US 20070294655A1

a2y Patent Application Publication o) Pub. No.: US 2007/0294655 A1

a9y United States

Campos et al.

43) Pub. Date: Dec. 20, 2007

(54) AUTOMATICALLY GENERATING AN INPUT
SEQUENCE FOR A CIRCUIT DESIGN USING
MUTANT-BASED VERIFICATION

(76) Inventors: Jorge Campos, Sacramento, CA (US);
Hussain Al-Asaad, Sacramento, CA
(US)
Correspondence Address:
PARK, VAUGHAN & FLEMING LLP
2820 FIFTH STREET
DAVIS, CA 95618-7759 (US)
(21) Appl. No.: 11/805,902
(22) Filed: May 24, 2007
Related U.S. Application Data

(60) Provisional application No. 60/808,0006, filed on May
24, 2006. Provisional application No. 60/849,717,
filed on Oct. 4, 2006. Provisional application No.
60/860,886, filed on Nov. 22, 2006.

Publication Classification

(51) Int. CL

Go6r 17/50 (2006.01)

High-Level
Circuit Design

< Concept)
\/

\ Description /
i

(52) US. Cle oo 716/12

(57) ABSTRACT

One embodiment of the present invention provides a system
that automatically generates an input sequence for a circuit
design using mutant-based verification. During operation,
the system receives a description of the circuit design. Next,
the system determines a target value for a control signal in
the description and a mutant value for the control signal. The
system then determines if an input sequence exists for the
circuit design that stimulates the control signal to the target
value and causes the effects of the target value and the effects
of the mutant value to reach an observation point in the
circuit such that the effects of the target value and the effects
of the mutant value differ at the observation point. If such an
input sequence exists, the system then simulates operation of
the circuit design using the input sequence. During simula-
tion, the system generates two sets of signal outputs for the
circuit design. The first set of signal outputs is affected by
the target value for the control signal, while the second set
of signal outputs is affected by the mutant value for the
control signal.

Low-Level
Circuit Design

_)CLogic Gate Level)
¥

\ Layout /
v

< Architecture)

1
\Imp(ementatioy

¥
T -

\Synthesis /

(Transistor Level>
v
\ Fabrication /

C' Chip Level >

Patent Application Publication Dec. 20,2007 Sheet 1 of 25 US 2007/0294655 A1

High-Level Low-Level
Circuit Design Circuit Design

C Concept) —)CLogic Gate Level>

Description / Layout
v v

(Architecture > —> (Transistor Level>

¥

AN Implementation,; \. Fabrication ~
(RTL >— < Chip Level >

FIG. 1

Synthesis

CIRCUIT DESIGN

e

CIRCUIT VERIFICATION

MVP: SIMULTANEOUS DESIGN AND VERIFICATION\ ;

N

TIME r g

FIG. 2

Patent Application Publication Dec. 20,2007 Sheet 2 of 25 US 2007/0294655 A1

Block 2 Block 4 Block 5

@ Bazk Basic Basic
10

Basic
Block 6

Patent Application Publication Dec. 20,2007 Sheet 3 of 25

Control Conesof Hypothetical

US 2007/0294655 Al

(State space characterized by
unique control-based scenarios)

Signal Logic State Space
e
! 1
ke Control Space
Data Space
(Redundant control space

::T::

77 N

characterized by unique data values)

Irrelevant State Space

(Control/data space not supported
by circuit's HDL code)

State Space Overlap
(Ideal stimuli for one control signal can
also stimulate other control signals)

Patent Application Publication Dec. 20,2007 Sheet 4 of 25 US 2007/0294655 A1

Mutant o Mutant value
Input value Individual insertion with
signals generation operations alias checking

Zs =X
A
b5 >

Y
N
w

as >
A Z3
b3, > A

7Y bo? 3
A B Z
FIG. 5
Initial Values: A= {Ao=2, A1=7} B= {B0=4, Bz=5} Z= {Zo=6, Z3=3}
VHDL Corresponding actions required for concurrent error simulation
Condition Statement
IF (A<B) STEPi: C=A<B={Cy=T, C=F, C,;=T} = {C,=T, C,=F}
STEPii: AT <={A_T¢=2}, AF <={A_F;=2,A F,=7}
B.T <= {B_Ty=4, B_T,=5}, B.F <= {B_F,=4)}
2T <={Z Ty=6,Z T;=3}, Z.F <= {Z_F;=6}
THEN STEP iii: Use the TRUE partition of signals A, B, Z
B<=7Z; B.T<=ZT
<. B.T={B Ty=6,B_T:=3}
ELSE STEP iii: Use the FALSE partition of signals A, B, Z
A<=7Z; AF<=ZF
- AF={A Fy=6}
END IF; STEP iv: A <= ATU {A_Fp 1=6} = {Aq=2, A,;=6}
B<=B.Tuv {B_Fm |=4} = {Bo=6, B]=4, B3=3}
Z<=ZTU({Z _Fpn 176} = {Zy=6, Zgy 1=6, Zy=3} = {Z;=6, Z;=3}

FIG. 6

Patent Application Publication Dec. 20,2007 Sheet 5 of 25 US 2007/0294655 A1

Signal
Propagation

Error

Mutant Generator * amamm

Injection

\ 4

Circuit Simulator

FIG.7
— v'| ME, -1)
x| ME,
Mo =
x| ME;

Circuit Simulator v'| ME, *')
. v J « v J
PROPAGATION ACTIVATION
COMPLEXITY COMPLEXITY
FIG. 8

a O o3 04 Os O
S| X X
S, X
S3
S4 X X X | «Iteration 2
Ss| X [X 1 X X «Tteration 1
Se| X
S, X
Sg X

FIG. 9

Patent Application Publication Dec. 20,2007 Sheet 6 of 25

jJuno) Jouz ubisaqg aAoy

o
Q0 O O O v 9 0o O o o
©c O QO O O O O O O
‘—CDQ)I\(OLDV(V')NQ
llL\l‘lll)lll
-
e
A
3
-
L
1
2
1
5
E
A
]
-
T ————w—s—-—"—sy 1
[e -]
g 8§ 8 8 & §&
N o o @ ©o 9w
-~

(porenWNOOY)
uno 9 jousg ubisaqg payoslaqg

0061

008!

0041

0091

00G}

ooyl

ootl

00Z1

coil

0001

006

008

002

009

1 005

! 00b

0og

002

0oL

Test Vector

US 2007/0294655 Al

FIG. 10

Patent Application Publication Dec. 20,2007 Sheet 7 of 25

US 2007/0294655 Al

Min 11 (00001011): S, = {xxxx1x11, xxxx11xx, xxx 1 xXxx,

XXIxxxxx, X1 XXxxxXx, 1 xxxXXX%X }

Max 13 (00001101): S,,,,, = {0000xx0x, 0000x0xx, 00000xxx}

Range [11,13]: Sp = S, NS, = {00001011, 0000110x}

FIG. 11
A B Cin[[Cout Sum A B Cin|[[Cout Sum
. 0 0 0 0 0 VII. 1 I I I I
I 0 0 1 0 1 VII: 1 1 X 1 X
I: 0 0 X 0 X 1 X 0 Vv
0 I 0 T 1 X 1 VIIT
Iv: 0 1 1 I 1] X 1 x x 1 0
V: 0 1 X 0 1 LS 1
1 0 x 0 0 J 11
0 X 0 T X 0 1 Vv
0 x I \% X 0 x VI
. 0 I X 1 0 A%
V0 x o x x T 1 VITT
1 0 0 I X I X X
i 0 1 v X X 0 VI
1 0 X \' X X 1 IX
1 1 0 IV X x X X X X
FIG. 12
o Equivalent . Equivalent
Operation | "o o ment Operation | “cp e ment
not A<B H>=B not A=B A>Bor A=B
ot A==B A=B not A=B A=B
not.A=F Ae=R A=R A>Bor A=R
not Ax=B A=B abs A Aor(-A)
FIG. 13

Patent Application Publication Dec. 20,2007 Sheet 8 of 25 US 2007/0294655 A1

Boolean { _~~__OROperators ™\

Operators e AND Operators N
_~~ Relational Operators {=, >, >=, <, <=}

/Computational Operators {Bitwise, shift, arithmetic}\
Literals/Identifiers N

FIG. 14

@ @D

© @ @ @D @) @D @D
O O O GO &

Al fafs alaals] Calal a3 a1 a] 3]

{b)

FIG. 15

(OB

(R
@ap @aw @D
(O O &

NEHNE NN NIE

FIG. 16

Patent Application Publication Dec. 20,2007 Sheet 9 of 25

US 2007/0294655 Al

CDG *CDG_RelationalOperators::reduce ()

{

//Attempt to force a value of true onto this relational operator:
bind_result_type result = this->force_solution{new Boolean ValueRange (true));

switch (result)
case FAIL:

case EXPENDABLE:

case SUCCESS:

//A contradiction was encountered
//(unconditionally false):

disconnect () ;

return (new CDG_BooleanLiteral (false))->connect () ;
break;

//This sub-tree did not produce useful results
//(unconditionally true):

disconnect () ;
return (new CDG_BooleanLiteral(true))->connect();
break;

//This sub-tree is necessary:
return this;
break:

FIG. 18

Patent Application Publication Dec. 20,2007 Sheet 10 of 25 US 2007/0294655 A1

Reduce None
— ==Reduce False
= = = Reduce True and False

!
ze P
y’
2 ;9’;,
-
0 ——:é’gsﬂ B e s T P I T TR TR g
0 20 40 60 80 100
Input Size (Case statement length)
FIG. 19
B Control requirements: @
1 1S, ISZ|...|Si |...|sm
B2 B4
Control requirements: C2 Control requirements: C4
L[T | I [T]
B Control requirements: C3
31, [S, | [Sj | - lsn
B, y ' By
Control requirements: C5 Control requirements: C6
S 18 [~ [8 [~Ts, I
x=fY,2) St Y': set of signals,

Control requirements:

Z: set of non-shared variables
C3uc(Cs

Scope for variables in Z: B3[5,...5;_,1UBS[S,... 5, _,]

FIG. 20

Patent Application Publication Dec. 20,2007 Sheet 11 of 25 US 2007/0294655 A1

pc_mux: process(clk, pc_ctrl, pc ,out_alu, data_in, ea)
variable tempof: std_logic_vector(15 downto 0);
variable temppc: std_logic_vector(15 downto 0);
begin
case pc_ctrl is
when add_ea_pc=>
if ea(7)="0" then tempof:=“00000000" & ea(7 downto 0);
else tempof:=“11111111" & ea(7 downto 0);
end if;
when inc_pc =>
tempof:=*“0000000000000001";
when others=>
tempof:=*“00000000000000007;
end case;
case pc_ctrl is
when reset_pc =>
temppe:=“1111111111111110";
when load_ea_pc =>
temppc:=ea;
when pull_lo_pc =>
temppc(7 downto 0):=data_in;
temppc(15 downto 8):=pc(15 downto 8);
when pull_hi_pc =>
temppc(7 downto 0):=pc(7 downto 0);
temppc(15 downto 8):=data_in;
when others =>
temppc:=pc;
end case;
if clk'event and clk ='1' then
pc <= temppc + tempof;
end if;
end process;

FIG. 21

pc
4 Control requirements
+

clk’event && clk =1
/r\

temppc tempof

FIG. 22

Patent Application Publication Dec. 20,2007 Sheet 12 of 25 US 2007/0294655 A1

PC

| pe
A | A
P AN | P A
Ox“FFFE” 0x“0000” [ca 0x"0000”
I
|

Control requirements Control requirements

clk’event && clk = | && clk’event && clk = | &&
pc_ctrl = reset_pc pe_ctrl =load_ea_pc

T T e — —— e v mt— o— — o—— —

pc 0x“0001”
Control requirements
clk’event && clk = | &&

pc 0x“0000”
Control requirements
clk’event && clk= 1 &&

pe_ctrl=inc_pc pc_ctrl = latch_pe
L S @ _ _ _
pc pc
| e
& 0x"0000” & 0x'0000”

pe (15:8) data_in
Control requirements

clk’event && clk =1 &&
pc_ctrl = pull_lo_pc

data_in pe (7:0)
Control requirements

clk’event && clk=1 &&
pc_ctrl = pull_hi_pc

(e) R
S T T T T pe
! A
P A N AN
Pc & pe &
. 4
0x“00” ea (7:0) 0x“FF” ea (7:0)

Control requirements
clk’event && clk = 1 &&
pc_ctrl = add_ea_pc &&
ea(7)='0

(8)

Control requirements

clk’event && clk = 1 &&
pc_ctrl = add_ea_pc &&

ea (7) 1=0"
h)

|
|
|
> v
|
|
|

FIG. 23

Patent Application Publication Dec. 20,2007 Sheet 13 of 25 US 2007/0294655 A1

Prospect Code Path
Statement Construct

events
when @"" guards

FIG. 24

Precondition: Lp = list of all partitions from every cluster

ATVG-ITERATION(Lp)
Sort Lp into descending order of member size
P « first partition in Lp
SUCCESS « false
while P exists and SUCCESS = false
if activation criteria for P is not met
then TP «— generate activation pattern(s) for any inactive error in P
while dropping errors from unsuccessful ATVG attempts
if activation is successful
then SUCCESS « true
else P < next partition in Lp
0. else TP « generate propagation pattern(s) for any active design error in P
while dropping errors from unsuccessful ATVG attempts
Il if propagation is successful
12. then SUCCESS « true
13. else P «— next partition in Lp
14. if SUCCESS
15. then return TP
16. else fail

SN AW -

= P

FIG. 25

Patent Application Publication Dec. 20,2007 Sheet 14 of 25 US 2007/0294655 A1

multiFSM_DFS(testSequence TS, constraintSet S, constraintSet Y, int £)

9

1
2
3
4.
5.
6
7
8

If (1 =0) return FAIL
If (Y # @)

letveY

U « getAlllncomingTransitions(v)

Foreachte U

If(S=0)T«t

Else T—SNt

If (T # @ && multiFSM_DFS(TS, T, Y- v, §) = SUCCESS)
. TS « TS + getPrimaryInputs(T)

10. return SUCCESS

1

1. Else

12, TS « getPrimaryInputs(S)
13. return SUCCESS
14, return FAIL

FIG. 26
pState
Statement Construct

justification
constraints solution for B

when

after binding «
®\“~>’Y N B '« With constraints

FIG. 27

Patent Application Publication Dec. 20,2007 Sheet 15 of 25 US 2007/0294655 A1

(i
| i
1]
| i
| |
1 I
I " y/
: Lo
[(g
| 1
|]
1 I
| i
| !
| i
I I
|
.. ! : ‘
o I / | \
3 ! / :))
[5] Q, \
[:‘ : I, : * x "\\ N
l |]
: | ©
. : T
' 1
|]
i I
|
.. I b :
8 I‘ : \\ '
. * !
Eg & : X x \ |
I I
1)
] i
I I

FSM 1
FSM 2:
FSM 3

US 2007/0294655 Al

Patent Application Publication Dec. 20,2007 Sheet 16 of 25

£

g~ Z jpudlg ——

Ig = [jeudly —»

SIUTBOSUC))
OdLV

soeds jonuco

5= ¢ [pudly —» (

e
n.m.b >
2 M-ﬂ [e
(ezg) @
a2y (x .&_m
3.@
2t ———
& Hx s Zg
t=1
o -
{owe1] swit 19432}
uels D1y

6¢ 'Oid

%
saads joszuos
VEg
(1
il 7z QL%
VES
R h“
b a
e o
=13

oSy

(x “5)q @

B338Cs JORUsD

(x‘s)e

{21m15 1083y])
pug DALY

:sndu] Arewud

:¢ feusig
p feudis
*f feudIs

T feuBis

)1 jeudis

Patent Application Publication Dec. 20,2007 Sheet 17 of 25 US 2007/0294655 A1

multiFSM_DFS(testSequence TS, pStateSet Y, int £)
1. If (1 =0) return FAIL

2. If(Y =reset state)

3 return SUCCESS

4. P« solve(Y) //Generates set of solutions
5. ForeachteP

6. S « get_previous_timeFrame(t)

7. If (multiFSM_DFS(TS, S, ¢&1) = SUCCESS)
8 TS « TS + getPrimaryInputs(S)

9. return SUCCESS

10. return FAIL

FIG. 30
P2 > QL <= B when Y L ~(-T—-->r=ﬁwhen~{
[] []
FIG. 31A FIG. 31B

Patent Application Publication Dec. 20,2007 Sheet 18 of 25 US 2007/0294655 A1

multiFSM_DFS(testSequence TS, pStateSet Y, int £)

1. If (1=0)return FAIL

2. If (Y =reset state)

3. return SUCCESS

4. Pe«solve(Y) //Generates set of solutions

S. For eacht e P, s.t. t has the lowest weight in P
6. If (weight(t)=0)

7. 10

8. TS « getPrimaryInputs(t)

9. return SUCCESS

10. S « get_previous_timeFrame(t)

11. If (multiFSM_DFS(TS, S, £-1) = SUCCESS)
12. assign_weight(S, /)

13. [I+1

14, TS « TS + getPrimaryInputs(S)

15. return SUCCESS

16. return FAIL

FIG. 33

Precondition: pStates in Y have been pre-solved

multiFSM_DFS(testSequence X, pStateSet Y, int {)

1. If (I=0) return FAIL

2. Foreachpe Y,s.t. p has the lowest weight in Y

3 P « get previous_timeFrame(p)

4 For eachp’ € P

5. If (weight(p’) = 0) //reset state has been found

6. l+<—0

7 Y —{p} //remove unexplored pStates in Y

8. X « getPrimaryInputs(p’)

9. return SUCCESS

10. S « solve(p’) //Attain incoming pStates S from target pState Y
11. If (multiFSM_DFS(TS, S, £-1) = SUCCESS)

12. weight(p) « /

13. Y « {p} //remove unexplored pStates in Y

14, l—[+1

15. X « X + getPrimaryInputs(S)

16. return SUCCESS

17. return FAIL //No ATVG goals (Y is empty) or no solution exists

FIG. 34

Patent Application Publication Dec. 20,2007 Sheet 19 of 25 US 2007/0294655 A1

Precondition: pStates in Y have been pre-solved

multiFSM_DFS(testSequence X, pStateSet VS, pStateSet Y, int ¢)

1. If(1=0) return FAIL

2. Foreachp €Y, s.t. p has the lowest weight in Y

3 P « get_previous_timeFrame(p)

4 For eachp’ € P

S. If (p’ is masked by some state in VS)

6. delete p’

7 else

8. VS —VS+p’ //Store copy of p’ into the visited set VS
9. If (weight(p’) = 0) //reset state has been found

10. 10

11. Y« {p} //remove unexplored pStates in Y

12. X « getPrimaryInputs(p’)

13. return SUCCESS

14. S «— solve(p’) //Attain incoming pStates S from target pState Y
15. If (multiFSM_DFS(TS, VS, S, ¢-1) = SUCCESS)

16. weight(p) </

17. Y « {p} /fremove unexplored pStates in Y
18. [« I+1

19. X « X + getPrimaryInputs(S)

20. return SUCCESS

21. return FAIL

FIG. 35

Patent Application Publication Dec. 20,2007 Sheet 20 of 25 US 2007/0294655 A1

1100

1000

900

800

~
(=3
o

o

o

o

)
—1
—

wn
o
o

1

Py

o

o
L]

TIME FRAMES

el
W At DA b e I &

300 =

200

100

(4] 200 400 600 800 1000
Input Vector No.

FIG. 36

Patent Application Publication Dec. 20,2007 Sheet 21 of 25 US 2007/0294655 A1

800

700

600

500

400

TIME FRAMES

300

200

0

0 100 200 300 400 500 600 700 800 900 1000
Input Vector No.

FIG. 37

Patent Application Publication Dec. 20,2007 Sheet 22 of 25 US 2007/0294655 A1

12000 1200

10000 1000

—— Max Detection Count

— Detected Mutant Count

—— Active Mutant Count
8000 /jf:fff’ﬂfr 800
6000 /// 600
4000 f 400
2000 Mﬂm 200
D/(MW MNWMWWMMWWMW VWVWN/LMWWWﬂn .

0 1000
Input Vector No.

FIG. 38

JUNO) JuURINW DAY

0

Patent Application Publication Dec. 20,2007 Sheet 23 of 25 US 2007/0294655 A1
START

DEFINE COVERAGE METRICS BY
CREATING ONE MUTANT PER
CIRCUIT SCENARIO THAT SHOULD BE
MADE OBSERVABLE
3900

PICK ONE MUTANT FROM THE SET OF
UNDETECTED MUTANTS AND CREATE
INPUT STIMULI THAT ACTIVATES THE
MUTANT AND PROPAGATES THE
MUTANT TO AN OBSERVATION POINT
3910

FEED INPUT STIMULI INTO CIRCUIT
AND PROCESS RESULTS
3920

ENOUGH
COVERAGE?
3930

FIG. 39

Patent Application Publication Dec. 20,2007 Sheet 24 of 25 US 2007/0294655 A1

START

RECEIVE DESCRIPTION OF THE CIRCUIT DESIGN
4000

—_—

DETERMINE TARGET VALUE FOR A CONTROL SIGNAL IN
THE DESCRIPTION
4010

v

DETERMINE A MUTANT VALUE FOR THE CONTROL SIGNAL
4020

DETERMINE INPUT SEQUENCE FOR THE CIRCUIT DESIGN
THAT STIMULATES THE CONTROL SIGNAL TO THE TARGET
VALUE AND CAUSES THE EFFECTS OF THE TARGET VALUE

AND THE MUTANT VALUE CONTROL SIGNAL VALUE TO
REACH AN OBSERVATION POINT IN THE CIRCUIT WITH A
DIFFERENT VALUE
4030

DOES
A VALID INPUT
SEQUENCE EXIST?
4040

NO

FIG. 40

SIMULATE OPERATION OF THE CIRCUIT DESIGN USING THE
INPUT SEQUENCE
4050

—_—

DURING SIMULATION, GENERATE TWO SETS OF SIGNAL

VALUES FOR THE CIRCUIT DESIGN — ONE AFFECTED BY

TARGET VALUE AND ONE AFFECTED BY MUTANT VALUE
4060

END

Patent Application Publication Dec. 20,2007 Sheet 25 of 25

FIG. 41

START

RECEIVE DESCRIPTION OF THE CIRCUIT DESIGN I
4100

y

DEFINE COVERAGE METRICS BY CREATING ONE MUTANT
PER CIRCUIT SCENARIO THAT MUST BE COVERED
4110

PICK MUTANT THAT HAS NOT BEEN MADE OBSERVABLE |
4120

Y

DETERMINE INPUT SEQUENCE FOR THE CIRCUIT DESIGN
THAT CAUSES THE MUTANT TO BECOME ACTIVE AND
CAUSES THE EFFECTS OF THE MUTANT TO REACH AN

- OBSERVATION POINT IN THE CIRCUIT
4130

US 2007/0294655 Al

SEQUENCE EXISTS?
NO

SIMULATE OPERATION OF THE CIRCUIT DESIGN USING
THE INPUT SEQUENCE
4150

v
DURING SIMULATION, GENERATE TWO SETS OF SIGNAL
VALUES USING THE INPUT SEQUENCE — ONE THAT
CORRESPONDS TO ORDINARY CIRCUIT SIMULATION AND
ONE THAT CORRESPONDS TO SIMULATION USING
VALUES INJECTED BY THE MUTANT
4160

v
DESIGNATE ALL MUTANTS WHOSE EFFECTS HAVE
REACHED AN OBSERVATION POINT DURING SIMULATION
AS "COVERED" AND REMOVE THEM FROM SIMULATION
4170

REMAINING
UN-COVERED

MUTANTS? YES

US 2007/0294655 Al

AUTOMATICALLY GENERATING AN INPUT
SEQUENCE FOR A CIRCUIT DESIGN USING
MUTANT-BASED VERIFICATION

RELATED APPLICATION

[0001] This application claims priority under 35 U.S.C.
section 119(e) to U.S. Provisional Application Ser. No.
60/808,006, entitled “MVP: A Mutation-Based Validation
Paradigm,” by inventors Jorge Campos and Hussain Al-
Asaad, filed on 24 May 2006, the contents of which are
herein incorporated by reference (Attorney Docket No.
UC06-283-1PSP). This application also claims priority
under 35 U.S.C. section 119(e) to U.S. Provisional Appli-
cation Ser. No. 60/849,717, entitled “MVP: A Mutation-
Based Validation Paradigm,” by inventors Jorge Campos
and Hussain Al-Asaad, filed on 4 Oct. 2006, the contents of
which are herein incorporated by reference (Attorney
Docket No. UC06-283-2PSP). This application also claims
priority under 35 U.S.C. section 119(e) to U.S. Provisional
Application Ser. No. 60/860,886, entitled “MVP: A Muta-
tion-Based Validation Paradigm,” by inventor Jorge Cam-
pos, filed on 22 Nov. 2006, the contents of which are herein
incorporated by reference (Attorney Docket No. UC06-283-
3PSP).

GOVERNMENT LICENSE RIGHTS

[0002] This invention was made with United States Gov-
ernment support under Grant No. 0092867 awarded by the
National Science Foundation. The United States Govern-
ment has certain rights in the invention.

BACKGROUND

[0003] 1. Field of the Invention

[0004] The present invention relates to a technique which
facilitates verifying the correctness of a circuit design. More
specifically, the present invention relates to a technique that
automatically generates an input sequence for a circuit
design using mutant-based verification.

[0005] 2. Related Art

[0006] Digital circuit design methodologies have reached
a highly optimized state, but circuit verification methods
used in design projects are still somewhat subjective in the
way that they are applied by the verification engineer.
Moreover, many competing circuit verification methods are
available for high-level hardware descriptions, but none of
these methods provide a stand-alone solution. As a result,
circuit verification is still an “art” which is mastered by an
engineer through experience and observation, as opposed to
a systematic technique that can be easily and effectively
applied.

[0007] Typical industry practices rely on random and
pseudo-random approaches to eventually explore a sufficient
portion of the circuit under verification (CUV). The sim-
plicity in these practices allows for a high-frequency simu-
lation, but the ability of the simulator to traverse new
architectural states quickly diminishes over time. Determin-
istic practices, on the other hand, guarantee continued for-
ward progress because they allow the circuit verification
engineer to attack the problem head-on. However, the com-
plexity of even moderately-sized circuits makes determin-

Dec. 20, 2007

istic verification practices that exhaustively explore the
design space computationally infeasible in a reasonable
timeframe.

[0008] Hence, what is needed is a method and an appa-
ratus for efficiently verifying circuit designs without the
problems listed above.

SUMMARY

[0009] One embodiment of the present invention provides
a system that automatically generates an input sequence for
a circuit design using mutant-based verification. During
operation, the system receives a description of the circuit
design. Next, the system determines a target value (e.g., a
default value) for a control signal in the description and a
mutant value for the control signal. The system then deter-
mines if an input sequence exists for the circuit design that
stimulates the control signal to the target value and causes
the effects of the target value and the effects of the mutant
value to reach an observation point in the circuit such that
the effects of the target value and the effects of the mutant
value differ at the observation point. If such an input
sequence exists, the system then simulates operation of the
circuit design using the input sequence. During simulation,
the system generates two sets of signal values for the circuit
design. The first set of signal values is affected by the target
value for the control signal, while the second set of signal
values is affected by the mutant value for the control signal.

[0010] In some embodiments of the present invention, the
mutant value of a control signal is an erroneous value for the
control signal that is injected into the circuit design to
replace a default value for the control signal.

[0011] In some embodiments of the present invention, the
description is a high-level description of the circuit design
that is specified using a hardware description language.

[0012] In some embodiments of the present invention, the
system identifies a set of constraints that define an activated
state for the control signal that results in the control signal
being set to the target value. A mutant construct is used to
define these activation constraints for the control signal as
well as the mutant value for the control signal. In these
embodiments, the system determines an input sequence for
the circuit design that achieves this activated state and
causes the mutant value to be injected, and determines a
second input sequence that can be used to propagate both
sets of signal values from the activated state to any obser-
vation point.

[0013] In some embodiments of the present invention, the
system determines the first input sequence by determining a
reset input sequence that begins from the reset state for the
circuit design and reaches the activated state.

[0014] In some embodiments of the present invention, the
system generates the first set of signal values using the input
sequence and the target value. In these embodiments, the
system generates the second set of signal values using the
input sequence, the target value, and the mutant value. When
generating the second set of signal values, the system detects
when, during simulation, the control signal reaches the
target value. The system then changes the value of the
control signal to the mutant value.

[0015] In some embodiments of the present invention, the
system generates the two sets of signal values simulta-

US 2007/0294655 Al

neously using a mutant generator. During simulation, this
mutant simulator generates the two sets of simulation out-
puts by simultaneously tracking multiple values for signals
in the circuit design. The system can hence reduce simula-
tion overhead by generating two or more sets of signal
values simultaneously.

[0016] In some embodiments of the present invention, the
system applies the described techniques to the control sig-
nals of the circuit design to deterministically generate input
sequences that provide control-based coverage of the circuit
design. Providing control-based coverage of the circuit
design facilitates detecting errors in the circuit design and
helps the user to verify the correct operation of the circuit
design.

[0017] In some embodiments of the present invention, the
system analyzes the description of the circuit design to find
the control signals in the circuit design. The system then
builds a database of mutant constructs based on the target
values and mutant values for the control signals, and then
uses this database while generating a set of input sequences
that stimulate the control signals.

[0018] In some embodiments of the present invention, the
system uses the database to cluster mutant values and
determine target areas in the circuit design with a higher
density of control signals. In these embodiments, the system
uses the database while generating the set of input sequences
to ensure that all of the mutant values have been stimulated.
Note that the database can be partitioned to facilitate con-
tinuously locating the largest remaining related set of
unstimulated control signal values.

[0019] In some embodiments of the present invention, the
system simultaneously stimulates multiple mutant values
associated with a given control signal using the same input
sequence.

[0020] In some embodiments of the present invention, the
system analyzes a set of prospect states to find paths from
the activated state both to a reset and to the observation
point. These prospect states represent architectural states for
the circuit design.

[0021] In some embodiments of the present invention, a
prospect state includes two constraint-dependency graphs
(CDGs). The first CDG defines a set of constraints to be
satisfied simultaneously, while the second CDG defines a set
of conditional values that allow the set of constraints to be
satisfied simultaneously.

[0022] In some embodiments of the present invention, the
system uses a CDG to solve a system of equations for
statements in the description of the circuit design. The graph
structure of the CDG facilitates appending additional con-
straints onto the CDG.

[0023] In some embodiments of the present invention, the
system finds a path that balances trade-offs between a
desired length for a potential path and the estimated com-
putational effort involved in finding the potential path.

[0024] In some embodiments of the present invention, the
system translates the input sequence into a format that
facilitates user verification and understanding of the circuit
design.

[0025] In some embodiments of the present invention, the
system receives a user-specified input sequence for the

Dec. 20, 2007

circuit design. The system uses mutation-based verification
to determine the control-coverage provided by this user-
specified input sequence.

BRIEF DESCRIPTION OF THE FIGURES

[0026] FIG. 1 illustrates the complete circuit design pro-
cess in accordance with an embodiment of the present
invention.

[0027] FIG. 2 illustrates the reduced time and effort
involved in simultaneous design and verification in accor-
dance with an embodiment of the present invention.

[0028] FIG. 3A illustrates a finite state machine graph in
accordance with an embodiment of the present invention.

[0029] FIG. 3B illustrates a code flow graph in accordance
with an embodiment of the present invention.

[0030] FIG. 4 illustrates how the cones of logic for a set
of control signals can map to a hypothetical state space in
accordance with an embodiment of the present invention.

[0031] FIG. 5 illustrates the implementation of an arbi-
trary operator in accordance with an embodiment of the
present invention.

[0032] FIG. 6 illustrates concurrent design error simula-
tion for a condition statement in accordance with an embodi-
ment of the present invention.

[0033] FIG. 7 illustrates integrating a mutant value gen-
erator with a concurrent mutant simulator in accordance
with an embodiment of the present invention.

[0034] FIG. 8 illustrates propagation complexity and acti-
vation complexity in accordance with an embodiment of the
present invention.

[0035] FIG. 9 illustrates an example of clustering and
partitioning in accordance with an embodiment of the
present invention.

[0036] FIG. 10 illustrates a set of simulation results that
result from using a modified MCE model in conjunction
with an automatic mutant generatorin accordance with an
embodiment of the present invention.

[0037] FIG. 11 illustrates generating a partially-defined
bit-vector set from an integer range in accordance with an
embodiment of the present invention.

[0038] FIG. 12 illustrates 1-bit addition for partially-
defined bit-vectors in accordance with an embodiment of the
present invention.

[0039] FIG. 13 illustrates replacements for undesirable
disjoining operators in accordance with an embodiment of
the present invention.

[0040] FIG. 14 illustrates an operator hierarchy for a CDG
structure in accordance with an embodiment of the present
invention.

[0041] FIG. 15 illustrates a sample CDG after an un-
optimized restructure in accordance with an embodiment of
the present invention.

[0042] FIG. 16 illustrates a sample CDG after simple
reduction in accordance with an embodiment of the present
invention.

US 2007/0294655 Al

[0043] FIG. 17 illustrates a sample CDG after complete
reduction in accordance with an embodiment of the present
invention.

[0044] FIG. 18 illustrates how a relational operator can be
reduced based on whether it is unconditionally true or
unconditionally false in accordance with an embodiment of
the present invention.

[0045] FIG. 19 illustrates sample CDG optimization
results in accordance with an embodiment of the present
invention.

[0046] FIG. 20 illustrates a statement tree of nested con-
dition statements in accordance with an embodiment of the
present invention.

[0047] FIG. 21 illustrates an exemplary process imple-
mentation that uses signals and variables in accordance with
an embodiment of the present invention.

[0048] FIG. 22 illustrates an incomplete CDG for signal
pc in accordance with an embodiment of the present inven-
tion.

[0049] FIG. 23 illustrates possible CDGs for an ATVG
goal on signal pc in accordance with an embodiment of the
present invention.

[0050] FIG. 24 illustrates a pictorial description for a
prospect code path in accordance with an embodiment of the
present invention.

[0051] FIG. 25 illustrates pseudocode describing the steps
for each ATVG iteration in accordance with an embodiment
of the present invention.

[0052] FIG. 26 illustrates pseudocode describing a set of
steps used in a DFS technique used for each ATVG iteration
in accordance with an embodiment of the present invention.

[0053] FIG. 27 illustrates satisfying a pState’s justification
constraint in accordance with an embodiment of the present
invention.

[0054] FIG. 28 illustrates a single time-frame example for
a multi-FSM DFS function in accordance with an embodi-
ment of the present invention.

[0055] FIG. 29 illustrates a multiple time-frame example
for a multi-FSM DFS function in accordance with an
embodiment of the present invention.

[0056] FIG. 30 illustrates pseudocode for using prospect
states during ATVG in accordance with an embodiment of
the present invention.

[0057] FIG. 31A illustrates run-time circuit profiling in
accordance with an embodiment of the present invention.

[0058] FIG. 31B illustrates pre-processor circuit profiling
in accordance with an embodiment of the present invention.

[0059] FIG. 32 illustrates basic-block guard profiling in
accordance with an embodiment of the present invention.

[0060] FIG. 33 illustrates a modified multi-FSM DFS
function in accordance with an embodiment of the present
invention.

[0061] FIG. 34 illustrates a further-optimized ATVG func-
tion in accordance with an embodiment of the present
invention.

Dec. 20, 2007

[0062] FIG. 35 illustrates an optimize ATVG function that
does not revisit previously-visited pStates in accordance
with an embodiment of the present invention.

[0063] FIG. 36 illustrates an ATVG search space after
pState weight estimation in accordance with an embodiment
of the present invention.

[0064] FIG. 37 illustrates an ATVG search space after
pState weight estimating and weight indexing in accordance
with an embodiment of the present invention.

[0065] FIG. 38 illustrates a comparison (for a sample
design) between MVP’s approach and the random methods
typically used to expose design errors in accordance with an
embodiment of the present invention.

[0066] FIG. 39 presents a flow chart illustrating the pro-
cess of verifying a circuit using mutant verification in
accordance with an embodiment of the present invention.

[0067] FIG. 40 presents a flow chart illustrating the pro-
cess of automatically generating an input sequence for a
single control signal in a circuit design using mutant-based
verification in accordance with an embodiment of the
present invention.

[0068] FIG. 41 presents a flow chart illustrating the pro-
cess of automatically verifying a circuit design using
mutant-based verification in accordance with an embodi-
ment of the present invention.

DETAILED DESCRIPTION

[0069] The following description is presented to enable
any person skilled in the art to make and use the disclosed
embodiments, and is provided in the context of a particular
application and its requirements. Various modifications to
the disclosed embodiments will be readily apparent to those
skilled in the art, and the general principles defined herein
may be applied to other embodiments and applications
without departing from the spirit and scope of the present
description. Thus, the present description is not intended to
be limited to the embodiments shown, but is to be accorded
the widest scope consistent with the principles and features
disclosed herein.

[0070] The data structures and code described in this
detailed description are typically stored on a computer-
readable storage medium, which may be any device or
medium that can store code and/or data for use by a
computer system. This includes, but is not limited to,
volatile memory, non-volatile memory, magnetic and optical
storage devices such as disk drives, magnetic tape, CDs
(compact discs), DVDs (digital versatile discs or digital
video discs), or other media capable of storing computer-
readable media now known or later developed.

1. Circuit Design and Verification

[0071] The design flow for creating an electronics com-
ponent is typically lengthy, as depicted in FIG. 1. Initially,
the lead architects create the design goals (architecture) for
the project. The lead design engineers then create a prelimi-
nary implementation from this architecture, such that it
meets all design goals. This preliminary implementation
exists in the form of a computer program, and is known as
a register transfer level (RTL) implementation because of its

US 2007/0294655 Al

implementation style. It is during this phase that much of the
design research is performed, and most power/performance
optimizations are defined.

[0072] A project first resembles an actual circuit when the
RTL code is converted into a logic gate level implementa-
tion, commonly through an automated process known as
circuit synthesis. A logic gate circuit is a low-level imple-
mentation because it closely resembles the features that will
be found on a fabricated chip, but it still abstracts-out the
actual transistors. The final two circuit development stages,
circuit layout and circuit fabrication, are closely tied to the
ever-advancing transistor and fabrication technologies that
allow for smaller and faster electronics.

[0073] The semiconductor industry includes of large com-
panies with in-house fabrication capabilities, and small to
mid-sized companies that outsource their fabrication needs.
Outsourcing the fabrication of a prototype microchip can
cost millions of dollars, giving these fab-less semiconductor
companies an incentive to get their design right the first
time. As a result, these companies have developed and relied
upon a rigorous verification process that has given them a
sense of security in the correctness of their final design prior
to fabrication. Unfortunately, these verification strategies are
human-intensive and have to be replicated and re-invented
for each new design project.

[0074]

[0075] “Black box” is a commonly used term in engineer-
ing that refers to a system where the implementation details
are not visible. It is no different for circuit verification.
Essentially, “black-box™ circuit verification is appealing
because it does not require the verification system to have
prior inside knowledge of the circuit under verification. This
strategy, however, relies on random or pseudo-random input
vectors to verify the “black box™ because such a verification
system has no way of efficiently deciphering how to generate
the most effective input sequence.

1.1. Existing Verification Techniques

[0076] Unfortunately, current systems are neither efficient
nor effective enough to perform deterministic “black box™
verification on complete large circuit implementations.
Therefore, when handling complete large circuits such as
microprocessors and ASICs, companies rely on a manual
“white box” circuit verification strategy. Essentially, circuit
design teams provide “inside” information to their verifica-
tion system by building “self-testing” abilities around their
implementations. This is commonly done by creating test
scripts aimed at stimulating specific portions of the circuit
under verification. Identifying and inserting this circuit
knowledge into a verification system is one reason why
circuit verification can sometimes consume 70% of the
overall circuit design effort.

[0077] While the Electronic Design Automation (EDA)
industry provides some circuit verification tools, these tools
are not able to apply directed analysis on complete circuits
for large projects. When seeking quality assurance on large
circuits with as much as 250,000 lines of RTL code, semi-
conductor companies typically need to add extra code
around their circuit designs to implement the verification
system. This extra logic adds considerable complexity to the
project, and can add many man-months for development.
Furthermore, the present verification process relies on cus-
tom, man-made instruction sequences to verify the correct-

Dec. 20, 2007

ness of specific circuit scenarios. These efforts, along with
unnecessary verification iterations, amount to a substantial
portion of the overall verification process.

[0078] After the circuit design phase, companies often use
an explicit quality assurance (circuit verification) phase
where they use their hand-crafted instruction sequences and
pseudo-random stimuli from their verification system to
guide the chip’s verification process until only a few non-
critical bugs are exposed per verification cycle. However, it
is common that these pseudo-random stimuli do not expose
all critical bugs because the circuit simulator continues to
explore the same portion of the circuit without advancing
onto more complex scenarios.

[0079] For smaller circuits, the analysis tools may make
use of existing circuit analysis technology. For instance,
deterministic circuit verification software tools may attempt
to analyze an RTL implementation by translating it into a
logic gate level implementation and then seeking to verify
this representation of the implementation. Unfortunately,
this translation process takes time and adds an immense
amount of detail into the implementation that causes the
analysis for small RTL implementations with several thou-
sand lines of code to be inefficient, and makes it impossible
to analyze large RTL implementations with upward of a
quarter of a million lines of code.

[0080] 2. Mutant-Based Verification

[0081] One embodiment of the present invention uses a
mutation-based verification platform (MVP) as a circuit
verification tool for high-level hardware descriptions and to
provide expert deterministic verification methods to the
average design engineer. MVP can provide a complete and
automated strategy for analyzing high-level hardware
descriptions that only leaves the circuit design engineer to
decide what portions of the circuit to verify, and not how to
verify it. MVP can be used for all verification strategies;
from formal to simulation-based, static assertion-based to
dynamic assertion-based, deterministic automatic test vector
generation (ATVG) to pseudorandom ATVG, and from a
static code-coverage metric to any dynamic coverage metric.
MVP’s circuit analysis allows it to perform white-box
circuit verification, while providing the simplicity of black-
box verification to its users. MVP does not require a priori
information on the circuit under verification for it to be
effective, but instead gathers this information real-time.

[0082] Because the earlier design stages (FIG. 1) have a
high level of abstraction (less detail), their corresponding
implementations are known as high-level implementations.
Similarly, the circuit-based implementations are known as
low-level implementations. A lower-level implementation is
derived directly from its previous higher-level implementa-
tions, so it is important that the high-level implementations
are correct to prevent introducing the same design errors
onto the lower levels. Thus, MVP’s technology focuses on
high-level RTL implementations for three reasons:

[0083] i. High-level implementations can be used to
describe the functionality of complete circuits;

[0084] ii. The most complicated design errors to expose
are introduced in high-level RTL implementations; and

[0085] iii. Design errors should not be transferred to
lower-level implementations because fixing these
errors then becomes more costly.

US 2007/0294655 Al

[0086] In one embodiment of the present invention, ana-
lyzing and verifying the correctness of circuit implementa-
tions as high-level RTL descriptions allows semiconductor
companies to analyze large circuit implementations, and
allows them to analyze these projects even before they are
complete. Hence, use of MVP technology can allow a digital
semiconductor company to reduce their design effort by
eliminating the need to develop an intricate in-house veri-
fication strategy that is specific to their circuit implementa-
tion. Eliminating a group’s need to invent a verification
strategy allows MVP to further reduce a project’s timeline
by providing the possibility for simultaneous circuit design
and verification, thus reducing significantly the magnitude
of the final quality assurance phase, as depicted in FIG. 2.

[0087] MVP can give semiconductor companies control of
their circuit design projects, following the idea that a circuit
should not have to be presumably complete before it can be
fixed—a problem does not have to escalate before it can be
remedied. It allows circuit designers to avoid postponing
their quality assurance efforts, thereby making fixing errors
less difficult. MVP can provide systematic solutions that
expose design errors in circuits that may still be under
development, leaving engineers to only fix these errors as
they are reported.

[0088] Semiconductor companies are experts in their in-
house quality assurance methods, and they have grown
emotionally attached to these practices because of the
proven results and the assurance it provides them. Unfortu-
nately, rising fabrication costs are causing these companies
to increase their quality assurance efforts to ‘try and get it
right the first time’ even through decreasing profit margins—
posing a paradox for the semiconductor industry. MVP is
meant to remedy this paradox by providing a standard circuit
verification process that adapts itself to any high-level RTL
circuit implementation, thus requiring circuit design com-
panies to invest less time and human effort towards circuit
verification. MVP can help automate the extremely ineffi-
cient circuit verification process, allowing high-level design
engineers to more efficiently focus their energy on perfecting
the circuit implementation. For instance, MVP can focus on
exposing design errors as a continuous background process
that analyzes the circuit implementation as it grows. A
circuit verification engineer first identifies the goals for
verification by employing coverage metrics that direct MVP,
and a design engineer only fixes bugs as MVP discovers
them; engineers no longer have to manually search for
design errors.

[0089] FIG. 39 presents a high-level flow chart illustrating
the process of verifying a circuit using mutant verification.
First, the system defines a set of coverage metrics by
creating one mutant construct for each circuit scenario that
should be made observable (operation 3900). The system
then picks one mutant construct from the set of undected
mutants and creates an input stimulus that activates the
mutant construct and propagates a value for the mutant
construct to an observation point (operation 3910). The
system feeds these input stimuli into the circuit, and then
processes the results (operation 3920). For instance, pro-
cessing the results can involve getting an updated coverage
reading and observing the response of the circuit to look for
design flaws. The system then determines whether the circuit
verification process has achieved enough coverage of the
circuit design (operation 3930). If so, the process completes.

Dec. 20, 2007

Otherwise, the system proceeds to pick another mutant from
the set of undetected mutants (looping back to operation
3910).

[0090] Note that a mutant (or mutant construct) represents
a circuit scenario by describing a set of activation signals
that each need to obtain a specific value for the circuit
scenario to be satisfied, and introduces an altered state into
the circuit by describing a set of target signals that alter their
values to another specific value. During circuit simulation, a
mutant becomes active when its set of pre-specified activa-
tion signals obtain their corresponding set of pre-specified
values from the circuit simulation, at which point the mutant
injects into a pre-specified set of injection points a corre-
sponding set of erroneous (altered) values.

[0091] FIG. 40 presents a flow chart illustrating the pro-
cess of automatically generating an input sequence for a
single control signal in a circuit design using mutant-based
verification. During operation, the system receives a descrip-
tion of the circuit design to be verified (operation 4000). The
system then determines a target value for a control signal in
the description (operation 4010) and a mutant value for the
control signal (operation 4020). Next, the system determines
if an input sequence for the circuit design exists that stimu-
lates the control signal to the target value and causes the
effects of the target value and the effects of the mutant value
to reach an observation point in the circuit such that the
effects of the target value and the effects of the mutant value
differ at the observation point (operation 4030). Note that the
two sets of effects are considered independently from the
point where the control signal is stimulated to the target
value. At this point, the effects of the mutant value are
determined by substituting the mutant value for the control
signal, while the effects of the target value are determined
independently (without a substituted mutant value).

[0092] If such an input sequence exists (operation 4040),
the system simulates the operation of the circuit design using
this input sequence (operation 4050). During this simulation
process, the system generates a first set of signal values that
are affected by the target value for the control signal and a
second set of signal values that result when the mutant value
is substituted for the control signal (operation 4060). After
the process completes, the system may return the input
sequence to the user as an output.

[0093] Note that the system can generate an input
sequence to activate a mutant in a separate operation from
generating an input sequence that propagates the mutant to
an observation point. These two operations do not need to be
performed one after another as a single solution.

[0094] FIG. 41 presents a flow chart illustrating the pro-
cess of automatically verifying a circuit design using
mutant-based verification. During operation, the system
receives a description of the circuit design to be verified
(operation 4100). The system then defines the coverage
metrics by creating one mutant (or mutant construct) for
each circuit scenario that needs to be covered (e.g. should be
made observable) (operation 4110). Next, the system picks
a mutant that has not been made observable (operation 4120)
and determines an input sequence for the circuit design that
causes the mutant to become active (I.e. that stimulates the
activation signals of the mutant to their target values) and
causes the effects of the mutant to reach an observation point
in the circuit (I.e. causes the effects of the erroneous values

US 2007/0294655 Al

injected by the mutant to reach an observation point of the
circuit) (operation 4130). If no such input sequence exists
(e.g. if there is no possible way to activate or propagate the
mutant) (operation 4140), then the mutant is discarded
without generating an input sequence and the process returns
to operation 4120. Otherwise, the process continues to
operation 4150. The system then simulates the operation of
the circuit design using this input sequence (operation
4150). During this simulation process, the system generates
a first set of signal values that correspond to an ordinary
circuit simulation (l.e. corresponds to the default circuit
simulation values) as well as a second set of signal values
that results when the mutant’s injected values propagate
through the circuit (operation 4160). During this simulation
process, the system activates all mutants that can be acti-
vated, and simulates the effects of all these mutants in a
simultaneous fashion. For each mutant whose effects have
reached an observation point of the circuit, it is designated
as “covered” and removed from the simulation (operation
4170). If un-discarded mutants remain that have not been
covered (operation 4180), the system returns to operation
4120. Otherwise, the process terminates.

[0095] The operations described in FIGS. 39-41 are
described in more detail in the following sections.

[0096] 2.1. Coverage Metric Design and Implementation

[0097] Coverage metrics are important for circuit verifi-
cation. Coverage metrics describe the degree to which the
circuit design has been tested.

[0098] Sequential circuit implementations were first
designed at the logic gate level, which led to coverage
metrics that are directly related to the physical circuit. An
exhaustive coverage metric would attempt to apply every
possible input vector onto every architectural state of the
processor. This, however, typically leads to the state explo-
sion problem because a circuit with 2" internal states and an
m-bit input bus will require 2™*" circuit scenarios to be
covered. Two popular alternatives that reduce this coverage
space include state coverage, and transition coverage. If we
were to generate a directed graph for a microprocessor’s
complete FSM, we would see that a state coverage metric
simply attempts to reach every reachable processor state in
the graph. A transition coverage metric, however, attempts to
obtain more coverage by taking every possible transition in
the FSM graph. Another popular FSM-based coverage met-
ric is the path-coverage metric. This coverage metric encap-
sulates transition coverage, and can potentially be more
complex than the exhaustive coverage metric. It attempts to
exercise every possible state sequence that is within a given
length, it therefore can encapsulate the exhaustive coverage
metric when the path lengths are sufficiently long at the cost
of achieving redundant state coverage.

[0099] With the advent of hardware description languages
(HDLs) came a series of code-based coverage metrics for
circuit designs. These coverage metrics already existed for
computer programs, but HDLs allowed them to make their
debut in the world of sequential circuits. Three of these
code-based coverage metrics include line coverage, transi-
tion (branch) coverage, and path coverage. If we dissect
each process statement in a microprocessor’s HDL imple-
mentation into a collection of basic blocks, we can generate
a graph that shows the possible program flows for each
process (as shown in FIG. 3B). From this graph we can see

Dec. 20, 2007

that statement coverage is synonymous to state coverage of
an FSM because it merely requests that each basic block be
reached and all its statements be executed. Both the transi-
tion and path coverage metrics for HDL code are also
somewhat similar to their corresponding FSM coverage
metrics, however not as rigorous. We can see in FIGS.
3A-3B via the bold paths how an FSM path includes more
explicit transitions ({T,, Ts, Tg, To, T14, T;,}) than the
corresponding path from a substantially similar graph pro-
duced by a code-coverage metric ({T,, T,}).

[0100] An FSM path provides a more rigorous functional
coverage than a code-based path because a transition exists
between every pair of sequential states, as opposed to a
code-based path where a transition only exists at each
decision point (branch operation). Furthermore, in a high-
level hardware description where many signal events can
happen at the same atomic time instance, the execution of a
complete code path within a process can be activated by a
single state in the FSM. In other words, given the blocking
nature of signals, it is possible for a process to complete a
code path such that the signal values used at every decision
point are taken from a single state in the FSM. As an
example, the transitions T, and T, in FIG. 3B can happen in
the same FSM state if there are no delay statements within
basic block 3. An FSM analysis is therefore more suitable
for tracking our progress towards a complete functional
coverage of a high-level hardware description, but the
information from a code-based circuit analysis can point
towards achieving the desired FSM coverage.

[0101] 2.1.1. A Control-Based Coverage Metric

[0102] Tt is important to employ a coverage metric that
reduces the search space from an exhaustive coverage metric
without notably degrading the quality of the tests that result
from it. This step is important to the development of a
successful verification platform because an inefficient cov-
erage metric will require too many ATVG iterations, and an
over-simplified coverage metric will sacrifice the effective-
ness of the resulting input sequence.

[0103] In one embodiment of the present invention, the
system uses a control-based coverage metric for mutation-
based verification that encapsulates all preceding coverage
metrics. The dependencies from control signals onto the
architectural state space form the basis for this coverage
metric, and exploiting these dependencies allow for a novel
implementation that reduces the verification search space
without sacrificing any effectiveness in the coverage metric.

[0104] A microprocessor’s explicit processor state can be
defined by combining all the control registers. A simple
16-bit processor with a 5-stage pipeline would therefore
include a state register that is at least 64 bits wide; this being
because each of the last four pipeline stages include a control
register that holds the currently residing instruction. The
state register would be even larger for superscalar micro-
processor implementations because they employ a distrib-
uted control methodology through many disjoint and coop-
erating functional and control units. Any attempt to even
perform a complete state coverage would face the wrath of
the state explosion problem, so a more effective method
needs to be employed. Instead, the MVP verification system
achieves complete coverage of the control signals from
which the architectural state space is derived.

[0105] Given that modern superscalar microprocessor
implementations are modular in nature, it is reasonable to

US 2007/0294655 Al

request for each of these functional and control units to be
verified against their description before the microprocessor
is verified as a whole. With this request, the microprocessor-
wide verification problem is reduced to one of verifying the
correctness of the control signals that merge these units
together. Typically, over two-thirds of the bug occurrences in
pipelined and superscalar microprocessor implementations
are related to design errors in the control logic. Hence, a
coverage metric that ensures that every possible value for
each of these control signals is exercised for every possible
processor state is very desirable.

[0106] Such a coverage metric may seem like an even
harder coverage metric to employ than the state coverage
metric, but it can actually reduce the state space by ignoring
the redundant and irrelevant state space. FIG. 4 illustrates
how the cones of logic for a set of control signals can map
to a hypothetical state space, and how this translates into a
control-based coverage metric.

[0107] 2.1.2. Mutants

[0108] In one embodiment of the presentation, a mutant
construct (or “mutant”) is a circuit scenario described by a
set of activation signals that each need to obtain a specific
value for the circuit scenario to be satisfied, and introduces
an altered state into the circuit by describing a set of target
signals that need to alter their values to another specific
(erroneous) value. Mutants can be used to instantiate a
control-based coverage metric, as well as other types of
coverage metrics.

[0109] Instantiating a coverage metric through a set of
mutants can be highly dependent on the implementation
style of the circuit under verification. Hence, a versatile
definition of a mutant construct that allows it to be applied
onto any coverage metric under any circuit implementation
is necessary. Injecting an error typically results in the
generation of an erroneous value under a specific state of the
system, because circuit design errors and physical faults are
governed by the laws of causality. Such a cause-and-effect
characteristic can be harnessed to define the mutant con-
struct. An error model is defined by three basic character-
istics: 1) the activation criteria, 2) the consequence of
activation, and 3) error injection. A mutant construct can be
defined as the many instantiations of an error model that
span a given design space. Numerous mutants can be
simulated concurrently; therefore each mutant construct has
a unique identification number.

[0110] A mutant’s activation criteria specify a set of
signals and the conditions that they need to satisfy before the
mutant is activated. The activation criteria can be imple-
mented as a collection of signal/value pairs that need to be
satisfied before the mutant can be inserted into the simula-
tion system. The values in a mutant’s activation criteria are
termed “default” simulation values because they describe
the value that would be observed if the mutant were not to
be injected.

[0111] Once the activation criteria of a mutant construct
are met, its consequence of activation can be analyzed to
determine how this mutant will alter the simulation. A
mutant’s consequence of activation can also be implemented
as a collection of signal/value pairs that specify exactly how
this mutant will alter the simulation run. The signal values
in a mutant’s consequence of activation are termed “erro-

Dec. 20, 2007

neous” simulation values or “mutant values”. The definition
for a mutant’s consequence of activation should not allow
for a signal’s value to mutate into itself, because that would
be unproductive. As a result, the list of signals in a mutant’s
consequence of activation typically must be a subset of the
signals in its activation criteria, and their erroneous values
typically must be different from the corresponding default
values.

[0112] The mutant values are injected into the specified
signals within the circuit during error injection, which
follows immediately after a mutant’s activation criteria is
satisfied completely by the current circuit simulation values.
A mutant’s error injection system can be implemented as a
list of signal locations in the hardware descriptions that
correspond to the signals specified in the consequence of
activation, and a subroutine that injects the mutant’s erro-
neous values into these signal locations. Error injection is
the process of inserting an erroneous value into a simulation
system for the purpose of investigating its effect, and it is
discussed in detail in later sections. Whenever a mutant has
been successfully injected into a simulation system, it is
considered to have been “activated.”

[0113] Given that a design error on an implementation of
a modular component will appear on every instantiation of
that component, all mutant constructs have to obey the
hierarchical error model where every instantiation of a
modular component will have the same set of mutants with
corresponding identification numbers. This allows a design
error to simultaneously appear at multiple instantiations of a
component if necessary, and it correctly models aliasing in
the case where these mutant values mask each other’s
propagation across the circuit. In contrast, physical faults
can appear within a modular component independent of all
other instantiations of that modular component, therefore
physical fault models do not need to obey the hierarchical
error model.

[0114] 2.1.3. The Mutant Construct

[0115] In one embodiment of the present invention, a
mutant construct (or “mutant”) can be defined as a quadru-
plet (s, c, ve, ve) such that the explicit processor state s and
a correct value(s) vc of the control signal(s) ¢ act as the
activation criteria and such that the signals in the set c act as
the injection points. Signals in ¢ are mutated from ve to an
erroneous value ve as a consequence, and injected back into
signal c.

[0116] 2.1.4. Implementing the Control-Based Coverage
Metric

[0117] In one embodiment of the present invention, the
system automates the generation of mutant constructs such
that they span a control-based coverage metric, and can be
used to instantiate a complete collection of mutants for any
given hardware description. Performing automated genera-
tion of such mutants can be especially influential for large
and complex hardware descriptions, such as superscalar
microprocessor implementations, because of their inherent
complexity. As previously mentioned, an explicit processor
state can be defined by the concatenation of all control
registers in a microprocessor implementation. If one were to
analyze the data dependency of a control signal onto the set
of registers and primary inputs, one would see that each
control signal is dependent on only a subset of the control

US 2007/0294655 Al

registers. It is therefore possible to prune the state space
without consequences as follows: For each control signal ¢
that we plan to stimulate, we first identify the set of circuit
conditions that affect the value of that control signal and
denote this set as s. Then for every correct value vc of
control signal ¢ under every possible value of s, we generate
a set of mutants that modifies ¢ from vc to all erroneous
values ve (such that ve=ve) and inject their corresponding ve
back into c.

[0118] This error modeling technique is effective because
it only generates useful mutants for every control signal by
first identifying the relevant state space. The set of relevant
state space for a particular control signal can be found easily
by analyzing the code-based constraints that allow the
control signal to be stimulated (the guards from a condi-
tional statement) and the values that are assigned to it. This
involves creating a form of data dependency graph around
these control signals, and then solving these graphs to
decipher the allowable values for these signals. MVP’s
constraint dependency graph (CDG) construct is described
later in this disclosure, along with a description of an
efficient solver for these graphs and a set of subroutines that
can create them from a hardware description. The informa-
tion gathered by these CDGs can be used directly to define
a collection of mutants for a specific control signal.

[0119] 2.2. Concurrent Mutant Simulation

[0120] Mutation-based verification techniques attempt to
circumvent the complexity in exploring any coverage metric
exhaustively by using mutants as guidance. Error modeling
for circuit verification can be used to create an artificial
collection of simple design errors (mutants) that span
throughout the corner cases of a circuit implementation.
Mutants can therefore act as markers that are spread across
the unexplored corners of a circuit’s design space to help
indicate where verification efforts should focus on next.

[0121] As a consequence to the coupling effect between
simple and complex design errors, an input sequence that is
capable of detecting these known simple errors is implicitly
capable of detecting complex design errors as well. There-
fore, an MVP concurrent mutant simulator can grade an
input sequence’s ability to expose complex design errors by
concurrently and efficiently applying it to the complete set of
mutants that represent the simple errors, and reporting the
mutant coverage for that input sequence.

[0122] In one embodiment of the present invention, muta-
tion-based circuit simulation is used to perform mutation-
based testing. Post-silicon testing efforts typically use a
coverage measure that is capable of affecting the maximal
set of possible physical fault sites. Once the fault sites are
defined, an error model can be designed to span the complete
coverage measure. These error models, known as physical
fault models, can be used in conjunction with a concurrent
mutant simulator to grade an input sequence’s ability to
detect possible physical faults and to give an architect
valuable testability analysis on his implementation.

[0123] 2.2.1. Fault-List-Enabled Signals

[0124] In one embodiment of the present invention, an
initial step in developing a high-level concurrent error
simulator determines how a signal should maintain its fault
list, and how the basic signal operations should be per-
formed on the complete fault lists. In one implementation, a

Dec. 20, 2007

signal is first defined as an object that includes a default
value and a list of mutant values, where each mutant value
m in the signal S is a result of the corresponding parent
mutant construct. The parent construct of a mutant value m
is denoted by mt(m) such that the set of mutants m, that affect
signal S is denoted by: II(S)=U ;m(m,). It is common that
aliasing occurs between the default value and one or more
mutant values, in which case it is advantageous to collapse
the error lists as a way to minimize the memory demand and
the number of operations needed by each list.

[0125] The simulator takes as input a collection of mutants
E, which are used to generate and insert a mutant value into
a specific fault site when appropriate. Let a; be the set of
mutant values in signal A, such that a,=0 denotes the default
value and a,_, denotes the mutant value associated with the
mutant construct n(a,) that has an ID value i. Given that the
fault list-enabled signals implement fault collapsing, an
arbitrary mutant value a; will only exist in signal A when all
of the following conditions are met:

[0126]
vated.

i. The mutant construct w(a;)eE has been acti-

0127] ii. The corresponding error has been injected or
1Y 2 Y
propagated into signal A, thus producing the mutant
value a;.

[0128] iii. The corresponding mutant value a; is not
aliased by the default value a, (a;=a,).

[0129] Based on the above definition of a signal’s fault
list, let aob denote an arbitrary operation on two signal
values, and let AcB denote the same arbitrary operation
performed over all signal values a; and b; in signals A and B,
respectively, such that an operation a;ob,_; is not allowed
because an operation cannot be performed across mutants. In
the case where I1(A)=I1(B), a request for an implicit (non-
existent) mutant value a,_, results in the generation of the
requested value from the default value. Let the generation
process for mutant i be denoted by a,_,;. A value generated
from the default value can be referred to as an implicit value,
and a value extracted directly from the fault list can be
referred to as an explicit value.

[0130] There is no distinction between a mutant value that
has been aliased by the default value and a mutant value
corresponding to a mutant that has not been activated. One
can therefore assume that any mutant value not present in a
fault list has been aliased, and it is correct to generate the
corresponding mutant value from the implied default value
upon demand. This allows the following operation to be
defined across two fault lists that don’t include mutant
values from the exact set of mutant constructs:

Z=AcB:
Vell(4)UII(B)| Z==U{a;ob;}

[0131] This operation is illustrated for a set of sub-opera-
tions depicted in FIG. 5. Consider the example where A={a,,
a,, a5} and B={b,, b, bs}. The operation Z=AcB is decom-
posed into the set of sub-operations {z,=a,ob,, Z;=a;obg_, s,
7,=8,_,,0b,, Zs=asobs} as illustrated in FIG. 5. Further-
more, if the value generated by the operation asob is aliased
by the value generated by the operation ayob,, then the
resulting set of values in signal Z will be Z={z,, z,, z,} after
fault collapsing.

US 2007/0294655 Al

[0132] 2.2.1.1. Operation INSERT_MUTANT (L, m)

[0133] In one embodiment of the present invention, an
operation INSERT_MUTANT inserts the mutant m into the
fault-list L while preserving fault-collapsing and L.’s order-
ing of increasing mutant ID. If m’s ID corresponds to the
default value (m(m)=0), then it will update [.’s default value
if and only if I does not contain mutant values. The
simulation engine should never need to replace the default
value when a fault-list exists, so the list L should be empty
when m corresponds to the default value. Otherwise, if m’s
value is aliased by the default value, then m is not inserted
into L. and any item with a matching ID is removed from L.
to implement fault-collapsing. If neither of the above two
conditions are met, then m is inserted into L, replacing any
item with a matching ID.

[0134] Each fault list can be implemented by a linked list
of mutant values, ordered by increasing mutant 1D, and
referenced by a starting pointer and an ending pointer. This
configuration allows for an insertion to the end of the fault
list to be completed in O(1) time. Otherwise, if the mutant
being inserted belongs somewhere within the fault list, the
insertion is completed in O(n), where n is the current size of
the fault list. INSERT_MUTANT is typically called from
either an operation on a signal, or from the mutant generator
itself. The mutant generator typically only executes at most
once per simulation iteration, thus if only basic operations
are being performed on signals, then the many O(1) time
insertions by operations on signals far outweighs the few
O(n) insertions by the mutant generator.

[0135] 2.2.1.2. ARBITRARY_OPERATION (f, L1, 1.2)

[0136] In one embodiment of the present invention, an
operation ARBITRARY_OPERATION performs the basic
arbitrary operation f on all items of the fault lists [.1 and [.2
by the rules described earlier, such that f is a simple
operation which executes in O(1) time. Given that the items
in each fault list are sorted in the order of increasing mutant
1D, this operation is best implemented by assigning a
traversing pointer to each input list (let us denote these
pointers as pl and p2) starting at the default value and
operating on all items of L1 and .2 in order of increasing ID.
The items of L1 and [.2 are not expected to belong to the
same set of mutants, therefore implicit value generation is
performed when the items of p1 and p2 do not belong to the
same mutant. When this happens, the pointer with a larger
mutant ID hints that the default value from its list should be
used instead.

[0137] After the operation m=f(p1,p2) is executed and the
mutant m is inserted into the return list, the traversing
pointer whose mutant has a smaller 1D is updated with the
next mutant in its list. If p1 and p2 point to descendants of
the same mutant ID value, then both p1 and p2 are updated
with the next mutant in their respective fault lists. Given that
INSERT _MUTANT can insert a mutant m into a list L in
O(1) time if m belongs at the end of L, every insertion into
the target signal will operate in O(1) time because each
mutant being inserted into the resulting list has an ID greater
than all previously inserted mutants. Therefore, performing
an operation f on all items of the operand lists [.1 and [.2
takes O(|L1|+|L2|) time. In practice, however, the time to
operate on both lists will be shorter whenever one or more
mutant constructs have a mutant value in both L1 and L2
ALDHNIIL2)={B}).

Dec. 20, 2007

[0138] Other operations important to high-level hardware
descriptions may be more difficult to implement than the
arbitrary operator, and may not run in linear time, such as
operations on signal arrays. The index ofthe array is a signal
implemented by a fault-list, thus the value accessed by the
index typically is the union of the values accessed from the
default index location with the mutant values accessed from
every mutant index location. In other words, the operations
on signal arrays can be represented by:

A=M[X]:

VieH(M[xO])—H(X),\A=M[x0]0iUM[x0]ijUM[xj]j

Vjell(X)|

M[X]=A:

VieH(A)—H(X),\M[xO]=a0ani

V]'(H(X)‘ij]=(M[xj]—M[xj]j)juaj
Note that these operations may also rely on implicit mutant
value generation when necessary.

[0139] 2.2.2. Propagating Fault Lists Across Condition
Statements

[0140] In one embodiment of the present invention, the
development of a concurrent mutant simulator for high-level
hardware descriptions involves the conceptualization of a
method to implement conditional execution on signals con-
taining a fault list. The problem of executing a statement
based on a fault list-enabled condition is that the condition
will be met by some of the mutants and not by others. As a
result, the fault list of the signals in the condition statement
needs to be split into two partitions: the set of mutants that
meet the condition, and the set of mutants that do not.

[0141] When executing a condition statement, the actions
performed by the simulator can include:

[0142] i. The condition needs to be evaluated using
comparison operators to create a Boolean fault list.

[0143] ii. All the signals used within the condition
statement need to be initialized via partitioning such
that the target partition for each fault list item is
specified in the condition fault list.

[0144] iii. The TRUE partition of each signal is used
within the then portion of the condition statement, and
the FALSE partition of each signal is used within the
else portion of the condition statement.

[0145] iv. Upon termination of the condition statement,
the initialized signals have their fault list rebuilt via the
recombination process. The values extracted from the
partition that corresponds to the default value of the
condition are merged with the values extracted from the
other partition that are explicitly identified by the
condition fault list.

[0146] An example of the above points analyzes the
scenario illustrated in FIG. 6. Step (i) is used to generate the
condition fault list and step (ii) is used to initialize the
variables for conditional execution. Step (iii) is used to
execute the cases in the condition statement, and step (iv) is
used to extract the mutant values from the TRUE and
FALSE partitions and merge them back into the fault list.
Notice that the presence of C1 in the condition variable is
used by the simulator to generate the mutant value Bl from
B’s FALSE partition during the recombination phase in step

US 2007/0294655 Al

(iv). A substantially similar operation occurs when perform-
ing the recombination process on the signal Z such that Z1
is generated from the default value of the FALSE partition.
In this situation however, Z1 is collapsed as it is inserted into
the fault list due to redundancy with the default value Z0.
Note that the TRUE and FALSE partitions exist as signal
instantiations themselves, thus nested condition statements
are handled in a nested fashion.

[0147] Step (ii) can be implemented as an adaptation to the
arbitrary operator, and be handled by a procedure INIT-
_CONDITION(C, L). In this procedure, the inputs to the
function f (introduced in the following description) are the
items in the initializing condition C (pointed to by p1) and
the items in the fault list L. of the signal being initialized
(pointed to by p2). The result of the operation is a parti-
tioning of L into the fault lists L_T and [._F such that for
every mutant mielI(L)UII(C), Li is transferred into the
TRUE partition L._T if ci=true; otherwise Li is transferred
into the FALSE partition I._F. Each mutant Li being inserted
into L_T or L_F has an ID greater than any previous inserted
mutant, therefore each insertion into I_T and [_F is guar-
anteed to run in O(1) time. Just as with the arbitrary operator,
the operation INIT_CONDITION is guaranteed to run in
O(|C|+/L)) time.

[0148] Step (iv) can also be implemented by an adaptation
to the arbitrary operator, handled by a procedure RECOM-
BINE(C, L_T, L_F). In one embodiment, the complete
partition that corresponds to the default value of the condi-
tion is merged with the implicit values of the other partition
as specified by the condition. Therefore, one pointer
traverses the partition that corresponds to the default value
of the condition and the other pointer traverses the condition
fault list C. Let us denote the partition that corresponds to the
default value of the condition by L_FF, and let us denote the
other partition by L_nFF. Given that the partitions are
deleted at the end of this procedure, and that values are
extracted in the order of increasing ID, this procedure is best
implemented by destructively extracting values from [._nFF.
This is important because each access of [._nFF will begin
from the start of the fault list, and it is important to remove
all used and discarded values as a way to minimize the
runtime for all subsequent accesses. This extraction process
guarantees that at most |C|+/L_nFF| values are extracted,
generated, or discarded from L_nFF. There are |L_FF|+C|
insertions into the signal being recombined, therefore the
procedure RECOMBINE has a runtime complexity of
O(|C|+L_TJ+|L_F).

[0149] 2.3. Integrating Mutant Value Generation into the
Circuit Simulator

[0150] In one embodiment of the present invention, the
core concurrent mutant simulator does not produce mutant
values, but instead primarily propagates them. The mutant
values are generated by separate engine(s) denoted as
mutant value generator(s). This results in a simulation
environment that can adapt to any design-based/fault-based
error model by creating the appropriate mutant value gen-
erator(s) that are in charge of inserting the appropriate
mutant values into the appropriate signal(s) under the appro-
priate condition(s).

[0151] Consider a feedback circuit to conjecture on the
methods of generating mutant values. When a mutant is first
activated in the circuit, it generates a mutant value that might

Dec. 20, 2007

feed back to the same activation site to re-activate the
mutant. At this point, it generates a mutant value from an
already mutant signal. As a result, a mutant generator is
activated by signals such that its corresponding mutant value
is given higher preference over the default value. lL.e., the
mutant generator uses a signal’s default value if and only if
a mutant value of corresponding ID tag does not exist.
Furthermore, any mutant values that are inserted into a
signal will replace the previous corresponding mutant value
if it exists.

[0152] 2.3.1. Implementation Alternatives

[0153] In one embodiment of the present invention, a
mutant generator is a unit within a simulation environment
in charge of activating any of its mutants when the proper
activation criteria are met, at which point it generates the
corresponding mutant value and injects it into the circuit (as
illustrated in FIG. 7). Therefore for each mutant generator,
the collection of signals in the circuit that act as activation
criteria to any of its mutants needs to propagate any change
in value to this mutant generator. Also, whenever an acti-
vation criterion propagates into a mutant generator, the
mutant generator needs to search through its set of mutants
and identify every mutant that needs to be activated. When
developing a mutant value generator, the effects of propa-
gation complexity and activation complexity need to be
taken into consideration. Propagation complexity can be
defined as the number of extra mutant signal propagations
per simulation iteration such that a mutant value generator is
the target. Activation complexity can be defined as the
number of mutants that need to be considered for activation
upon a signal propagation into a mutant value generator.
Propagation and activation complexity are illustrated in FIG.
8.

[0154] In one embodiment of the present invention, the
system distributes mutant constructs using a centralized
mutant generator. Only one unit in the simulation environ-
ment is in charge of generating mutant values. This results
in the lowest propagation complexity because the propaga-
tion overhead imposed by concurrent mutant simulation is at
most one extra propagation per internal signal. One effect of
this approach can be that the modeled design error search
space becomes linear with respect to the number of unde-
tected mutants.

[0155] In one embodiment of the present invention, the
system distributes mutant constructs using distributed
mutant generators. One mutant value generator is assigned
to each mutant construct. While this approach reduces the
search space per mutant value generator to its minimum, it
can also result in a maximum propagation complexity
because the propagation overhead imposed by concurrent
mutant simulation on a signal is typically proportional to the
number of mutants to which it acts as activation criteria.

[0156] In one embodiment of the present invention, the
system distributes mutant constructs using hybrid (clus-
tered) mutant generators. Mutant constructs are “clustered”
into groups that have common activation criteria, therefore
maintaining the propagation complexity and activation com-
plexity per mutant value generator at feasible levels.

[0157] In a verification system where multiple error mod-
els are being used, the hybrid mutant generation technique
allows the flexibility of keeping mutants of disjoint activa-

US 2007/0294655 Al

tion criteria in separate clusters and allows the search
function of each mutant value generator to be optimized by
introducing a “partitioning” technique. Such partitioning
schemes can reduce the search space per mutant generator
by selecting the signal that acts as the most common
activation criteria in that cluster and designating this signal
as the partitioning point. Once a partitioning point has been
chosen per cluster, each of these clusters can be organized as
a hash table where the value of the partitioning point is used
as the hashing key.

[0158] 2.3.2. Clustering and Partitioning

[0159] High-level verification through the use of concur-
rent mutation-based simulation techniques typically pro-
vides the best input sequences when the set of mutants
completely span the coverage measures. One reason for this
is that concurrent simulation of a complete set of mutants
allows an input sequence to drop all detected mutants, thus
reducing the number of mutants for which subsequent input
sequences need to be generated. A second reason is that
aiming each ATVG iteration at detecting the maximal num-
ber of mutants results in a highly-effective input sequence
with high probabilities of detecting complex design errors.

[0160] However, supplying a verification system with a
complete mutant set can affect the simulation performance,
because the simulator is forced to analyze a larger set of
mutants per simulation iteration as it searches for all errors
that need to be activated. One embodiment of the present
invention reduces the complexity of the mutant activation
cycle by reducing the technique’s search space. Carefully
organizing the data-structure that manages the live set of
mutants can: (1) minimize the error-activation cycle, thus
optimizing the simulation, and (2) give the ATVG system
information on the distribution of undetected mutants among
the design space, thus providing it with the ability to aim its
mutant-activating efforts at the activation criteria with the
highest density of undetected mutants. These benefits can be
achieved by “clustering and partitioning” the complete set of
mutant constructs into groups that are organized by their
activation criteria.

[0161] Given that an underlying goal is to create partitions
where the included mutants have at least one common signal
in their activation criteria, one embodiment of the present
invention can achieve clustering-and-partitioning by:

[0162] 1i. Generating a table where the rows represent
the signals in the system that act as activating criteria
to any of the mutants under consideration and the
columns represent the set of mutants under consider-
ation. For any mutant, the set of intersecting points
specifies the set of signals that collectively denote that
mutant’s activation criteria. Initially, each of these
signals and mutants are marked unselected.

[0163] ii. Identifying the unselected signal that inter-
sects with the greatest number of unselected mutants,
and marking this signal as selected.

[0164] iii. Grouping all unselected mutants that inter-
sect with the selected signal into a cluster, and marking
each of these mutants as selected.

[0165] iv. For this new cluster, setting the selected
signal as the partitioning point and partitioning the

Dec. 20, 2007

cluster into a hash table where the activation criterion
of the partitioning point is used as the hashing key.

0166] v. If unselected mutants exist, returning to ste
g 1Y
(ii) to perform another iteration.

[0167] FIG. 9 illustrates an example of clustering and
partitioning in which Si denotes a signal and ai denotes a
mutant. In the example of FIG. 9, the first cluster includes
the set of mutants {1, a2, 03, a5} with partitioning point
S5, and the second cluster includes the set of mutants {4,
a6} with partitioning point S4.

[0168] In practice, each possible value for the partitioning
point typically has a nonempty set of corresponding
mutants. For instance, consider a mutant construct, where an
explicit state signal is chosen as the partitioning point. If the
state signal occurs in every mutant construct, then selecting
it as the partitioning point results in an efficient data struc-
ture when a processor’s current state is used directly as the
hash key. It is efficient because the performance of searching
for the mutants to be activated remains independent of the
size of the state-space. The only factors that would grow
along with the state space are the hash table size and the total
number of mutant constructs.

[0169] FIG. 10 illustrates a set of simulation results that
result from using a control-based mutant construct in con-
junction with an automatic mutant generator for a micro-
processor design. The simulation results demonstrate a sig-
nificant correlation between the number of mutants that are
detected per simulation iteration and the number of mutants
that are active per simulation iteration, and establish the
benefit of focusing ATVG efforts on maintaining the number
of active mutants at its highest possible value. Focusing
ATVG efforts towards activating and propagating any
mutant in the largest mutant partition can ensure an optimal
mutant detection rate in a practical way. FIG. 10 also
illustrates the difficulty in generating input stimuli to detect
mutants given that a pseudo-random input sequence
achieved to activate less than 0.2% of the mutants in the
same design. This low activation rate is a result of two
factors: 1) many mutants are difficult to activate given they
involve an architectural state deep within the circuit’s FSM,
ii) active mutants within a simulation don’t live long given
that they either quickly propagate to an observation point or
are masked somewhere in the data path. This low activation
rate for mutants and the strong correlation between the
active and the detected mutants serve to justify the imple-
mentation of a concurrent mutant simulator because the
simulation overhead imposed by active mutants is guaran-
teed to maintain low, and the value it provides is high by
helping to visualize the effectiveness of an input sequence.

[0170] Note that random and pseudo-random ATVG tend
to provide coverage in bursts. The detection rate for the
random ATVG sequence of FIG. 10 appears to reach an
upper asymptote after surpassing input vector no. 1050,
which could be interpreted by a verification engineer to
signify that the verification efforts could be terminated at this
point due to a diminishing return on coverage per extra input
vector. However, it typically is a mistake to assume a
randomly generated instruction sequence will always pro-
duce an optimal curve, and early termination of a verifica-
tion effort can risk not exposing important design errors that
may have been exposed by a later productivity burst (such
as the burst after input vector no. 1900 in FIG. 10). Such

US 2007/0294655 Al

sudden bursts of productivity in the verification phase are a
common phenomenon that plagues the circuit design indus-
try. Commonly, design teams become convinced that their
design is close to being fabrication-ready whenever subse-
quent verification iterations continue to expose less impor-
tant bugs, only to have a later verification iteration expose a
large dose of important bugs. If this large dose of important
bugs could have been stimulated and catalogued at some
earlier verification iteration, it could have been fixed earlier
and involved fewer time-consuming verification iterations.

[0171] 2.4. High-Level Circuit Analysis

[0172] Once a set of mutants has been generated, the
system simulates them on the hardware description under
verification to utilize the input sequence and track its effec-
tiveness. The techniques in the previous sections include an
efficient method for simulating a collection of mutants
concurrently on an RTL circuit. Now, to promote an effec-
tive verification platform, the system needs a systematic
ATVG strategy that can satisfy the simultaneous constraints
specified by any mutant. To achieve this, the system first
needs to convert the set of simultaneous constraints into a
solution space. This solution space lists all target architec-
tural states that can satisfy all simultaneous constraints, and
any of these target architectural states can be used as the
starting point when generating an instruction sequence.

[0173] It is important to identify the complete set of few
target architectural states, because doing so prunes out the
many irrelevant architectural states. Given that only one of
these target architectural states is necessary, the system
denotes each target architectural state in the solution space
as a prospect state (pState). Each pState is defined by: (i) the
events that satisfy the simultaneous constraints, and (ii) the
control requirements that allow these data dependencies to
materialize. Each of these two components of a pState is
implemented using a type of constraint dependency graph
(CDG).

[0174] 2.4.1. Constraint Dependency Graphs
[0175] 2.4.1.1. Representing a Range of Values

[0176] Discrete and real data types can easily be repre-
sented as a value range, given that their range can be
explicitly defined by a minimum and a maximum value.
Bit-vector literals, however, are more difficult to represent.
A partially-defined bit-vector can be represented as an array
of bits, such that each bit can have a value of zero (0), one
(1), or don’t-care (x). An x value signifies that the corre-
sponding bit can be used either as a ‘0’ or a ‘1°. As a result,
the system can reduce the number of bit-vectors needed to
represent a given set of values by merging pairs of bit-
vectors that differ by only one bit into a partially-defined
bit-vector. Thus a range of values exists as a set of partially-
defined bit-vectors.

[0177] Such a partially-defined bit-vector set can be stored
as a tertiary search tree, such that each insertion attempts to
reduce the tree by removing bit-vectors that are masked by
the inserting bit-vector, or by merging the inserting bit-
vector with another bit-vector that has at most one corre-
sponding bit with an inverted value. Whenever merging is
needed, the bit-vector in the tree that initiates the merge is
removed, and a new insertion operation is performed with
the merged bit-vector as the operand.

Dec. 20, 2007

[0178] Hardware description languages allow performing
relational and addition operations between bit-vector types
and integer types. As a result, we need a method to convert
an integer value range into a partially-defined bit-vector set.
To do this, we can develop a method to generate a partially-
defined bit-vector set which enforces a minimum or a
maximum. Consequently, we can generate a partially-de-
fined bit-vector set which enforces an integer value range by
generating them for the minimum and the maximum sepa-
rately, and then intersecting both sets to generate a partially-
defined bit-vector set that forms an intersection between
both sets.

[0179] To generate a partially-defined bit-vector set for the
minimum, we begin by replacing all ‘0’ bits with an ‘X’ and
insert a copy of this bit-vector into the new set. From here
on, while there is a sequence of ‘1’s (starting with the
least-significant bit) that is followed by at least one ‘x’:
replace this sequence of ‘1°s by “X’s, replace the succeeding
“x’with a ‘1°, and insert a copy of this bit-vector into the set.
The final insertion is a bit-vector in the form of a series of
‘x’s that is appended by a series of ‘1’s. Similarly, to
generate a partially-defined bit-vector set for the maximum,
we begin by replacing all ‘1” bits with an ‘X’ and insert a
copy of this bit-vector into the new set. From here on, while
there is a sequence of ‘0’s (starting with the least-significant
bit) that is followed by at least one ‘x’: replace this sequence
of ‘0’s by ‘x’s, replace the succeeding “x” with a ‘0’, and
insert a copy of this bit-vector into the set. The final insertion
is a bit-vector in the form of a series of ‘x’s that is appended
by a series of ‘0’s. An example where a partially-defined
bit-vector set is generated from an integer range is shown in
FIG. 11.

[0180] An ordinary bitwise operation is easily performed
across partially defined bit-vector sets by applying the
operation onto all pairs of partially-defined bit-vectors from
both sets. This process can generate a large number of
partially-defined bit-vectors, but this set is usually reduced
substantially after it is inserted into the tertiary search tree.

[0181] Implementing arithmetic operations on partially
defined bit-vectors can be a difficult aspect of developing
support for partially-defined bit-vectors. Consider the truth
table for a single-bit adder illustrated in FIG. 12. In FIG. 12,
scenarios V, VI, and IX provide alternative outputs that
cannot be represented in a single partially-defined bit-vector.
It is therefore necessary to “split” the addition operation
under these scenarios into two independent addition opera-
tions, such that each independent addition operation pro-
duces its own solution in the form of a partially-defined
bit-vector. At the end of the addition operation, all the
individual partially-defined bit-vectors will have been
inserted into the same tertiary search tree, and therefore the
set is once again reduced by the insertion process. Other
arithmetic operations, such as negation and subtraction, can
be implemented using the addition operator.

[0182] 2.4.1.2. Solving a CDG

[0183] Note that CDG structures can vary, and that some
structures are easier to solve than others. Given that we are
representing possible solutions by using range information,
the system may be configured to avoid operators that impose
solutions with multiple disjoint ranges in values. An
example of such an operator is the inequality operator. A
statement A/=B returns a true Boolean value if A<B or A>B,

US 2007/0294655 Al

therefore doubling the number of explicit value ranges. Let
us define such operators as “disjoining” operators. Instead of
solving a CDG by transferring multiple value ranges across
CDG operators as a result of disjoining operators, we can
restructure a CDG into an equivalent graph that does not
contain these disjoining operators.

[0184] In one embodiment of the present invention, the
system avoids the set of disjoining operators illustrated in
FIG. 13 in CDG representations, and instead uses the
replacement statements shown. In this restructured CDG
representation, the system may also make an explicit dis-
tinction between Boolean operators and bitwise operators,
because they produce distinct disjoining effects when taking
a (two) value range(s) as their operand(s). As an example, a
Boolean NOT operator applied to an equality operator will
double the number of explicit value ranges as previously
stated, while a bitwise NOT operator applied onto a literal
will simply invert every bit in its operand. Notice from FIG.
13 that Boolean not operators are removed from CDGs,
however bitwise not operators are retained.

[0185] Note also that in the restructured CDG represen-
tation, only one disjoining operator that remains in the CDG
structure as it binds all disjoint range of values into a set. The
Boolean OR operator is used to reference the CDG struc-
tures that define a specific explicit value range, and a set of
these CDG structures is linked by a tree of Boolean OR
operators. As a result, we get a CDG structure in the form of
a disjunction of conjunctions, such that each conjunction
defines a specific explicit range in values for its identifiers.
More specifically, all nodes in a conjunction share the range
in values for the variables and signals they refer to. The
nodes in our restructured CDG follow a hierarchy (shown in
FIG. 14). The Boolean OR and Boolean AND operators are
propagated towards the first and second layers in the CDG,
respectively, via DeMorgan’s Theorem.

[0186] 2.4.2. Search-Space Optimizations for Solving
CDGs

[0187] Because pStates are generated and solved through-
out the ATVG process to justify a set of constraints past one
time frame, the techniques for restructuring and solving
CDGs may often be MVP’s limiting factor. Hence, runtime
performance can be improved by optimizing the worst-case
scenario for the techniques that restructure and solve CDGs.
Case statements are commonly used in hardware descrip-
tions to describe the control space of an FSM. Therefore, it
is expected that some case statements in a hardware descrip-
tion will be significantly large. Also, it is expected that some
signals (in particular, control signals) will have a separate
assignment statement within each block of the case state-
ment. These large case statements can sometimes be the
limiting factor for MVP’s performance, because such a
signal will need the corresponding assignment statement and
control requirements to be analyzed for every block in the
case statement.

[0188] Ifa case statement contains a “when others” block,
its control requirements (guard) will be the conjunction of
the negated guards of all explicit cases. This block’s control
requirements will therefore be a conjunction of disjoining
operators, where a disjoining operator is an operator that
imposes a disjoint range of values onto any identifier oper-
and. To convert this graph into a disjunction of conjunctions
such that each conjunction defines a contiguous range of

Dec. 20, 2007

values for all discrete identifiers within it, we need to
restructure the CDG into an equivalent graph that is free of
disjoining operators.

[0189] Restructuring the graph into our desired form
involves recursively replacing each sub-tree rooted at a
disjoining operator with an equivalent tree that is free of
disjoining operators, but is bigger in size. An inequality
operator is replaced by a disjunction of relational operators,
which unfortunately is a complete tree with twice the
number of leaf nodes than the original. The size complexity
is exacerbated by the modified graph’s conjunction of dis-
junctions structure. Performing a brute-force restructuring
process to convert this graph into a disjunction of conjunc-
tions through the use of DeMorgan’s Theorem produces a
graph that is exponential in size in terms of the number of
disjoining operators. This size complexity may quickly
becomes a burden, because restructuring involves an expo-
nential runtime complexity, and soon thereafter becomes a
limitation because it may easily consume all available
memory.

[0190] FIG. 15 illustrates an example CDG produced by
the “when others” block of a case statement for signal A,
such that the guards for the case statement’s two explicit
cases are: (i) “when 1” and (ii) “when 3”. FIG. 15 area (b)
illustrates the restructured CDG (with no optimization)
using the method described earlier. The next step is to
estimate the size of the restructured CDG that represents the
control requirements for the “when others” block of a case
statement with n explicit cases.

[0191] For a case statement with n explicit cases, the
“when others” block will have a guard that is a conjunction
of n inequality operators. Each inequality operator is
replaced as follows: (A=B)—((A<B) OR (A>B)). So a
conjunction of n inequality operators will be a conjunction
of disjunctions, and each disjunction will have 2 operators.
An example of this conjunction of disjunctions is ((A<1) OR
(A>1)) AND ((A<3) OR (A>3)) AND ((A<4) OR (A>4)).

[0192] Next, DeMorgan’s Theorem is performed to propa-
gate the OR operators above the AND operators starting at
the end of the tree. The operators in each disjunction will
typically be duplicated many times as they are being placed
into conjunctions (distributive property). Every conjunction
in the final tree will have one relational operator from each
original disjunction, and hence, each conjunction will have
n operators. In order to determine how many operators there
are in the final tree, we need to determine the number of final
conjunctions; in other words, how many combinations we
can have such that exactly one relational operator is taken
from each original disjunction (either > or <). For each
original disjunction, there are 2 choices, and since there are
n original disjunctions, then there are 2" possible combina-
tions. With 2% conjunctions in the final tree and each con-
junction having n operators, there are nx2" operators. Each
operator has 2 leaves, so there are nx2™*! leaves. Since a
complete tree with k leaves has (2k-1) nodes and since the
OR-AND part of the CDG is a complete tree, then the
overall CDG has a total of (3n+2)x2"-1 nodes. FIG. 19
shows the exponential runtime of the solver due to the
brute-force restructuring process discussed in this section,
under the line labeled Reduce None.

US 2007/0294655 Al

[0193] 2.4.3. Selected Optimizations for Solving CDGs
[0194] 2.4.3.1. Unconditionally False Sub-Trees

[0195] In one embodiment of the present invention, some
CDG sub-trees can be removed early in the restructuring
process because they evaluate to false. These uncondition-
ally false sub-trees can be identified by attempting to force
a Boolean true value onto any Boolean operator or relational
operator. A sub-tree will only be able to satisfy the true value
if the range of values imposed onto all identifiers at that
sub-tree intersects with the range of values imposed on
corresponding identifiers at all other sub-trees of the same
conjunction. These operators will return a value of SUC-
CESS if successful, and will return a value of FAIL other-
wise.

[0196] Applying DeMorgan’s Theorem to propagate a
Boolean OR operator above a Boolean AND operator begins
with a CDG sub-tree rooted at a Boolean AND operator and
results in an equivalent sub-tree that is rooted at a Boolean
OR operator. In order to optimize restructuring a CDG, we
had the Boolean AND operator perform a reduce() opera-
tion on the sub-tree rooted at the Boolean OR operator that
was generated by applying DeMorgan’s Theorem. This
reduce() operation recursively travels down to all relational
operators and attempts to force a true value onto these
operators. It replaces any of these relational operators with
a Boolean false literal if a FAIL value is received in return.
The reduce() function reduces Boolean AND and Boolean
OR nodes that are connected to a Boolean literal (an
unconditional value) accordingly as it recursively returns
back to the node it was called on. This optimization effec-
tively reduces the size complexity of the restructure process.
FIG. 16 depicts the graph of FIG. 15 after it is restructured
using this optimized function. This optimization can make
the runtime complexity of the restructure process feasible, as
it allows pStates for most common constraints to be solved
much more quickly.

[0197] However, a complex data dependency on a con-
straint will identify a series of signals whose value may
depend on the circuit’s architectural state. Such a data
dependency may force the ATVG unit to analyze the same
control requirements a series of times, once for each iden-
tified signal. If all of these identified signals are dependent
on a large explicit FSM, the large case statement that
implements the FSM can be analyzed a series of times. This
can multiply the computation time demonstrated by the
second graph of FIG. 19 (labeled Reduce False), and may
render the runtime complexity of the restructure operation to
be unacceptable.

[0198] 2.4.3.2. Unconditionally True Sub-Trees

[0199] One embodiment of the present invention further
optimizes the restructuring technique by detecting and
removing early in the restructuring process sub-trees that
evaluate to true. Such unconditionally true sub-trees can
occur when a comparison on an identifier does not reduce
the range of values imposed on that identifier. FIG. 17
illustrates the additional reduced graph that results for the
example from FIG. 15.

[0200] Enabling a reduce() operation to identify sub-trees
that are unconditionally true can involve modifying a dyadic
operator’s method of solving its sub-tree. Now, a sub-tree
returns EXPENDABLE if it is unconditionally true, returns

Dec. 20, 2007

FAIL if it is unconditionally false, and returns SUCCESS
otherwise. An operator is EXPENDABLE if its child(ren)
is(are) expendable, returns SUCCESS if no data contradic-
tion is encountered, and returns FAIL otherwise. An identi-
fier is EXPENDABLE if the range of values imposed onto
it encapsulates the range of values imposed onto the same
identifier at a different sub-tree of the same conjunction,
returns SUCCESS if the range of values imposed onto it
intersect the range of values imposed onto the same identi-
fier at a different sub-tree of the same conjunction, and
returns FAIL otherwise. Similarly, a literal returns
EXPENDABLE if the range of values imposed onto it
matches its value exactly, and returns FAIL otherwise. FIG.
18 illustrates how a relational operator can be reduced based
on whether it is unconditionally true or unconditionally
false.

[0201] 2.4.3.3. Optimization Results

[0202] The optimizations discussed above effectively
reduce the size complexity and runtime complexity of the
restructure process. FIG. 19 illustrates a set of sample CDG
optimization results for the graph of FIG. 15 after it has been
restructured using the optimized reduce() function.

[0203] Performing the reduce() operation during the
restructuring process results in two significant advantages.
First, it allows a pState to be solved efficiently. Second, a
pState’s implications on the circuit’s set of internal signals
and primary inputs will have been identified once the
restructure process terminates. As was mentioned earlier, the
restructure process calls the reduce() function on a sub-tree
that was modified via DeMorgan’s Theorem. It does this as
a way to reduce this sub-tree before it performs DeMorgan’s
Theorem at higher levels in the graph (and thus, propagating
the OR operators to the top of the tree). Calling reduce() can
have the productive side-effect of forcing all conjunctions
within that sub-tree to identify the range of values for all
identifiers within it. This optimizes the solver because
sub-trees are solved and reduced when they are small, and
conjunctions that are joined into a greater conjunction via
DeMorgan’s Theorem can have any data contradictions
immediately exposed based on each sub-graph’s previously
solved range in values.

[0204] 2.4.4. Generating a Prospect Code Path

[0205] As previously mentioned, an activation criteria
denotes a collection of signal instantiations and a corre-
sponding set of values that these signals satisfy. These
activation criteria are used as the initial set of ATVG goals.
Before attempting to identify the sets of implications that
satisfy the ATVG goals, the search space can be reduced by
first identifying, for each ATVG goal, the basic blocks that
can assign the desired value onto the appropriate signal. For
each of these identified basic blocks, the system can extract
the guards (conditions from condition statements) that allow
this block to be reached and combine the identified guard
constraints to form the set of control requirements. A pros-
pect code path is defined as one of the many assignment
statements that may be able to satisfy an ATVG goal’s
constraint, such that the assignment statement can be
reached when the identified control requirements are satis-
fied. A prospect code path for an ATVG goal includes: (i) the
constraints to be satisfied, (ii) an RTL assignment statement
that can satisfy the constraint, and (iii) the control require-
ments that allow its corresponding assignment statement to

US 2007/0294655 Al

be reached. A prospect code path can be conceptualized as
one of many possible high-level cones of logic (local to a
module) for a given signal or variable. Note that generating
a prospect code path for an ATVG goal is performed
independently of all other prospect code path generations for
other goals, and need only consider the scope of the module
in which the ATVG goal exists.

[0206] In one embodiment of the present invention, the
system implements the environment that extracts the pros-
pect code paths for a given module by creating a statement
tree (illustrated in FIG. 20) that preserves the structural
integrity of all statements in the module and is able to
provide an absolute path and control requirements to a given
statement. Such a tree can be implemented by a collection of
StatementList nodes that each includes a series of statements
and the control requirements that allow these statements to
be reached. The root level only includes the concurrent items
in the module, and thus does not impose any control
requirements. Any of these concurrent items can be a
statement outside of process declarations, or they can be a
process declaration. All other levels include sequential
items. A process is created into a sequential node by insert-
ing all statements in the order in which they appear, such that
a child StatementList node is created for any nested condi-
tion statements and a link to it is inserted in its place.
Conditional assignment statements that exist outside of a
process can themselves be converted into a process for their
implementation, which allows the prospect code path for
such a statement to be extracted in the same way as an
assignment statement in a process.

[0207] A process can be spawned to convert an assignment
statement into a prospect code path as follows: If the
statement references a non-shared variable, then the scope of
this variable is expanded by inserting the previous assign-
ment statement to that variable within the current code path.
Shared variables are typically not supported because of their
nondeterministic behavior when multiple processes modify
the same shared variable at the same simulation iteration. If
the statement includes an internal signal, then the scope of
this signal is expanded by inserting any assignment state-
ment to it. There may be numerous assignment statements
whose control requirements do not conflict with those of a
selected prospect code path, so a new prospect code path
needs to be generated for each of these alternatives.

[0208] The microprocessor program segment illustrated in
FIG. 21 updates the value to a program counter (pc) register.
This is the only location in the microprocessor implemen-
tation where the PC register is written to, and the initial CDG
generated for the signal pc is illustrated in FIG. 22. Note that
temppc and tempof are both variables, and that the assign-
ment statement to signal pc lies at the end of the process.
Therefore, when generating the CDGs for an ATVG goal on
signal pc, any assignment to temppc and any assignment to
tempof earlier in the process may be used as long as their
control requirements do not conflict. The complete set of
prospect code paths for an assignment to signal pc is
generated and the resulting eight CDGs are illustrated shown
in FIG. 23.

[0209] The leaf nodes of all the CDGs in FIG. 23 are
constants, signals corresponding to registers, or primary
input signals. Any of the prospect code paths deduced from
these eight CDGs may be used to satisfy the ATVG goal on

Dec. 20, 2007

signal pc, but some choices are better than others. Inspection
can be used to determine that CDGs (e) and (f) in FIG. 23
may be used in sequence to effectively satisfy a constraint on
signal pc, primarily because they have access to primary
input signals. These eight CDGs represent the first step
towards satisfying a constraint on signal pc because the
control requirements still denote dependencies on internal
signals (i.e., the pc_ctrl control signal). FIG. 24 illustrates a
pictorial description for a prospect code path from an
arbitrary statement a.s[3 when the condition y is satisfied.

[0210] 2.4.5. Generating Prospect States

[0211] At this point, the system has for each constraint a
collection of prospect code paths that are capable of per-
forming the desired signal assignment. Each of these code
paths has a collection of control constraints that need to be
satisfied in order for the corresponding assignment statement
to be reached. It is possible to narrow down the search space
into a collection of target microprocessor states that can
possibly satisfy the complete set of constraints. A prospect
state (pState) can be defined as an architectural state that can
satisfy a given set of simultaneous constraints. It can be
conceptualized as one of many possible high-level cones of
logic that satisfies a set of constraints across module bound-
aries. A set of pStates can be generated by cross-referencing
the sets of control requirements for all ATVG goals to
identify all combinations of prospect code paths that can
satisfy the ATVG goals without resulting in a contradiction
between control requirements.

[0212] Mutants will typically have multiple constraints as
their activation criteria that need be satisfied simultaneously.
The set of constraints can reside in distinct module instan-
tiations within the circuit implementation, but each of the
prospect code paths has a scope that does not reach past its
module instantiation. Each pState serves as a specific focal
point for the constraint solver such that every constraint’s
relation to the set of internal signals and primary inputs are
directly specified by a unified CDG. It has been previously
stated in this section that each module instantiation includes
a statement tree and references to all its embedded modules.
Therefore the collection of pStates can be generated as
follows: Each module instantiation is responsible for creat-
ing a prospect code path for every constraint that resides
inside itself. It is also responsible for generating the com-
plete set of pStates from the set of prospect code paths that
reside inside itself; these pStates have a domain that does not
surpass its module’s scope.

[0213] Each module instantiation uses the pStates it
receives from its children to generate the pStates at its level
of scope. When a module instantiation receives a pState
from any of its children, it will first replace the child
module’s primary input (PI) signals with the corresponding
local signals as specified by the port map. Then it will
continue to expand the scope of the internal signals in the
pState until all signal references reach its primary inputs or
any register; a process substantially similar to the generation
of prospect code paths described previously. After this, it
creates a cross-product of the pStates from its child with its
own (if any exist) into an expanded set of pStates. It does
this by merging the data dependencies and control require-
ments from all its local pStates with those of all its child’s
pStates to generate all acceptable merges. Once it merges its
local pStates with those of all its children, each of these

US 2007/0294655 Al

pStates encompass all constraints that lie at or below this
point in the module hierarchy.

[0214] Inone embodiment of the present invention, pState
generation is optimized through concurrent programming.
Each prospect code path can be generated by an independent
thread because they are independent of all other prospect
code paths by definition. Furthermore, the creation of
pStates local to a nested module can be implemented by
having each process that generates a prospect code path
transfer control into a merge() operation local to its module.
This merge() operation will merge the prospect code path
into its local node such that the local partial pStates are
accessed through mutual exclusion. Once the final merge()
operation of a nested module has finished executing, it will
transfer control to the parent module through the use of that
module’s merge() operation.

[0215] 2.5. High-Level ATVG

[0216] Previous sections described MVP’s mutation-
based simulation strategy that provides valuable coverage
analysis in real-time. Given a coverage metric that has been
instantiated through a complete collection of mutants,
MVP’s concurrent mutant simulation system can efficiently
keep track of the effects imposed onto the circuit by millions
of these mutants. For the sake of progress, these mutants are
removed from the simulation once they are propagated to
any pre-designated observation point. When this happens,
the mutant has been “killed.” Through this simulation sys-
tem, the objective becomes to expose and kill as many of
these mutants as possible, because the outcome is an input
sequence that has a proven high coverage of the circuit under
verification. The described simulation strategy is enhanced
by the use of the efficient and effective constraint solver,
which is made up of a set of deterministic circuit analysis
methods.

[0217] In one embodiment of the present invention, the
system exploits MVP’s simulation and circuit analysis abili-
ties to generate an input sequence that exposes an optimal set
of mutants after every ATVG iteration. The system extracts
ATVG goals from simulation statistics to expose an effective
set of mutants, and then efficiently navigates through a
circuit’s finite state machine (FSM) to satisfy the ATVG
goals.

[0218] 2.5.1 Identifying the Most Effective ATVG Goals

[0219] In one embodiment of the present invention, the
system takes advantage of the previously-described cluster-
ing-and-partitioning data structure by using an ATVG tech-
nique that gives priority to any partition whose activating
input sequence has the possibility of stimulating the most
mutants. This technique focuses ATVG efforts on maintain-
ing the number of active mutants at its highest possible
value, which correlates to generating an input sequence for
the partition with the greatest number of undetected mutants.

[0220] FIG. 25 illustrates pseudocode describing the steps
in each ATVG iteration. These steps aim MVP’s ATVG
efforts at the activation criteria with the highest density of
undetected mutants (deterministic-activation), and only per-
forms deterministic-propagation in the case where probabi-
listic-propagation is insufficiently effective. Line 1 sorts the
list of partitions into the order of descending member size to
ensure that any unsuccessful attempt to generate an input
stimuli for a partition P is followed by an attempt on the next

Dec. 20, 2007

best partition during the subsequent iteration of the while
loop. Line 6 attempts to generate an input sequence that
activates an inactive mutant in P, and any failed attempt
results in the removal of that mutant from P (fault dropping).
These dropped mutants are marked as unexcitable. Line 10
handles the case where the activation criteria for the parti-
tion P are already met, which is expected to happen when-
ever probabilistic propagation on the set of active mutants
from P is insufficiently effective. Therefore line 10 is used to
generate an input sequence that propagates an active mutant
in P to a primary output, and any failed attempt results in the
removal of that mutant from P. These dropped design errors
are marked as undetectable.

[0221] At the start of the ATVG effort, deterministic
activation on the dominant partition detects enough mutants
from this partition so as to demote it from its dominant
status. The probabilistic-propagation technique continues to
be effective for as long as there are enough mutants with
simple propagation requirements. Whenever the ATVG-
ITERATION technique encounters a partition that has an
insufficient number of mutants with simple propagation
requirements, the deterministic activation iteration can be
followed by a deterministic propagation iteration on the
same dominant partition.

[0222] 2.5.2. FSM Analysis in Input Sequence Generation

[0223] In one embodiment of the present invention, a
control-based coverage metric can be generalized so that an
identifier is only dependent on a subset of a microproces-
sor’s internal registers. This allows an RTL implementation
to be decomposed into a set of interacting FSMs, such that
one FSM is generated per internal register. Given a set of
simultaneous constraints, a corresponding pState can be
used to identify the set of registers (and their corresponding
target values) that help satisfy these constraints. Thus, the
final step in automatic test vector generation traces the target
values for these registers to the reset state by analyzing their
corresponding FSMs.

[0224] Analyzing the solution space for multiple simulta-
neous FSMs is substantially similar to the problem of
analyzing the solution space for multiple simultaneous con-
straints, such that contradictions cannot exist in the control
values of the solution space. For multiple simultaneous
FSMs, the control values that define the state transition of
one FSM cannot contradict the control values that define the
state transition for any other FSM in the same time frame.
Even though this inter-dependency between FSMs does
complicate the ATVG problem, it can be exploited to iden-
tify contradictions early in the search process, substantially
similar to the generation of a pState.

[0225] Finite state machines can be implemented as a
directed graph, such that each state transition can be repre-
sented by a function y=09(s, x). In this function, y represents
the next state, s represents the current state, and X represents
the input to the FSM. By using pStates, we can convert a set
of simultaneous constraints to a target state y', and we can
identify the internal signal values s and primary input values
x that allow y' to be reached. This allows us to generate an
input sequence by stepping backwards in time starting at y'.
All FSM graph edges have equal weight, thus we are limited
to employing either a depth-first-search (DFS) or a breadth-
first-search (BFS) technique when generating an input
sequence for a single FSM that maps some target state y' to

US 2007/0294655 Al

the current state s'. A BFS technique guarantees to provide
the shortest input sequence, but typically involves using a
significant amount of extra memory to store all pending
paths being searched as multiple paths are explored simul-
taneously. Therefore a simple starting point can try to
implement the FSM search technique using a DFS tech-
nique, such a maximum path length 1 is specified to elimi-
nate lengthy solutions and limit the search space.

[0226] This DFS technique can be adapted to support
multiple simultaneous FSMs, as shown in the pseudocode
illustrated in FIG. 26. In FIG. 26, TS holds the input
sequence that will be returned, Y holds the constraints to be
satisfied (target state), S returns the control requirements that
satisfy Y (previous state to Y), and 1 is the size limit to the
instruction sequence. This multi-FSM DFS function gives us
the advantage of only searching the relevant portion of a
microprocessor’s FSM, as it allows an input sequence to be
generated using a subset of the microprocessor’s internal
signals. This technique continues to satisfy the target con-
straints in Y until Y=0, identifying the constraints that
define the previous state S in the process.

[0227] Each target constraint in Y is satisfied by a state-
ment in the HDL code as depicted in FIG. 27. The constraint,
v, is first inserted into the pState’s guard CDG to ensure that
the statement is a possible triggered event. If the guard’s
CDG has not evaluated to false, then the statement is
inserted into the pState as follows. First, the target identifier,
a, is bound with the justification constraints (events CDG in
the pState) to attain the corresponding constraint’s value.
After which, the statement’s CDG is solved to allow the
identifiers in [to attain the possible solutions that allow «
to satisfy the constraint. After the statement’s CDG is
solved, the solutions to [} are inserted into the guards that
denote the next justification problem. Satisfying a propaga-
tion constraint follows a substantially similar process,
except the information flow travels from the guards towards
the events as is done during normal circuit simulation.

[0228] In a single time frame, an example scenario for the
multi-FSM DFS function would look as depicted in FIG. 28.
In this example, there are three target registers {R;, R,, R;}
and three corresponding target values {y,, v,, v5}. The
objective is to find an incoming transition for each corre-
sponding FSM {8(s,, X;), 8(s5, X,), 8(s5, X5)} such that the
control requirements for each transition do not contradict
one another (x; Nx,MNx;=). After backtracking six times in
this example, a final solution set {3(s, 5, X;), 8(S52, X55),
8(sa1, Xs,)} is found. This portion of the technique is
implemented in lines 3-11 of FIG. 26. The FOR loop of line
5 continues to explore all possible incoming transitions for
constraint v until a solution is generated, a data conflict is
exposed, or the search space has been exhausted.

[0229] Analyzing the multi-FSM DFS function across
multiple time frames, an example scenario would look as
depicted in FIG. 29. In this example, we begin from the right
with two signal constraints {Sig,=y,, Sigg=y,} whose data
dependency is mapped to three internal signals or registers
{R,=y,, R,=y,, Ry=y;} by a specific pState. From here on,
the multi-FSM DFS function identifies for each register an
incoming transition that is compatible with all other regis-
ters’ incoming transitions, such that all transition informa-
tion (3(s, x) (in FIG. 29) is combined to define the control
space (S, in FIG. 26) for that specific time frame. This

Dec. 20, 2007

control space includes a set of register values and primary
input values, and thus defines the state space for the previous
time frame.

[0230] At some intermediate time frames, the control
space will introduce a dependency on a new register (i.e.
introduction of R,@t=2, R;@t=1 in FIG. 29) whose FSM
will also need to be analyzed. Similarly at some other time
frames, this control space will no longer denote a depen-
dency on a specific register (i.e. absence of R;@t=0 in FIG.
29); this can happen at time frames when a data register is
assigned the needed data value. Once the current architec-
tural state is reached, the recursive multi-FSM DFS function
reports the primary input values in chronological order as it
returns; reporting a input sequence {X,, X;, X,} in the case
of FIG. 29.

[0231] 2.5.3. Generating an Input Sequence Using Pros-
pect States

[0232] Careful analysis of the multi-FSM DFS function of
FIG. 26 reveals that lines 3-11 simply map a constraint set
Y to any constraint set S, such that satisfying S results in Y
as the next state; notice this is the inherent purpose of a
pState (prospect state). This knowledge allows the multi-
FSM DFS function to be modified to use pStates when
generating an instruction sequence, resulting in the updated
pseudocode illustrated in FIG. 30, which is easier to under-
stand and works well with the definition and implementation
of a pState.

[0233] In line 4 of FIG. 30, a set of constraints (target
state) is converted into a pState. This pState has a defined set
of target events, and needs to have the control requirements
that trigger these events be identified and solved. Line 4
solves this pState as discussed in previous sections, and
stores all possible solutions into the set P. We only need to
use one solution in P, therefore the FOR loop starting at line
5 continues to iterate until a solution is found or all entries
in P have been explored. To explore the previous time frame,
the control requirements from the current pState t are passed
as the constraints to the next recursive call to the multi-FSM
DFS function. Once the reset state is reached (lines 2 and 3
of FIG. 30), the recursive multi-FSM DFS function reports
the input sequence in chronological order in (lines 8 and 9
of FIG. 30) as it returns.

[0234] 2.6. Real-Time Circuit Profiling

[0235] The previously-described techniques can provide
an effective ATVG system that is capable of exposing
complex circuit design errors.

[0236] However, such methods, when used alone, may be
burdened by the analysis of irrelevant HDL code segments,
and by the traversal of already-explored architectural states.

[0237] In one embodiment of the present invention,
MVP’s run-time performance is improved by implanting
mechanisms that enable it to learn important details of the
circuit under verification as a way to avoid irrelevant circuit
scenarios. These mechanisms can exist as a pre-processor
that gathers circuit information prior to the circuit verifica-
tion process, or can also exist as run-time entities that allow
MVP to learn from its experience. The following sections
describe various learning strategies that may be utilized by
the pre-processor as well as at run-time, along with their
contributions. These circuit analysis tools allow MVP to

US 2007/0294655 Al

learn how to prune the search space as it verifies a hardware
description, and impact MVP’s memory requirements as it
continues to learn.

[0238] 2.6.1. Pre-Processor Circuit Profiling

[0239] A pre-processor to MVP’s circuit verification pro-
cess typically is a lightweight task that provides MVP with
valuable insight capable of directing its ATVG process
towards a solution. It is because of this low-overhead
demand that the pre-processor should not attempt to solve
actual constraints, but rather solve early the sub-problems
that provide MVP with the most valuable information.
Instead of analyzing the implications that the circuit has onto
each statement in the hardware description as is done in the
real-time circuit analysis process (shown in FIG. 31A), the
light-weight circuit profiler for the pre-processor can instead
analyze the implications each statement has onto the overall
circuit (as shown in FIG. 31B).

[0240] 2.6.1.1. Assignment Statement Profiling

[0241] Many assignment statements in a hardware
description simply transfer a constant value onto an identi-
fier. This is particularly true for enumeration data types, as
they are commonly used to explicitly control an FSM.
Previous sections discussed how a constraint can be solved
by exploring all relevant assignment statements that can
satisfy its unresolved data implications. Doing this involves
instantiating a pState for each constraint for every prospect
code path (assignment statement) that resolves it, instanti-
ating the assignment statement and control requirements for
each pState in the form of a CDG, inserting this CDG into
the pState, and re-solving these pStates to reduce the CDG
and to remove all pStates that cannot exist in the hardware
description.

[0242] Therefore, whenever attempting to satisfy a con-
straint (especially when it is dependent on an enumeration
data type), this solver process will be repeated for a great
deal of assignment statements that cannot help satisfy the
constraint. Much of this dead-end work can be prevented by
taking advantage of the previously-described statementList
data structure to index each assignment statement with the
identifier value implications that it has onto the hardware
description.

[0243] This indexing process can be easily and efficiently
performed by using MVP’s available resources. Satisfying a
constraint involves MVP first converting the assignment
statement being considered into a CDG and then solving the
CDG (as described in previous sections). Solving this CDG
provides every identifier within every conjunction with the
explicit range in values that satisfies this assignment state-
ment only. Therefore to profile this specific assignment
statement, the data implications it imposes onto the circuit
are extracted directly from the identifiers within the solved
CDG.

[0244] 2.6.1.2. Implicit Memory Profiling

[0245] For complete circuit analysis, MVP typically needs
to explore all signals in the hardware description in search
for implicit memory elements. In certain cases, MVP may
have to postpone resolving a specific constraint until later in
the ATVG process; this can only be done if MVP has
knowledge of which signals can retain their value across
time frames, and how it can be done. MVP identifies these

Dec. 20, 2007

implicit memory elements by negating the explicit guards to
all assignment statements onto the signal being analyzed,
and inserting them into a single conjunction (unified by
Boolean AND operators). This process exploits MVP’s
efficient CDG solver, and a CDG that does not evaluate to
false signifies an implicit memory element. This process
therefore takes all implicit memory elements, and defines
them explicitly by creating an entry for a corresponding
memory-preserving assignment statement within the state-
mentList data structure where the solved CDG denotes the
memory-preserving condition.

[0246] 2.6.1.3. Basic-Block Guard Profiling

[0247] When a data contradiction is encountered when
solving a constraint, the contradiction typically arises from
the union of the guards in the multiple prospect code paths.
That is, the guards gathered from satisfying the constraint of
a current unresolved identifier will more than likely conflict
with the guard of a previously resolved identifier in the
constraint. Experiencing an identifier value contradiction
within the guard of a basic block is significantly more costly
than experiencing a contradiction within the statement itself
because the aggregated guards leading up to a basic block is
larger in most cases than any of the assignment statements
in that basic block, and this guard is repeatedly utilized by
all statements within the basic block. Therefore the perfor-
mance of this guard profiling pre-processor is typically
slower than that of the assignment statement profiling pre-
processor, but the runtime performance advantage it pro-
vides can be equally as significant.

[0248] It is possible to take advantage of the statementList
data structure once again to hold pre-solved identifier values
from the guards to every basic block. Having a pre-solved
CDG for a statement’s guard facilitates identifying the
statements in the hardware description that obviously cannot
satisfy a specific constraint. Also, performing this pre-
processor step that evaluates the guard information to every
basic block allows MVP to identify all statements in the RTL
code that obviously cannot be reached by identifying the
guards that evaluate to false.

[0249] This process of indexing all leaf statementList
nodes with the solved identifier values to its guards can be
performed as a pre-processor or at run-time. Given that MVP
already analyzes all identifiers to expose implicit memory
elements, which involves evaluating the guards to all state-
ments, it can implement this basic block guard profiler as a
part of the pre-processor. For any given statementList node,
MVP can obtain the guard information that allows that entry
to be reached by appending its guard to those of all its
ancestor nodes. MVP can take advantage of the fact that the
guards are distributed throughout the statementlist tree
(FIG. 20) by gathering the list of solved identifier values at
each node, and recursively providing a copy of this list to all
its children so they may append onto it.

[0250] This recursive process to obtaining guard informa-
tion includes two important advantages. The data-sharing
nature of this recursive process allows it, as a pre-processor
that starts at the root statementList node, to reduce the
amount of redundant work that would be performed if it
were to be executed at run-time starting at a leaf node. In
other words, a value contradiction encountered within the
guard of a non-leaf statementList node will nullify all
statements residing as its children. The second advantage is

US 2007/0294655 Al

that it can identify all unreachable basic blocks within the
hardware description without having to analyze all basic
blocks. As shown in FIG. 32, an identifier value contradic-
tion exposed within the guard of an internal statementList
node will automatically denote all the statements in its
sub-tree as unreachable as well.

[0251] Unreachable blocks commonly exist within CASE
statements. It is human nature to be cautious, and that
encourages engineers at times to create a CASE statement
with a “when others” clause that assigns default values to all
control signals even though all possible cases have been
handled explicitly. Because all explicit cases are imple-
mented, the “when others” clause will never be executed.
MVP attempts to satisfy a constraint by starting at all
relevant assignment statements, even if such an assignment
statement exists within an unreachable basic block of the
hardware description. Analyzing these unreachable state-
ments is futile because their guards evaluate to ‘false’.

[0252] As discussed previously, a worst scenario for gen-
erating a CDG can occur when analyzing the “when others”
clause of a large CASE statement, because its guard is the
conjunction of all negated guards to all explicit cases.
Therefore, if all unreachable basic blocks are allowed to be
re-analyzed, MVP’s runtime performance could be degraded
by the overhead of creating a pState of the constraint being
solved, converting the large guards to these “when other”
clauses into a CDG, and performing the costly restructure
and solve process to this CDG that evaluates to “false’. It is
therefore important that all unreachable code statements be
flagged and ignored.

[0253] 2.6.2. Runtime Circuit Profiling

[0254] In one embodiment of the present invention,
MVP’s run-time circuit verification process is a complete
task focused on exploring uncharted territory within the
processor. In an ideal problem, it would be possible to travel
throughout a hardware description’s architectural state space
without retracing one’s steps. Unfortunately, 100% finite
state machine (FSM) coverage commonly involves a sig-
nificant amount of redundant state exploration. Therefore as
MVP gets further into its verification process, it is forced to
retrace more of the previously explored state space in order
to reach the target architectural state that defines the ATVG
goal. Also, there are many architectural states that have a
high occurrence frequency as they are a precursor to a wide
range of other architectural states. Thus, retaining some of
their pre-solved information can optimize MVP’s perfor-
mance in the long run. This section focuses on the run-time
circuit profiling efforts that can allow MVP to breeze
through the already-explored state space when attempting to
satisfy a unique ATVG goal.

[0255] 2.6.2.1. FSM Profiling

[0256] The previous section discusses practical pre-pro-
cessor methods for gathering circuit information that can
prevent MVP from analyzing irrelevant circuit scenarios,
and can speed up its analysis of previously explored assign-
ment statements through pre-generated circuit information.
Its scope lies within the realm of a single time frame of the
ATVG effort with its microscopic focus of optimizing the
analysis of individual statements. Another type of profiling
has equivalent objectives, but has a scope across multiple
time frames with a macroscopic focus of optimizing the
analysis of the implicit finite state machine.

Dec. 20, 2007

[0257] The previous section introduced the theory behind
a finite state machine described by y=0(s, x), where a target
state y can be reached from state s when the FSM’s inputs
are X. When the target state y can be reached by multiple
states s, . . . s,, we can use a weight scheme such that the
state s with the lowest weight provides MVP with two
advantages:

[0258] i. When the pStates have never been explored
(thus they are un-indexed), it will allow MVP to choose
the state s with the least number of constraints that will
need to be satisfied at the subsequent ATVG iteration.
If the reset state is among the set, it will be character-
ized by the lack of constraints that need a subsequent
ATVG iteration, therefore resulting in a weight of zero.

[0259] ii. When any of the pStates has been previously
explored, its weight will be lower than all unexplored
pStates, and will provide MVP with guidance towards
the reset state as all subsequent pStates will continue to
have lower weights.

[0260] Implementing this weight-assigning process
involves modifying the multi-FSM DFS function of FIG. 26
as depicted in FIG. 33. Line 5 now selects the optimal
candidate for the next ATVG iteration by selecting the pState
with the lowest weight. If the selected pState has a weight
of zero, the previous recursive call to the multi-FSM DFS
function has its length value 1 updated to zero on line 7, and
it is returned SUCCESS signifying that the reset state has
been reached on line 8. The previous recursive call to the
multi-FSM DFS function will then be in charge of updating
the weight values on line 10, incrementing the weight for its
previous recursive call on line 11, and then commencing as
usual.

[0261] One goal of exploring a finite state machine, as
mentioned previously, is to generate an input sequence that
maps the hardware description’s architectural state from its
reset state onto any architectural state that satisfies the given
set of constraints. This process begins at the target archi-
tectural state, and continues to traverse the circuit backwards
in time until the reset state is reached. A hardware descrip-
tion is characterized by the inter-dependent FSMs from all
of its internal registers, and developing a macroscopic
understanding on the overall FSM will involves understand-
ing all possible state combinations (the cross product) from
all these smaller inter-dependent FSMs. We can therefore
simplify the FSM profiling task by placing our focus at the
individual FSMs for each register as they make up the
building blocks for the overall FSM. Actually, MVP does not
need to make a distinction between internal signals and
internal registers during runtime FSM profiling because the
implementation described below is broad enough to not
require such an explicit distinction.

[0262] One objective in performing FSM profiling on the
overall circuit is to achieve the profiling tasks on the
individual FSMs, and employ a mechanism that translates
this low-level FSM profiling information into a circuit-wide
FSM profiler. This concept may be tricky, some embodi-
ments of MVP do not manage these FSMs explicitly. Some
embodiments of MVP can include the mechanisms that
allow it to build and analyze these interacting FSMs explic-
itly, but that might involve performing another level of
computations that should not be necessary. Note that MVP’s
strength is in its ability to analyze the circuit under verifi-

US 2007/0294655 Al

cation by focusing on the source code, and it is possible to
exploit MVP’s source code database of the circuit under
verification to achieve similar circuit profiling results.

[0263] The low-level circuit analysis is meant to account
for the many inter-dependent FSMs, and so it therefore
analyzes the FSM associated with each identifier that may
(or may not) represent an internal register. One embodiment
of MVP uses a construct entitled as an identifierSet, whose
purpose it is to keep track of every location that each
identifier is assigned a value onto. One objective of this
construct is to optimize generating all possible pStates from
a given identifier constraint by having the sources to all
possible solutions be readily available in one set. Therefore,
MVP can use all entries corresponding to a constraint’s
identifier to provide the needed FSM profiling information.
We can exploit the fact that MVP accesses this identifierSet
data structure each time it attempts to use a code path as a
solution by also having MVP leave behind real-time low-
level circuit profiling information whenever it successfully
utilizes this data source to satisty a constraint.

[0264] The aforementioned global FSM profiling effort
interprets the low-level FSM profiling information and iden-
tifies the shortest FSM path that can reach the circuit’s reset
state. Typically the low-level profiling effort is performed
when MVP attempts to use a line of HDL source code for
satisfying a circuit constraint. Therefore, it can be beneficial
to identify which MVP construct is analyzing these lines of
code and could stand to benefit from the low-level profiling
efforts. Looking at FIG. 29, we can see that the resulting
input sequence is generated by instantiating pStates as the
mechanisms that carry the potential solutions as they are
being developed, and thus the pState construct should be
used to manage the global FSM profiling effort.

[0265] In one embodiment of the present invention, the
low-level FSM profiling effort is focused on depositing
information onto each statement in the hardware description
to record its scope and the success it can provide. Con-
versely, the global FSM profiling effort is focused on uni-
fying the information gathered from all statement sources
that represent a given solution as a way to avoid costly or
irrelevant scenarios.

[0266] FSM Weight Indexing

[0267] MVP’s ATVG process can independently find the
reset state through exploration of an FSM, but this alone
may involve much backtracking. We can therefore exploit its
ability to find and detect the reset state by appending the
explored states in each FSM (the explored assignment
statements for the identifier behind the FSM’s register) with
a weight value equal to its distance from the reset state. If
MVP is instructed to generate an input sequence with a
length of at most 1, then we can assign each state an initial
weight>].

[0268] However, the task of assigning weight values to a
processor’s architectural states may not be so straight for-
ward. This is because each pState is influenced by multiple
implicit FSMs, and can be pieced together by several
concurrent assignment statements that successfully satisfy
all simultaneous constraints. MVP, therefore, may not
assigning weight values to explicit architectural states, but
rather assign weights to the assignment statements that were
used to piece them together.

Dec. 20, 2007

[0269] MVP can perform its run-time weight-assigning
process following every ATVG iteration to update each
assignment statement’s resulting distance to its FSM’s reset
state. Any given assignment statement may impact several
distinct architectural states, and thus its weight value may
have multiple sources. For the sake of allowing MVP to
move towards an optimal solution while keeping the ATVG
implementation simple, we can allow each assignment state-
ment to store the lowest weight value it is assigned. Using
a given assignment statement’s lowest assigned weight
value, say w, can be reasonable, because that statement has
the potential of providing an instruction sequence of size w
again in the future. Therefore, giving preference to this
statement over other alternate assignment statements of
higher weight allows MVP to choose the ATVG path with
the highest probability of producing the shortest path to the
reset state.

[0270] pState Weight Estimation

[0271] MVP’s ATVG process presents it with multiple
pStates at every time frame, from which it chooses one
pState with which to attempt and reach the reset state.
Therefore, providing MVP with a weighing scheme for its
pStates can help it easily identity the most effective solution
path. The motivation for extracting a weight value from a
pState is twofold, as mentioned at the start of this section. In
choosing the ideal pState, MVP can first favor those solu-
tions to which a path to the reset state has already been
identified; otherwise it can favor the pStates with the least
number of constraints to justify. These two objectives can be
handled inherently by a single weighing scheme.

[0272] Finding a balance between these two objectives can
involve trade-offs, since the first objective typically involves
solving the pState to extract an accurate weight from the
utilized statements, and the second requires the pState to not
have been solved. Using our FSM weight indexing scheme
where we index each RTL assignment statement with its
known distance to the reset state, we can attain a weight
value to a solved pState because it will then have assignment
statements associated to it that were used to satisfy its
constraints. Thus for the first case, if a pState has not been
solved, then it will not have these assignment statements that
are necessary to estimate its distance to the reset state.
Conversely for the second case, the number of constraints to
resolve in a pState obviously can only be evaluated before
these constraints are resolved.

[0273] In one embodiment of the present invention, iden-
tifying a pState’s weight involves MVP using a unifying
scheme that satisfies both of the preceding objectives. MVP
first solves the pState, and then adapts its weight-assigning
scheme to handle the second case which favors the pState
with the least number of ATVG constraints. It can do this
adaptation by counting the number of constraints that will
propagate into the following ATVG iteration. Estimating the
weight that gives preference to those previously-solved
pStates closest to the reset state can involve multiplying the
number of constraints that need to be resolved in the next
ATVG fiteration by the average weight of the assignment
statements associated to the solved constraints. A pState
whose constraints were solved in a previous ATVG problem
will have assignment statements associated to it whose
weight is lower than the maximum weight, and thus its
average weight will naturally be lower than the maximum
weight.

US 2007/0294655 Al

[0274] Modified ATVG Technique

[0275] MVP’s pState-weighing scheme involves modify-
ing MVP’s ATVG function as depicted in FIG. 34. The
get_previous_timeFrame() function extracts, from a pState
y, all the pStates s that can transition into y. It requires y to
have been solved (have all its constraints satisfied), and it
returns a set of pStates s that are have not been solved. Thus,
the objective of this modification is to ensure that the
multi-FSM DFS() function calls the weight estimation
procedure on solved pStates only, as well as perform weight
indexing using solved pStates only.

[0276] One change that allows us to satisfy our objective
is that the function now expects the alternate ATVG objec-
tives Y to be a previously solved set of pStates. Having Y be
a solved set of pStates allows MVP to immediately use its
weight estimation methods for identifying the ATVG goal in
Y that is estimated to be closest to the circuit’s reset state.
Afterwards, this modification converts the chosen path in Y
into the alternate sets of constraints P that define the pre-
ceding architectural states. If the pState set in P includes the
reset state, then the ATVG iteration is complete. Otherwise
the set in P is solved to define the set of previous time frames
S that can transition into Y, and to define the inputs that
allow this transition to take place. The preceding pStates in
S are themselves justified towards the reset state by invo-
cating a recursive call to the multi-FSM DFS() function.

[0277] 2.6.2.2. Explored State-Space Tracking

[0278] The ATVG function in FIG. 34 will typically
receive, from line 3, pStates that have been traversed by a
previous recursive call within the same ATVG iteration.
When this happens, those pStates should be ignored,
because re-analyzing them will not help the ATVG function
get any closer towards a solution. Ignoring the visited
pStates is both an up-stream and down-stream process.
Preventing the ATVG function from revisiting a pState that
is visited earlier in the same input sequence will prevent the
ATVG function from analyzing FSM loops. Furthermore,
preventing the ATVG function from revisiting a pState that
was visited by a previous input sequence branch that failed
to generate a result will prevent the ATVG function from
analyzing unsuccessful paths more than once.

[0279] These changes to the multi-FSM DFS function are
illustrated in FIG. 35. The multi-FSM DFS function now has
an extra input, VS, that specifies the set of pStates that have
been visited by that ATVG iteration. Line 5 now checks if
the current pState to be analyzed, t, has been previously
visited by that same ATVG iteration. If it has been previ-
ously visited, then line 6 deletes it and allows the subsequent
iteration of the FOR loop on line 4 to analyze the next pState
in the solution set P. If it has not been previously visited, then
line 7 allows the multi-FSM DFS function to store p' into the
visited set VS and proceed as usual.

[0280] MVP can identify if a pState p' has been previously
visited by identifying if p' is masked by the set of visited
pStates in VS. A pState is defined by a set of register and
input identifiers, and their corresponding range in values.
For the purpose of obtaining a clear perspective on when one
pState masks another, one needs to realize that an identifier
missing from a pState signifies that the corresponding iden-
tifier has a complete range in values. In terms of identifiers,
an identifier with a range in values v is masked by a

Dec. 20, 2007

corresponding identifier instantiation with a range in values
v' if and only if (IFF) the range in values for v are
encapsulated by the range in values for v' (vev'). We can
therefore identify if a pState t' is masked by a pState t IFF
the set of identifiers referenced by pState t is a subset of the
identifiers referenced by t', and IFF the range in values of the
identifiers in t encapsulate the range in values of the corre-
sponding identifiers in t".

[0281] 2.6.3. Memory Requirements for Circuit Profiling

[0282] Note that the pre-generated circuit information
does not suffer from the state explosion problem because it
is kept in its basic form with respect to the basic blocks of
the implementation per HDL process. It is not kept as the
permutations and combinations between all processes that
make up a circuit’s state-space. As a result, the memory
requirements for MVP’s learning strategy increase linearly
with respect to an implementation’s code size.

[0283] 2.6.4. Optimization Results from Runtime Circuit
Profiling

[0284] Each of MVP’s ATVG iterations generates an input
sequence that maps any target architectural state to the reset
state during justification ATVG, and generates an input
sequence that propagates a discrepancy in values during
propagation ATVG. Propagation ATVG is typically not as
difficult of a problem as justification ATVG, because it is
more dependent on a circuit’s data path than it is on its
complex FSM. Furthermore, if a path to the reset state has
not been identified, the justification search process is blind.

[0285] MVP’s pState weighing scheme helps it to forecast
the easiest path to the circuit’s reset state by selecting the
pState with the least number of simultaneous constraints (as
described for pState weight estimation). This weight esti-
mation scheme can dramatically improve the run time.

[0286] FIG. 36 illustrates an ATVG search space for an
exemplary design after pState weight estimation. The width
of each bar specifies the number of vectors within a specific
input sequence and the height specifies the number of FSM
time frames that had to be analyzed in order to reach a
solution. The thicker bars correspond to a justification input
sequence while the thin and short bars that appear as
indentations correspond to each propagation input sequence.
This graph illustrates how it is typically much easier to
perform propagation ATVG than it is to perform justification
ATVG; however, the lack of thin and short bars on the right
half of the graph also shows us how later ATVG problems
are plagued by mutants that are difficult to propagate
towards an observation point.

[0287] Another benefit of the pState weight indexing
framework described is that it allows MVP to somewhat
keep track of the shortest path to the reset state (as described
for FSM weight indexing). Comparing the number of time
frames analyzed per ATVG iteration between FIG. 36
(which illustrates the result of pState weight estimation) and
FIG. 37 (which illustrates the results of both pState weight
estimation and FSM weight indexing) shows that reaching
the reset state can be highly optimized by using FSM weight
indexing. FIG. 37 illustrates how the number of time frames
in the typical FSM search space was dramatically reduced.
There are still occasional justification problems that are
difficult to solve, as shown by the large bars around vectors

US 2007/0294655 Al

600 and 1000, but they don’t dominate the problem space
and their solutions contribute to MVP’s FSM learning
process.

[0288] 2.7. Runtime Comparisons

[0289] FIG. 38 illustrates a comparison (for a sample
design) of MVP’s approach to the random methods typically
used to expose circuit design errors, and demonstrates
MVP’s effectiveness in continuously traversing the unex-
plored portions of a circuit’s architectural state-space. More
specifically, FIG. 38 illustrates MVP’s effectiveness at
stimulating mutant peaks, resulting in a continuous mutant
detection rate.

[0290] Consider the simulation results after input vector
700. After this point, MVP has already stimulated every
mutant by activating (or removing) it and is now making a
second pass to attempt in exposing mutants in the remaining
dominant partitions. The ATVG methods perform justifica-
tion (to activate mutants) and propagation (to expose
mutants at an observation point) ATVG as two separate steps
such that mutant propagation always follows mutant acti-
vation. As is shown in FIG. 38, this segregated approach
typically works well for the vast majority of mutants that are
easy to propagate. However, there may be a special class of
mutants that require special values in the data registers as a
precondition to propagation that cannot be predicted by the
justification ATVG algorithm. It is this class of mutants that
reside between MVP’s maximum detected mutant count
(~10,000 mutants) and the absolute maximum of detectable
mutants (12,527 mutants) for the sample design.

[0291] Note that one embodiment of the present invention
can involve joining the justification and propagation ATVG
phases into a single ATVG algorithm that guarantees a
specific mutant is activated and propagated to an observation
point as a means to produce the absolute optimal input
sequence for circuit verification. This technique will affect
the FSM search space (shown in FIG. 37) by allowing more
propagation ATVG iterations to complete successfully at
later time frames, therefore allowing the short and narrow
bars to appear throughout FIG. 37 and not just the first half.

3. Summary

[0292] A common characteristic for random and pseudo-
random ATVG is their tendency to provide new circuit
coverage in bursts. These sudden bursts of productivity in
the verification phase of a circuit design project are a
common phenomenon that plagues the circuit design indus-
try. It is common that circuit design teams become con-
vinced that their design is close to being fabrication-ready
because subsequent verification iterations continue to
expose less critical bugs, only to have a later verification
iteration expose a large dose of previously undetected criti-
cal bugs. If this large dose of critical bugs could have been
stimulated and catalogued at some earlier verification itera-
tion, it could have been fixed earlier and required less
time-consuming verification iterations.

[0293] Given that a hardware description is constantly
changing during the circuit development process, a circuit
implementation becomes a moving target for circuit verifi-
cation. Therefore, the most complicated aspects to circuit
verification are the problems in identifying where one needs
to perform circuit verification, and in identifying how much
circuit verification is enough.

Dec. 20, 2007

[0294] In one embodiment of the present invention, a
verification system provides a complete circuit verification
system for exposing complex design errors in modern hard-
ware descriptions. This system utilizes circuit analysis tech-
niques to automatically generate a complete collection of
mutants around a set of control points to implement a
control-based coverage metric. A mutation-based circuit
simulator allows the system to monitor and manage all
mutants simultaneously. These abilities enable the system to
automate the tasks of identifying and monitoring all the
circuit locations that need to be verified for correctness at
every point in the verification process.

[0295] The system’s circuit analysis abilities also enable
generating deterministic input vectors that are focused at
stimulating an unexplored portion of the circuit. The system
utilizes a mutant database to identify the circuit scenario that
has the highest probability of containing a design flaw, and
automatically generates an input sequence that targets such
a circuit scenario. These input vectors produce a coverage
pattern that is more consistent and predictable than random
input vectors, thereby allowing an engineer to understand
exactly when enough circuit verification has been per-
formed. This system can enable a verification engineer to
make a calculated decision on when to terminate the veri-
fication process based on whether mutant detection trends
have either reached above a given coverage level or the
detection trend has reached a horizontal asymptote. To
achieve this, the system implements a closed-loop verifica-
tion strategy, where the coverage analysis provided by
circuit simulation influences the focus for its deterministic
automated test vector generation (ATVG) efforts, and the
resulting input sequence from deterministic ATVG is fed
back into its mutation-based circuit simulator before the next
optimal ATVG goals are defined.

[0296] The described system automates the circuit verifi-
cation process so that circuit design engineers can focus
their energy and creativity on the circuit design effort itself,
and not on circuit verification. The system has the ability to
automate every step in a circuit verification paradigm, by:
starting with defining and instantiating any coverage metric
for any given hardware description; automatically tracking
the unstimulated portions of the circuit implementation at
every stage of the circuit design and circuit verification
efforts; automatically generating deterministic input stimuli
that guarantee coverage of previously-unexplored portions
of the circuit implementation.

[0297] Note that the system described in the present
invention overcomes limitations in other verification
approaches. For instance, the system described does not rely
on a gate-level implementation that has been previously
synthesized from an HDL description. The system also does
not need significant human foresight in building test tem-
plates that describe architecture-level characteristics that
need to be tested, and running such templates through a
model-based test vector generator. Similarly, the system
does not need verification engineers to develop diverse sets
of program macros, unlike other verification systems that
attempt to combine such macros in various sequences using
a genetic technique to attempt to generate tests every corner
of the design. Note also that the described system does not
modify the original implementation, and hence does not
generate a collection of multiple implementations that
require independent simulations.

US 2007/0294655 Al

[0298] The foregoing descriptions of embodiments have
been presented for purposes of illustration and description
only. They are not intended to be exhaustive or to limit the
present description to the forms disclosed. Accordingly,
many modifications and variations will be apparent to prac-
titioners skilled in the art. Additionally, the above disclosure
is not intended to limit the present description. The scope of
the present description is defined by the appended claims.

What is claimed is:

1. A method for automatically generating an input
sequence for a circuit design using mutant-based verifica-
tion, comprising:

receiving a description of the circuit design;

determining a target value for a control signal in the
description;

determining a mutant value for the control signal;

determining if an input sequence for the circuit design
exists that stimulates the control signal to the target
value and causes the effects of the target value and the
effects of the mutant value to reach an observation point
in the circuit design such that the effects of the target
value and the effects of the mutant value differ at the
observation point;

if so, simulating operation of the circuit design using the
input sequence; and

during simulation, generating a first set of signal values
affected by the target value for the control signal and a
second set of signal values affected by the mutant value
for the control signal.

2. The method of claim 1, wherein the mutant value is an
erroneous value for the control signal that is injected into the
circuit design to replace the target value of the control signal.

3. The method of claim 1, wherein the description is a
high-level description of the circuit design specified using a
hardware description language.

4. The method of claim 1, wherein determining the input
sequence involves:

identifying a set of constraints that result in the control
signal being set to the target value, wherein the set of
constraints define an activated state for the control
signal and wherein a mutant construct is used to define
a set of activation constraints for the control signal as
well as the mutant value for the control signal;

determining a first input sequence for the circuit design
that achieves the activated state and causes the mutant
value to be injected; and

determining a second input sequence for the circuit design
that propagates the first set of signal values and the
second set of signal values to the observation point
from the activated state.

5. The method of claim 4, wherein determining the first
input sequence involves determining a reset input sequence
that begins from the reset state for the circuit design and
reaches the activated state.

6. The method of claim 1, wherein generating two sets of
signal values involves:

generating the first set of signal values using the input
sequence and the target value; and

Dec. 20, 2007

generating the second set of signal values using the input
sequence, the target value, and the mutant value;

wherein generating the second set of signal values
involves detecting when, during simulation, the control
signal reaches the target value, and then changing the
value of the control signal to the mutant value.

7. The method of claim 6,

wherein a mutant simulator generates the first and second
set of signal values simultaneously;

wherein during simulation the mutant simulator generates
the first and second set of simulation values by simul-
taneously tracking multiple values for signals in the
circuit design; and

wherein generating two or more sets of signal values
simultaneously reduces simulation overhead for the
circuit design.

8. The method of claim 1,

wherein the method is applied to the control signals of the
circuit design to deterministically generate input
sequences that provide control-based coverage of the
circuit design; and

wherein providing control-based coverage of the circuit

design detects errors in the circuit design and helps the

user to verify the correct operation of the circuit design.

9. The method of claim 8, wherein applying the method
to the control signals of the circuit design involves:

analyzing the description of the circuit design to find the
control signals in the circuit design;

building a database of mutant constructs based on the
target values and mutant values for the control signals;
and

using the database while generating a set of input
sequences that stimulate the control signals.
10. The method of claim 9,

wherein the database facilitates clustering the mutant
values to determine target areas in the circuit design
with a higher density of control signals;

wherein generating the set of input sequences involves
using the database to ensure that all of the mutant
values have been stimulated;

wherein the database is partitioned to facilitate continu-
ously locating the largest remaining related set of
unstimulated control signal values.

11. The method of claim 10, wherein multiple mutant
values associated with a given control signal may be stimu-
lated simultaneously using the same input sequence.

12. The method of claim 5,

wherein a prospect state represents an architectural state
for the circuit design; and

wherein determining the input sequence involves analyz-
ing a set of prospect states to find a first path from the
activated state to the reset state and a second path from
the activated state to the observation point.
13. The method of claim 12, wherein a prospect state
includes:

a first constraint-dependency graph that defines a set of
constraints to be satisfied simultaneously; and

US 2007/0294655 Al

a second constraint-dependency graph that defines the set
of conditional values that allow the set of constraints to
be satisfied simultaneously.

14. The method of claim 13,

wherein a constraint-dependency graph is used to solve a
system of equations for statements in the description of
the circuit design; and

wherein the graph structure of the constraint-dependency
graph facilitates appending additional constraints onto
the constraint-dependency graph.

15. The method of claim 12, wherein analyzing the set of
prospect states involves finding a path that balances trade-
offs between a desired length for a potential path and the
estimated computational effort involved in finding the poten-
tial path.

16. The method of claim 1, wherein the method further
involves translating the input sequence into a format that
assists user verification and understanding of the circuit
design.

17. The method of claim 1, wherein the method further
involves:

receiving a user-specified input sequence for the circuit
design;

using mutation-based verification to determine the con-
trol-coverage provided by the user-specified input
sequence.

18. The method of claim 11, wherein multiple mutant
values being simultaneously stimulated using the same input
sequence are associated with different control signals in the
circuit design.

19. A computer-readable storage medium storing instruc-
tions that when executed by a computer cause the computer
to perform a method for automatically generating an input
sequence for a circuit design using mutant-based verifica-
tion, the method comprising:

receiving a description of the circuit design;

determining a target value for a control signal in the
description;

determining a mutant value for the control signal;

24

Dec. 20, 2007

determining if an input sequence for the circuit design
exists that stimulates the control signal to the target
value and causes the effects of the target value and the
effects of the mutant value to reach an observation point
in the circuit design such that the effects of the target
value and the effects of the mutant value differ at the
observation point;

if so, simulating operation of the circuit design using the
input sequence; and

during simulation, generating a first set of signal values
affected by the target value for the control signal and a
second set of signal values affected by the mutant value

for the control signal.
20. An apparatus for generating an input sequence for a
circuit design using mutant-based verification, comprising:

a receiving mechanism configured to receive a description
of the circuit design;

a determining mechanism configured to determine a target
value for a control signal in the description;

wherein the determining mechanism is further configured
to determine a mutant value for the control signal;

wherein the determining mechanism is further configured
to determine if an input sequence for the circuit design
exists that first stimulates the control signal to the target
value and causes the effects of the target value and the
effects of the mutant value to reach an observation point
in the circuit design such that the effects of the target
value and the effects of the mutant value differ at the
observation point;

a simulating mechanism that simulates operation of the
circuit design using the input sequence if the input
sequence exists;

a generating mechanism configured to generate during
simulation a first set of signal values affected by the
target value for the control signal and a second set of
signal values affected by the mutant value for the
control signal.

