L'invention concerne un robinet (1, 10) à boisseau sphérique (15) comportant entre deux mamelons (11, 13) un corps central (12) à l'intérieur duquel le boisseau sphérique est serré entre au moins deux sièges (19, 19a, 19b, 19c), le serrage étant réalisé par visage d'au moins un mamelon (11) rapporté sur le corps (12), le corps étant traversé par un axe de manœuvre (14) permettant de commander en rotation le boisseau sphérique (15) entre au moins deux positions, dont une position d'ouverture du robinet dans laquelle un fluide peut circuler à travers le robinet (10). Le robinet est à faible couple de manœuvre et il comporte à cette fin au moins un ensemble ressort (30, 31) rapporté comportant une pièce de cerclage (32) de siège et une pièce de cerclage (33), la pièce de cerclage (32) en forme de bague comportant une face de réception de siège et à l'opposé une face d'appui sur la pièce de cerclage (33), le siège (19, 19a, 19b, 19c) étant logé dans un épanoulement (36, 37) de la face de réception de siège de la pièce de cerclage (32), ledit épanoulement enceignant en outre la périphérie extérieure du dudit siège, ledit ensemble ressort (30, 31) étant disposé dans un logement intérieur (23) du mamelon correspondant (11, 13) dans lequel il peut coulisser en fonction de la compression de la pièce de cerclage (33) ladite pièce souple étant comprimée entre un fond du logement intérieur (23) du mamelon (11, 13) et la face d'appui de la pièce de cerclage (32), la pièce souple (33) ayant une souplesse plus importante que le siège (19, 19a, 19b, 19c) correspondant et la pièce de cerclage (32) étant rigide.

Demande d'extension:

Demandeur(s): SAINTE LIZAIGNE SA Société anonyme — FR.

Inventeur(s): BECCAVIN VINCENT et LEFORT JIMMY.

Titulaire(s): SAINTE LIZAIGNE SA Société anonyme.

Mandataire(s): CABINET HARLE ET PHELIP Société anonyme.
La présente invention concerne un robinet à boisseau sphérique à faible couple de manœuvre ainsi qu'une pièce de cerclage de siège adaptée. Elle a des applications notamment dans le domaine de l'adduction d'eau et plus particulièrement dans des robinets à commande motorisée.

Pour les réseaux d'électricité, de téléphonie..., la gestion des accès clients (ouverture/fermeture de lignes) est réalisée à distance avec des délais de réaction très courts et des coûts d'interventions très faibles.

Dans le cadre des réseaux d'eau potables, la gestion des accès est réalisée par des agents se déplaçant sur le terrain pour assurer l'opération. Pour ouvrir et fermer une ligne, les agents ouvrent et ferment manuellement un robinet situé avant le compteur d'eau. Cette opération est couteuse, nécessite une planification, la disponibilité d'un agent et souvent du client. De plus, le compteur d'eau et le robinet avant-compteur sont la propriété de l'exploitant qui en assure la gestion et la responsabilité.

Dans un souci d'optimisation et d'amélioration du service au client, la volonté des distributeurs d'eau potable est d'optimiser la gestion et le contrôle de leurs réseaux en agissant à distance. Dans cette optique, de nombreux compteurs ont été équipés de modules de télé-contrôle capables de relever l'index du compteur à distance et de l'envoyer au centre de gestion de l'eau par radio-transmission (signal GPRS).

Dans une étape suivante, la volonté des distributeurs d'eau potable est de pouvoir également agir à distance sur l'accès à l'eau des abonnés (ouverture/fermeture). Pour répondre à cette demande, il a été proposé des robinets avant-compteur motorisés, commandés par l'intermédiaire du module de télé-contrôle permettant également de relever à distance l'index du compteur. Toutefois, ce type d'équipement doit répondre à des contraintes nombreuses et notamment en ce qui concerne l'autonomie, la durée de vie, la fiabilité et la sécurisation, notamment contre le vandalisme ou la fraude.

C'est ainsi que la société SAINTE LIZAIGNE a proposée dans la demande FR2012/59066 un robinet pouvoir être motorisé et qui permet d'avoir une position supplémentaire à débit réduit déterminé sans le risque de détérioration de la sphère que l'on rencontre dans le cas d'un robinet à sphère standard simplement entrouvert et dont, en outre, le débit peut grandement varier avec un faible écart de positionnement en rotation de la sphère.

Un robinet avant-compteur standard, qui est du type à deux voies, est composé d'un corps central disposé entre deux mamelons de raccordement, le corps et les mamelons étant généralement en laiton, le corps recevant, le traversant, un axe de manœuvre accessible de l'extérieur et, à l'intérieur, un boisseau sphérique, des sièges étant comprimés contre le boisseau sphérique entre les mamelons, au moins un des mamelons étant rapporté et vissé sur le corps pour permettre cette compression. Les mamelons de raccordement, généralement en laiton, sont destinés à être raccordés à
des conduites ou autres éléments d’un réseau de distribution d’eau et notamment un compteur de consommation d’eau dans le cas d’un robinet avant-compteur. Le boisseau sphérique, généralement en laiton chromé, permet l’obturation ou le passage de l’eau selon sa position en rotation. L’axe de manœuvre, généralement en laiton, permet la manœuvre du boisseau sphérique et le changement de position du robinet : passage de la position ouverte à la position fermée et réciproquement par un mouvement quart de tour. En général, deux sièges, généralement en PTFE, assurent une étanchéité entre le boisseau et les mamelons tout en permettant le glissement en rotation du boisseau sphérique. Dans des variantes, le robinet peut comporter deux mamelons rapportés et vissés sur le corps au lieu d’un seul mamelon rapporté et vissé sur le corps central du robinet.

Le couple de manœuvre ainsi que les performances d’étanchéité d’un tel robinet avant-compteur varient en fonction du taux de compression des sièges. Lorsque le taux de compression d’un robinet à boisseau sphérique augmente, son couple de manœuvre augmente et son étanchéité s’améliore.

Dans le contexte d’un robinet à commande motorisée, le robinet est composé d’un motoréducteur, d’une source d’énergie autonome, en général une/des piles électriques, d’une carte électronique de contrôle, de capteurs de position ou plus généralement de moyens de détection de fin de course ou de position(s). Dans le cas où le robinet est un robinet avant-compteur au sein d’un équipement de comptage et comme proposée dans la demande FR2012/59066, une liaison filaire peut être établie entre le circuit électronique de contrôle du robinet et le module de télé-contrôle de l’équipement de comptage.

Or, le couple de manœuvre d’un robinet avant-compteur standard se situe généralement entre 1 et 2 Nm, ce qui est une valeur relativement élevée et ce qui entraîne une consommation électrique importante du motoréducteur dans le cas d’une commande motorisée d’un tel robinet standard. Une telle consommation ne permet pas une durée de vie suffisante en termes de fonctionnement d’un robinet standard motorisé à alimentation par piles.

Dans le but d’améliorer l’autonomie d’un tel système, il est proposé un robinet à faible couple de manœuvre.

Ainsi, l’invention concerne un robinet à boisseau sphérique comportant entre deux mamelons un corps central à l’intérieur duquel le boisseau sphérique est serré entre au moins deux sièges, le serrage étant réalisé par vissage d’au moins un mamelon rapporté sur ledit corps, ledit corps étant traversé par un axe de manœuvre permettant de commander en rotation le boisseau sphérique entre au moins deux positions, dont une position d’ouverture du robinet dans laquelle un fluide peut circuler à travers le robinet et une position de fermeture empêchant le passage du fluide à travers le robinet.
Selon l’invention, le robinet est à faible couple de manœuvre et il comporte à cette fin au moins un ensemble ressort rapporté comportant une pièce de cerclage de siège et une pièce souple, la pièce de cerclage en forme de bague comportant une face de réception de siège et à l’opposé une face d’appui sur la pièce souple, ledit siège étant logé dans un épaulement de la face de réception de siège de la pièce de cerclage, ledit épaulement enserrant en outre la périphérie extérieure dudit siège, ledit ensemble ressort étant disposé dans un logement intérieur du mamelon correspondant dans lequel il peut coulisser en fonction de la compression de la pièce souple et selon une liaison pivot glissant, ladite pièce souple étant comprimée entre un fond du logement intérieur du mamelon et la face d’appui de la pièce de cerclage, la pièce souple ayant une souplesse plus importante que le siège correspondant et la pièce de cerclage étant rigide.

Le terme pivot glissant signifie que la pièce de cerclage, qui est circulaire, peut tourner circulairement dans son logement intérieur pour ensemble ressort autour de son axe central principal. La pièce de cerclage peut également coulisser dans ce même logement selon son axe central principal, cela en fonction de la compression de la pièce souple. Il en est donc de même pour l’ensemble ressort qui comporte la pièce de cerclage. L’effet ressort de l’ensemble ressort est apporté par la pièce souple qui est essentiellement élastique.

Dans divers modes de mise en œuvre de l’invention, les moyens suivants pouvant être utilisés seuls ou selon toutes les combinaisons techniquement possibles, sont employés :
- le/les sièges sont des sièges d’étanchéité,
- au moins un des sièges n’est pas étanche afin de permettre la réalisation d’un robinet à trois positions dont une à débit limité,
- le siège est en forme d’anneau,
- la pièce souple a une géométrie déformable,
- la pièce souple est élastique,
- la pièce souple est en élastomère,
- la pièce souple est une pièce d’étanchéité,
- la pièce souple est un joint,
- le joint est un joint torique,
- le boisseau sphérique est une sphère,
- le fluide est de l’eau,
- le fluide est de l’eau potable,
- le robinet est un robinet à deux voies,
- le robinet est en angle,
- le robinet est un robinet équerre,
- le robinet est un robinet équerre, le boisseau ayant une chambre de communication principale à 90°,
- le robinet est un robinet équerre, le boisseau ayant une chambre de communication principale en forme de té.
- le robinet est droit, les deux mamelons étant sur un même axe et la chambre de communication principale étant droite,
- le corps central et le mamelon aval sont une pièce monobloc, le mamelon amont étant rapporté sur cette pièce monobloc,
- le corps central et le mamelon amont sont une pièce monobloc, le mamelon aval étant rapporté sur cette pièce monobloc,
- les deux mamelons, amont et aval, sont des pièces rapportées sur le corps central,
- les deux mamelons, amont et aval, et le corps central sont une pièce monobloc,
- les deux mamelons, amont et aval, et le corps central sont une pièce monobloc, le boisseau étant monté par une ouverture refermable du corps central,
- l’ouverture refermable est située côté axe de manœuvre,
- l’ouverture refermable est située côté opposé à l’axe de manœuvre,
- le robinet est un robinet à trois voies à choix de sortie,
- le robinet est un robinet à trois voies de prise en charge,
- le robinet est un robinet à trois voies de prise en charge à choix de sortie,
- la pièce de cerclage comporte en outre un second épaulement sur sa face d’appui sur la pièce souple, l’épaulement de la face de réception de siège et le second épaulement de la face d’appui sur la pièce souple étant d’orientations opposées, l’épaulement de la face de réception de siège étant orientée vers l’intérieur du robinet, afin notamment d’éviter la destruction de la pièce souple en cas de compression importante de l’ensemble ressort et d’améliorer la précision du coulissement de ladite pièce de cerclage dans le logement intérieur du mamelon correspondant,
- l’épaulement de la face de réception de siège et, dans le cas où il existe, le second épaulement de la face d’appui sur la pièce souple, ont des bords latéraux, extérieur et intérieur respectivement, de longueurs supérieures aux épaisseurs du siège et de la pièce souple respectivement,
- le siège est dans une matière plastique et est, de préférence, en PTFE ou polyéthylène haute densité,
- la pièce de cerclage est en laiton, la pièce souple en élastomère et le siège en PTFE,
- le robinet comporte un ensemble ressort par mamelon, soit deux ensembles ressorts pour un robinet deux voies,
- le robinet est à deux voies opposées de part et d’autre du boisseau sphérique et il comporte deux ensembles ressorts chacun disposé de part et d’autre du boisseau sphérique,
- le robinet est à commande motorisée et il comporte un moteur électrique d’actionnement en rotation de l’axe de manœuvre et il comporte au moins un capteur pour détection de deux positions de fermeture, d’ouverture, ledit robinet comportant en outre une source d’alimentation électrique et un circuit électronique de contrôle
permettant d'amener ledit robinet par rotation du moteur à une des positions d'ouverture, de fermeture en fonction d'ordres reçus,
- les capteurs sont des capteurs individuels de position, le robinet comportant deux capteurs pour les deux positions,
- le capteur est un capteur de position angulaire et la détection des deux positions est donnée par la mesure angulaire dudit capteur,
- le robinet est à commande mixte, motorisée et manuelle, et il comporte des moyens de butés virtuelles d'indexation des deux positions d'ouverture, de fermeture lors de la commande manuelle, lesdits moyens de butés virtuelles consistant à faire générer par le moteur électrique un contre-couple s'opposant à la rotation manuelle de l'axe de manœuvre lorsque le boisseau arrive à une desdites positions,
- le robinet est à commande motorisée, ladite commande motorisée étant sous contrôle d'un circuit électronique de contrôle alimenté par une source d'alimentation électrique, de préférence interne, autonome et d'origine électrochimique de type pile électrique,
- la source d'alimentation électrique du robinet est interne,
- la source d'alimentation électrique du robinet est externe,
- la source d'alimentation électrique du robinet est autonome,
- la source d'alimentation électrique du robinet est sur un réseau d'alimentation électrique,
- la source d'alimentation autonome comporte une ou des piles, de préférence pile au lithium,
- la source d'alimentation autonome comporte une ou des batteries rechargeables,
- la source d'alimentation autonome comporte un ou plusieurs condensateurs de forte capacité, lesdits condensateurs étant chargés pendant une phase de recharge avant la rotation du moteur,
- la recharge des batteries ou condensateurs s'effectue par induction électromagnétique,
- le circuit électronique de contrôle comporte un microcontrôleur ou un microprocesseur,
- le circuit électronique de contrôle comporte des circuits électroniques reconfigurables,
- le circuit électronique de contrôle comporte une mémoire de stockage de données et de programmes exécutables,
- la mémoire de stockage des données ou des programmes est une mémoire morte,
- la mémoire de stockage des données ou des programmes est une mémoire reprogrammable au moins en partie, par exemple de type FLASH®,
- la commande motorisée comporte un motoréducteur,
- le circuit électronique de contrôle comporte un microprocesseur et au moins un capteur de position pour détermination de positions en rotation du boisseau sphérique,
- le moteur comporte un réducteur de vitesse de rotation,
- le circuit électronique de contrôle, outre la réception et le traitement d'ordres provenant d'une liaison, permet l'envoi de messages vers ladite liaison,
- les ordres sont des ordres : de positionnement du robinet en fermeture, ouverture ou d'éventuel débit limité, de reprogrammation de mémoire...
- les messages sont des messages de : d'acquittement de réception d'ordre, d'acquittement d'exécution d'ordre, d'erreur, de statut, par exemple niveau de tension d'alimentation, de consommation de moteur...
- le circuit électronique de contrôle comporte des outils de sécurisation des échanges sur la liaison,
- le circuit électronique de contrôle comporte des outils de sécurisation du fonctionnement du robinet,
- la liaison est une liaison filaire, un connecteur étanche permettant de relier les moyens de télé-contrôle du compteur au circuit électronique de contrôle du robinet,
- la liaison filaire comporte une liaison de type I2C®,
- la liaison est une liaison radio à très courte distance, de préférence moins de un mètre,
- la liaison est une liaison infrarouge,
- la liaison est par boucle inductive,
- le robinet comporte des moyens de raccordement à un compteur d'eau par son mamelon aval,
- la liaison comporte des moyens permettant de communiquer avec un équipement de télé-contrôle d'un compteur d'eau,
- le robinet à commande motorisée a un niveau de protection IP68,
- le robinet est à commande manuelle et ne comporte pas de moyen de butée matérielle,
- le robinet est à la fois à commande manuelle et à commande motorisée, la commande motorisée se débrayant lors d'une commande manuelle,
- le robinet est à commande manuelle et comporte un moyen de butée matérielle de position de fermeture,
- le moyen de butée matérielle de position de fermeture est infranchissable,
- le moyen de butée matérielle de position de fermeture forme un point dur franchissable,
- le robinet est à commande manuelle et comporte un moyen de butée matérielle de position d'ouverture,
- le moyen de butée matérielle de position d'ouverture est infranchissable,
- le moyen de butée matérielle de position d'ouverture forme un point dur franchissable,
- le robinet comporte un moyen d'indexation visuel permettant de visualiser la position dudit robinet,
- l'axe de manœuvre traverse la paroi du corps central d'une manière étanche,
- l'axe de manœuvre est seulement mobile en rotation,
- l'axe de manœuvre est seulement mobile en rotation et le moyen de buté d'indexation à point dur franchissable comporte d'une part un élément mobile en translation forcé
par un moyen de rappel dans une position de repos de l'élément mobile en translation, par exemple une bille poussée par un ressort, et, d'autre part, un élément de retenue dudit élément mobile lorsqu'il est dans sa position de repos, par exemple une gorge de réception de la bille,
- l'axe de manœuvre est mobile en rotation et en translation verticale sur une course verticale réduite tout en restant en prise sur le boisseau, un moyen de rappel, de préférence à ressort ou du fait de la pression de l'eau, ramenant ledit axe de manœuvre à une position verticale de repos prédéfinie dans laquelle le point dur est stable, l'effort augmenté sur l'axe de manœuvre consistant à déplacer verticalement ledit axe de manœuvre pour franchir le point dur,
- le robinet comporte un chapeau de manœuvre monté sur l'axe de manœuvre, l'axe de manœuvre étant mobile seulement en rotation et le chapeau d'entraînement en rotation de l'axe de manœuvre étant monté mobile en translation verticale sur ledit axe de manœuvre, la translation verticale étant sur une course verticale réduite, un moyen de rappel, de préférence à ressort, ramenant ledit chapeau à une position en vertical de repos prédéfinie dans laquelle le point dur est stable, l'effort augmenté sur le chapeau de manœuvre consistant à déplacer verticalement ledit chapeau de manœuvre pour franchir le point dur,
- le robinet est de type DN15,
- le robinet présente une perte de charge inférieure à 0,3 bars à 3 m³/h en position d'ouverture,
- le robinet présente une résistance à la pression de type PN16,
- le robinet comporte des moyens d'inviolabilité de la commande de l'axe de manœuvre,
- le robinet comporte un moyen de blocage mécanique de la rotation de l'axe de manœuvre,
- le robinet est un robinet d'avant-compteur d'eau,
- le robinet est un robinet avant compteur d'eau et il comporte des moyens de connexion à un équipement de comptage de consommation d'eau pouvant recevoir et/ou créer des ordres pour commander ladite commande motorisée par l'intermédiaire du circuit électronique de contrôle,
- l'équipement de comptage de consommation d'eau comporte un module de télé-contrôle et les ordres sont reçus et/ou créés dans le module de télé-contrôle,
- les moyens de connexion sont filaires,
- les moyens de connexion sont sans fil de type radio ou infrarouge,
- le robinet comporte en outre un dispositif de purge,
- la purge est coté aval du robinet.

Dans certaines variantes de mise en œuvre, le robinet à boisseau sphérique à faible couple de manœuvre de l'invention est un robinet comportant une position à débit limité, ce robinet comportant un corps central et deux mamelons latéraux de raccordement, un mamelon amont et un mamelon aval, le boisseau sphérique étant
disposé dans le corps central en étant mobile en rotation et au moins deux sièges maintenus dans des ensembles ressorts s'y appliquant, le robinet comportant côté mamelon amont un siège amont et côté mamelon aval un siège aval sur lesquels sièges le boisseau peut tourner, le robinet comporte donc un ensemble ressort amont et un ensemble ressort aval, un axe de manœuvre traversant la paroi du corps central et venant en prise sur le boisseau, le boisseau comportant intérieurement une chambre de communication principale le traversant, le boisseau du robinet ayant une première position, d'ouverture, permettant un écoulement maximal de l'eau entre les deux mamelons, la chambre de communication principale étant alors en continuité directe avec les deux mamelons, et le boisseau du robinet ayant une deuxième position, de fermeture, n'autorisant aucun écoulement de l'eau entre les deux mamelons, la chambre de communication principale n'étant alors pas en continuité directe avec les deux mamelons, le boisseau du robinet comportant en outre une troisième position, à débit limité d'eau entre les deux mamelons, dans laquelle la chambre de communication principale du boisseau n'est pas en continuité directe avec les deux mamelons.

Le terme continuité directe signifie que les deux extrémités de la chambre de communication principale du boisseau s'ouvrent totalement ou partiellement sur les lumières intérieures des mamelons afin que l'eau circule directement entre les deux mamelons en passant directement du mamelon amont à la chambre de communication principale puis directement de celle-ci vers le mamelon aval permettant ainsi un débit maximal dans la position d'ouverture du boisseau contrairement aux autres positions où il n'y a pas de continuité directe.

Dans divers modes de mise en œuvre des robinets à troisième position à débit limité et faible couple de manœuvre de l'invention, les moyens suivants pouvant être utilisés seuls ou selon toutes les combinaisons techniquement possibles, sont également employés:
- un seul des sièges amont et aval et le mamelon correspondant assure une étanchéité entre, d'une part, le mamelon correspondant et, d'autre part, le corps central et le boisseau, l'autre siège et/ou le mamelon correspondant, non-étanche, permettant le passage de l'eau entre le mamelon correspondant et le corps central, l'axe de manœuvre traversant la paroi du corps central d'une manière étanche et la paroi latérale bordant un côté intérieur de la chambre de communication principale du boisseau est perforée par au moins un orifice latéral de fuite faisant communiquer l'intérieur de la chambre de communication principale avec l'extérieur du boisseau, et, dans la troisième position à débit limité, le/les orifices de fuite sont orientés du côté du siège assurant l'étanchéité entre le boisseau et le mamelon et, dans la deuxième position, de fermeture, le/les orifices de fuite sont orientés du côté du siège non-étanche,
- la chambre de communication principale du boisseau est reliée à un seul orifice latéral de fuite,
- chaque ensemble ressort comporte un siège s’appliquant sur le boisseau par au moins une partie, dite surface d’appui, d’une de ses deux faces et l’ensemble ressort et/ou le mamelon correspondant non-étanche permettant le passage de l’eau entre le mamelon correspondant et le corps central comporte un ou plusieurs des moyens suivants destinés à assurer ledit passage de l’eau :
 -- au moins une encoche/gorge réalisée dans la paroi intérieure du robinet au niveau du logement intérieur pour ensemble ressort et s’étendant en débordement de la face amont et la face aval de l’ensemble ressort quand ce dernier est installée dans son logement intérieur du mamelon correspondant,
 -- au moins une encoche/gorge réalisée le long du bord périphérique du siège et s’étendant entre la face amont et la face aval dudit siège,
 -- au moins un orifice traversant s’étendant entre la face amont et la face aval dudit siège,
 -- au moins une encoche/gorge sur la surface d’appui du siège, le siège ne s’appliquant pas sur le boisseau au niveau des encoches/gorges,
 -- au moins un perçage ou perforation traversant dans son épaisseur la pièce de cerclage et/ou au moins une encoche/gorge sur un bord latéral de la pièce de cerclage.
- les deux ensembles ressorts amont et aval assurent une étanchéité entre le boisseau et leur mamelon correspondant, et deux bords latéraux opposés de la paroi intérieure de la chambre de communication principale du boisseau sont perforés chacun par au moins un orifice latéral de fuite respectif, de préférence radial et perpendiculaire à la chambre de communication principale, faisant communiquer l’intérieur de la chambre de communication principale avec l’extérieur du boisseau de chaque côté latéral correspondant du boisseau, le/les orifices latéraux de fuite d’un seul des deux côtés latéraux du boisseau ou des deux côtés latéraux comportant chacun un clapet anti-retour, et dans la troisième position à débit limité dans laquelle la chambre de communication principale n’est pas en continuité directe avec les deux mamelons, le/les orifices de fuite comportant le/les clapets anti-retour sont orientés vers un des mamelons de manière à ce que le/les clapets soient passants pour le sens d’écoulement de l’eau d’amont vers l’aval,
- chaque côté de la chambre de communication principale du boisseau n’est reliée qu’à un seul orifice latéral de fuite, un seul clapet anti-retour étant mis en œuvre,
- le sens passant du clapet anti-retour est de l’extérieur du boisseau vers l’intérieur de la chambre de communication principale afin que dans la troisième position à débit limité le/les orifices de fuite comportant le/les clapets anti-retour soient disposés côté amont du mamelon et le sens passant soit de l’amont vers l’aval, le clapet anti-retour étant
donc situé côté amont du robinet dans le boisseau dans sa troisième position à débit limité,
- le sens passant du clapet anti-retour est de l’intérieur de la chambre de communication principale vers l’extérieur du boisseau afin que dans la troisième position à débit limité le/les orifices de fuite comportant le/les clapets anti-retour soient disposés côté aval du mamelon et le sens passant soit de l’amont vers l’aval, le clapet anti-retour étant donc situé côté aval du robinet dans le boisseau dans sa troisième position à débit limité,
- l’orifice latéral de fuite comporte une pièce de calibrage rapportée dans un lamage dudit orifice latéral de fuite,
- la pièce de calibrage permet de choisir lors de la fabrication du boisseau le débit d’eau pour la troisième position à débit limité,
- l’orifice latéral de fuite comporte au moins à son extrémité débouchant à l’extérieur du boisseau un congé,
- l’orifice latéral de fuite comporte à son extrémité débouchant dans la chambre de communication du boisseau, un congé,
- le robinet comporte en outre un siège supplémentaire pour le boisseau, ledit siège supplémentaire étant dans le fond du corps central du côté opposé à l’axe de manœuvre, le fond du corps central comportant un logement de siège,
- le robinet comporte en outre un siège supplémentaire pour le boisseau, ledit siège supplémentaire étant dans un logement de siège du corps central du côté de l’axe de manœuvre, ledit siège étant de préférence étanche afin d’assurer ou de compléter l’étanchéité du côté de l’axe de manœuvre du robinet,
- le robinet est à commande motorisée et il comporte un moteur électrique d’actionnement en rotation de l’axe de manœuvre et il comporte au moins un capteur pour détection des trois positions de fermeture, d’ouverture et celle à débit limité, ledit robinet comportant en outre une source d’alimentation électrique et un circuit électronique de contrôle permettant d’amener ledit robinet par rotation du moteur à une des positions d’ouverture, de fermeture ou à débit limité en fonction d’ordres reçus,
- les capteurs sont des capteurs individuels de position, le robinet comportant trois capteurs pour les trois positions,
- le capteur est un capteur de position angulaire et la détection des trois positions est donnée par la mesure angulaire dudit capteur,
- le robinet est à commande mixte, motorisée et manuelle, et il comporte des moyens de butés virtuelles d’indexation des trois positions d’ouverture, de fermeture et à débit limité lors de la commande manuelle, lesdits moyens de butés virtuelles consistant à faire générer par le moteur électrique un contre-couple s’opposant à la rotation manuelle de l’axe de manœuvre lorsque le boisseau arrive à une desdites positions,
- le robinet est à commande manuelle et comporte des moyens de butés matérielles d’indexation des trois positions d’ouverture, de fermeture et à débit limité, au moins un
desdits moyens de butés formant un point dur stable lors de la rotation de l’axe de manœuvre et étant franchissable par un effort augmenté sur l’axe de manœuvre ou sur un chapeau de manœuvre monté sur l’axe de manœuvre,
- aucun, le/les autres moyens de butés matérielles sont non-franchissables,
- le robinet est à commande manuelle et comporte un moyen de butée matérielle d’indexation de la troisième position à débit limité formant un point dur franchissable,
- le robinet est à commande manuelle et la troisième position à débit limité comporte un moyen de butée matérielle d’indexation formant un point dur stable lors de la rotation de l’axe de manœuvre et étant franchissable par un effort augmenté sur l’axe de manœuvre ou sur un chapeau de manœuvre monté sur l’axe de manœuvre, les deux autres moyens de butés pour les positions de fermeture et d’ouverture étant non-franchissables.

L’invention peut s’appliquer à un ensemble de comptage d’adduction d’eau qui comporte au moins les éléments suivants : un compteur de consommation à télé-contrôle ainsi qu’un robinet selon l’invention et à commande motorisée et à circuit électronique de contrôle tels que décrits et comportant des moyens d’échange de données pour que les ordres reçus par le circuit électronique de contrôle du robinet transitent par l’intermédiaire du module de télé-contrôle dudit compteur.

Ainsi, l’invention concerne également un ensemble de comptage d’adduction d’eau comportant un robinet à faible couple tel que présenté, ledit ensemble de comptage comportant un équipement de comptage de consommation d’eau à moyens de communication sans fil, les moyens de connexion à l’équipement de comptage de consommation étant filaires.

L’invention concerne également une pièce de cerclage pour un robinet à boisseau sphérique à faible couple tel que présenté, la pièce étant en forme de bague et comporte une face de réception de siège et à l’opposé une face d’appui sur une pièce souple, ledit siège étant destiné à être logé dans un épaulement de la face de réception de siège de la pièce de cerclage, ledit épaulement maintenant en outre la périphérie extérieure dudit siège, la pièce de cerclage étant rigide.

La présente invention, sans qu’elle en soit pour autant limitée, va maintenant être exemplifiée avec la description qui suit de modes de réalisation et de mise en œuvre en relation avec :
la Figure 1 qui représente schématisé un ensemble de comptage d’adduction d’eau comportant un robinet motorisé et un module de télé-contrôle,
la Figure 2 qui représente une vue en coupe longitudinale d’un robinet à boisseau sphérique comportant des ensembles ressorts constitués chacun d’un siège, d’une pièce de cerclage et d’une pièce souple sous forme d’un joint,
la Figure 3a qui représente une vue en perspective d’un ensemble ressort,
la Figure 3b qui représente une vue en perspective d’une pièce de cerclage,
la Figure 4 qui représente une vue en coupe longitudinale d'un robinet à boisseau sphérique et ensemble ressorts, le robinet étant à trois positions et positionné en rotation dans sa troisième position, à débit limité,
la Figure 5 qui représente une vue en perspective d'un mamelon de robinet, en l'espèce le mamelon amont, avec une encoche/gorge dans sa paroi intérieure au niveau de l'insertion de l'ensemble ressort (non détaillé), pour le rendre non étanche et permettre la réalisation d'un robinet à faible couple de manœuvre à trois positions,
la Figure 6 qui représente une vue en perspective côté aval d'un premier exemple de siège à encoches/gorges périphériques, pour le rendre non étanche et permettre la réalisation d'un robinet à trois positions,
la Figure 7 qui représente une vue en perspective côté aval d'un deuxième exemple de siège perforé, pour le rendre non étanche et permettre la réalisation d'un robinet à trois positions,
la Figure 8 qui représente une vue en perspective côté aval d'un troisième exemple de siège comportant des encoches/gorges sur sa surface d'appui, pour le rendre non étanche et permettre la réalisation d'un robinet à trois positions,
la Figure 9 qui représente une vue en coupe longitudinale d'un robinet à faible couple de manœuvre à boisseau sphérique à deux orifices latéraux de fuite opposés traversant de part en part le boisseau et à clapet anti-retour passant dans la chambre de communication principale du boisseau vers l'extérieur du boisseau, positionné dans sa troisième position à débit limité, et
la Figure 10 qui représente une vue en perspective d'un boisseau sphérique à orifice latéral de fuite en plus de sa chambre de communication principale et qui permet la réalisation de robinets à troisième position à débit limité.

Par rapport à un robinet à boisseau sphérique standard deux voies, le robinet 10 à bas couple de manœuvre de l'invention comporte en plus, au moins un, en pratique deux, ensembles ressorts 30 (amont et étanche), 30a (amont et non étanche ou, alors, amont et étanche mais avec au moins une encoche/gorge réalisée dans la paroi intérieure du robinet au niveau du logement intérieur 23 du mamelon pour l'ensemble ressort), 31 (aval et étanche) de part et d'autre du boisseau sphérique 15 et par l'intermédiaire duquel/desquels les sièges sont appliqués contre le boisseau sphérique. Chaque ensemble ressort 30, 30a, 31 comporte une pièce souple 33, du type joint torique en élastomère, et une pièce de cerclage 32 qui reçoit, dans un épaulement, le siège 19, 19a, 19b, 19c correspondant du robinet 10. La pièce souple est disposée entre un rebord du logement intérieur 23 pour ensemble ressort du mamelon et une face d'appui de la pièce de cerclage. La force de pression du siège contre le boisseau sphérique est transmise par l'intermédiaire de l'ensemble ressort. La pièce de cerclage 32 est une pièce de révolution en laiton et elle est donc disposée entre la pièce souple 33 et le siège 19, 19a, 19b, 19c correspondant. Le siège est maintenu dans un épaulement interne (orienté vers l'intérieur du robinet) de la face de réception de siège
de la pièce de cerclage. Cet épaulement de la pièce de cerclage comporte un bord d'appui 37 poussant le siège lors de la compression de l'ensemble ressort sur le boisseau sphérique et un bord périphérique 36 permettant de maintenir périphériquement le siège et d'éviter le fluage et la détérioration du siège tout en assurant le maintien d'un centrage correct du siège sur le boisseau sphérique.

Dans le robinet à faible couple proposé, la compression de l'ensemble ressort sur le boisseau sphérique est obtenue par le serrage/vissage du/des mamelons rapportés sur le corps central et aussi par la pression de l'eau dans le robinet, en particulier lorsque le robinet est en position fermée, voire aussi en position à débit limité si elle est prévue.

La pièce souplesse 33 a une souplesse plus importante que le siège correspondant, en d'autres termes la pièce souplesse est plus compressible/élastique que le siège. La pièce de cerclage qui est métallique, de préférence dans le même métal ou le même alliage que celui du corps et du/des mamelons du robinet, soit, classiquement, en laiton. Aussi bien le joint que la pièce de cerclage et que le siège sont des éléments de forme annulaire.

Comme représenté, la pièce de cerclage 32 de siège comporte en outre un second épaulement sur sa face d'appui et qui est orienté d'une manière opposée à l'épaulement de la face de réception de siège, le second épaulement de la face d'appui étant orienté vers l'extérieur. Ce second épaulement comporte un bord d'appui 38 contre le joint 33 et un bord intérieur 39.

Les fonctions de la pièce souplesse sont multiples. Une des fonctions est de diminuer la raideur de la chaîne de compression sur le boisseau sphérique du robinet, cette diminution de la raideur permettant de diminuer l'amplitude de variation du couple de manœuvre, occasionnée par les variations dimensionnelles des composants du robinet. Une autre fonction est d'amortir les contraintes appliquées par le boisseau sphérique sur le siège et inversement lors d'une mise sous compression importante dont celle résultant d'une mise sous forte pression d'eau du robinet. D'autres fonctions sont d'assurer le maintien d'un effort de compression par un effet ressort apportée par l'élasticité de la pièce souplesse et de compenser le manque d'élasticité du siège qui est typiquement en PTFE et qui présente un très bon coefficient de frottement et une bonne capacité d'étanchéité lorsqu'il est suffisamment comprimé.

Les fonctions de la pièce de cerclage sont multiples. Une de ces fonctions est d'éviter la détérioration, notamment par fluage, de la pièce souplesse et du siège lorsqu'on applique une compression importante sur le boisseau sphérique à l'intérieur du robinet. Une autre fonction est de permettre une translation de l'ensemble ressort par un montage glissant/coulissant dans le mamelon pour assurer l'effet ressort. Le siège disposé dans sa pièce de cerclage peut ainsi se translater/coulisser avec l'ensemble ressort dans le logement intérieur dudit mamelon et venir comprimer le boisseau sphérique, le joint étant lui comprimé de l'autre côté de la pièce de cerclage. De
préférence, le siège est immobilisé dans la pièce de cerclage car il est monté serré dans son logement de la pièce de cerclage.

Le robinet à faible couple de manœuvre de l’invention dans sa modalité de réalisation à commande motorisée ou mixte, c’est-à-dire motorisée et manuelle, est combiné avec un motoréducteur 6, c’est-à-dire un moteur électrique + réducteur, une source d’énergie électrique 8, typiquement une ou des piles électriques, un circuit électronique de contrôle 7 sous forme d’une carte électronique, un/des capteurs de position 5. Dans l’application à un ensemble de comptage d’adduction d’eau, un moyen de liaison 9 entre la carte électronique et un compteur 2 à télé-contrôle est prévu, liaison étant filaire dans la modalité de réalisation la plus simple. Par contre, le robinet à faible couple de manœuvre de l’invention dans sa modalité de réalisation à commande purement manuelle n’a pas besoin d’être combiné à ces éléments.

Sur la Figure 1 on a schématisé un robinet à faible couple de manœuvre en avant-compteur, motorisé, 1 dans sa relation avec un compteur à eau 2 à télé-contrôle permettant la relève à distance de la consommation d’eau, le compteur comportant un module de télé-contrôle 3. Le robinet avant-compteur 10 en lui-même est installé entre une conduite d’amenée d’eau 4 côté amont et le compteur 2 côté aval. On retrouve, combiné au robinet avant-compteur, le circuit électronique de contrôle 7 sous forme de la carte électronique de commande, le motoréducteur 6, le/les capteurs de position 5 et la source d’énergie électrique 8. Une liaison 9, avec dans cet exemple une connectique, permet de relier fonctionnellement le robinet avant-compteur motorisé et le module de télé-contrôle du compteur pour échanges de données et, en particulier, pour permettre la réception d’ordres transitant par les moyens de télé-contrôle du compteur, par exemple ordres de fermeture de robinet, d’ouverture de robinet, etc.

Dans une modalité de réalisation, le circuit électronique de contrôle 7 comporte un compteur de temps qui est remis à zéro à chaque actionnement en rotation du robinet et qui, lorsque le compteur de temps a atteint un comptage de temps prédéterminé, par exemple deux mois, actionne temporairement le robinet en rotation, de préférence partielle, et avec retour à la position initiale d’avant cet actionnement afin d’éviter que celui-ci ne se grippe du fait d’une non utilisation prolongée.

Comme représenté, on met en œuvre un robinet à tournant sphérique qui est une technologie éprouvée dans le domaine de la distribution d’eau et du bâtiment. Le robinet comporte donc un boisseau sphérique 15, encore dit « sphère », qui peut être entraîné en rotation par un axe de manœuvre 14. Ce choix permet de limiter les phénomènes de coup de bélier. Ce robinet à boisseau sphérique a un couple de manœuvre réduit grâce à la mise en œuvre des éléments ressorts, ce qui est un avantage dans le cas d’un robinet avant-compteur motorisé pour limiter la consommation de la/des piles électriques et augmenter ainsi la durée de vie du produit. On comprend que l’invention peut également s’appliquer à des robinets à boisseaux cylindriques ou coniques.
Outre l’axe de manœuvre 14 qui engraine/entraîne directement le boisseau sphérique, le robinet peut comporter un chapeau de manœuvre (non représenté) sur l’axe de manœuvre ou tout autre élément permettant de manœuvrer manuellement ou mécaniquement ou électriquement le boisseau. On utilise le terme organe de manœuvre pour ces moyens permettant de manœuvrer en rotation le boisseau sphérique, moyens comportant au moins l’axe de manœuvre.

Comme représenté sur les vues en coupe du robinet et par exemple la Figure 2, le robinet avant-compteur est composé de plusieurs chambres intérieures:

- la chambre amont dans le mamelon amont 11,
- la chambre du corps central 12 du robinet dans laquelle se trouve le boisseau sphérique 15 qui comporte lui-même une chambre de communication principale 16 le traversant diamétralement, et
- la chambre aval dans le mamelon aval 13.

La chambre de communication principale 16 correspond à un passage traversant le boisseau 15 de part en part selon un diamètre. Ces chambres sont délimitées/séparées entre elles par deux ensembles ressorts rapportés comportant chacun une pièce souple ou joint 33, une pièce de cerclage 32 et un siège 19 (ou 19a, 19b ou 19c dans le cas d’un robinet à troisième position) en matière plastique, typiquement en PTFE. Chaque ensemble ressort est inséré dans un logement intérieur 23 pour ensemble ressort du mamelon 11, 13 correspondant dans lequel il peut coulisser en translation en fonction de la compression de la pièce souple 33. Le siège est comprimé sur le boisseau 15 par l’intermédiaire de la pièce de cerclage 32 et du joint 33 et le boisseau 15 peut tourner en frottant sur lède siège. Le siège 19 comporte une surface d’appui 26 qui s’applique/s’appuie contre le boisseau sphérique 15. Le mamelon aval 13 comporte des moyens 18 de raccordement et fixation hydraulique à un compteur d’eau. Dans l’exemple représenté, le corps central 12 et le mamelon aval 13 sont une pièce monobloc, le mamelon amont 11 étant rapporté sur cette pièce monobloc. Dans des variantes, les deux mamelons sont des pièces rapportées. L’axe de manœuvre, les mamelons amont et aval et le corps central sont métalliques, par exemple en laiton. Le boisseau sphérique est également métallique. Dans des variantes, le robinet comporte de la matière plastique (corps, mamelons, boisseau) ou est en matière plastique.

Ainsi, comme représenté sur la Figure 3a, chaque ensemble ressort comporte une pièce souple ou joint 33, une pièce de cerclage 32 et un siège 19 (ou 19a, 19b ou 19c dans le cas d’un robinet à troisième position). De même, comme représenté Figure 3b, la pièce de cerclage comporte deux épaulements d’orientations opposées avec, côté face de réception de siège, un épaulement avec un bord d’appui 37 et un bord périphérique 36 et, côté face d’appui, le second épaulement avec un bord d’appui 38 et un bord intérieur 39.
Dans le robinet à faible couple représenté Figure 2, les trois chambres, amont, de communication principale et aval, sont étanches entre-elles lorsque le robinet est fermé, le boisseau sphérique 15 s'appliquant d'une manière étanche sur les sièges 19 des ensembles ressorts côté face de réception de siège de chaque pièce de cerclage 32 et les joints 33 assurant l'étanchéité au niveau des logements intérieurs des mamelons pour les ensembles ressorts côté face d'appui de chaque pièce de cerclage 32.

La fonction de l'axe de manœuvre 14 du robinet est de permettre la rotation du boisseau. Il est monté à travers le corps central 12 du robinet d'une manière étanche. Dans le cas d'un robinet à commande manuelle, le corps central du robinet et son organe de manœuvre sont dotés de moyens de butés mécaniques permettant de bloquer et de positionner précisément le robinet en position totalement ouverte, dite position d'ouverture, et totalement fermée, dite position de fermeture. Dans le cas d'une commande manuelle, l'organe de manœuvre du robinet est de préférence protégé par un moyen de verrouillage d'accès ou de verrouillage de la rotation.

Par contre, dans le cas d'un robinet motorisé, l'organe de manœuvre et plus particulièrement son axe de manœuvre, est motorisé par un moteur électrique et le robinet ne nécessite pas de moyen de buté mécanique. En effet, des capteurs de positions arrêtent la rotation du moteur lorsque le boisseau se trouve dans la position souhaitée. Le boisseau et l'axe de manœuvre du robinet peuvent ainsi effectuer une rotation sur un angle de 360° sans rencontrer d'obstacle physique. L'organe de manœuvre du robinet motorisé est essentiellement réduit à son axe de manœuvre dont la position est détectée par des capteurs de positions. Dans des variantes, d'autres éléments peuvent être associés à l'axe de manœuvre comme par exemple un chapeau de manœuvre dans le cas d'un robinet mixte à commande motorisée et manuelle. Dans ce dernier cas et de préférence, la commande manuelle est protégée par un moyen de verrouillage d'accès.

Dans des variantes d'un robinet motorisé ou mixte, des moyens de butés mécaniques peuvent être mis en œuvre pour des positions extrêmes de rotation et la détection de fin de course s'effectue par mesure du courant consommé par le moteur au lieu de capteurs de position, le courant augmentant lorsque l'organe de manœuvre arrive en buté. Des moyens de butés virtuelles peuvent être réalisés pour toute les positions, même intermédiaires, dans un robinet mixte grâce aux capteurs de position et au contre-couple crée lorsque le boisseau arrive à une position définie au cours d'une commande manuelle. Ces moyens de butés virtuelles peuvent être franchissables ou non en actionnement manuel selon la programmation du circuit électronique de contrôle du robinet mixte.

A noter que le terme de moyen de buté doit être compris comme correspondant à des éléments complémentaires entre l'organe de manœuvre et le corps central de robinet ou tout autre élément fixe et permettant d'arrêter la course de l'organe de
manœuvre dans des positions déterminées. En pratique, les moyens de butés comportent des arrêts et des butées proprement dites.

Dans une variante de réalisation, le robinet à faible couple de l'invention, autre une position d'ouverture et une position de fermeture de l'organe de manœuvre, comporte une position supplémentaire à débit limité. Ces trois positions peuvent être mises en œuvre dans un robinet à faible couple à commande manuelle, motorisée ou mixte.

Dans une première modalité de réalisation, la solution proposée consiste à rendre non-étanche la liaison amont entre la chambre amont et la chambre du corps central (et donc la chambre de communication principale du boisseau) et à utiliser un boisseau perforé permettant une communication entre la chambre de communication principale du boisseau et la chambre amont ou la chambre aval, lorsque le robinet est respectivement dans la position fermée ou à débit limité.

Le robinet dispose ainsi de trois positions: une position à débit limité calibrable lors de la fabrication du robinet (représentée Figure 4), une position d'ouverture (débit plein) et une position de fermeture (débit nul).

Lorsque le robinet est en position de fermeture (débit nul), l'eau peut passer indirectement de la chambre amont à la chambre de communication principale 16 du boisseau par un orifice latéral de fuite 17 et, aussi, par la liaison entre la chambre amont et la chambre de communication principale du boisseau 15 (par l'intermédiaire de la chambre du corps central 12) qui est non-étanche au niveau de l'ensemble ressort amont 30 (présence d'encoches/gorges 20 latérales dans le mamelon correspondant) et/ou 30a (siège 19a, 19b, 19c comportant des fuites). Toutefois l'eau ne peut pas s'écouler à travers le robinet car l'eau ne peut pas circuler entre la chambre de communication principale du boisseau (ou la chambre du corps central) et la chambre aval car la liaison aval entre la chambre du corps central (donc aussi la chambre de communication principale du boisseau) et la chambre aval est étanche au niveau de l'ensemble ressort aval 31 (le siège 19 étant montée étanche et absence d'encoche/gorge latérale dans le mamelon correspondant). Dans un tel robinet droit, l'axe principal de la chambre de communication principale 16 du boisseau 15 est alors perpendiculaire à celui des chambres amont et aval et l'orifice latéral de fuite 17 est orienté vers l'amont.

Lorsque le robinet est en position à débit limité comme représenté Figure 4, l'eau circule indirectement entre la chambre amont et la chambre de communication principale du boisseau (par l'intermédiaire de la chambre du corps central 12) par la liaison amont non-étanche. Puis, l'eau circule entre la chambre de communication principale 16 du boisseau 15 et la chambre aval par l'intermédiaire de l'orifice latéral de fuite 17. Dans un tel robinet droit, l'axe principal de la chambre de communication principale 16 du boisseau est alors perpendiculaire à celui des chambres amont et aval et l'orifice latéral de fuite 17 est orienté vers l'aval.
Dans cet exemple, la liaison amont entre la chambre amont et la chambre du corps central/la chambre de communication principale du boisseau est rendue non-étanche. On comprend que l'on peut également faire l'inverse et rendre non étanche la liaison aval entre la chambre du corps central/la chambre de communication principale du boisseau et la chambre aval et que, dans ce cas, le robinet en position à débit limité a son orifice latéral de fuite orienté vers l'amont. Ainsi, cette solution fonctionne dans les deux sens d'écoulement de l'eau à travers l'orifice latéral de fuite suivant que c'est la liaison amont ou la liaison aval qui est rendue non-étanche, l'autre liaison restant étanche.

Pour atteindre les trois positions, le boisseau doit tourner sur un angle de rotation de 0° à 180°. Ce mouvement est possible simplement pour un robinet motorisé ne possédant pas de moyen de buté mécanique. Dans le cas d'un robinet standard quart de tour avec des moyens de butés mécaniques, il est nécessaire d'inclure une butée ou un arrêt amovible car sinon le robinet serait bloqué en rotation par les deux moyens de butés sur un angle de rotation de 0° à 90°. Ceci peut se faire par utilisation d'un organe de manœuvre adapté, en particulier chapeau de manœuvre escamotable ou à butée ou arrêt amovible. Dans une variante de robinet à commande manuelle ou mixte, le robinet en lui-même ne comporte pas de moyen de buté mécanique complet et le robinet ne peut être manœuvré que par un outil spécifique qui comporte les moyens de butés mécaniques complémentaires permettant d'atteindre précisément les positions ouvertes et fermées. De part cette absence de moyen de buté mécanique complet sur le robinet lui-même, ce robinet peut facilement intégrer une troisième position à débit limité puisque sa rotation avec un autre outil spécifique sans moyen de buté complémentaire ne sera pas limitée angulairement ou en mettant en œuvre des moyens de butés complémentaires qui sont amovibles, ce qui permet d'aller au-delà des 0° à 90° pour pouvoir passer en position à débit limité le cas échéant. En pratique on peut choisir la position de départ (de fermeture ou d'ouverture, voire de débit limité) avec butée infranchissable selon les besoins, les positions intermédiaire et d'arrivée (possiblement en butée infranchissable) en découlant plus ou moins librement.

On va maintenant présenter plusieurs exemples de solutions parmi les nombreuses possibilités pour rendre non-étanche la liaison amont entre la chambre amont et la chambre du corps central 12 et donc avec la chambre de communication principale 16 du boisseau 15 (ou, inversement, la liaison aval comme on l'a vu).

- 1 - Passage de l'eau en périphérie de l'ensemble ressort. Pour réaliser une liaison non-étanche entre la chambre amont et la chambre de communication principale du boisseau, il est prévu, comme représenté sur la Figures 5, de modifier la paroi interne du robinet, du mamelon correspondant en l'espèce, dans la zone du logement intérieur 23 pour ensemble ressort du mamelon en y plaçant une (comme représenté) ou plusieurs encoches/gorges 20 latérales. L'eau peut donc passer dans cette/ces encoches du logement intérieur 23 pour ensemble ressort, en périphérie dudit
ensemble ressort. Sur la Figure 5, l’ensemble ressort n’a pas été installé dans son logement intérieur 23 du mamelon 11 et on voit donc parfaitement l’encoche/gorge 20 réalisée dans la paroi interne du mamelon au niveau du logement intérieur 23 pour ensemble ressort.

- 2 - Passage de l’eau à travers l’ensemble ressort, en périphérie du siège. Pour réaliser une liaison non-étanche entre la chambre amont et la chambre de communication principale du boisseau, il est prévu, comme représenté sur la Figure 6, de modifier le siège 19 en réalisant une ou plusieurs encoches/gorges 21 sur sa surface périphérique. L’eau peut ainsi passer en périphérie extérieure du siège 19a dans les encoches/gorges 21. Le siège 19a à encoches/gorges 21 périphériques ainsi obtenu comporte une surface d’appui 26 qui s’applique/s’appuie contre le boisseau sphérique.

- 3 - Passage de l’eau à travers l’ensemble ressort, à travers le siège. Pour réaliser une liaison non-étanche entre la chambre amont et la chambre de communication principale du boisseau, il est possible de modifier le siège 19 en réalisant un ou plusieurs perçages ou perforations traversant 22 dans l’épaisseur ledit siège. Sur la Figure 7 on a représenté un exemple de siège 19b à perçages traversant 22. Côté boisseau du siège, les perçages ne doivent pas déboucher sur la surface d’appui 26.

- 4 - Passage de l’eau à travers l’ensemble ressort, côté boisseau. Pour réaliser une liaison non-étanche entre la chambre amont et la chambre de communication principale du boisseau, il est prévu, comme représenté sur la Figure 8 de modifier la surface d’appui 26 du siège qui est au contact du boisseau en réalisant une ou plusieurs encoches/gorges 24 sur cette surface d’appui 26 afin que le boisseau sphérique 15 ne soit plus au contact du siège 19c au niveau des encoches 24.

- 5 - Passage de l’eau à travers l’ensemble ressort, à travers la pièce de cerclage qui comporte des perçages ou perforations traversant dans son épaississeur et/ou des encoches/gorges sur un bord.

On comprend que ces divers moyens permettant le passage de l’eau à travers l’ensemble ressort pour le rendre non-étanche ou latéralement à celui-ci dans son logement intérieur 23 du mamelon correspondant, peuvent être combinés entre eux, par exemple un siège avec encoches/gorges + perçages/perforations ou combinaison d’encoches/gorges du logement intérieur pour ensemble ressort + siège et/ou pièce de cerclage à encoches/gorges et/ou à perçages/perforations.

En ce qui concerne la structure de l’orifice latéral de fuite, on peut mettre en œuvre ici encore plusieurs solutions dont quelques exemples sont donnés à la suite. La solution la plus simple est un boisseau sphérique 15 simplement perçé latéralement, d’un côté, perpendiculairement à l’axe principal de la chambre de communication principale 16, par un orifice latéral de fuite 17, comme représenté sur la Figure 9.

A noter que sur la Figure 10, on peut voir plus précisément l’empreinte 25 réalisée en surface du boisseau sphérique 15 et qui est destinée à recevoir l’extrémité
inférieure/intérieure de l’axe de manœuvre 14 pour qu’il puisse entraîner en rotation ledit boisseau.

Dans une seconde modalité de réalisation d’un robinet à boisseau sphérique à faible couple de manœuvre et à trois positions représentée sur la Figure 10, la solution proposée consiste à mettre en œuvre un clapet anti-retour 29 au sein d’un 17c ou de deux 17, 17c orifices latéraux de fuite opposés de chaque côté du boisseau sphérique 15 à partir de deux bords latéraux opposés 34 35 de la chambre de communication principale 16. Le clapet anti-retour 29 bloque le passage de l’eau dans un sens et la laisse passer dans l’autre sens. Contrairement à la première modalité et comme dans un robinet classique, les deux liaisons amont et aval au niveau des ensembles ressorts sont étanches. Les deux orifices latéraux de fuite 17, 17c se raccordent à la chambre de communication principale 16, de chaque côté latéral interne de cette dernière. Une manière simple de réaliser la boisseau sphérique en question et de percer la chambre de communication principale d’une part et les orifices latéraux de fuite opposés d’autre part, la chambre de communication principale 16 étant perpendiculaire aux orifices latéraux de fuite 17, 17c opposés, les deux orifices latéraux de fuite opposés résultant d’un seul perçage et étant coaxiaux/sur un même axe entre eux.

Ainsi, suite à la rotation de la boisseau sphérique et comme représenté Figure 9, les deux orifices latéraux de fuite 17, 17c sont en continuité directe avec les chambres amont et aval (l’axe principal de la chambre de communication principale 16 de la boisseau sphérique 15 étant alors perpendiculaire à l’axe des chambres amont et aval), et si le sens d’écoulement de l’eau amont-aval est le même que le sens de passage du clapet 29, l’eau passe par l’orifice latéral de fuite 17 (sans clapet) et traverse le clapet 29 de l’orifice de fuite 17c réalisant ainsi un débit limité d’eau.

En revanche, l’eau est stoppée lorsque, suite à une rotation du boisseau sphérique à 180° de la position précédente (l’axe principal de la chambre de communication principale 16 du boisseau sphérique 15 étant alors perpendiculaire à l’axe des chambres amont et aval), le sens d’écoulement de l’eau est opposé au sens de passage du clapet.

L’invention est applicable à des robinets à angle/coudés dans lesquels les chambres amont et aval ne sont pas sur un même axe mais font un angle entre elles, par exemple de 90°. Dans un tel cas, la chambre de communication principale à une forme adaptée à une telle disposition, par exemple formant un coude à 90° ou étant un té. Les orifices latéraux de fuite sont alors également adaptés à une telle disposition.

Le robinet à faible couple proposé peut être utilisé dans d’autres applications qu’en tant que robinet avant-compteur ou, encore, indépendamment d’une motorisation, et, plus généralement, dans toute application où l’on souhaite un faible couple de manœuvre d’un robinet à boisseau sphérique. Si l’invention s’applique de préférence sur un robinet deux voies, elle peut cependant être appliquée à un robinet trois voies comme par exemple dans les robinets trois voies de prise en charge.
Ainsi, l'invention peut être appliquée à un robinet trois voies dans lequel on souhaite obtenir un faible couple de manœuvre et, dans certaines variantes, en outre, une troisième position du boisseau sphérique à débit limité pour une certaine sortie et/ou une certaine position du boisseau sphérique. On peut ainsi, par exemple, réaliser un robinet dont une sortie libre est une sortie de purge utilisable en débit limité, l'ouverture, la fermeture et la purge étant obtenues par action sur un seul organe de manœuvre. Enfin, on peut étendre le principe de la création de fuites au niveau d'un ensemble ressort et/ou du boisseau (par un/des orifices latéraux de fuite) à des robinets à faible couple de manœuvre dans lesquels on dispose de plus d'une position intermédiaire à débits limités différents du fait que la position d'ouverture dans laquelle la chambre de communication est en continuité totale ou partielle avec les chambres amont et aval correspond à un angle de rotation réduit, notamment parce que le diamètre de la chambre de communication principale est réduit par rapport aux diamètres des chambres amont et aval, ce qui laisse une plus grande plage de rotation pour le débit limité permettant de démasquer progressivement les uns après les autres des orifices latéraux de fuite lors de la rotation du boisseau alors que la chambre de communication principale n'est plus directement en continuité avec les chambres amont et aval.

Grâce au robinet de l'invention dans sa version à commande motorisée et, possiblement, à troisième position du boisseau sphérique à débit limité, les distributeurs d'eau potable peuvent gérer à distance les abonnements, les contentieux et les impayés en ouvrant et fermant les robinets avant-compteur. Dans certaines applications, ils peuvent même fermer rapidement le réseau client en cas de détection de fuite. Avec le robinet avant-compteur proposé, les distributeurs d'eau potable peuvent, par exemple, proposer de nouveaux services tels que la fermeture du réseau à distance en cas d'absence prolongée, la gestion du volume d'eau délivré, l'ouverture/fermeture du réseau selon certaines heures, par exemple fermeture en heures creuses dans les bureaux. Enfin, ce robinet, en avant-compteur ou toute autre position, peut également trouver des applications dans d'autres secteurs tels que la gestion de la distribution de l'eau dans les ports et campings ou tout autre besoin de gestion de l'eau automatique ou à distance.
REVENDICATIONS

1. Robinet (1, 10) à boisseau sphérique (15) comportant entre deux mamelons (11, 13) un corps central (12) à l’intérieur duquel le boisseau sphérique est serré entre au moins deux sièges (19, 19a, 19b, 19c), le serrage étant réalisé par vissage d’au moins un mamelon (11) rapporté sur l’édit corps (12), l’édit corps étant traversé par un axe de manœuvre (14) permettant de commander en rotation le boisseau sphérique (15) entre au moins deux positions, dont une position d’ouverture du robinet dans laquelle un fluide peut circuler à travers le robinet et une position de fermeture empêchant le passage du fluide à travers le robinet (10), caractérisé en ce que le robinet est à faible couple de manœuvre et qu’il comporte à cette fin au moins un ensemble ressort (30, 31) comportant une pièce de cerclage (32) de siège et une pièce souple (33), la pièce de cerclage (32) en forme de bague comportant une face de réception de siège et à l’opposé une face d’appui sur la pièce souple (33), l’édit siège (19, 19a, 19b, 19c) étant logé dans un épaulement (36, 37) de la face de réception de siège de la pièce de cerclage (32), l’édit épaulement enserrant en outre la périphérie extérieure dudit siège, l’édit ensemble ressort (30, 31) étant disposé dans un logement intérieur (23) du mamelon correspondant (11, 13) dans lequel il peut coulisser en fonction de la compression de la pièce souple (33) et selon une liaison pivot glissant, ladite pièce souple étant comprimée entre un fond du logement intérieur (23) du mamelon (11, 13) et la face d’appui de la pièce de cerclage (32), la pièce souple (33) ayant une souplesse plus importante que le siège (19, 19a, 19b, 19c) correspondant et la pièce de cerclage (32) étant rigide.

2. Robinet (1, 10) selon la revendication 1, caractérisé en ce que la pièce de cerclage (32) comporte en outre un second épaulement (38, 39) sur sa face d’appui sur la pièce souple, l’épaulement (36, 37) de la face de réception de siège et le second épaulement (38, 39) de la face d’appui sur la pièce souple étant d’orientations opposées, l’épaulement (36, 37) de la face de réception de siège étant orientée vers l’intérieur du robinet, afin notamment d’éviter la destruction de la pièce souple en cas de compression importante de l’ensemble ressort et d’améliorer la précision du coulissement de ladite pièce de cerclage dans le logement intérieur (23) du mamelon correspondant (11, 13).

3. Robinet (1, 10) selon la revendication 1 ou 2, caractérisé en ce que l’épaulement (36, 37) de la face de réception de siège et, dans le cas où il existe, le second épaulement (38, 39) de la face d’appui sur la pièce souple (33) ont des bords latéraux, extérieur et intérieur respectivement, de longueurs supérieures aux épaisseurs du siège (19, 19a, 19b, 19c) et de la pièce souple (33) respectivement.
4. Robinet (1, 10) selon l’une quelconque des revendications précédentes, caractérisé en ce que la pièce de cerclage (32) est en laiton, la pièce souple (33) en élastomère et le siège (19, 19a, 19b, 19c) en PTFE.

5. Robinet (1, 10) selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comporte un ensemble ressort par mamelon et qu’il est un robinet droit ou un robinet en équerre.

6. Robinet (1) selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il est à commande motorisée (6), ladite commande motorisée étant sous contrôle d’un circuit électronique de contrôle (7) alimenté par une source d’alimentation électrique (8), de préférence interne, autonome et d’origine électrochimique de type pile électrique.

7. Robinet (1) selon la revendication 6, caractérisé en ce qu’il est un robinet avant compteur d’eau et qu’il comporte des moyens de connexion (9) à un équipement de comptage de consommation d’eau (2) pouvant recevoir et/ou créer des ordres pour commander ladite commande motorisée par l’intermédiaire du circuit électronique de contrôle.

8. Robinet (1, 10) selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comporte une troisième position à débit limité, le boisseau sphérique (15) comportant au moins un passage traversant (17, 17c) de diamètre réduit sur un de ses axes radiaux.

9. Ensemble de comptage d’adduction d’eau comportant un robinet (1) selon la revendication 7 ou 8 dans sa combinaison à la 7, ledit ensemble de comptage comportant un équipement de comptage de consommation d’eau (2) à moyens de communication sans fil (3), les moyens de connexion (9) à l’équipement de comptage de consommation étant filaires.

10. Pièce de cerclage (32) pour robinet (1, 10) à boisseau sphérique à faible couple de l’une quelconque des revendications 1 à 8, caractérisée en ce qu’elle est en forme de bague et comporte une face de réception de siège et à l’opposé une face d’appui sur une pièce souple (33), ledit siège (19, 19a, 19b, 19c) étant destiné à être logé dans un épaulement (36, 37) de la face de réception de siège de la pièce de cerclage, ledit épaulement maintenant en outre la périphérie extérieure dudit siège, la pièce de cerclage étant rigide.
RAPPORT DE RECHERCHE PRÉLIMINAIRE

établî sur la base des dernières revendications déposées avant le commencement de la recherche

N° d'enregistrement national
FA 783400
FR 1356081

DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2 868 498 A (RUDOLF KAISER) 13 janvier 1959 (1959-01-13) * figure 2 *</td>
<td>1-7,9,10</td>
<td>F16K5/06 G01F15/00</td>
</tr>
<tr>
<td>X</td>
<td>US 3 731 904 A (VALINCE L) 8 mai 1973 (1973-05-08) * colonne 2, ligne 5 - ligne 55; figures *</td>
<td>1-7,9,10</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 3 323 542 A (MAGOS JOHN P ET AL) 6 juin 1967 (1967-06-06) * colonne 2, ligne 54 - colonne 3, ligne 56; figures *</td>
<td>1-5,10</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>FR 1 582 168 A (-) 26 septembre 1969 (1969-09-26) * le document en entier *</td>
<td>1</td>
<td>F16K</td>
</tr>
</tbody>
</table>

DOMAINES TECHNIQUES RECHERCHÉS (IPC)

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>6 mars 2014</td>
</tr>
<tr>
<td>Lanel, François</td>
</tr>
</tbody>
</table>

CATEGORIE DES DOCUMENTS CITES

- X : particulièrement pertinent à lui seul
- Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie
- A : arrière-plan technologique
- O : divulgation non-dite
- P : document intermédiaire

- T : théorie ou principe à la base de l'invention
- E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a pas été publié à cette date de dépôt ou qu'à une date postérieure.
- D : cité dans la demande
- L : cité pour d'autres raisons

- & : membre de la même famille, document correspondant
La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 06-03-2014.
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française.

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2868498 A</td>
<td>13-01-1959</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68904757 T2</td>
<td>02-09-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0375826 A1</td>
<td>04-07-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2039725 T3</td>
<td>01-10-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 89100134 A</td>
<td>15-03-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1230541 B</td>
<td>28-10-1991</td>
</tr>
<tr>
<td>US 3731904 A</td>
<td>08-05-1973</td>
<td>CA 970343 A1</td>
<td>01-07-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 3731904 A</td>
<td>08-05-1973</td>
</tr>
<tr>
<td>US 3323542 A</td>
<td>06-06-1967</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>US 3037738 A</td>
<td>05-06-1962</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>FR 1582168 A</td>
<td>26-09-1969</td>
<td>BE 724687 A</td>
<td>02-05-1969</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 1809542 A1</td>
<td>08-01-1970</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 6807463 U</td>
<td>20-08-1970</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 359752 A1</td>
<td>16-06-1970</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 1582168 A</td>
<td>26-09-1969</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU 57086 A</td>
<td>27-01-1969</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 6817095 A</td>
<td>12-01-1970</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 113545 B</td>
<td>31-03-1969</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1200203 A</td>
<td>29-07-1970</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 121122 B</td>
<td>18-01-1971</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 332554 B</td>
<td>08-02-1971</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 3525352 A</td>
<td>25-08-1970</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82