 B8 e AT

“.“\“ ‘ 5.\ . \
“"_ \ & . XK — \\
(o) \\“ &0 \ m\ o2 !
%

CONVOLUTION

FEATURE EXTRACTION CONVOLUTION

FIG. 34

WO 2017/039946 PCT/US2016/045636

4/8
3%1\\
(1
(cow)
[LNorm]
(maxpooL)
Q2
(cow)
(LNorm]
(maxpooL)
Y
FC1
FC2
R

FIG. 3B

PCT/US2016/045636

WO 2017/039946

5/8

v OId

0cv -1

0l

y0v -1

8cy 9y oy NNA
L~)
Ndd
.. S S
_ g J0YdS
Y TANYIA
m\ MNIOMINYES FNILNNY _m
!) ’ m J0%dS
) N\ ! BN
é ! dY "
m Jejegeusos | "
", / !

00v

PCT/US2016/045636

6/8

WO 2017/039946

$ O

Casody T T T T 1 (ang=poisias)
e INHLOORS | S11nS3
ol SOBRANT e} 3} Ao
_ N.mm._w._zmm_m zo_._%mom_“__mmio \ / w Nﬂ __. i
“ weonﬂ@z _ g%ﬁ \ __ 00¥d3id dol _ oOo0D
1 I 1 |
s iy IR s B <+
| ONISS300K e {7 A |
e — A LR E L —
hlg A /

y0G 208 /

WO 2017/039946 PCT/US2016/045636

7/8
2
=
v
v
0
o O
e)
K 1
179
Ll
=)
<
1 =2
i
O
LL
: J 1

WO 2017/039946 PCT/US2016/045636

8/8

700

GENERATING A FEATURE VECTOR FROM
AN INPUT

— 702

i

SETTING A NUMBER OF ELEMENTS OF THE
FEATURE VECTOR TO ZERO TO PRODUCE
A SPARSE FEATURE VECTOR

704

i

FORWARDING THE SPARSE FEATURE
VECTOR TO A CLASSIFIER

L 706

FIG. 7

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/045636

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6N3/08 GO6N99/00
ADD. GOBK9/62

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6N GO6K

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X ADAM COATES ET AL:

Bellevue, Washington, USA
the whole document

20 May 2010 (2010-05-20)

figures 1-4

"The Importance of
Encoding Versus Training with Sparse
Coding and Vector Quantization",
PROCEEDINGS OF THE 28 TH INTERNATIONAL
CON- FERENCE ON MACHINE LEARNING,

16 July 2011 (2011-07-16), XP055312568,

X US 2010/124377 Al (YU KAI [US] ET AL)

paragraph [0004] - paragraph [0032];

1-20

1-20

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

3 November 2016

Date of mailing of the international search report

17/11/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Cilia, Elisa

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/045636

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2014/279774 Al (WANG QINGZHOU [US] ET 1-20

AL) 18 September 2014 (2014-09-18)

abstract; figures 1-3

paragraph [0004] - paragraph [0007]

paragraph [0019] - paragraph [0021]

paragraph [0028]

paragraph [0032] - paragraph [0045]
X Xavier Glorot ET AL: "Deep Sparse 1-20

Rectifier Neural Networks"

In: "Proceedings of the l4th International
Conference on Artificial Intelligence and
Statistics (AISTATS)",

13 April 2011 (2011-04-13), JMLR, Fort
Lauderdale, FL, USA, XP055312525,

vol. 15, pages 315-323,

the whole document

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2016/045636
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2010124377 Al 20-05-2010 NONE
US 2014279774 Al 18-09-2014 CN 105210064 A 30-12-2015
EP 2973038 Al 20-01-2016
US 2014279774 Al 18-09-2014
US 2016048754 Al 18-02-2016
WO 2014160282 Al 02-10-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - wo-search-report
	Page 37 - wo-search-report
	Page 38 - wo-search-report

