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(57) ABSTRACT 

One embodiment of the present invention provides a system 
that automatically generates an input sequence for a circuit 
design using mutant-based verification. During operation, 
the system receives a description of the circuit design. Next, 
the system determines a target value for a control signal in 
the description and a mutant value for the control signal. The 
system then determines if an input sequence exists for the 
circuit design that stimulates the control signal to the target 
value and causes the effects of the target value and the effects 
of the mutant value to reach an observation point in the 
circuit such that the effects of the target value and the effects 
of the mutant value differ at the observation point. If such an 
input sequence exists, the system then simulates operation of 
the circuit design using the input sequence. During simula 
tion, the system generates two sets of signal outputs for the 
circuit design. The first set of signal outputs is affected by 
the target value for the control signal, while the second set 
of signal outputs is affected by the mutant value for the 
control signal. 
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Min 11 (00001011): S = {xxxx1x11, xxxxllxx, xxx1xxxx, 
XX1XXXXX, X1XXXXXX, lxxxXXXX} 

Max 13 (0.0001101): S = {0000xx0x, 0000x0xx, 00000xxx} 
Range (11,13): S = Sir S = { 00001011, 0000110x} 

FIG. 11 

r B CinCout Sum B CinCout Sum 
E O O 0 || 0 ( VII: 
II: 0 0 C VIII: 1 x X 
III: O 0 x II ( X x 0 | W 

0 1 0 | I x 1 III 
IV: C y 

V: 0 1 x 0 IX: 1 x x x 1. 
x O 0 || m 

O X 0 X W 

O X V x 0 x I 
0 X O W 

VI: 0 x x x X VII 
0 0 || II X x DX 
O W x x 0 | W 
0 x I X X IX 

O V X: x x x x X 

FIG. 12 

Equivalen 
Statement 
A>B or AB 

not A=B AFB 

A-B or A-B 

in quivalent 
Statement 
AP=B 

lot. As-B A-B. 

A or (-A 

FIG. 13 

    

  

    

    

  

    

  

  

    

  



Patent Application Publication Dec. 20, 2007 Sheet 8 of 25 US 2007/0294655A1 

Boolean { OR Operators 
Operators AND Operators 

Relational Operators {-, >, >, <, <=} 
Computational Operators {Bitwise, shift, arithmetic} 

Literals/Identifiers 

FIG. 14 

  

    

  



Patent Application Publication Dec. 20, 2007 Sheet 9 of 25 US 2007/0294655A1 

FIG. 17 

CDG * CDG RelationalOperators: : reduce () 

//Attempt to force a value of true onto this relational operator: 
bind result type result = this-> force solution (new Boolean ValueRange (true)); 
switch (result) { 
case FATL: //A contradiction was encountered 

// (unconditionally false) : 
disconnect () ; 
return (new CDG Boolean Literal (false) ) ->connect (); 
break; 

case EXPENDABLE: //This sub-tree did not produce useful results 
// (unconditionally true) : 
disconnect (); 
return (new CDG Boolean Literal (true) ) -> connect () : 
break; 

case SUCCESS: //This sub-tree is necessary; 
return this; 
break; 

FIG. 18 
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pc mux: process(clk, pc ctrl, pc,out alu, data in, ea) 
variable tempof std logic vector(15 downto 0); 
variable temppc: std logic vector(15 downto 0); begin 

case pc ctrl is 
when add ea pc 

if ea(7)='0' then tempof:="00000000" & ea(7 downto 0); 
else tempof:="11111111" & eaC7 downto 0); 
end if 

when inc pc => 
tempof:="0000000000000001"; 

when others-> 
tempof:="0000000000000000"; 

end case; 
case pc ctrl is 
when reset pc => 

temppc:="1111111111111110"; 
when load ea pc => 

temppc:-ea; 
when pull lo pc => 

temppc(7 downto 0):=data in; 
temppc(15 downto 8):=pc(15 downto 8); 

when pull hipc => 
temppc(7 downto 0):=pc(7 downto 0); 
temppc(15 downto 8):Fdata in; 

when others F2 
temppc:=pc; 

end case, 
if clk'event and clk='1' then 

pc <= temppc + tempof 
end if 

end process; 

FIG. 21 
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Prospect Code Path 
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Precondition: Lp F list of all partitions from every cluster 

ATVG-ITERATION(Lp) 
Sort Lp into descending order of member size 
P - first partition in Lp 
SUCCESS - false 
while P exists and SUCCESS = false 

if activation criteria for P is not met 
then TP - generate activation pattern(s) for any inactive error in P 

while dropping errors from unsuccessful ATVG attempts 
7. if activation is successful 
8. then SUCCESS - true 
9 else P - next partition in Lp 
0. else TP - generate propagation pattern(s) for any active design error in P 

while dropping errors from unsuccessful ATVG attempts 
1. if propagation is successful 

12. then SUCCESS - true 
13. else P - next partition in Lp 
14, if SUCCESS 
5. then return TP 

16. else fail 

FIG. 25 
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multiFSM DFS(testSequence TS, constraintSet S, constraintSet Y, int d) 
1. If (I = 0) return FAIL 
2. If (Y# (2) 
3 let v e Y 
4. U - getAllIncomingTransitions(v) 
S. For each t e U 
6 If (S = Ø) T - t 
7 Eise T (- S ?t 

8. If (T# 0 && multiFSM DFS(TS, T, Y- v, t) = SUCCESS) 
9. TS - TS + getPrimaryInputs(T) 
10. return SUCCESS 
11. Else 
12. TS - getPrimaryInputs(S) 
13. return SUCCESS 
14, return FAIL 

FIG. 26 
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multiFSM DFS(testSequence TS, pStateSet Y, int ) 
1. If() = 0) return FAIL 
2. If (Y = reset state) 
3 return SUCCESS 
4. P - solve(Y) //Generates set of solutions 
5. For each t e P 
6 S (- get previous timeFrame(t) 
7 If (multiFSM DFS(TS, S, -) = SUCCESS) 
8 TS - TS + getPrimaryInputs(S) 
9. return SUCCESS 
10, return FAIL 

FIG. 30 
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multiFSM DFS(testSequence TS, pStateSet Y, int() 
1. If (1 = 0) return FAIL 
2. If (Y = reset state) 
3. return SUCCESS 
4. P - solve(Y) //Generates set of solutions 
5. For each t e P, s.t. thas the lowest weight in P 
6. If (weight(t)=0) 
7. l - 0 
8. TS - getPrimaryInputs(t) 
9. return SUCCESS 
10. S (- get previous timeFrame(t) 
11. If (multiFSM DFS(TS, S, 4-1) = SUCCESS) 
12. assign weight(S, ) 
13. l (- l+l 
14. TS - TS + getPrimaryInputs(S) 
15. return SUCCESS 
16, return FAIL 

FIG. 33 

Precondition: pStates in Y have been pre-solved 

multiFSM DFS(testSequence X, pStateSet Y, int() 
1. If (1 = 0) return FAIL 
2. For each pe Y, s.t. p has the lowest weight in Y 
3 P - get previous timeFrame(p) 
4. For each p' e P 
5. If (weight(p) = 0) //reset state has been found 

7 Y - {p} //remove unexplored pStates in Y 
8. X - getPrimaryInputs(p) 
9. return SUCCESS 
10. S (- solve(p) //Attain incoming pStates S from target pState Y 
11. If (multiFSM DFS(TS, S, 4-1) = SUCCESS) 
12. weight(p) {-l 
13. Y - {p} //remove unexplored pStates in Y 
14. l (- l+1 
15. X - X + getPrimaryInputs(S) 
16. return SUCCESS 
17. return FAIL //No ATVG goals (Y is empty) or no solution exists 

FIG. 34 
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Precondition: pStates in Y have been pre-solved 

multiFSMDFS(testSequence X, pStateSet VS, pStateSet Y, int() 
1. If (1 = 0) return FAIL 
2. For each p e Y, s.t. p has the lowest weight in Y 
3 P - get previous timeFrame(p) 
4. For each p e P 
5. If (p' is masked by some state in VS) 
6 delete p’ 
7 else 

8. VS-VS + p' //Store copy of p' into the visited set VS 
9. If (weight(p) = 0) //reset state has been found 
10. 1 - 0 
I 1. Y - {p} //remove unexplored pStates in Y 
2. X - getPrimarylnputs(p) 
13. return SUCCESS 
14. S - solve(p') //Attain incoming pStates S from target pState Y 
15. If (multiFSMDFS(TS, VS, S, (-1) = SUCCESS) 
16. weight(p) -l 
7. Y - {p} //remove unexplored pStates in Y 

18. le-l-l 
19. X - X + getPrimaryInputs(S) 
20. return SUCCESS 
21. return FAIL 

FIG. 35 
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AUTOMATICALLY GENERATING AN INPUT 
SEQUENCE FOR A CIRCUIT DESIGN USING 

MUTANT-BASED VERIFICATION 

RELATED APPLICATION 

0001. This application claims priority under 35 U.S.C. 
section 119(e) to U.S. Provisional Application Ser. No. 
60/808,006, entitled “MVP: A Mutation-Based Validation 
Paradigm.” by inventors Jorge Campos and Hussain Al 
Asaad, filed on 24 May 2006, the contents of which are 
herein incorporated by reference (Attorney Docket No. 
UC06-283-1PSP). This application also claims priority 
under 35 U.S.C. section 119(e) to U.S. Provisional Appli 
cation Ser. No. 60/849,717, entitled “MVP: A Mutation 
Based Validation Paradigm.” by inventors Jorge Campos 
and Hussain Al-Asaad, filed on 4 Oct. 2006, the contents of 
which are herein incorporated by reference (Attorney 
Docket No. UC06-283-2PSP). This application also claims 
priority under 35 U.S.C. section 119(e) to U.S. Provisional 
Application Ser. No. 60/860,886, entitled “MVP: A Muta 
tion-Based Validation Paradigm.” by inventor Jorge Cam 
pos, filed on 22 Nov. 2006, the contents of which are herein 
incorporated by reference (Attorney Docket No. UC06-283 
3PSP). 

GOVERNMENT LICENSE RIGHTS 

0002 This invention was made with United States Gov 
ernment support under Grant No. 0092867 awarded by the 
National Science Foundation. The United States Govern 
ment has certain rights in the invention. 

BACKGROUND 

0003) 1. Field of the Invention 
0004 The present invention relates to a technique which 
facilitates verifying the correctness of a circuit design. More 
specifically, the present invention relates to a technique that 
automatically generates an input sequence for a circuit 
design using mutant-based verification. 
0005) 2. Related Art 
0006 Digital circuit design methodologies have reached 
a highly optimized State, but circuit verification methods 
used in design projects are still somewhat Subjective in the 
way that they are applied by the verification engineer. 
Moreover, many competing circuit verification methods are 
available for high-level hardware descriptions, but none of 
these methods provide a stand-alone solution. As a result, 
circuit verification is still an “art” which is mastered by an 
engineer through experience and observation, as opposed to 
a systematic technique that can be easily and effectively 
applied. 

0007 Typical industry practices rely on random and 
pseudo-random approaches to eventually explore a Sufficient 
portion of the circuit under verification (CUV). The sim 
plicity in these practices allows for a high-frequency simu 
lation, but the ability of the simulator to traverse new 
architectural States quickly diminishes over time. Determin 
istic practices, on the other hand, guarantee continued for 
ward progress because they allow the circuit verification 
engineer to attack the problem head-on. However, the com 
plexity of even moderately-sized circuits makes determin 
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istic verification practices that exhaustively explore the 
design space computationally infeasible in a reasonable 
timeframe. 

0008 Hence, what is needed is a method and an appa 
ratus for efficiently verifying circuit designs without the 
problems listed above. 

SUMMARY 

0009. One embodiment of the present invention provides 
a system that automatically generates an input sequence for 
a circuit design using mutant-based verification. During 
operation, the system receives a description of the circuit 
design. Next, the system determines a target value (e.g., a 
default value) for a control signal in the description and a 
mutant value for the control signal. The system then deter 
mines if an input sequence exists for the circuit design that 
stimulates the control signal to the target value and causes 
the effects of the target value and the effects of the mutant 
value to reach an observation point in the circuit such that 
the effects of the target value and the effects of the mutant 
value differ at the observation point. If such an input 
sequence exists, the system then simulates operation of the 
circuit design using the input sequence. During simulation, 
the system generates two sets of signal values for the circuit 
design. The first set of signal values is affected by the target 
value for the control signal, while the second set of signal 
values is affected by the mutant value for the control signal. 
0010. In some embodiments of the present invention, the 
mutant value of a control signal is an erroneous value for the 
control signal that is injected into the circuit design to 
replace a default value for the control signal. 
0011. In some embodiments of the present invention, the 
description is a high-level description of the circuit design 
that is specified using a hardware description language. 
0012. In some embodiments of the present invention, the 
system identifies a set of constraints that define an activated 
state for the control signal that results in the control signal 
being set to the target value. A mutant construct is used to 
define these activation constraints for the control signal as 
well as the mutant value for the control signal. In these 
embodiments, the system determines an input sequence for 
the circuit design that achieves this activated State and 
causes the mutant value to be injected, and determines a 
second input sequence that can be used to propagate both 
sets of signal values from the activated State to any obser 
Vation point. 
0013 In some embodiments of the present invention, the 
system determines the first input sequence by determining a 
reset input sequence that begins from the reset state for the 
circuit design and reaches the activated State. 
0014. In some embodiments of the present invention, the 
system generates the first set of signal values using the input 
sequence and the target value. In these embodiments, the 
system generates the second set of signal values using the 
input sequence, the target value, and the mutant value. When 
generating the second set of signal values, the system detects 
when, during simulation, the control signal reaches the 
target value. The system then changes the value of the 
control signal to the mutant value. 
0015. In some embodiments of the present invention, the 
system generates the two sets of signal values simulta 
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neously using a mutant generator. During simulation, this 
mutant simulator generates the two sets of simulation out 
puts by simultaneously tracking multiple values for signals 
in the circuit design. The system can hence reduce simula 
tion overhead by generating two or more sets of signal 
values simultaneously. 
0016. In some embodiments of the present invention, the 
system applies the described techniques to the control sig 
nals of the circuit design to deterministically generate input 
sequences that provide control-based coverage of the circuit 
design. Providing control-based coverage of the circuit 
design facilitates detecting errors in the circuit design and 
helps the user to verify the correct operation of the circuit 
design. 

0017. In some embodiments of the present invention, the 
system analyzes the description of the circuit design to find 
the control signals in the circuit design. The system then 
builds a database of mutant constructs based on the target 
values and mutant values for the control signals, and then 
uses this database while generating a set of input sequences 
that stimulate the control signals. 
0018. In some embodiments of the present invention, the 
system uses the database to cluster mutant values and 
determine target areas in the circuit design with a higher 
density of control signals. In these embodiments, the system 
uses the database while generating the set of input sequences 
to ensure that all of the mutant values have been stimulated. 
Note that the database can be partitioned to facilitate con 
tinuously locating the largest remaining related set of 
unstimulated control signal values. 
0019. In some embodiments of the present invention, the 
system simultaneously stimulates multiple mutant values 
associated with a given control signal using the same input 
Sequence. 

0020. In some embodiments of the present invention, the 
system analyzes a set of prospect states to find paths from 
the activated state both to a reset and to the observation 
point. These prospect states represent architectural States for 
the circuit design. 
0021. In some embodiments of the present invention, a 
prospect state includes two constraint-dependency graphs 
(CDGs). The first CDG defines a set of constraints to be 
satisfied simultaneously, while the second CDG defines a set 
of conditional values that allow the set of constraints to be 
satisfied simultaneously. 
0022. In some embodiments of the present invention, the 
system uses a CDG to solve a system of equations for 
statements in the description of the circuit design. The graph 
structure of the CDG facilitates appending additional con 
straints onto the CDG. 

0023. In some embodiments of the present invention, the 
system finds a path that balances trade-offs between a 
desired length for a potential path and the estimated com 
putational effort involved in finding the potential path. 
0024. In some embodiments of the present invention, the 
system translates the input sequence into a format that 
facilitates user verification and understanding of the circuit 
design. 
0025. In some embodiments of the present invention, the 
system receives a user-specified input sequence for the 
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circuit design. The system uses mutation-based verification 
to determine the control-coverage provided by this user 
specified input sequence. 

BRIEF DESCRIPTION OF THE FIGURES 

0026 FIG. 1 illustrates the complete circuit design pro 
cess in accordance with an embodiment of the present 
invention. 

0027 FIG. 2 illustrates the reduced time and effort 
involved in simultaneous design and verification in accor 
dance with an embodiment of the present invention. 
0028 FIG. 3A illustrates a finite state machine graph in 
accordance with an embodiment of the present invention. 
0029 FIG. 3B illustrates a code flow graph in accordance 
with an embodiment of the present invention. 
0030 FIG. 4 illustrates how the cones of logic for a set 
of control signals can map to a hypothetical state space in 
accordance with an embodiment of the present invention. 
0031 FIG. 5 illustrates the implementation of an arbi 
trary operator in accordance with an embodiment of the 
present invention. 
0032 FIG. 6 illustrates concurrent design error simula 
tion for a condition statement in accordance with an embodi 
ment of the present invention. 
0033 FIG. 7 illustrates integrating a mutant value gen 
erator with a concurrent mutant simulator in accordance 
with an embodiment of the present invention. 
0034 FIG. 8 illustrates propagation complexity and acti 
Vation complexity in accordance with an embodiment of the 
present invention. 
0035 FIG. 9 illustrates an example of clustering and 
partitioning in accordance with an embodiment of the 
present invention. 
0036 FIG. 10 illustrates a set of simulation results that 
result from using a modified MCE model in conjunction 
with an automatic mutant generatorin accordance with an 
embodiment of the present invention. 
0037 FIG. 11 illustrates generating a partially-defined 
bit-vector set from an integer range in accordance with an 
embodiment of the present invention. 
0038 FIG. 12 illustrates 1-bit addition for partially 
defined bit-vectors in accordance with an embodiment of the 
present invention. 
0.039 FIG. 13 illustrates replacements for undesirable 
disjoining operators in accordance with an embodiment of 
the present invention. 
0040 FIG. 14 illustrates an operator hierarchy for a CDG 
structure in accordance with an embodiment of the present 
invention. 

0041 FIG. 15 illustrates a sample CDG after an un 
optimized restructure in accordance with an embodiment of 
the present invention. 
0042 FIG. 16 illustrates a sample CDG after simple 
reduction in accordance with an embodiment of the present 
invention. 
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0043 FIG. 17 illustrates a sample CDG after complete 
reduction in accordance with an embodiment of the present 
invention. 

0044 FIG. 18 illustrates how a relational operator can be 
reduced based on whether it is unconditionally true or 
unconditionally false in accordance with an embodiment of 
the present invention. 
004.5 FIG. 19 illustrates sample CDG optimization 
results in accordance with an embodiment of the present 
invention. 

0046 FIG. 20 illustrates a statement tree of nested con 
dition statements in accordance with an embodiment of the 
present invention. 
0047 FIG. 21 illustrates an exemplary process imple 
mentation that uses signals and variables in accordance with 
an embodiment of the present invention. 
0.048 FIG. 22 illustrates an incomplete CDG for signal 
pc in accordance with an embodiment of the present inven 
tion. 

0049 FIG. 23 illustrates possible CDGs for an ATVG 
goal on signal pc in accordance with an embodiment of the 
present invention. 
0050 FIG. 24 illustrates a pictorial description for a 
prospect code path in accordance with an embodiment of the 
present invention. 
0051 FIG. 25 illustrates pseudocode describing the steps 
for each ATVG iteration in accordance with an embodiment 
of the present invention. 
0.052 FIG. 26 illustrates pseudocode describing a set of 
steps used in a DFS technique used for each ATVG iteration 
in accordance with an embodiment of the present invention. 
0053 FIG. 27 illustrates satisfying a pState's justification 
constraint in accordance with an embodiment of the present 
invention. 

0054 FIG. 28 illustrates a single time-frame example for 
a multi-FSM DFS function in accordance with an embodi 
ment of the present invention. 
0055 FIG. 29 illustrates a multiple time-frame example 
for a multi-FSM DFS function in accordance with an 
embodiment of the present invention. 
0056 FIG. 30 illustrates pseudocode for using prospect 
states during ATVG in accordance with an embodiment of 
the present invention. 
0057 FIG. 31A illustrates run-time circuit profiling in 
accordance with an embodiment of the present invention. 
0.058 FIG. 31B illustrates pre-processor circuit profiling 
in accordance with an embodiment of the present invention. 
0059 FIG. 32 illustrates basic-block guard profiling in 
accordance with an embodiment of the present invention. 
0060 FIG. 33 illustrates a modified multi-FSM DFS 
function in accordance with an embodiment of the present 
invention. 

0061 FIG.34 illustrates a further-optimized ATVG func 
tion in accordance with an embodiment of the present 
invention. 

Dec. 20, 2007 

0062 FIG. 35 illustrates an optimize ATVG function that 
does not revisit previously-visited pStates in accordance 
with an embodiment of the present invention. 
0063 FIG. 36 illustrates an ATVG search space after 
pState weight estimation in accordance with an embodiment 
of the present invention. 

0064 FIG. 37 illustrates an ATVG search space after 
pState weight estimating and weight indexing in accordance 
with an embodiment of the present invention. 
0065 FIG. 38 illustrates a comparison (for a sample 
design) between MVP's approach and the random methods 
typically used to expose design errors in accordance with an 
embodiment of the present invention. 
0066 FIG. 39 presents a flow chart illustrating the pro 
cess of verifying a circuit using mutant verification in 
accordance with an embodiment of the present invention. 
0067 FIG. 40 presents a flow chart illustrating the pro 
cess of automatically generating an input sequence for a 
single control signal in a circuit design using mutant-based 
verification in accordance with an embodiment of the 
present invention. 

0068 FIG. 41 presents a flow chart illustrating the pro 
cess of automatically verifying a circuit design using 
mutant-based verification in accordance with an embodi 
ment of the present invention. 

DETAILED DESCRIPTION 

0069. The following description is presented to enable 
any person skilled in the art to make and use the disclosed 
embodiments, and is provided in the context of a particular 
application and its requirements. Various modifications to 
the disclosed embodiments will be readily apparent to those 
skilled in the art, and the general principles defined herein 
may be applied to other embodiments and applications 
without departing from the spirit and scope of the present 
description. Thus, the present description is not intended to 
be limited to the embodiments shown, but is to be accorded 
the widest scope consistent with the principles and features 
disclosed herein. 

0070 The data structures and code described in this 
detailed description are typically stored on a computer 
readable storage medium, which may be any device or 
medium that can store code and/or data for use by a 
computer system. This includes, but is not limited to, 
Volatile memory, non-volatile memory, magnetic and optical 
storage devices such as disk drives, magnetic tape, CDS 
(compact discs), DVDs (digital versatile discs or digital 
Video discs), or other media capable of storing computer 
readable media now known or later developed. 

1. Circuit Design and Verification 

0071. The design flow for creating an electronics com 
ponent is typically lengthy, as depicted in FIG. 1. Initially, 
the lead architects create the design goals (architecture) for 
the project. The lead design engineers then create a prelimi 
nary implementation from this architecture, such that it 
meets all design goals. This preliminary implementation 
exists in the form of a computer program, and is known as 
a register transfer level (RTL) implementation because of its 
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implementation style. It is during this phase that much of the 
design research is performed, and most power/performance 
optimizations are defined. 

0072 A project first resembles an actual circuit when the 
RTL code is converted into a logic gate level implementa 
tion, commonly through an automated process known as 
circuit synthesis. A logic gate circuit is a low-level imple 
mentation because it closely resembles the features that will 
be found on a fabricated chip, but it still abstracts-out the 
actual transistors. The final two circuit development stages, 
circuit layout and circuit fabrication, are closely tied to the 
ever-advancing transistor and fabrication technologies that 
allow for smaller and faster electronics. 

0073. The semiconductor industry includes of large com 
panies with in-house fabrication capabilities, and Small to 
mid-sized companies that outsource their fabrication needs. 
Outsourcing the fabrication of a prototype microchip can 
cost millions of dollars, giving these fab-less semiconductor 
companies an incentive to get their design right the first 
time. As a result, these companies have developed and relied 
upon a rigorous verification process that has given them a 
sense of security in the correctness of their final design prior 
to fabrication. Unfortunately, these verification strategies are 
human-intensive and have to be replicated and re-invented 
for each new design project. 

0074) 
0075) “Black box” is a commonly used term in engineer 
ing that refers to a system where the implementation details 
are not visible. It is no different for circuit verification. 
Essentially, “black-box” circuit verification is appealing 
because it does not require the verification system to have 
prior inside knowledge of the circuit under verification. This 
strategy, however, relies on random or pseudo-random input 
vectors to verify the “blackbox” because such a verification 
system has no way of efficiently deciphering how to generate 
the most effective input sequence. 

1.1. Existing Verification Techniques 

0.076 Unfortunately, current systems are neither efficient 
nor effective enough to perform deterministic “black box' 
verification on complete large circuit implementations. 
Therefore, when handling complete large circuits such as 
microprocessors and ASICs, companies rely on a manual 
“white box’ circuit verification strategy. Essentially, circuit 
design teams provide “inside' information to their verifica 
tion system by building “self-testing’ abilities around their 
implementations. This is commonly done by creating test 
Scripts aimed at Stimulating specific portions of the circuit 
under verification. Identifying and inserting this circuit 
knowledge into a verification system is one reason why 
circuit verification can sometimes consume 70% of the 
overall circuit design effort. 

0077. While the Electronic Design Automation (EDA) 
industry provides some circuit verification tools, these tools 
are not able to apply directed analysis on complete circuits 
for large projects. When seeking quality assurance on large 
circuits with as much as 250,000 lines of RTL code, semi 
conductor companies typically need to add extra code 
around their circuit designs to implement the verification 
system. This extra logic adds considerable complexity to the 
project, and can add many man-months for development. 
Furthermore, the present verification process relies on cus 
tom, man-made instruction sequences to verify the correct 
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ness of specific circuit scenarios. These efforts, along with 
unnecessary verification iterations, amount to a substantial 
portion of the overall verification process. 
0078 After the circuit design phase, companies often use 
an explicit quality assurance (circuit verification) phase 
where they use their hand-crafted instruction sequences and 
pseudo-random stimuli from their verification system to 
guide the chip’s verification process until only a few non 
critical bugs are exposed per Verification cycle. However, it 
is common that these pseudo-random stimuli do not expose 
all critical bugs because the circuit simulator continues to 
explore the same portion of the circuit without advancing 
onto more complex scenarios. 
0079 For smaller circuits, the analysis tools may make 
use of existing circuit analysis technology. For instance, 
deterministic circuit verification Software tools may attempt 
to analyze an RTL implementation by translating it into a 
logic gate level implementation and then seeking to Verify 
this representation of the implementation. Unfortunately, 
this translation process takes time and adds an immense 
amount of detail into the implementation that causes the 
analysis for small RTL implementations with several thou 
sand lines of code to be inefficient, and makes it impossible 
to analyze large RTL implementations with upward of a 
quarter of a million lines of code. 
0080) 2. Mutant-Based Verification 
0081. One embodiment of the present invention uses a 
mutation-based verification platform (MVP) as a circuit 
verification tool for high-level hardware descriptions and to 
provide expert deterministic verification methods to the 
average design engineer. MVP can provide a complete and 
automated Strategy for analyzing high-level hardware 
descriptions that only leaves the circuit design engineer to 
decide what portions of the circuit to verify, and not how to 
verify it. MVP can be used for all verification strategies: 
from formal to simulation-based, static assertion-based to 
dynamic assertion-based, deterministic automatic test vector 
generation (ATVG) to pseudorandom ATVG, and from a 
static code-coverage metric to any dynamic coverage metric. 
MVP's circuit analysis allows it to perform white-box 
circuit verification, while providing the simplicity of black 
box verification to its users. MVP does not require a priori 
information on the circuit under verification for it to be 
effective, but instead gathers this information real-time. 
0082 Because the earlier design stages (FIG. 1) have a 
high level of abstraction (less detail), their corresponding 
implementations are known as high-level implementations. 
Similarly, the circuit-based implementations are known as 
low-level implementations. A lower-level implementation is 
derived directly from its previous higher-level implementa 
tions, so it is important that the high-level implementations 
are correct to prevent introducing the same design errors 
onto the lower levels. Thus, MVP's technology focuses on 
high-level RTL implementations for three reasons: 

0083) i. High-level implementations can be used to 
describe the functionality of complete circuits; 

0084 ii. The most complicated design errors to expose 
are introduced in high-level RTL implementations; and 

0085 iii. Design errors should not be transferred to 
lower-level implementations because fixing these 
errors then becomes more costly. 
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0086. In one embodiment of the present invention, ana 
lyzing and Verifying the correctness of circuit implementa 
tions as high-level RTL descriptions allows semiconductor 
companies to analyze large circuit implementations, and 
allows them to analyze these projects even before they are 
complete. Hence, use of MVP technology can allow a digital 
semiconductor company to reduce their design effort by 
eliminating the need to develop an intricate in-house veri 
fication strategy that is specific to their circuit implementa 
tion. Eliminating a group's need to invent a verification 
strategy allows MVP to further reduce a project's timeline 
by providing the possibility for simultaneous circuit design 
and verification, thus reducing significantly the magnitude 
of the final quality assurance phase, as depicted in FIG. 2. 
0087 MVP can give semiconductor companies control of 
their circuit design projects, following the idea that a circuit 
should not have to be presumably complete before it can be 
fixed—a problem does not have to escalate before it can be 
remedied. It allows circuit designers to avoid postponing 
their quality assurance efforts, thereby making fixing errors 
less difficult. MVP can provide systematic solutions that 
expose design errors in circuits that may still be under 
development, leaving engineers to only fix these errors as 
they are reported. 
0088 Semiconductor companies are experts in their in 
house quality assurance methods, and they have grown 
emotionally attached to these practices because of the 
proven results and the assurance it provides them. Unfortu 
nately, rising fabrication costs are causing these companies 
to increase their quality assurance efforts to try and get it 
right the first time even through decreasing profit margins— 
posing a paradox for the semiconductor industry. MVP is 
meant to remedy this paradox by providing a standard circuit 
verification process that adapts itself to any high-level RTL 
circuit implementation, thus requiring circuit design com 
panies to invest less time and human effort towards circuit 
verification. MVP can help automate the extremely ineffi 
cient circuit verification process, allowing high-level design 
engineers to more efficiently focus their energy on perfecting 
the circuit implementation. For instance, MVP can focus on 
exposing design errors as a continuous background process 
that analyzes the circuit implementation as it grows. A 
circuit verification engineer first identifies the goals for 
verification by employing coverage metrics that direct MVP. 
and a design engineer only fixes bugs as MVP discovers 
them; engineers no longer have to manually search for 
design errors. 
0089 FIG. 39 presents a high-level flow chart illustrating 
the process of verifying a circuit using mutant Verification. 
First, the system defines a set of coverage metrics by 
creating one mutant construct for each circuit scenario that 
should be made observable (operation 3900). The system 
then picks one mutant construct from the set of undected 
mutants and creates an input stimulus that activates the 
mutant construct and propagates a value for the mutant 
construct to an observation point (operation 3910). The 
system feeds these input stimuli into the circuit, and then 
processes the results (operation 3920). For instance, pro 
cessing the results can involve getting an updated coverage 
reading and observing the response of the circuit to look for 
design flaws. The system then determines whether the circuit 
verification process has achieved enough coverage of the 
circuit design (operation 3930). If so, the process completes. 
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Otherwise, the system proceeds to pick another mutant from 
the set of undetected mutants (looping back to operation 
3910). 
0090 Note that a mutant (or mutant construct) represents 
a circuit scenario by describing a set of activation signals 
that each need to obtain a specific value for the circuit 
scenario to be satisfied, and introduces an altered State into 
the circuit by describing a set of target signals that alter their 
values to another specific value. During circuit simulation, a 
mutant becomes active when its set of pre-specified activa 
tion signals obtain their corresponding set of pre-specified 
values from the circuit simulation, at which point the mutant 
injects into a pre-specified set of injection points a corre 
sponding set of erroneous (altered) values. 
0091 FIG. 40 presents a flow chart illustrating the pro 
cess of automatically generating an input sequence for a 
single control signal in a circuit design using mutant-based 
verification. During operation, the system receives a descrip 
tion of the circuit design to be verified (operation 4000). The 
system then determines a target value for a control signal in 
the description (operation 4010) and a mutant value for the 
control signal (operation 4020). Next, the system determines 
if an input sequence for the circuit design exists that stimu 
lates the control signal to the target value and causes the 
effects of the target value and the effects of the mutant value 
to reach an observation point in the circuit such that the 
effects of the target value and the effects of the mutant value 
differ at the observation point (operation 4030). Note that the 
two sets of effects are considered independently from the 
point where the control signal is stimulated to the target 
value. At this point, the effects of the mutant value are 
determined by substituting the mutant value for the control 
signal, while the effects of the target value are determined 
independently (without a substituted mutant value). 
0092. If such an input sequence exists (operation 4040), 
the system simulates the operation of the circuit design using 
this input sequence (operation 4050). During this simulation 
process, the system generates a first set of signal values that 
are affected by the target value for the control signal and a 
second set of signal values that result when the mutant value 
is substituted for the control signal (operation 4060). After 
the process completes, the system may return the input 
sequence to the user as an output. 
0093. Note that the system can generate an input 
sequence to activate a mutant in a separate operation from 
generating an input sequence that propagates the mutant to 
an observation point. These two operations do not need to be 
performed one after another as a single solution. 
0094 FIG. 41 presents a flow chart illustrating the pro 
cess of automatically verifying a circuit design using 
mutant-based verification. During operation, the system 
receives a description of the circuit design to be verified 
(operation 4100). The system then defines the coverage 
metrics by creating one mutant (or mutant construct) for 
each circuit Scenario that needs to be covered (e.g. should be 
made observable) (operation 4110). Next, the system picks 
a mutant that has not been made observable (operation 4120) 
and determines an input sequence for the circuit design that 
causes the mutant to become active (I.e. that stimulates the 
activation signals of the mutant to their target values) and 
causes the effects of the mutant to reach an observation point 
in the circuit (I.e. causes the effects of the erroneous values 
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injected by the mutant to reach an observation point of the 
circuit) (operation 4130). If no such input sequence exists 
(e.g. if there is no possible way to activate or propagate the 
mutant) (operation 4140), then the mutant is discarded 
without generating an input sequence and the process returns 
to operation 4120. Otherwise, the process continues to 
operation 4150. The system then simulates the operation of 
the circuit design using this input sequence (operation 
4150). During this simulation process, the system generates 
a first set of signal values that correspond to an ordinary 
circuit simulation (I.e. corresponds to the default circuit 
simulation values) as well as a second set of signal values 
that results when the mutants injected values propagate 
through the circuit (operation 4160). During this simulation 
process, the system activates all mutants that can be acti 
vated, and simulates the effects of all these mutants in a 
simultaneous fashion. For each mutant whose effects have 
reached an observation point of the circuit, it is designated 
as “covered” and removed from the simulation (operation 
4.170). If un-discarded mutants remain that have not been 
covered (operation 4180), the system returns to operation 
4120. Otherwise, the process terminates. 
0.095 The operations described in FIGS. 39-41 are 
described in more detail in the following sections. 
0.096 2.1. Coverage Metric Design and Implementation 
0097 Coverage metrics are important for circuit verifi 
cation. Coverage metrics describe the degree to which the 
circuit design has been tested. 
0.098 Sequential circuit implementations were first 
designed at the logic gate level, which led to coverage 
metrics that are directly related to the physical circuit. An 
exhaustive coverage metric would attempt to apply every 
possible input vector onto every architectural state of the 
processor. This, however, typically leads to the state explo 
sion problem because a circuit with 2" internal states and an 
m-bit input bus will require 2" circuit scenarios to be 
covered. Two popular alternatives that reduce this coverage 
space include state coverage, and transition coverage. If we 
were to generate a directed graph for a microprocessor's 
complete FSM, we would see that a state coverage metric 
simply attempts to reach every reachable processor state in 
the graph. A transition coverage metric, however, attempts to 
obtain more coverage by taking every possible transition in 
the FSM graph. Another popular FSM-based coverage met 
ric is the path-coverage metric. This coverage metric encap 
Sulates transition coverage, and can potentially be more 
complex than the exhaustive coverage metric. It attempts to 
exercise every possible state sequence that is within a given 
length, it therefore can encapsulate the exhaustive coverage 
metric when the path lengths are sufficiently long at the cost 
of achieving redundant state coverage. 
0099. With the advent of hardware description languages 
(HDLS) came a series of code-based coverage metrics for 
circuit designs. These coverage metrics already existed for 
computer programs, but HDLs allowed them to make their 
debut in the world of sequential circuits. Three of these 
code-based coverage metrics include line coverage, transi 
tion (branch) coverage, and path coverage. If we dissect 
each process statement in a microprocessor's HDL imple 
mentation into a collection of basic blocks, we can generate 
a graph that shows the possible program flows for each 
process (as shown in FIG. 3B). From this graph we can see 
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that statement coverage is synonymous to state coverage of 
an FSM because it merely requests that each basic block be 
reached and all its statements be executed. Both the transi 
tion and path coverage metrics for HDL code are also 
somewhat similar to their corresponding FSM coverage 
metrics, however not as rigorous. We can see in FIGS. 
3A-3B via the bold paths how an FSM path includes more 
explicit transitions ({T, Ts, Ts, To. To T}) than the 
corresponding path from a substantially similar graph pro 
duced by a code-coverage metric ({T, Ta). 
0.100 An FSM path provides a more rigorous functional 
coverage than a code-based path because a transition exists 
between every pair of sequential states, as opposed to a 
code-based path where a transition only exists at each 
decision point (branch operation). Furthermore, in a high 
level hardware description where many signal events can 
happen at the same atomic time instance, the execution of a 
complete code path within a process can be activated by a 
single state in the FSM. In other words, given the blocking 
nature of signals, it is possible for a process to complete a 
code path Such that the signal values used at every decision 
point are taken from a single state in the FSM. As an 
example, the transitions T and T in FIG. 3B can happen in 
the same FSM state if there are no delay statements within 
basic block 3. An FSM analysis is therefore more suitable 
for tracking our progress towards a complete functional 
coverage of a high-level hardware description, but the 
information from a code-based circuit analysis can point 
towards achieving the desired FSM coverage. 
0.101) 2.1.1. A Control-Based Coverage Metric 
0102) It is important to employ a coverage metric that 
reduces the search space from an exhaustive coverage metric 
without notably degrading the quality of the tests that result 
from it. This step is important to the development of a 
Successful verification platform because an inefficient cov 
erage metric will require too many ATVG iterations, and an 
over-simplified coverage metric will sacrifice the effective 
ness of the resulting input sequence. 
0103) In one embodiment of the present invention, the 
system uses a control-based coverage metric for mutation 
based verification that encapsulates all preceding coverage 
metrics. The dependencies from control signals onto the 
architectural state space form the basis for this coverage 
metric, and exploiting these dependencies allow for a novel 
implementation that reduces the verification search space 
without sacrificing any effectiveness in the coverage metric. 
0104. A microprocessor's explicit processor state can be 
defined by combining all the control registers. A simple 
16-bit processor with a 5-stage pipeline would therefore 
include a state register that is at least 64 bits wide; this being 
because each of the last four pipeline stages include a control 
register that holds the currently residing instruction. The 
state register would be even larger for SuperScalar micro 
processor implementations because they employ a distrib 
uted control methodology through many disjoint and coop 
erating functional and control units. Any attempt to even 
perform a complete state coverage would face the wrath of 
the state explosion problem, so a more effective method 
needs to be employed. Instead, the MVP verification system 
achieves complete coverage of the control signals from 
which the architectural state space is derived. 
0105 Given that modern superscalar microprocessor 
implementations are modular in nature, it is reasonable to 
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request for each of these functional and control units to be 
verified against their description before the microprocessor 
is verified as a whole. With this request, the microprocessor 
wide verification problem is reduced to one of verifying the 
correctness of the control signals that merge these units 
together. Typically, over two-thirds of the bug occurrences in 
pipelined and SuperScalar microprocessor implementations 
are related to design errors in the control logic. Hence, a 
coverage metric that ensures that every possible value for 
each of these control signals is exercised for every possible 
processor State is very desirable. 

0106 Such a coverage metric may seem like an even 
harder coverage metric to employ than the state coverage 
metric, but it can actually reduce the state space by ignoring 
the redundant and irrelevant state space. FIG. 4 illustrates 
how the cones of logic for a set of control signals can map 
to a hypothetical state space, and how this translates into a 
control-based coverage metric. 

0107 2.1.2. Mutants 
0108. In one embodiment of the presentation, a mutant 
construct (or “mutant”) is a circuit scenario described by a 
set of activation signals that each need to obtain a specific 
value for the circuit scenario to be satisfied, and introduces 
an altered State into the circuit by describing a set of target 
signals that need to alter their values to another specific 
(erroneous) value. Mutants can be used to instantiate a 
control-based coverage metric, as well as other types of 
coverage metrics. 
0109 Instantiating a coverage metric through a set of 
mutants can be highly dependent on the implementation 
style of the circuit under verification. Hence, a versatile 
definition of a mutant construct that allows it to be applied 
onto any coverage metric under any circuit implementation 
is necessary. Injecting an error typically results in the 
generation of an erroneous value under a specific State of the 
system, because circuit design errors and physical faults are 
governed by the laws of causality. Such a cause-and-effect 
characteristic can be harnessed to define the mutant con 
struct. An error model is defined by three basic character 
istics: 1) the activation criteria, 2) the consequence of 
activation, and 3) error injection. A mutant construct can be 
defined as the many instantiations of an error model that 
span a given design space. Numerous mutants can be 
simulated concurrently; therefore each mutant construct has 
a unique identification number. 
0110. A mutants activation criteria specify a set of 
signals and the conditions that they need to satisfy before the 
mutant is activated. The activation criteria can be imple 
mented as a collection of signal/value pairs that need to be 
satisfied before the mutant can be inserted into the simula 
tion system. The values in a mutants activation criteria are 
termed “default' simulation values because they describe 
the value that would be observed if the mutant were not to 
be injected. 

0111. Once the activation criteria of a mutant construct 
are met, its consequence of activation can be analyzed to 
determine how this mutant will alter the simulation. A 
mutants consequence of activation can also be implemented 
as a collection of signal/value pairs that specify exactly how 
this mutant will alter the simulation run. The signal values 
in a mutants consequence of activation are termed "erro 
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neous' simulation values or “mutant values'. The definition 
for a mutants consequence of activation should not allow 
for a signals value to mutate into itself, because that would 
be unproductive. As a result, the list of signals in a mutants 
consequence of activation typically must be a Subset of the 
signals in its activation criteria, and their erroneous values 
typically must be different from the corresponding default 
values. 

0.112. The mutant values are injected into the specified 
signals within the circuit during error injection, which 
follows immediately after a mutants activation criteria is 
satisfied completely by the current circuit simulation values. 
A mutants error injection system can be implemented as a 
list of signal locations in the hardware descriptions that 
correspond to the signals specified in the consequence of 
activation, and a Subroutine that injects the mutant's erro 
neous values into these signal locations. Error injection is 
the process of inserting an erroneous value into a simulation 
system for the purpose of investigating its effect, and it is 
discussed in detail in later sections. Whenever a mutant has 
been Successfully injected into a simulation system, it is 
considered to have been “activated.” 

0113) Given that a design error on an implementation of 
a modular component will appear on every instantiation of 
that component, all mutant constructs have to obey the 
hierarchical error model where every instantiation of a 
modular component will have the same set of mutants with 
corresponding identification numbers. This allows a design 
error to simultaneously appear at multiple instantiations of a 
component if necessary, and it correctly models aliasing in 
the case where these mutant values mask each other's 
propagation across the circuit. In contrast, physical faults 
can appear within a modular component independent of all 
other instantiations of that modular component, therefore 
physical fault models do not need to obey the hierarchical 
error model. 

0114) 2.1.3. The Mutant Construct 
0.115. In one embodiment of the present invention, a 
mutant construct (or “mutant”) can be defined as a quadru 
plet (S, c, Vc, ve) Such that the explicit processor state S and 
a correct value(s) Vc of the control signal(s) c act as the 
activation criteria and Such that the signals in the set c act as 
the injection points. Signals in c are mutated from Vc to an 
erroneous value Ve as a consequence, and injected back into 
signal c. 

0116 2.1.4. Implementing the Control-Based Coverage 
Metric 

0.117) In one embodiment of the present invention, the 
system automates the generation of mutant constructs Such 
that they span a control-based coverage metric, and can be 
used to instantiate a complete collection of mutants for any 
given hardware description. Performing automated genera 
tion of Such mutants can be especially influential for large 
and complex hardware descriptions, such as SuperScalar 
microprocessor implementations, because of their inherent 
complexity. As previously mentioned, an explicit processor 
state can be defined by the concatenation of all control 
registers in a microprocessor implementation. If one were to 
analyze the data dependency of a control signal onto the set 
of registers and primary inputs, one would see that each 
control signal is dependent on only a Subset of the control 
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registers. It is therefore possible to prune the state space 
without consequences as follows: For each control signal c 
that we plan to stimulate, we first identify the set of circuit 
conditions that affect the value of that control signal and 
denote this set as s. Then for every correct value vc of 
control signal c under every possible value of S, we generate 
a set of mutants that modifies c from Vc to all erroneous 
values Ve (such that Vczve) and inject their corresponding ve 
back into c. 

0118. This error modeling technique is effective because 
it only generates useful mutants for every control signal by 
first identifying the relevant state space. The set of relevant 
state space for a particular control signal can be found easily 
by analyzing the code-based constraints that allow the 
control signal to be stimulated (the guards from a condi 
tional statement) and the values that are assigned to it. This 
involves creating a form of data dependency graph around 
these control signals, and then solving these graphs to 
decipher the allowable values for these signals. MVPs 
constraint dependency graph (CDG) construct is described 
later in this disclosure, along with a description of an 
efficient solver for these graphs and a set of subroutines that 
can create them from a hardware description. The informa 
tion gathered by these CDGs can be used directly to define 
a collection of mutants for a specific control signal. 
0119 2.2. Concurrent Mutant Simulation 
0120 Mutation-based verification techniques attempt to 
circumvent the complexity in exploring any coverage metric 
exhaustively by using mutants as guidance. Error modeling 
for circuit verification can be used to create an artificial 
collection of simple design errors (mutants) that span 
throughout the corner cases of a circuit implementation. 
Mutants can therefore act as markers that are spread across 
the unexplored corners of a circuit's design space to help 
indicate where verification efforts should focus on next. 

0121. As a consequence to the coupling effect between 
simple and complex design errors, an input sequence that is 
capable of detecting these known simple errors is implicitly 
capable of detecting complex design errors as well. There 
fore, an MVP concurrent mutant simulator can grade an 
input sequence’s ability to expose complex design errors by 
concurrently and efficiently applying it to the complete set of 
mutants that represent the simple errors, and reporting the 
mutant coverage for that input sequence. 
0122) In one embodiment of the present invention, muta 
tion-based circuit simulation is used to perform mutation 
based testing. Post-silicon testing efforts typically use a 
coverage measure that is capable of affecting the maximal 
set of possible physical fault sites. Once the fault sites are 
defined, an error model can be designed to span the complete 
coverage measure. These error models, known as physical 
fault models, can be used in conjunction with a concurrent 
mutant simulator to grade an input sequence’s ability to 
detect possible physical faults and to give an architect 
valuable testability analysis on his implementation. 

0123 2.2.1. Fault-List-Enabled Signals 
0.124. In one embodiment of the present invention, an 
initial step in developing a high-level concurrent error 
simulator determines how a signal should maintain its fault 
list, and how the basic signal operations should be per 
formed on the complete fault lists. In one implementation, a 
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signal is first defined as an object that includes a default 
value and a list of mutant values, where each mutant value 
m in the signal S is a result of the corresponding parent 
mutant construct. The parent construct of a mutant value m 
is denoted by L(m) such that the set of mutants m, that affect 
signal S is denoted by: II(S)=UTC(ml). It is common that 
aliasing occurs between the default value and one or more 
mutant values, in which case it is advantageous to collapse 
the error lists as a way to minimize the memory demand and 
the number of operations needed by each list. 

0.125 The simulator takes as input a collection of mutants 
E, which are used to generate and insert a mutant value into 
a specific fault site when appropriate. Let a, be the set of 
mutant values in signal A. Such that a-0 denotes the default 
value and alo denotes the mutant value associated with the 
mutant construct t?a) that has an ID value i. Given that the 
fault list-enabled signals implement fault collapsing, an 
arbitrary mutant value a will only exist in signal A when all 
of the following conditions are met: 

0126) 
vated. 

i. The mutant construct TLCa)eE has been acti 

0127 ii. The corresponding error has been iniected or p 9. 
propagated into signal A, thus producing the mutant 
Value ai. 

0.128 iii. The corresponding mutant value a, is not 
aliased by the default value ao (azao). 

0.129 Based on the above definition of a signals fault 
list, let aob denote an arbitrary operation on two signal 
values, and let AoB denote the same arbitrary operation 
performed over all signal values a, and b, in signals A and B, 
respectively, such that an operation a ob, is not allowed 
because an operation cannot be performed across mutants. In 
the case where II(A)z II(B), a request for an implicit (non 
existent) mutant value a results in the generation of the 
requested value from the default value. Let the generation 
process for mutant i be denoted by a . A value generated 
from the default value can be referred to as an implicit value, 
and a value extracted directly from the fault list can be 
referred to as an explicit value. 

0.130. There is no distinction between a mutant value that 
has been aliased by the default value and a mutant value 
corresponding to a mutant that has not been activated. One 
can therefore assume that any mutant value not present in a 
fault list has been aliased, and it is correct to generate the 
corresponding mutant value from the implied default value 
upon demand. This allows the following operation to be 
defined across two fault lists that don't include mutant 
values from the exact set of mutant constructs: 

0131 This operation is illustrated for a set of sub-opera 
tions depicted in FIG. 5. Consider the example where A={a, 
as, as and B={bo, b. bs. The operation Z=AoB is decom 
posed into the set of sub-operations (Zo-aoobo, Zs=asobos, 
Z=ao aoba, Zs=asobs as illustrated in FIG. 5. Further 
more, if the value generated by the operation asobs is aliased 
by the value generated by the operation acobo, then the 
resulting set of values in signal Zwill be Z={Zo. Zs, Za after 
fault collapsing. 
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0132) 2.2.1.1. Operation INSERT MUTANT (L, m) 
0133. In one embodiment of the present invention, an 
operation INSERT MUTANT inserts the mutant m into the 
fault-list L while preserving fault-collapsing and L's order 
ing of increasing mutant ID. If m's ID corresponds to the 
default value (t(m)=0), then it will update L’s default value 
if and only if L does not contain mutant values. The 
simulation engine should never need to replace the default 
value when a fault-list exists, so the list L should be empty 
when m corresponds to the default value. Otherwise, if ms 
value is aliased by the default value, then m is not inserted 
into L and any item with a matching ID is removed from L 
to implement fault-collapsing. If neither of the above two 
conditions are met, then m is inserted into L, replacing any 
item with a matching ID. 
0134 Each fault list can be implemented by a linked list 
of mutant values, ordered by increasing mutant ID, and 
referenced by a starting pointer and an ending pointer. This 
configuration allows for an insertion to the end of the fault 
list to be completed in O(1) time. Otherwise, if the mutant 
being inserted belongs somewhere within the fault list, the 
insertion is completed in O(n), where n is the current size of 
the fault list. INSERT MUTANT is typically called from 
either an operation on a signal, or from the mutant generator 
itself. The mutant generator typically only executes at most 
once per simulation iteration, thus if only basic operations 
are being performed on signals, then the many O(1) time 
insertions by operations on signals far outweighs the few 
O(n) insertions by the mutant generator. 
0135 2.2.1.2. ARBITRARY OPERATION (f, L1, L2) 
0136. In one embodiment of the present invention, an 
operation ARBITRARY OPERATION performs the basic 
arbitrary operation f on all items of the fault lists L1 and L2 
by the rules described earlier, such that f is a simple 
operation which executes in O(1) time. Given that the items 
in each fault list are sorted in the order of increasing mutant 
ID, this operation is best implemented by assigning a 
traversing pointer to each input list (let us denote these 
pointers as p1 and p2) starting at the default value and 
operating on all items of L1 and L2 in order of increasing ID. 
The items of L1 and L2 are not expected to belong to the 
same set of mutants, therefore implicit value generation is 
performed when the items of p1 and p2 do not belong to the 
same mutant. When this happens, the pointer with a larger 
mutant ID hints that the default value from its list should be 
used instead. 

0137 After the operation m=f(p1.p2) is executed and the 
mutant m is inserted into the return list, the traversing 
pointer whose mutant has a smaller ID is updated with the 
next mutant in its list. If p1 and p2 point to descendants of 
the same mutant ID value, then both p1 and p2 are updated 
with the next mutant in their respective fault lists. Given that 
INSERT MUTANT can insert a mutant m into a list L in 
O(1) time if m belongs at the end of L, every insertion into 
the target signal will operate in O(1) time because each 
mutant being inserted into the resulting list has an ID greater 
than all previously inserted mutants. Therefore, performing 
an operation f on all items of the operand lists L1 and L2 
takes O(L1+ L2) time. In practice, however, the time to 
operate on both lists will be shorter whenever one or more 
mutant constructs have a mutant value in both L1 and L2 

Dec. 20, 2007 

0.138. Other operations important to high-level hardware 
descriptions may be more difficult to implement than the 
arbitrary operator, and may not run in linear time, such as 
operations on signal arrays. The index of the array is a signal 
implemented by a fault-list, thus the value accessed by the 
index typically is the union of the values accessed from the 
default index location with the mutant values accessed from 
every mutant index location. In other words, the operations 
on signal arrays can be represented by: 

WieII(X) 

Wiel I(X)|MX=(Mx-Mx), Ua; 
Note that these operations may also rely on implicit mutant 
value generation when necessary. 
0.139 2.2.2. Propagating Fault Lists Across Condition 
Statements 

0140. In one embodiment of the present invention, the 
development of a concurrent mutant simulator for high-level 
hardware descriptions involves the conceptualization of a 
method to implement conditional execution on signals con 
taining a fault list. The problem of executing a statement 
based on a fault list-enabled condition is that the condition 
will be met by some of the mutants and not by others. As a 
result, the fault list of the signals in the condition statement 
needs to be split into two partitions: the set of mutants that 
meet the condition, and the set of mutants that do not. 
0.141. When executing a condition statement, the actions 
performed by the simulator can include: 

0.142 i. The condition needs to be evaluated using 
comparison operators to create a Boolean fault list. 

0.143 ii. All the signals used within the condition 
statement need to be initialized via partitioning Such 
that the target partition for each fault list item is 
specified in the condition fault list. 

0144) iii. The TRUE partition of each signal is used 
within the then portion of the condition statement, and 
the FALSE partition of each signal is used within the 
else portion of the condition statement. 

0145 iv. Upon termination of the condition statement, 
the initialized signals have their fault list rebuilt via the 
recombination process. The values extracted from the 
partition that corresponds to the default value of the 
condition are merged with the values extracted from the 
other partition that are explicitly identified by the 
condition fault list. 

0146 An example of the above points analyzes the 
scenario illustrated in FIG. 6. Step (i) is used to generate the 
condition fault list and step (ii) is used to initialize the 
variables for conditional execution. Step (iii) is used to 
execute the cases in the condition statement, and step (iv) is 
used to extract the mutant values from the TRUE and 
FALSE partitions and merge them back into the fault list. 
Notice that the presence of C1 in the condition variable is 
used by the simulator to generate the mutant value B1 from 
B’s FALSE partition during the recombination phase in step 
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(iv). A substantially similar operation occurs when perform 
ing the recombination process on the signal Z Such that Z1 
is generated from the default value of the FALSE partition. 
In this situation however, Z1 is collapsed as it is inserted into 
the fault list due to redundancy with the default value Z0. 
Note that the TRUE and FALSE partitions exist as signal 
instantiations themselves, thus nested condition statements 
are handled in a nested fashion. 

0147 Step (ii) can be implemented as an adaptation to the 
arbitrary operator, and be handled by a procedure INIT 
CONDITION(C, L). In this procedure, the inputs to the 

function f (introduced in the following description) are the 
items in the initializing condition C (pointed to by p1) and 
the items in the fault list L of the signal being initialized 
(pointed to by p2). The result of the operation is a parti 
tioning of L into the fault lists L T and L. F such that for 
every mutant tie II(L)UII(C), Li is transferred into the 
TRUE partition L T if ci=true; otherwise Li is transferred 
into the FALSE partition L. F. Each mutant Libeing inserted 
into L T or L. F has an ID greater than any previous inserted 
mutant, therefore each insertion into L T and L. F is guar 
anteed to run in O(1) time. Just as with the arbitrary operator, 
the operation INIT CONDITION is guaranteed to run in 
O(C+L) time. 
0148 Step (iv) can also be implemented by an adaptation 
to the arbitrary operator, handled by a procedure RECOM 
BINE(C. L. T. L. F). In one embodiment, the complete 
partition that corresponds to the default value of the condi 
tion is merged with the implicit values of the other partition 
as specified by the condition. Therefore, one pointer 
traverses the partition that corresponds to the default value 
of the condition and the other pointer traverses the condition 
fault list C. Let us denote the partition that corresponds to the 
default value of the condition by L. FF, and let us denote the 
other partition by L nFF. Given that the partitions are 
deleted at the end of this procedure, and that values are 
extracted in the order of increasing ID, this procedure is best 
implemented by destructively extracting values from L nFF. 
This is important because each access of L nFF will begin 
from the start of the fault list, and it is important to remove 
all used and discarded values as a way to minimize the 
runtime for all Subsequent accesses. This extraction process 
guarantees that at most C+L nFF values are extracted, 
generated, or discarded from L nFF. There are L FF+C 
insertions into the signal being recombined, therefore the 
procedure RECOMBINE has a runtime complexity of 
O(C+L T+L F). 
0149 2.3. Integrating Mutant Value Generation into the 
Circuit Simulator 

0150. In one embodiment of the present invention, the 
core concurrent mutant simulator does not produce mutant 
values, but instead primarily propagates them. The mutant 
values are generated by separate engine(s) denoted as 
mutant value generator(s). This results in a simulation 
environment that can adapt to any design-based/fault-based 
error model by creating the appropriate mutant value gen 
erator(s) that are in charge of inserting the appropriate 
mutant values into the appropriate signal(s) under the appro 
priate condition(s). 
0151 Consider a feedback circuit to conjecture on the 
methods of generating mutant values. When a mutant is first 
activated in the circuit, it generates a mutant value that might 
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feed back to the same activation site to re-activate the 
mutant. At this point, it generates a mutant value from an 
already mutant signal. As a result, a mutant generator is 
activated by signals such that its corresponding mutant value 
is given higher preference over the default value. I.e., the 
mutant generator uses a signals default value if and only if 
a mutant value of corresponding ID tag does not exist. 
Furthermore, any mutant values that are inserted into a 
signal will replace the previous corresponding mutant value 
if it exists. 

0152 2.3.1. Implementation Alternatives 
0153. In one embodiment of the present invention, a 
mutant generator is a unit within a simulation environment 
in charge of activating any of its mutants when the proper 
activation criteria are met, at which point it generates the 
corresponding mutant value and injects it into the circuit (as 
illustrated in FIG. 7). Therefore for each mutant generator, 
the collection of signals in the circuit that act as activation 
criteria to any of its mutants needs to propagate any change 
in value to this mutant generator. Also, whenever an acti 
Vation criterion propagates into a mutant generator, the 
mutant generator needs to search through its set of mutants 
and identify every mutant that needs to be activated. When 
developing a mutant value generator, the effects of propa 
gation complexity and activation complexity need to be 
taken into consideration. Propagation complexity can be 
defined as the number of extra mutant signal propagations 
per simulation iteration such that a mutant value generator is 
the target. Activation complexity can be defined as the 
number of mutants that need to be considered for activation 
upon a signal propagation into a mutant value generator. 
Propagation and activation complexity are illustrated in FIG. 
8. 

0154) In one embodiment of the present invention, the 
system distributes mutant constructs using a centralized 
mutant generator. Only one unit in the simulation environ 
ment is in charge of generating mutant values. This results 
in the lowest propagation complexity because the propaga 
tion overhead imposed by concurrent mutant simulation is at 
most one extra propagation per internal signal. One effect of 
this approach can be that the modeled design error search 
space becomes linear with respect to the number of unde 
tected mutants. 

0.155. In one embodiment of the present invention, the 
system distributes mutant constructs using distributed 
mutant generators. One mutant value generator is assigned 
to each mutant construct. While this approach reduces the 
search space per mutant value generator to its minimum, it 
can also result in a maximum propagation complexity 
because the propagation overhead imposed by concurrent 
mutant simulation on a signal is typically proportional to the 
number of mutants to which it acts as activation criteria. 

0.156. In one embodiment of the present invention, the 
system distributes mutant constructs using hybrid (clus 
tered) mutant generators. Mutant constructs are “clustered 
into groups that have common activation criteria, therefore 
maintaining the propagation complexity and activation com 
plexity per mutant value generator at feasible levels. 

0157. In a verification system where multiple error mod 
els are being used, the hybrid mutant generation technique 
allows the flexibility of keeping mutants of disjoint activa 
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tion criteria in separate clusters and allows the search 
function of each mutant value generator to be optimized by 
introducing a “partitioning technique. Such partitioning 
schemes can reduce the search space per mutant generator 
by selecting the signal that acts as the most common 
activation criteria in that cluster and designating this signal 
as the partitioning point. Once a partitioning point has been 
chosen per cluster, each of these clusters can be organized as 
a hash table where the value of the partitioning point is used 
as the hashing key. 

0158 2.3.2. Clustering and Partitioning 

0159. High-level verification through the use of concur 
rent mutation-based simulation techniques typically pro 
vides the best input sequences when the set of mutants 
completely span the coverage measures. One reason for this 
is that concurrent simulation of a complete set of mutants 
allows an input sequence to drop all detected mutants, thus 
reducing the number of mutants for which Subsequent input 
sequences need to be generated. A second reason is that 
aiming each ATVG iteration at detecting the maximal num 
ber of mutants results in a highly-effective input sequence 
with high probabilities of detecting complex design errors. 

0160 However, supplying a verification system with a 
complete mutant set can affect the simulation performance, 
because the simulator is forced to analyze a larger set of 
mutants per simulation iteration as it searches for all errors 
that need to be activated. One embodiment of the present 
invention reduces the complexity of the mutant activation 
cycle by reducing the technique's search space. Carefully 
organizing the data-structure that manages the live set of 
mutants can: (1) minimize the error-activation cycle, thus 
optimizing the simulation, and (2) give the ATVG system 
information on the distribution of undetected mutants among 
the design space, thus providing it with the ability to aim its 
mutant-activating efforts at the activation criteria with the 
highest density of undetected mutants. These benefits can be 
achieved by “clustering and partitioning the complete set of 
mutant constructs into groups that are organized by their 
activation criteria. 

0161 Given that an underlying goal is to create partitions 
where the included mutants have at least one common signal 
in their activation criteria, one embodiment of the present 
invention can achieve clustering-and-partitioning by: 

0162 i. Generating a table where the rows represent 
the signals in the system that act as activating criteria 
to any of the mutants under consideration and the 
columns represent the set of mutants under consider 
ation. For any mutant, the set of intersecting points 
specifies the set of signals that collectively denote that 
mutants activation criteria. Initially, each of these 
signals and mutants are marked unselected. 

0.163 ii. Identifying the unselected signal that inter 
sects with the greatest number of unselected mutants, 
and marking this signal as selected. 

0.164 iii. Grouping all unselected mutants that inter 
sect with the selected signal into a cluster, and marking 
each of these mutants as selected. 

0.165 iv. For this new cluster, setting the selected 
signal as the partitioning point and partitioning the 
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cluster into a hash table where the activation criterion 
of the partitioning point is used as the hashing key. 

0166 V. If unselected mutants exist, returning to ste 9. p 
(ii) to perform another iteration. 

0.167 FIG. 9 illustrates an example of clustering and 
partitioning in which Si denotes a signal and Ci denotes a 
mutant. In the example of FIG. 9, the first cluster includes 
the set of mutants C1, C2, C3, C5} with partitioning point 
S5, and the second cluster includes the set of mutants C4, 
C.6 with partitioning point S4. 
0.168. In practice, each possible value for the partitioning 
point typically has a nonempty set of corresponding 
mutants. For instance, considera mutant construct, where an 
explicit state signal is chosen as the partitioning point. If the 
state signal occurs in every mutant construct, then selecting 
it as the partitioning point results in an efficient data struc 
ture when a processor's current state is used directly as the 
hash key. It is efficient because the performance of searching 
for the mutants to be activated remains independent of the 
size of the state-space. The only factors that would grow 
along with the state space are the hash table size and the total 
number of mutant constructs. 

0.169 FIG. 10 illustrates a set of simulation results that 
result from using a control-based mutant construct in con 
junction with an automatic mutant generator for a micro 
processor design. The simulation results demonstrate a sig 
nificant correlation between the number of mutants that are 
detected per simulation iteration and the number of mutants 
that are active per simulation iteration, and establish the 
benefit of focusing ATVG efforts on maintaining the number 
of active mutants at its highest possible value. Focusing 
ATVG efforts towards activating and propagating any 
mutant in the largest mutant partition can ensure an optimal 
mutant detection rate in a practical way. FIG. 10 also 
illustrates the difficulty in generating input stimuli to detect 
mutants given that a pseudo-random input sequence 
achieved to activate less than 0.2% of the mutants in the 
same design. This low activation rate is a result of two 
factors: i) many mutants are difficult to activate given they 
involve an architectural state deep within the circuit’s FSM, 
ii) active mutants within a simulation don’t live long given 
that they either quickly propagate to an observation point or 
are masked somewhere in the data path. This low activation 
rate for mutants and the strong correlation between the 
active and the detected mutants serve to justify the imple 
mentation of a concurrent mutant simulator because the 
simulation overhead imposed by active mutants is guaran 
teed to maintain low, and the value it provides is high by 
helping to visualize the effectiveness of an input sequence. 
0170 Note that random and pseudo-random ATVG tend 
to provide coverage in bursts. The detection rate for the 
random ATVG sequence of FIG. 10 appears to reach an 
upper asymptote after Surpassing input vector no. 1050, 
which could be interpreted by a verification engineer to 
signify that the verification efforts could be terminated at this 
point due to a diminishing return on coverage per extra input 
vector. However, it typically is a mistake to assume a 
randomly generated instruction sequence will always pro 
duce an optimal curve, and early termination of a verifica 
tion effort can risk not exposing important design errors that 
may have been exposed by a later productivity burst (such 
as the burst after input vector no. 1900 in FIG. 10). Such 
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sudden bursts of productivity in the verification phase are a 
common phenomenon that plagues the circuit design indus 
try. Commonly, design teams become convinced that their 
design is close to being fabrication-ready whenever Subse 
quent verification iterations continue to expose less impor 
tant bugs, only to have a later verification iteration expose a 
large dose of important bugs. If this large dose of important 
bugs could have been stimulated and catalogued at Some 
earlier verification iteration, it could have been fixed earlier 
and involved fewer time-consuming verification iterations. 
0171 2.4. High-Level Circuit Analysis 

0172] Once a set of mutants has been generated, the 
system simulates them on the hardware description under 
verification to utilize the input sequence and track its effec 
tiveness. The techniques in the previous sections include an 
efficient method for simulating a collection of mutants 
concurrently on an RTL circuit. Now, to promote an effec 
tive verification platform, the system needs a systematic 
ATVG strategy that can satisfy the simultaneous constraints 
specified by any mutant. To achieve this, the system first 
needs to convert the set of simultaneous constraints into a 
Solution space. This solution space lists all target architec 
tural states that can satisfy all simultaneous constraints, and 
any of these target architectural states can be used as the 
starting point when generating an instruction sequence. 

0173 It is important to identify the complete set of few 
target architectural states, because doing so prunes out the 
many irrelevant architectural states. Given that only one of 
these target architectural states is necessary, the system 
denotes each target architectural state in the Solution space 
as a prospect state (pState). Each pState is defined by: (i) the 
events that satisfy the simultaneous constraints, and (ii) the 
control requirements that allow these data dependencies to 
materialize. Each of these two components of a pState is 
implemented using a type of constraint dependency graph 
(CDG). 
0174 2.4.1. Constraint Dependency Graphs 
0175 2.4.1.1. Representing a Range of Values 

0176) Discrete and real data types can easily be repre 
sented as a value range, given that their range can be 
explicitly defined by a minimum and a maximum value. 
Bit-vector literals, however, are more difficult to represent. 
A partially-defined bit-vector can be represented as an array 
of bits, such that each bit can have a value of Zero (0), one 
(1), or don't-care (X). An X value signifies that the corre 
sponding bit can be used either as a 0 or a 1. As a result, 
the system can reduce the number of bit-vectors needed to 
represent a given set of values by merging pairs of bit 
vectors that differ by only one bit into a partially-defined 
bit-vector. Thus a range of values exists as a set of partially 
defined bit-vectors. 

0177 Such a partially-defined bit-vector set can be stored 
as a tertiary search tree. Such that each insertion attempts to 
reduce the tree by removing bit-vectors that are masked by 
the inserting bit-vector, or by merging the inserting bit 
vector with another bit-vector that has at most one corre 
sponding bit with an inverted value. Whenever merging is 
needed, the bit-vector in the tree that initiates the merge is 
removed, and a new insertion operation is performed with 
the merged bit-vector as the operand. 
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0.178 Hardware description languages allow performing 
relational and addition operations between bit-vector types 
and integer types. As a result, we need a method to convert 
an integer value range into a partially-defined bit-vector set. 
To do this, we can develop a method to generate a partially 
defined bit-vector set which enforces a minimum or a 
maximum. Consequently, we can generate a partially-de 
fined bit-vector set which enforces an integer value range by 
generating them for the minimum and the maximum sepa 
rately, and then intersecting both sets to generate a partially 
defined bit-vector set that forms an intersection between 
both sets. 

0.179 To generate a partially-defined bit-vector set for the 
minimum, we begin by replacing all 0 bits with an 'x' and 
insert a copy of this bit-vector into the new set. From here 
on, while there is a sequence of 1s (starting with the 
least-significant bit) that is followed by at least one x: 
replace this sequence of 1's by X's, replace the Succeeding 
x with a 1, and insert a copy of this bit-vector into the set. 
The final insertion is a bit-vector in the form of a series of 
x's that is appended by a series of 1's. Similarly, to 
generate a partially-defined bit-vector set for the maximum, 
we begin by replacing all 1 bits with an x and insert a 
copy of this bit-vector into the new set. From here on, while 
there is a sequence of 0s (starting with the least-significant 
bit) that is followed by at least one X: replace this sequence 
of 0s by X's, replace the succeeding x with a 0, and 
insert a copy of this bit-vector into the set. The final insertion 
is a bit-vector in the form of a series of X’s that is appended 
by a series of '0's. An example where a partially-defined 
bit-vector set is generated from an integer range is shown in 
FIG 11. 

0180. An ordinary bitwise operation is easily performed 
across partially defined bit-vector sets by applying the 
operation onto all pairs of partially-defined bit-vectors from 
both sets. This process can generate a large number of 
partially-defined bit-vectors, but this set is usually reduced 
substantially after it is inserted into the tertiary search tree. 
0181 Implementing arithmetic operations on partially 
defined bit-vectors can be a difficult aspect of developing 
support for partially-defined bit-vectors. Consider the truth 
table for a single-bit adder illustrated in FIG. 12. In FIG. 12, 
scenarios V, VI, and IX provide alternative outputs that 
cannot be represented in a single partially-defined bit-vector. 
It is therefore necessary to “split' the addition operation 
under these scenarios into two independent addition opera 
tions, such that each independent addition operation pro 
duces its own solution in the form of a partially-defined 
bit-vector. At the end of the addition operation, all the 
individual partially-defined bit-vectors will have been 
inserted into the same tertiary search tree, and therefore the 
set is once again reduced by the insertion process. Other 
arithmetic operations, such as negation and Subtraction, can 
be implemented using the addition operator. 

0182 2.4.1.2. Solving a CDG 
0183 Note that CDG structures can vary, and that some 
structures are easier to solve than others. Given that we are 
representing possible solutions by using range information, 
the system may be configured to avoid operators that impose 
Solutions with multiple disjoint ranges in values. An 
example of Such an operator is the inequality operator. A 
statement A/=B returns a true Boolean value if A<B or AaB, 
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therefore doubling the number of explicit value ranges. Let 
us define Such operators as "disjoining operators. Instead of 
Solving a CDG by transferring multiple value ranges across 
CDG operators as a result of disjoining operators, we can 
restructure a CDG into an equivalent graph that does not 
contain these disjoining operators. 
0184 In one embodiment of the present invention, the 
system avoids the set of disjoining operators illustrated in 
FIG. 13 in CDG representations, and instead uses the 
replacement statements shown. In this restructured CDG 
representation, the system may also make an explicit dis 
tinction between Boolean operators and bitwise operators, 
because they produce distinct disjoining effects when taking 
a (two) value range(s) as their operand(s). As an example, a 
Boolean NOT operator applied to an equality operator will 
double the number of explicit value ranges as previously 
stated, while a bitwise NOT operator applied onto a literal 
will simply invert every bit in its operand. Notice from FIG. 
13 that Boolean not operators are removed from CDGs, 
however bitwise not operators are retained. 
0185. Note also that in the restructured CDG represen 

tation, only one disjoining operator that remains in the CDG 
structure as it binds all disjoint range of values into a set. The 
Boolean OR operator is used to reference the CDG struc 
tures that define a specific explicit value range, and a set of 
these CDG structures is linked by a tree of Boolean OR 
operators. As a result, we get a CDG structure in the form of 
a disjunction of conjunctions, such that each conjunction 
defines a specific explicit range in values for its identifiers. 
More specifically, all nodes in a conjunction share the range 
in values for the variables and signals they refer to. The 
nodes in our restructured CDG follow a hierarchy (shown in 
FIG. 14). The Boolean OR and Boolean AND operators are 
propagated towards the first and second layers in the CDG, 
respectively, via DeMorgan's Theorem. 
0186 2.4.2. Search-Space Optimizations for Solving 
CDGS 

0187 Because pStates are generated and solved through 
out the ATVG process to justify a set of constraints past one 
time frame, the techniques for restructuring and solving 
CDGs may often be MVP's limiting factor. Hence, runtime 
performance can be improved by optimizing the worst-case 
scenario for the techniques that restructure and solve CDGs. 
Case statements are commonly used in hardware descrip 
tions to describe the control space of an FSM. Therefore, it 
is expected that some case statements in a hardware descrip 
tion will be significantly large. Also, it is expected that some 
signals (in particular, control signals) will have a separate 
assignment statement within each block of the case State 
ment. These large case statements can sometimes be the 
limiting factor for MVP's performance, because such a 
signal will need the corresponding assignment statement and 
control requirements to be analyzed for every block in the 
Case Statement. 

0188 If a case statement contains a “when others' block, 
its control requirements (guard) will be the conjunction of 
the negated guards of all explicit cases. This block's control 
requirements will therefore be a conjunction of disjoining 
operators, where a disjoining operator is an operator that 
imposes a disjoint range of values onto any identifier oper 
and. To convert this graph into a disjunction of conjunctions 
Such that each conjunction defines a contiguous range of 
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values for all discrete identifiers within it, we need to 
restructure the CDG into an equivalent graph that is free of 
disjoining operators. 

0189 Restructuring the graph into our desired form 
involves recursively replacing each sub-tree rooted at a 
disjoining operator with an equivalent tree that is free of 
disjoining operators, but is bigger in size. An inequality 
operator is replaced by a disjunction of relational operators, 
which unfortunately is a complete tree with twice the 
number of leaf nodes than the original. The size complexity 
is exacerbated by the modified graph’s conjunction of dis 
junctions structure. Performing a brute-force restructuring 
process to convert this graph into a disjunction of conjunc 
tions through the use of DeMorgan's Theorem produces a 
graph that is exponential in size in terms of the number of 
disjoining operators. This size complexity may quickly 
becomes a burden, because restructuring involves an expo 
nential runtime complexity, and soon thereafter becomes a 
limitation because it may easily consume all available 
memory. 

0.190 FIG. 15 illustrates an example CDG produced by 
the “when others' block of a case statement for signal A. 
Such that the guards for the case statement's two explicit 
cases are: (i) “when 1” and (ii) “when 3”. FIG. 15 area (b) 
illustrates the restructured CDG (with no optimization) 
using the method described earlier. The next step is to 
estimate the size of the restructured CDG that represents the 
control requirements for the “when others' block of a case 
statement with n explicit cases. 

0191 For a case statement with n explicit cases, the 
“when others' block will have a guard that is a conjunction 
of n inequality operators. Each inequality operator is 
replaced as follows: (AzB)->((A<B) OR (A>B)). So a 
conjunction of n inequality operators will be a conjunction 
of disjunctions, and each disjunction will have 2 operators. 
An example of this conjunction of disjunctions is (A-1) OR 
(A>1)) AND ((A<3) OR (A>3)) AND (AC4) OR (A>4)). 
0.192 Next, DeMorgan's Theorem is performed to propa 
gate the OR operators above the AND operators starting at 
the end of the tree. The operators in each disjunction will 
typically be duplicated many times as they are being placed 
into conjunctions (distributive property). Every conjunction 
in the final tree will have one relational operator from each 
original disjunction, and hence, each conjunction will have 
in operators. In order to determine how many operators there 
are in the final tree, we need to determine the number of final 
conjunctions; in other words, how many combinations we 
can have such that exactly one relational operator is taken 
from each original disjunction (either > or <). For each 
original disjunction, there are 2 choices, and since there are 
in original disjunctions, then there are 2" possible combina 
tions. With 2" conjunctions in the final tree and each con 
junction having in operators, there are nx2" operators. Each 
operator has 2 leaves, so there are nx2" leaves. Since a 
complete tree with k leaves has (2k-1) nodes and since the 
OR-AND part of the CDG is a complete tree, then the 
overall CDG has a total of (3n+2)x2"-1 nodes. FIG. 19 
shows the exponential runtime of the solver due to the 
brute-force restructuring process discussed in this section, 
under the line labeled Reduce None. 
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0193 2.4.3. Selected Optimizations for Solving CDGs 
0194 2.4.3.1. Unconditionally False Sub-Trees 
0.195. In one embodiment of the present invention, some 
CDG sub-trees can be removed early in the restructuring 
process because they evaluate to false. These uncondition 
ally false sub-trees can be identified by attempting to force 
a Boolean true value onto any Boolean operator or relational 
operator. A sub-tree will only be able to satisfy the true value 
if the range of values imposed onto all identifiers at that 
Sub-tree intersects with the range of values imposed on 
corresponding identifiers at all other sub-trees of the same 
conjunction. These operators will return a value of SUC 
CESS if successful, and will return a value of FAIL other 
W1S. 

0196. Applying DeMorgan's Theorem to propagate a 
Boolean OR operator above a Boolean AND operator begins 
with a CDG sub-tree rooted at a Boolean AND operator and 
results in an equivalent Sub-tree that is rooted at a Boolean 
OR operator. In order to optimize restructuring a CDG, we 
had the Boolean AND operator perform a reduce() opera 
tion on the sub-tree rooted at the Boolean OR operator that 
was generated by applying DeMorgan's Theorem. This 
reduce() operation recursively travels down to all relational 
operators and attempts to force a true value onto these 
operators. It replaces any of these relational operators with 
a Boolean false literal if a FAIL value is received in return. 
The reduce() function reduces Boolean AND and Boolean 
OR nodes that are connected to a Boolean literal (an 
unconditional value) accordingly as it recursively returns 
back to the node it was called on. This optimization effec 
tively reduces the size complexity of the restructure process. 
FIG. 16 depicts the graph of FIG. 15 after it is restructured 
using this optimized function. This optimization can make 
the runtime complexity of the restructure process feasible, as 
it allows pStates for most common constraints to be solved 
much more quickly. 
0197) However, a complex data dependency on a con 
straint will identify a series of signals whose value may 
depend on the circuit’s architectural state. Such a data 
dependency may force the ATVG unit to analyze the same 
control requirements a series of times, once for each iden 
tified signal. If all of these identified signals are dependent 
on a large explicit FSM, the large case statement that 
implements the FSM can be analyzed a series of times. This 
can multiply the computation time demonstrated by the 
second graph of FIG. 19 (labeled Reduce False), and may 
render the runtime complexity of the restructure operation to 
be unacceptable. 
0198 2.4.3.2. Unconditionally True Sub-Trees 
0199. One embodiment of the present invention further 
optimizes the restructuring technique by detecting and 
removing early in the restructuring process Sub-trees that 
evaluate to true. Such unconditionally true Sub-trees can 
occur when a comparison on an identifier does not reduce 
the range of values imposed on that identifier. FIG. 17 
illustrates the additional reduced graph that results for the 
example from FIG. 15. 
0200) Enabling a reduce() operation to identify sub-trees 
that are unconditionally true can involve modifying a dyadic 
operator's method of solving its sub-tree. Now, a sub-tree 
returns EXPENDABLE if it is unconditionally true, returns 
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FAIL if it is unconditionally false, and returns SUCCESS 
otherwise. An operator is EXPENDABLE if its child(ren) 
is(are) expendable, returns SUCCESS if no data contradic 
tion is encountered, and returns FAIL otherwise. An identi 
fier is EXPENDABLE if the range of values imposed onto 
it encapsulates the range of values imposed onto the same 
identifier at a different sub-tree of the same conjunction, 
returns SUCCESS if the range of values imposed onto it 
intersect the range of values imposed onto the same identi 
fier at a different Sub-tree of the same conjunction, and 
returns FAIL otherwise. Similarly, a literal returns 
EXPENDABLE if the range of values imposed onto it 
matches its value exactly, and returns FAIL otherwise. FIG. 
18 illustrates how a relational operator can be reduced based 
on whether it is unconditionally true or unconditionally 
false. 

0201 2.4.3.3. Optimization Results 
0202 The optimizations discussed above effectively 
reduce the size complexity and runtime complexity of the 
restructure process. FIG. 19 illustrates a set of sample CDG 
optimization results for the graph of FIG. 15 after it has been 
restructured using the optimized reduce() function. 
0203 Performing the reduce( ) operation during the 
restructuring process results in two significant advantages. 
First, it allows a pState to be solved efficiently. Second, a 
pState's implications on the circuit's set of internal signals 
and primary inputs will have been identified once the 
restructure process terminates. As was mentioned earlier, the 
restructure process calls the reduce() function on a Sub-tree 
that was modified via DeMorgan's Theorem. It does this as 
a way to reduce this sub-tree before it performs DeMorgan's 
Theorem at higher levels in the graph (and thus, propagating 
the OR operators to the top of the tree). Calling reduce() can 
have the productive side-effect of forcing all conjunctions 
within that sub-tree to identify the range of values for all 
identifiers within it. This optimizes the solver because 
Sub-trees are solved and reduced when they are Small, and 
conjunctions that are joined into a greater conjunction via 
DeMorgan's Theorem can have any data contradictions 
immediately exposed based on each Sub-graph’s previously 
Solved range in values. 
0204 2.4.4. Generating a Prospect Code Path 
0205 As previously mentioned, an activation criteria 
denotes a collection of signal instantiations and a corre 
sponding set of values that these signals satisfy. These 
activation criteria are used as the initial set of ATVG goals. 
Before attempting to identify the sets of implications that 
satisfy the ATVG goals, the search space can be reduced by 
first identifying, for each ATVG goal, the basic blocks that 
can assign the desired value onto the appropriate signal. For 
each of these identified basic blocks, the system can extract 
the guards (conditions from condition statements) that allow 
this block to be reached and combine the identified guard 
constraints to form the set of control requirements. A pros 
pect code path is defined as one of the many assignment 
statements that may be able to satisfy an ATVG goals 
constraint, such that the assignment statement can be 
reached when the identified control requirements are satis 
fied. A prospect code path for an ATVG goal includes: (i) the 
constraints to be satisfied, (ii) an RTL assignment statement 
that can satisfy the constraint, and (iii) the control require 
ments that allow its corresponding assignment statement to 
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be reached. A prospect code path can be conceptualized as 
one of many possible high-level cones of logic (local to a 
module) for a given signal or variable. Note that generating 
a prospect code path for an ATVG goal is performed 
independently of all other prospect code path generations for 
other goals, and need only consider the scope of the module 
in which the ATVG goal exists. 

0206. In one embodiment of the present invention, the 
system implements the environment that extracts the pros 
pect code paths for a given module by creating a statement 
tree (illustrated in FIG. 20) that preserves the structural 
integrity of all statements in the module and is able to 
provide an absolute path and control requirements to a given 
statement. Such a tree can be implemented by a collection of 
StatementList nodes that each includes a series of statements 
and the control requirements that allow these statements to 
be reached. The root level only includes the concurrent items 
in the module, and thus does not impose any control 
requirements. Any of these concurrent items can be a 
statement outside of process declarations, or they can be a 
process declaration. All other levels include sequential 
items. A process is created into a sequential node by insert 
ing all statements in the order in which they appear, such that 
a child StatementList node is created for any nested condi 
tion statements and a link to it is inserted in its place. 
Conditional assignment statements that exist outside of a 
process can themselves be converted into a process for their 
implementation, which allows the prospect code path for 
such a statement to be extracted in the same way as an 
assignment statement in a process. 

0207. A process can be spawned to convert an assignment 
statement into a prospect code path as follows: If the 
statement references a non-shared variable, then the scope of 
this variable is expanded by inserting the previous assign 
ment statement to that variable within the current code path. 
Shared variables are typically not supported because of their 
nondeterministic behavior when multiple processes modify 
the same shared variable at the same simulation iteration. If 
the statement includes an internal signal, then the scope of 
this signal is expanded by inserting any assignment state 
ment to it. There may be numerous assignment statements 
whose control requirements do not conflict with those of a 
selected prospect code path, so a new prospect code path 
needs to be generated for each of these alternatives. 
0208. The microprocessor program segment illustrated in 
FIG. 21 updates the value to a program counter (pc) register. 
This is the only location in the microprocessor implemen 
tation where the PC register is written to, and the initial CDG 
generated for the signal pc is illustrated in FIG.22. Note that 
temppc and tempof are both variables, and that the assign 
ment statement to signal pc lies at the end of the process. 
Therefore, when generating the CDGs for an ATVG goal on 
signal pc, any assignment to temppc and any assignment to 
tempof earlier in the process may be used as long as their 
control requirements do not conflict. The complete set of 
prospect code paths for an assignment to signal pc is 
generated and the resulting eight CDGs are illustrated shown 
in FIG. 23. 

0209. The leaf nodes of all the CDGs in FIG. 23 are 
constants, signals corresponding to registers, or primary 
input signals. Any of the prospect code paths deduced from 
these eight CDGs may be used to satisfy the ATVG goal on 
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signal pc, but some choices are better than others. Inspection 
can be used to determine that CDGs (e) and (f) in FIG. 23 
may be used in sequence to effectively satisfy a constraint on 
signal pc, primarily because they have access to primary 
input signals. These eight CDGs represent the first step 
towards satisfying a constraint on signal pc because the 
control requirements still denote dependencies on internal 
signals (i.e., the pc ctrl control signal). FIG. 24 illustrates a 
pictorial description for a prospect code path from an 
arbitrary statement C. es?B when the condition Y is satisfied. 
0210 2.4.5. Generating Prospect States 

0211. At this point, the system has for each constraint a 
collection of prospect code paths that are capable of per 
forming the desired signal assignment. Each of these code 
paths has a collection of control constraints that need to be 
satisfied in order for the corresponding assignment statement 
to be reached. It is possible to narrow down the search space 
into a collection of target microprocessor states that can 
possibly satisfy the complete set of constraints. A prospect 
state (pState) can be defined as an architectural state that can 
satisfy a given set of simultaneous constraints. It can be 
conceptualized as one of many possible high-level cones of 
logic that satisfies a set of constraints across module bound 
aries. A set of pStates can be generated by cross-referencing 
the sets of control requirements for all ATVG goals to 
identify all combinations of prospect code paths that can 
satisfy the ATVG goals without resulting in a contradiction 
between control requirements. 

0212 Mutants will typically have multiple constraints as 
their activation criteria that need be satisfied simultaneously. 
The set of constraints can reside in distinct module instan 
tiations within the circuit implementation, but each of the 
prospect code paths has a scope that does not reach past its 
module instantiation. Each pState serves as a specific focal 
point for the constraint solver such that every constraints 
relation to the set of internal signals and primary inputs are 
directly specified by a unified CDG. It has been previously 
stated in this section that each module instantiation includes 
a statement tree and references to all its embedded modules. 
Therefore the collection of pStates can be generated as 
follows: Each module instantiation is responsible for creat 
ing a prospect code path for every constraint that resides 
inside itself. It is also responsible for generating the com 
plete set of pStates from the set of prospect code paths that 
reside inside itself; these pStates have a domain that does not 
Surpass its module’s scope. 

0213 Each module instantiation uses the pStates it 
receives from its children to generate the pStates at its level 
of scope. When a module instantiation receives a pState 
from any of its children, it will first replace the child 
module’s primary input (PI) signals with the corresponding 
local signals as specified by the port map. Then it will 
continue to expand the scope of the internal signals in the 
pState until all signal references reach its primary inputs or 
any register; a process Substantially similar to the generation 
of prospect code paths described previously. After this, it 
creates a cross-product of the pStates from its child with its 
own (if any exist) into an expanded set of pStates. It does 
this by merging the data dependencies and control require 
ments from all its local pStates with those of all its child's 
pStates to generate all acceptable merges. Once it merges its 
local pStates with those of all its children, each of these 
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pStates encompass all constraints that lie at or below this 
point in the module hierarchy. 
0214. In one embodiment of the present invention, pState 
generation is optimized through concurrent programming. 
Each prospect code path can be generated by an independent 
thread because they are independent of all other prospect 
code paths by definition. Furthermore, the creation of 
pStates local to a nested module can be implemented by 
having each process that generates a prospect code path 
transfer control into a merge() operation local to its module. 
This merge() operation will merge the prospect code path 
into its local node such that the local partial pStates are 
accessed through mutual exclusion. Once the final merge() 
operation of a nested module has finished executing, it will 
transfer control to the parent module through the use of that 
module’s merge() operation. 
0215 2.5. High-Level ATVG 
0216 Previous sections described MVP's mutation 
based simulation strategy that provides valuable coverage 
analysis in real-time. Given a coverage metric that has been 
instantiated through a complete collection of mutants, 
MVP's concurrent mutant simulation system can efficiently 
keep track of the effects imposed onto the circuit by millions 
of these mutants. For the sake of progress, these mutants are 
removed from the simulation once they are propagated to 
any pre-designated observation point. When this happens, 
the mutant has been “killed.” Through this simulation sys 
tem, the objective becomes to expose and kill as many of 
these mutants as possible, because the outcome is an input 
sequence that has a proven high coverage of the circuit under 
verification. The described simulation strategy is enhanced 
by the use of the efficient and effective constraint solver, 
which is made up of a set of deterministic circuit analysis 
methods. 

0217. In one embodiment of the present invention, the 
system exploits MVP's simulation and circuit analysis abili 
ties to generate an input sequence that exposes an optimal set 
of mutants after every ATVG iteration. The system extracts 
ATVG goals from simulation statistics to expose an effective 
set of mutants, and then efficiently navigates through a 
circuit’s finite state machine (FSM) to satisfy the ATVG 
goals. 

0218 2.5.1 Identifying the Most Effective ATVG Goals 
0219. In one embodiment of the present invention, the 
system takes advantage of the previously-described cluster 
ing-and-partitioning data structure by using an ATVG tech 
nique that gives priority to any partition whose activating 
input sequence has the possibility of stimulating the most 
mutants. This technique focuses ATVG efforts on maintain 
ing the number of active mutants at its highest possible 
value, which correlates to generating an input sequence for 
the partition with the greatest number of undetected mutants. 
0220 FIG. 25 illustrates pseudocode describing the steps 
in each ATVG iteration. These steps aim MVP's ATVG 
efforts at the activation criteria with the highest density of 
undetected mutants (deterministic-activation), and only per 
forms deterministic-propagation in the case where probabi 
listic-propagation is insufficiently effective. Line 1 sorts the 
list of partitions into the order of descending member size to 
ensure that any unsuccessful attempt to generate an input 
stimuli for a partition P is followed by an attempt on the next 
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best partition during the subsequent iteration of the while 
loop. Line 6 attempts to generate an input sequence that 
activates an inactive mutant in P. and any failed attempt 
results in the removal of that mutant from P (fault dropping). 
These dropped mutants are marked as unexcitable. Line 10 
handles the case where the activation criteria for the parti 
tion P are already met, which is expected to happen when 
ever probabilistic propagation on the set of active mutants 
from P is insufficiently effective. Therefore line 10 is used to 
generate an input sequence that propagates an active mutant 
in P to a primary output, and any failed attempt results in the 
removal of that mutant from P. These dropped design errors 
are marked as undetectable. 

0221) At the start of the ATVG effort, deterministic 
activation on the dominant partition detects enough mutants 
from this partition so as to demote it from its dominant 
status. The probabilistic-propagation technique continues to 
be effective for as long as there are enough mutants with 
simple propagation requirements. Whenever the ATVG 
ITERATION technique encounters a partition that has an 
insufficient number of mutants with simple propagation 
requirements, the deterministic activation iteration can be 
followed by a deterministic propagation iteration on the 
same dominant partition. 
0222 2.5.2. FSM Analysis in Input Sequence Generation 
0223) In one embodiment of the present invention, a 
control-based coverage metric can be generalized so that an 
identifier is only dependent on a subset of a microproces 
sor's internal registers. This allows an RTL implementation 
to be decomposed into a set of interacting FSMs, such that 
one FSM is generated per internal register. Given a set of 
simultaneous constraints, a corresponding pState can be 
used to identify the set of registers (and their corresponding 
target values) that help satisfy these constraints. Thus, the 
final step in automatic test vector generation traces the target 
values for these registers to the reset state by analyzing their 
corresponding FSMs. 
0224 Analyzing the solution space for multiple simulta 
neous FSMs is substantially similar to the problem of 
analyzing the solution space for multiple simultaneous con 
straints, such that contradictions cannot exist in the control 
values of the Solution space. For multiple simultaneous 
FSMs, the control values that define the state transition of 
one FSM cannot contradict the control values that define the 
state transition for any other FSM in the same time frame. 
Even though this inter-dependency between FSMs does 
complicate the ATVG problem, it can be exploited to iden 
tify contradictions early in the search process, Substantially 
similar to the generation of a pState. 
0225. Finite state machines can be implemented as a 
directed graph, such that each state transition can be repre 
sented by a function y=ö(S, X). In this function, y represents 
the next state, S represents the current state, and X represents 
the input to the FSM. By using pStates, we can convert a set 
of simultaneous constraints to a target state y', and we can 
identify the internal signal values S and primary input values 
X that allow y' to be reached. This allows us to generate an 
input sequence by stepping backwards in time starting at y'. 
All FSM graph edges have equal weight, thus we are limited 
to employing either a depth-first-search (DFS) or a breadth 
first-search (BFS) technique when generating an input 
sequence for a single FSM that maps some target state y' to 
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the current states'. A BFS technique guarantees to provide 
the shortest input sequence, but typically involves using a 
significant amount of extra memory to store all pending 
paths being searched as multiple paths are explored simul 
taneously. Therefore a simple starting point can try to 
implement the FSM search technique using a DFS tech 
nique. Such a maximum path length 1 is specified to elimi 
nate lengthy Solutions and limit the search space. 
0226. This DFS technique can be adapted to support 
multiple simultaneous FSMs, as shown in the pseudocode 
illustrated in FIG. 26. In FIG. 26, TS holds the input 
sequence that will be returned, Y holds the constraints to be 
satisfied (target state), S returns the control requirements that 
satisfy Y (previous state to Y), and 1 is the size limit to the 
instruction sequence. This multi-FSMDFS function gives us 
the advantage of only searching the relevant portion of a 
microprocessor's FSM, as it allows an input sequence to be 
generated using a Subset of the microprocessors internal 
signals. This technique continues to satisfy the target con 
straints in Y until Y=0, identifying the constraints that 
define the previous state S in the process. 

0227 Each target constraint in Y is satisfied by a state 
ment in the HDL code as depicted in FIG. 27. The constraint, 
Y, is first inserted into the pState's guard CDG to ensure that 
the statement is a possible triggered event. If the guards 
CDG has not evaluated to false, then the statement is 
inserted into the pState as follows. First, the target identifier, 
C, is bound with the justification constraints (events CDG in 
the pState) to attain the corresponding constraints value. 
After which, the statement's CDG is solved to allow the 
identifiers in B to attain the possible solutions that allow C. 
to satisfy the constraint. After the statement's CDG is 
Solved, the solutions to B are inserted into the guards that 
denote the next justification problem. Satisfying a propaga 
tion constraint follows a Substantially similar process, 
except the information flow travels from the guards towards 
the events as is done during normal circuit simulation. 
0228. In a single time frame, an example scenario for the 
multi-FSM DFS function would look as depicted in FIG. 28. 
In this example, there are three target registers {R, R2, R} 
and three corresponding target values (y1, y2 y}. The 
objective is to find an incoming transition for each corre 
sponding FSM 8(si, X), Ö(S2, X2), Ö(ss, Xs) such that the 
control requirements for each transition do not contradict 
one another (Xi?hX, ?hXz0). After backtracking six times in 
this example, a final Solution set {ö(S2, X2), Ö(s.22, X22), 
Ö(ss, Xs)} is found. This portion of the technique is 
implemented in lines 3-11 of FIG. 26. The FOR loop of line 
5 continues to explore all possible incoming transitions for 
constraint V until a solution is generated, a data conflict is 
exposed, or the search space has been exhausted. 

0229 Analyzing the multi-FSM DFS function across 
multiple time frames, an example scenario would look as 
depicted in FIG. 29. In this example, we begin from the right 
with two signal constraints {Sig=y. Sig=ye whose data 
dependency is mapped to three internal signals or registers 
{R =y, R=y. Rs=ys by a specific pState. From here on, 
the multi-FSM DFS function identifies for each register an 
incoming transition that is compatible with all other regis 
ters incoming transitions, such that all transition informa 
tion (Ö(s, x) (in FIG. 29) is combined to define the control 
space (S. in FIG. 26) for that specific time frame. This 
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control space includes a set of register values and primary 
input values, and thus defines the state space for the previous 
time frame. 

0230. At some intermediate time frames, the control 
space will introduce a dependency on a new register (i.e. 
introduction of R(at=2, R (at=1 in FIG. 29) whose FSM 
will also need to be analyzed. Similarly at some other time 
frames, this control space will no longer denote a depen 
dency on a specific register (i.e. absence of R (alt=0 in FIG. 
29); this can happen at time frames when a data register is 
assigned the needed data value. Once the current architec 
tural state is reached, the recursive multi-FSMDFS function 
reports the primary input values in chronological order as it 
returns; reporting a input sequence {Xo X, X in the case 
of FIG. 29. 

0231 2.5.3. Generating an Input Sequence Using Pros 
pect States 
0232 Careful analysis of the multi-FSM DFS function of 
FIG. 26 reveals that lines 3-11 simply map a constraint set 
Y to any constraint set S, such that satisfying S results in Y 
as the next state; notice this is the inherent purpose of a 
pState (prospect state). This knowledge allows the multi 
FSM DFS function to be modified to use pStates when 
generating an instruction sequence, resulting in the updated 
pseudocode illustrated in FIG. 30, which is easier to under 
stand and works well with the definition and implementation 
of a pState. 

0233. In line 4 of FIG. 30, a set of constraints (target 
state) is converted into a pState. This pState has a defined set 
of target events, and needs to have the control requirements 
that trigger these events be identified and solved. Line 4 
Solves this pState as discussed in previous sections, and 
stores all possible solutions into the set P. We only need to 
use one solution in P, therefore the FOR loop starting at line 
5 continues to iterate until a solution is found or all entries 
in Phave been explored. To explore the previous time frame, 
the control requirements from the current pState t are passed 
as the constraints to the next recursive call to the multi-FSM 
DFS function. Once the reset state is reached (lines 2 and 3 
of FIG. 30), the recursive multi-FSM DFS function reports 
the input sequence in chronological order in (lines 8 and 9 
of FIG. 30) as it returns. 
0234 2.6. Real-Time Circuit Profiling 
0235. The previously-described techniques can provide 
an effective ATVG system that is capable of exposing 
complex circuit design errors. 

0236. However, such methods, when used alone, may be 
burdened by the analysis of irrelevant HDL code segments, 
and by the traversal of already-explored architectural states. 

0237. In one embodiment of the present invention, 
MVP's run-time performance is improved by implanting 
mechanisms that enable it to learn important details of the 
circuit under Verification as a way to avoid irrelevant circuit 
scenarios. These mechanisms can exist as a pre-processor 
that gathers circuit information prior to the circuit verifica 
tion process, or can also exist as run-time entities that allow 
MVP to learn from its experience. The following sections 
describe various learning strategies that may be utilized by 
the pre-processor as well as at run-time, along with their 
contributions. These circuit analysis tools allow MVP to 



US 2007/0294655 A1 

learn how to prune the search space as it verifies a hardware 
description, and impact MVP's memory requirements as it 
continues to learn. 

0238 2.6.1. Pre-Processor Circuit Profiling 
0239). A pre-processor to MVP's circuit verification pro 
cess typically is a lightweight task that provides MVP with 
valuable insight capable of directing its ATVG process 
towards a solution. It is because of this low-overhead 
demand that the pre-processor should not attempt to solve 
actual constraints, but rather solve early the sub-problems 
that provide MVP with the most valuable information. 
Instead of analyzing the implications that the circuit has onto 
each statement in the hardware description as is done in the 
real-time circuit analysis process (shown in FIG. 31A), the 
light-weight circuit profiler for the pre-processor can instead 
analyze the implications each statement has onto the overall 
circuit (as shown in FIG. 31B). 
0240 2.6.1.1. Assignment Statement Profiling 
0241 Many assignment statements in a hardware 
description simply transfer a constant value onto an identi 
fier. This is particularly true for enumeration data types, as 
they are commonly used to explicitly control an FSM. 
Previous sections discussed how a constraint can be solved 
by exploring all relevant assignment statements that can 
satisfy its unresolved data implications. Doing this involves 
instantiating a pState for each constraint for every prospect 
code path (assignment statement) that resolves it, instanti 
ating the assignment statement and control requirements for 
each pState in the form of a CDG, inserting this CDG into 
the pState, and re-solving these pStates to reduce the CDG 
and to remove all pStates that cannot exist in the hardware 
description. 

0242. Therefore, whenever attempting to satisfy a con 
straint (especially when it is dependent on an enumeration 
data type), this solver process will be repeated for a great 
deal of assignment statements that cannot help satisfy the 
constraint. Much of this dead-end work can be prevented by 
taking advantage of the previously-described StatementList 
data structure to index each assignment statement with the 
identifier value implications that it has onto the hardware 
description. 

0243 This indexing process can be easily and efficiently 
performed by using MVP's available resources. Satisfying a 
constraint involves MVP first converting the assignment 
statement being considered into a CDG and then solving the 
CDG (as described in previous sections). Solving this CDG 
provides every identifier within every conjunction with the 
explicit range in values that satisfies this assignment state 
ment only. Therefore to profile this specific assignment 
statement, the data implications it imposes onto the circuit 
are extracted directly from the identifiers within the solved 
CDG. 

0244 2.6.1.2. Implicit Memory Profiling 
0245 For complete circuit analysis, MVP typically needs 
to explore all signals in the hardware description in search 
for implicit memory elements. In certain cases, MVP may 
have to postpone resolving a specific constraint until later in 
the ATVG process; this can only be done if MVP has 
knowledge of which signals can retain their value across 
time frames, and how it can be done. MVP identifies these 
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implicit memory elements by negating the explicit guards to 
all assignment statements onto the signal being analyzed, 
and inserting them into a single conjunction (unified by 
Boolean AND operators). This process exploits MVPs 
efficient CDG solver, and a CDG that does not evaluate to 
false signifies an implicit memory element. This process 
therefore takes all implicit memory elements, and defines 
them explicitly by creating an entry for a corresponding 
memory-preserving assignment statement within the state 
mentList data structure where the solved CDG denotes the 
memory-preserving condition. 
0246 2.6.1.3. Basic-Block Guard Profiling 
0247 When a data contradiction is encountered when 
Solving a constraint, the contradiction typically arises from 
the union of the guards in the multiple prospect code paths. 
That is, the guards gathered from satisfying the constraint of 
a current unresolved identifier will more than likely conflict 
with the guard of a previously resolved identifier in the 
constraint. Experiencing an identifier value contradiction 
within the guard of a basic block is significantly more costly 
than experiencing a contradiction within the statement itself 
because the aggregated guards leading up to a basic block is 
larger in most cases than any of the assignment statements 
in that basic block, and this guard is repeatedly utilized by 
all statements within the basic block. Therefore the perfor 
mance of this guard profiling pre-processor is typically 
slower than that of the assignment statement profiling pre 
processor, but the runtime performance advantage it pro 
vides can be equally as significant. 
0248. It is possible to take advantage of the statementList 
data structure once again to hold pre-solved identifier values 
from the guards to every basic block. Having a pre-solved 
CDG for a statement's guard facilitates identifying the 
statements in the hardware description that obviously cannot 
satisfy a specific constraint. Also, performing this pre 
processor step that evaluates the guard information to every 
basic block allows MVP to identify all statements in the RTL 
code that obviously cannot be reached by identifying the 
guards that evaluate to false. 
0249. This process of indexing all leaf statementList 
nodes with the solved identifier values to its guards can be 
performed as a pre-processor or at run-time. Given that MVP 
already analyzes all identifiers to expose implicit memory 
elements, which involves evaluating the guards to all State 
ments, it can implement this basic block guard profiler as a 
part of the pre-processor. For any given statementList node, 
MVP can obtain the guard information that allows that entry 
to be reached by appending its guard to those of all its 
ancestor nodes. MVP can take advantage of the fact that the 
guards are distributed throughout the statementList tree 
(FIG. 20) by gathering the list of solved identifier values at 
each node, and recursively providing a copy of this list to all 
its children so they may append onto it. 
0250) This recursive process to obtaining guard informa 
tion includes two important advantages. The data-sharing 
nature of this recursive process allows it, as a pre-processor 
that starts at the root statementList node, to reduce the 
amount of redundant work that would be performed if it 
were to be executed at run-time starting at a leaf node. In 
other words, a value contradiction encountered within the 
guard of a non-leaf statementList node will nullify all 
statements residing as its children. The second advantage is 
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that it can identify all unreachable basic blocks within the 
hardware description without having to analyze all basic 
blocks. As shown in FIG. 32, an identifier value contradic 
tion exposed within the guard of an internal statementList 
node will automatically denote all the statements in its 
sub-tree as unreachable as well. 

0251 Unreachable blocks commonly exist within CASE 
statements. It is human nature to be cautious, and that 
encourages engineers at times to create a CASE statement 
with a “when others' clause that assigns default values to all 
control signals even though all possible cases have been 
handled explicitly. Because all explicit cases are imple 
mented, the “when others' clause will never be executed. 
MVP attempts to satisfy a constraint by starting at all 
relevant assignment statements, even if such an assignment 
statement exists within an unreachable basic block of the 
hardware description. Analyzing these unreachable state 
ments is futile because their guards evaluate to false. 
0252. As discussed previously, a worst scenario for gen 
erating a CDG can occur when analyzing the “when others' 
clause of a large CASE statement, because its guard is the 
conjunction of all negated guards to all explicit cases. 
Therefore, if all unreachable basic blocks are allowed to be 
re-analyzed, MVP's runtime performance could be degraded 
by the overhead of creating a pState of the constraint being 
Solved, converting the large guards to these “when other 
clauses into a CDG, and performing the costly restructure 
and solve process to this CDG that evaluates to false. It is 
therefore important that all unreachable code statements be 
flagged and ignored. 
0253). 2.6.2. Runtime Circuit Profiling 
0254. In one embodiment of the present invention, 
MVP's run-time circuit verification process is a complete 
task focused on exploring uncharted territory within the 
processor. In an ideal problem, it would be possible to travel 
throughout a hardware descriptions architectural state space 
without retracing one's steps. Unfortunately, 100% finite 
state machine (FSM) coverage commonly involves a sig 
nificant amount of redundant state exploration. Therefore as 
MVP gets further into its verification process, it is forced to 
retrace more of the previously explored State space in order 
to reach the target architectural state that defines the ATVG 
goal. Also, there are many architectural States that have a 
high occurrence frequency as they are a precursor to a wide 
range of other architectural states. Thus, retaining some of 
their pre-solved information can optimize MVP's perfor 
mance in the long run. This section focuses on the run-time 
circuit profiling efforts that can allow MVP to breeze 
through the already-explored State space when attempting to 
satisfy a unique ATVG goal. 
0255] 2.6.2.1. FSM Profiling 
0256 The previous section discusses practical pre-pro 
cessor methods for gathering circuit information that can 
prevent MVP from analyzing irrelevant circuit scenarios, 
and can speed up its analysis of previously explored assign 
ment statements through pre-generated circuit information. 
Its scope lies within the realm of a single time frame of the 
ATVG effort with its microscopic focus of optimizing the 
analysis of individual statements. Another type of profiling 
has equivalent objectives, but has a scope across multiple 
time frames with a macroscopic focus of optimizing the 
analysis of the implicit finite State machine. 
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0257 The previous section introduced the theory behind 
a finite state machine described by y=ö(S, X), where a target 
state y can be reached from states when the FSMs inputs 
are x. When the target state y can be reached by multiple 
states S. . . . S., we can use a weight scheme such that the 
state s with the lowest weight provides MVP with two 
advantages: 

0258 i. When the pStates have never been explored 
(thus they are un-indexed), it will allow MVP to choose 
the states with the least number of constraints that will 
need to be satisfied at the subsequent ATVG iteration. 
If the reset state is among the set, it will be character 
ized by the lack of constraints that need a Subsequent 
ATVG iteration, therefore resulting in a weight of Zero. 

0259 ii. When any of the pStates has been previously 
explored, its weight will be lower than all unexplored 
pStates, and will provide MVP with guidance towards 
the reset state as all Subsequent pStates will continue to 
have lower weights. 

0260 Implementing this weight-assigning process 
involves modifying the multi-FSM DFS function of FIG. 26 
as depicted in FIG. 33. Line 5 now selects the optimal 
candidate for the next ATVG iteration by selecting the pState 
with the lowest weight. If the selected pState has a weight 
of Zero, the previous recursive call to the multi-FSM DFS 
function has its length value 1 updated to zero on line 7, and 
it is returned SUCCESS signifying that the reset state has 
been reached on line 8. The previous recursive call to the 
multi-FSM DFS function will then be in charge of updating 
the weight values on line 10, incrementing the weight for its 
previous recursive call on line 11, and then commencing as 
usual. 

0261) One goal of exploring a finite state machine, as 
mentioned previously, is to generate an input sequence that 
maps the hardware descriptions architectural state from its 
reset state onto any architectural state that satisfies the given 
set of constraints. This process begins at the target archi 
tectural state, and continues to traverse the circuit backwards 
in time until the reset state is reached. A hardware descrip 
tion is characterized by the inter-dependent FSMs from all 
of its internal registers, and developing a macroscopic 
understanding on the overall FSM will involves understand 
ing all possible state combinations (the cross product) from 
all these smaller inter-dependent FSMs. We can therefore 
simplify the FSM profiling task by placing our focus at the 
individual FSMs for each register as they make up the 
building blocks for the overall FSM. Actually, MVP does not 
need to make a distinction between internal signals and 
internal registers during runtime FSM profiling because the 
implementation described below is broad enough to not 
require Such an explicit distinction. 
0262 One objective in performing FSM profiling on the 
overall circuit is to achieve the profiling tasks on the 
individual FSMs, and employ a mechanism that translates 
this low-level FSM profiling information into a circuit-wide 
FSM profiler. This concept may be tricky, some embodi 
ments of MVP do not manage these FSMs explicitly. Some 
embodiments of MVP can include the mechanisms that 
allow it to build and analyze these interacting FSMs explic 
itly, but that might involve performing another level of 
computations that should not be necessary. Note that MVPs 
strength is in its ability to analyze the circuit under verifi 
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cation by focusing on the source code, and it is possible to 
exploit MVP's source code database of the circuit under 
verification to achieve similar circuit profiling results. 
0263. The low-level circuit analysis is meant to account 
for the many inter-dependent FSMs, and so it therefore 
analyzes the FSM associated with each identifier that may 
(or may not) represent an internal register. One embodiment 
of MVP uses a construct entitled as an identifierSet, whose 
purpose it is to keep track of every location that each 
identifier is assigned a value onto. One objective of this 
construct is to optimize generating all possible pStates from 
a given identifier constraint by having the Sources to all 
possible solutions be readily available in one set. Therefore, 
MVP can use all entries corresponding to a constraints 
identifier to provide the needed FSM profiling information. 
We can exploit the fact that MVP accesses this identifierSet 
data structure each time it attempts to use a code path as a 
solution by also having MVP leave behind real-time low 
level circuit profiling information whenever it successfully 
utilizes this data source to satisfy a constraint. 
0264. The aforementioned global FSM profiling effort 
interprets the low-level FSM profiling information and iden 
tifies the shortest FSM path that can reach the circuits reset 
state. Typically the low-level profiling effort is performed 
when MVP attempts to use a line of HDL source code for 
satisfying a circuit constraint. Therefore, it can be beneficial 
to identify which MVP construct is analyzing these lines of 
code and could stand to benefit from the low-level profiling 
efforts. Looking at FIG. 29, we can see that the resulting 
input sequence is generated by instantiating pStates as the 
mechanisms that carry the potential Solutions as they are 
being developed, and thus the pState construct should be 
used to manage the global FSM profiling effort. 

0265. In one embodiment of the present invention, the 
low-level FSM profiling effort is focused on depositing 
information onto each statement in the hardware description 
to record its scope and the Success it can provide. Con 
versely, the global FSM profiling effort is focused on uni 
fying the information gathered from all Statement sources 
that represent a given Solution as a way to avoid costly or 
irrelevant scenarios. 

0266 FSM Weight Indexing 
0267 MVP's ATVG process can independently find the 
reset state through exploration of an FSM, but this alone 
may involve much backtracking. We can therefore exploit its 
ability to find and detect the reset state by appending the 
explored states in each FSM (the explored assignment 
statements for the identifier behind the FSM's register) with 
a weight value equal to its distance from the reset state. If 
MVP is instructed to generate an input sequence with a 
length of at most 1, then we can assign each state an initial 
weightdl. 

0268 However, the task of assigning weight values to a 
processors architectural States may not be so straight for 
ward. This is because each pState is influenced by multiple 
implicit FSMs, and can be pieced together by several 
concurrent assignment statements that Successfully satisfy 
all simultaneous constraints. MVP, therefore, may not 
assigning weight values to explicit architectural states, but 
rather assign weights to the assignment statements that were 
used to piece them together. 
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0269 MVP can perform its run-time weight-assigning 
process following every ATVG iteration to update each 
assignment statement's resulting distance to its FSM's reset 
state. Any given assignment statement may impact several 
distinct architectural states, and thus its weight value may 
have multiple sources. For the sake of allowing MVP to 
move towards an optimal solution while keeping the ATVG 
implementation simple, we can allow each assignment state 
ment to store the lowest weight value it is assigned. Using 
a given assignment statement's lowest assigned weight 
value, say w, can be reasonable, because that statement has 
the potential of providing an instruction sequence of size w 
again in the future. Therefore, giving preference to this 
statement over other alternate assignment statements of 
higher weight allows MVP to choose the ATVG path with 
the highest probability of producing the shortest path to the 
reset State. 

0270 pState Weight Estimation 
0271 MVP's ATVG process presents it with multiple 
pStates at every time frame, from which it chooses one 
pState with which to attempt and reach the reset state. 
Therefore, providing MVP with a weighing scheme for its 
pStates can help it easily identify the most effective solution 
path. The motivation for extracting a weight value from a 
pState is twofold, as mentioned at the start of this section. In 
choosing the ideal pState, MVP can first favor those solu 
tions to which a path to the reset state has already been 
identified; otherwise it can favor the pStates with the least 
number of constraints to justify. These two objectives can be 
handled inherently by a single weighing scheme. 
0272 Finding a balance between these two objectives can 
involve trade-offs, since the first objective typically involves 
Solving the pState to extract an accurate weight from the 
utilized statements, and the second requires the pState to not 
have been solved. Using our FSM weight indexing scheme 
where we index each RTL assignment statement with its 
known distance to the reset state, we can attain a weight 
value to a solved pState because it will then have assignment 
statements associated to it that were used to satisfy its 
constraints. Thus for the first case, if a pState has not been 
Solved, then it will not have these assignment statements that 
are necessary to estimate its distance to the reset state. 
Conversely for the second case, the number of constraints to 
resolve in a pState obviously can only be evaluated before 
these constraints are resolved. 

0273. In one embodiment of the present invention, iden 
tifying a pState's weight involves MVP using a unifying 
scheme that satisfies both of the preceding objectives. MVP 
first solves the pState, and then adapts its weight-assigning 
scheme to handle the second case which favors the pState 
with the least number of ATVG constraints. It can do this 
adaptation by counting the number of constraints that will 
propagate into the following ATVG iteration. Estimating the 
weight that gives preference to those previously-solved 
pStates closest to the reset state can involve multiplying the 
number of constraints that need to be resolved in the next 
ATVG iteration by the average weight of the assignment 
statements associated to the solved constraints. A pState 
whose constraints were solved in a previous ATVG problem 
will have assignment statements associated to it whose 
weight is lower than the maximum weight, and thus its 
average weight will naturally be lower than the maximum 
weight. 
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0274) Modified ATVG Technique 
0275 MVP's pState-weighing scheme involves modify 
ing MVP's ATVG function as depicted in FIG. 34. The 
get previous timeFrame() function extracts, from a pState 
y, all the pStates S that can transition into y. It requires y to 
have been solved (have all its constraints satisfied), and it 
returns a set of pStates s that are have not been solved. Thus, 
the objective of this modification is to ensure that the 
multi-FSM DFS( ) function calls the weight estimation 
procedure on Solved pStates only, as well as perform weight 
indexing using solved pStates only. 

0276 One change that allows us to satisfy our objective 
is that the function now expects the alternate ATVG objec 
tives Y to be a previously solved set of pStates. Having Y be 
a solved set of pStates allows MVP to immediately use its 
weight estimation methods for identifying the ATVG goal in 
Y that is estimated to be closest to the circuit's reset state. 
Afterwards, this modification converts the chosen path in Y 
into the alternate sets of constraints P that define the pre 
ceding architectural states. If the pState set in Pincludes the 
reset state, then the ATVG iteration is complete. Otherwise 
the set in P is solved to define the set of previous time frames 
S that can transition into Y, and to define the inputs that 
allow this transition to take place. The preceding pStates in 
S are themselves justified towards the reset state by invo 
cating a recursive call to the multi-FSM DFS() function. 
0277 2.6.2.2. Explored State-Space Tracking 

0278. The ATVG function in FIG. 34 will typically 
receive, from line 3, pStates that have been traversed by a 
previous recursive call within the same ATVG iteration. 
When this happens, those pStates should be ignored, 
because re-analyzing them will not help the ATVG function 
get any closer towards a solution. Ignoring the visited 
pStates is both an up-stream and down-stream process. 
Preventing the ATVG function from revisiting a pState that 
is visited earlier in the same input sequence will prevent the 
ATVG function from analyzing FSM loops. Furthermore, 
preventing the ATVG function from revisiting a pState that 
was visited by a previous input sequence branch that failed 
to generate a result will prevent the ATVG function from 
analyzing unsuccessful paths more than once. 

0279. These changes to the multi-FSM DFS function are 
illustrated in FIG. 35. The multi-FSMDFS function now has 
an extra input, VS, that specifies the set of pStates that have 
been visited by that ATVG iteration. Line 5 now checks if 
the current pState to be analyzed, t, has been previously 
visited by that same ATVG iteration. If it has been previ 
ously visited, then line 6 deletes it and allows the subsequent 
iteration of the FOR loop on line 4 to analyze the next pState 
in the solution set P. If it has not been previously visited, then 
line 7 allows the multi-FSMDFS function to store p' into the 
visited set VS and proceed as usual. 
0280 MVP can identify if a pState p' has been previously 
visited by identifying if p' is masked by the set of visited 
pStates in VS. A pState is defined by a set of register and 
input identifiers, and their corresponding range in values. 
For the purpose of obtaining a clear perspective on when one 
pState masks another, one needs to realize that an identifier 
missing from a pState signifies that the corresponding iden 
tifier has a complete range in values. In terms of identifiers, 
an identifier with a range in values V is masked by a 

Dec. 20, 2007 

corresponding identifier instantiation with a range in values 
v' if and only if (IFF) the range in values for V are 
encapsulated by the range in values for v' (vev'). We can 
therefore identify if a pState t' is masked by a pState t IFF 
the set of identifiers referenced by pState t is a subset of the 
identifiers referenced by t', and IFF the range in values of the 
identifiers in t encapsulate the range in values of the corre 
sponding identifiers in t'. 
0281 2.6.3. Memory Requirements for Circuit Profiling 

0282) Note that the pre-generated circuit information 
does not suffer from the state explosion problem because it 
is kept in its basic form with respect to the basic blocks of 
the implementation per HDL process. It is not kept as the 
permutations and combinations between all processes that 
make up a circuit's state-space. As a result, the memory 
requirements for MVP's learning strategy increase linearly 
with respect to an implementation's code size. 

0283 2.6.4. Optimization Results from Runtime Circuit 
Profiling 

0284. Each of MVP's ATVG iterations generates an input 
sequence that maps any target architectural State to the reset 
state during justification ATVG, and generates an input 
sequence that propagates a discrepancy in values during 
propagation ATVG. Propagation ATVG is typically not as 
difficult of a problem as justification ATVG, because it is 
more dependent on a circuit's data path than it is on its 
complex FSM. Furthermore, if a path to the reset state has 
not been identified, the justification search process is blind. 

0285) MVP's pState weighing scheme helps it to forecast 
the easiest path to the circuit's reset state by selecting the 
pState with the least number of simultaneous constraints (as 
described for pState weight estimation). This weight esti 
mation scheme can dramatically improve the run time. 

0286 FIG. 36 illustrates an ATVG search space for an 
exemplary design after pState weight estimation. The width 
of each bar specifies the number of vectors within a specific 
input sequence and the height specifies the number of FSM 
time frames that had to be analyzed in order to reach a 
Solution. The thicker bars correspond to a justification input 
sequence while the thin and short bars that appear as 
indentations correspond to each propagation input sequence. 
This graph illustrates how it is typically much easier to 
perform propagation ATVG than it is to perform justification 
ATVG; however, the lack of thin and short bars on the right 
half of the graph also shows us how later ATVG problems 
are plagued by mutants that are difficult to propagate 
towards an observation point. 

0287 Another benefit of the pState weight indexing 
framework described is that it allows MVP to somewhat 
keep track of the shortest path to the reset state (as described 
for FSM weight indexing). Comparing the number of time 
frames analyzed per ATVG iteration between FIG. 36 
(which illustrates the result of pState weight estimation) and 
FIG. 37 (which illustrates the results of both pState weight 
estimation and FSM weight indexing) shows that reaching 
the reset state can be highly optimized by using FSM weight 
indexing. FIG. 37 illustrates how the number of time frames 
in the typical FSM search space was dramatically reduced. 
There are still occasional justification problems that are 
difficult to solve, as shown by the large bars around vectors 
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600 and 1000, but they don’t dominate the problem space 
and their solutions contribute to MVP's FSM learning 
process. 

0288 2.7. Runtime Comparisons 
0289 FIG. 38 illustrates a comparison (for a sample 
design) of MVP's approach to the random methods typically 
used to expose circuit design errors, and demonstrates 
MVP's effectiveness in continuously traversing the unex 
plored portions of a circuit's architectural state-space. More 
specifically, FIG. 38 illustrates MVP's effectiveness at 
stimulating mutant peaks, resulting in a continuous mutant 
detection rate. 

0290 Consider the simulation results after input vector 
700. After this point, MVP has already stimulated every 
mutant by activating (or removing) it and is now making a 
second pass to attempt in exposing mutants in the remaining 
dominant partitions. The ATVG methods perform justifica 
tion (to activate mutants) and propagation (to expose 
mutants at an observation point) ATVG as two separate steps 
Such that mutant propagation always follows mutant acti 
Vation. As is shown in FIG. 38, this segregated approach 
typically works well for the vast majority of mutants that are 
easy to propagate. However, there may be a special class of 
mutants that require special values in the data registers as a 
precondition to propagation that cannot be predicted by the 
justification ATVG algorithm. It is this class of mutants that 
reside between MVP's maximum detected mutant count 
(~10,000 mutants) and the absolute maximum of detectable 
mutants (12,527 mutants) for the sample design. 
0291. Note that one embodiment of the present invention 
can involve joining the justification and propagation ATVG 
phases into a single ATVG algorithm that guarantees a 
specific mutant is activated and propagated to an observation 
point as a means to produce the absolute optimal input 
sequence for circuit verification. This technique will affect 
the FSM search space (shown in FIG. 37) by allowing more 
propagation ATVG iterations to complete Successfully at 
later time frames, therefore allowing the short and narrow 
bars to appear throughout FIG. 37 and not just the first half. 
3. Summary 

0292 A common characteristic for random and pseudo 
random ATVG is their tendency to provide new circuit 
coverage in bursts. These sudden bursts of productivity in 
the verification phase of a circuit design project are a 
common phenomenon that plagues the circuit design indus 
try. It is common that circuit design teams become con 
Vinced that their design is close to being fabrication-ready 
because Subsequent verification iterations continue to 
expose less critical bugs, only to have a later verification 
iteration expose a large dose of previously undetected criti 
cal bugs. If this large dose of critical bugs could have been 
stimulated and catalogued at Some earlier verification itera 
tion, it could have been fixed earlier and required less 
time-consuming verification iterations. 
0293 Given that a hardware description is constantly 
changing during the circuit development process, a circuit 
implementation becomes a moving target for circuit verifi 
cation. Therefore, the most complicated aspects to circuit 
verification are the problems in identifying where one needs 
to perform circuit verification, and in identifying how much 
circuit verification is enough. 
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0294. In one embodiment of the present invention, a 
verification system provides a complete circuit verification 
system for exposing complex design errors in modern hard 
ware descriptions. This system utilizes circuit analysis tech 
niques to automatically generate a complete collection of 
mutants around a set of control points to implement a 
control-based coverage metric. A mutation-based circuit 
simulator allows the system to monitor and manage all 
mutants simultaneously. These abilities enable the system to 
automate the tasks of identifying and monitoring all the 
circuit locations that need to be verified for correctness at 
every point in the Verification process. 
0295) The system's circuit analysis abilities also enable 
generating deterministic input vectors that are focused at 
stimulating an unexplored portion of the circuit. The system 
utilizes a mutant database to identify the circuit scenario that 
has the highest probability of containing a design flaw, and 
automatically generates an input sequence that targets Such 
a circuit scenario. These input vectors produce a coverage 
pattern that is more consistent and predictable than random 
input vectors, thereby allowing an engineer to understand 
exactly when enough circuit verification has been per 
formed. This system can enable a verification engineer to 
make a calculated decision on when to terminate the veri 
fication process based on whether mutant detection trends 
have either reached above a given coverage level or the 
detection trend has reached a horizontal asymptote. To 
achieve this, the system implements a closed-loop verifica 
tion strategy, where the coverage analysis provided by 
circuit simulation influences the focus for its deterministic 
automated test vector generation (ATVG) efforts, and the 
resulting input sequence from deterministic ATVG is fed 
back into its mutation-based circuit simulator before the next 
optimal ATVG goals are defined. 
0296. The described system automates the circuit verifi 
cation process so that circuit design engineers can focus 
their energy and creativity on the circuit design effort itself. 
and not on circuit verification. The system has the ability to 
automate every step in a circuit verification paradigm, by: 
starting with defining and instantiating any coverage metric 
for any given hardware description; automatically tracking 
the unstimulated portions of the circuit implementation at 
every stage of the circuit design and circuit verification 
efforts; automatically generating deterministic input stimuli 
that guarantee coverage of previously-unexplored portions 
of the circuit implementation. 
0297. Note that the system described in the present 
invention overcomes limitations in other verification 
approaches. For instance, the system described does not rely 
on a gate-level implementation that has been previously 
synthesized from an HDL description. The system also does 
not need significant human foresight in building test tem 
plates that describe architecture-level characteristics that 
need to be tested, and running Such templates through a 
model-based test vector generator. Similarly, the system 
does not need verification engineers to develop diverse sets 
of program macros, unlike other verification systems that 
attempt to combine Such macros in various sequences using 
a genetic technique to attempt to generate tests every corner 
of the design. Note also that the described system does not 
modify the original implementation, and hence does not 
generate a collection of multiple implementations that 
require independent simulations. 
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0298 The foregoing descriptions of embodiments have 
been presented for purposes of illustration and description 
only. They are not intended to be exhaustive or to limit the 
present description to the forms disclosed. Accordingly, 
many modifications and variations will be apparent to prac 
titioners skilled in the art. Additionally, the above disclosure 
is not intended to limit the present description. The scope of 
the present description is defined by the appended claims. 

What is claimed is: 
1. A method for automatically generating an input 

sequence for a circuit design using mutant-based verifica 
tion, comprising: 

receiving a description of the circuit design; 
determining a target value for a control signal in the 

description; 

determining a mutant value for the control signal; 
determining if an input sequence for the circuit design 

exists that stimulates the control signal to the target 
value and causes the effects of the target value and the 
effects of the mutant value to reach an observation point 
in the circuit design such that the effects of the target 
value and the effects of the mutant value differ at the 
observation point; 

if so, simulating operation of the circuit design using the 
input sequence; and 

during simulation, generating a first set of signal values 
affected by the target value for the control signal and a 
second set of signal values affected by the mutant value 
for the control signal. 

2. The method of claim 1, wherein the mutant value is an 
erroneous value for the control signal that is injected into the 
circuit design to replace the target value of the control signal. 

3. The method of claim 1, wherein the description is a 
high-level description of the circuit design specified using a 
hardware description language. 

4. The method of claim 1, wherein determining the input 
sequence involves: 

identifying a set of constraints that result in the control 
signal being set to the target value, wherein the set of 
constraints define an activated State for the control 
signal and wherein a mutant construct is used to define 
a set of activation constraints for the control signal as 
well as the mutant value for the control signal; 

determining a first input sequence for the circuit design 
that achieves the activated State and causes the mutant 
value to be injected; and 

determining a second input sequence for the circuit design 
that propagates the first set of signal values and the 
second set of signal values to the observation point 
from the activated state. 

5. The method of claim 4, wherein determining the first 
input sequence involves determining a reset input sequence 
that begins from the reset state for the circuit design and 
reaches the activated State. 

6. The method of claim 1, wherein generating two sets of 
signal values involves: 

generating the first set of signal values using the input 
sequence and the target value; and 
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generating the second set of signal values using the input 
sequence, the target value, and the mutant value; 

wherein generating the second set of signal values 
involves detecting when, during simulation, the control 
signal reaches the target value, and then changing the 
value of the control signal to the mutant value. 

7. The method of claim 6, 
wherein a mutant simulator generates the first and second 

set of signal values simultaneously; 
wherein during simulation the mutant simulator generates 

the first and second set of simulation values by simul 
taneously tracking multiple values for signals in the 
circuit design; and 

wherein generating two or more sets of signal values 
simultaneously reduces simulation overhead for the 
circuit design. 

8. The method of claim 1, 
wherein the method is applied to the control signals of the 

circuit design to deterministically generate input 
sequences that provide control-based coverage of the 
circuit design; and 

wherein providing control-based coverage of the circuit 
design detects errors in the circuit design and helps the 
user to verify the correct operation of the circuit design. 

9. The method of claim 8, wherein applying the method 
to the control signals of the circuit design involves: 

analyzing the description of the circuit design to find the 
control signals in the circuit design; 

building a database of mutant constructs based on the 
target values and mutant values for the control signals; 
and 

using the database while generating a set of input 
sequences that stimulate the control signals. 

10. The method of claim 9, 
wherein the database facilitates clustering the mutant 

values to determine target areas in the circuit design 
with a higher density of control signals; 

wherein generating the set of input sequences involves 
using the database to ensure that all of the mutant 
values have been stimulated; 

wherein the database is partitioned to facilitate continu 
ously locating the largest remaining related set of 
unstimulated control signal values. 

11. The method of claim 10, wherein multiple mutant 
values associated with a given control signal may be stimu 
lated simultaneously using the same input sequence. 

12. The method of claim 5, 
wherein a prospect state represents an architectural state 

for the circuit design; and 
wherein determining the input sequence involves analyZ 

ing a set of prospect States to find a first path from the 
activated State to the reset state and a second path from 
the activated state to the observation point. 

13. The method of claim 12, wherein a prospect state 
includes: 

a first constraint-dependency graph that defines a set of 
constraints to be satisfied simultaneously; and 
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a second constraint-dependency graph that defines the set 
of conditional values that allow the set of constraints to 
be satisfied simultaneously. 

14. The method of claim 13, 
wherein a constraint-dependency graph is used to solve a 

system of equations for statements in the description of 
the circuit design; and 

wherein the graph structure of the constraint-dependency 
graph facilitates appending additional constraints onto 
the constraint-dependency graph. 

15. The method of claim 12, wherein analyzing the set of 
prospect states involves finding a path that balances trade 
offs between a desired length for a potential path and the 
estimated computational effort involved in finding the poten 
tial path. 

16. The method of claim 1, wherein the method further 
involves translating the input sequence into a format that 
assists user verification and understanding of the circuit 
design. 

17. The method of claim 1, wherein the method further 
involves: 

receiving a user-specified input sequence for the circuit 
design; 

using mutation-based verification to determine the con 
trol-coverage provided by the user-specified input 
Sequence. 

18. The method of claim 11, wherein multiple mutant 
values being simultaneously stimulated using the same input 
sequence are associated with different control signals in the 
circuit design. 

19. A computer-readable storage medium storing instruc 
tions that when executed by a computer cause the computer 
to perform a method for automatically generating an input 
sequence for a circuit design using mutant-based verifica 
tion, the method comprising: 

receiving a description of the circuit design; 
determining a target value for a control signal in the 

description; 
determining a mutant value for the control signal; 
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determining if an input sequence for the circuit design 
exists that stimulates the control signal to the target 
value and causes the effects of the target value and the 
effects of the mutant value to reach an observation point 
in the circuit design such that the effects of the target 
value and the effects of the mutant value differ at the 
observation point; 

if so, simulating operation of the circuit design using the 
input sequence; and 

during simulation, generating a first set of signal values 
affected by the target value for the control signal and a 
second set of signal values affected by the mutant value 
for the control signal. 

20. An apparatus for generating an input sequence for a 
circuit design using mutant-based verification, comprising: 

a receiving mechanism configured to receive a description 
of the circuit design; 

a determining mechanism configured to determine a target 
value for a control signal in the description; 

wherein the determining mechanism is further configured 
to determine a mutant value for the control signal; 

wherein the determining mechanism is further configured 
to determine if an input sequence for the circuit design 
exists that first stimulates the control signal to the target 
value and causes the effects of the target value and the 
effects of the mutant value to reach an observation point 
in the circuit design such that the effects of the target 
value and the effects of the mutant value differ at the 
observation point; 

a simulating mechanism that simulates operation of the 
circuit design using the input sequence if the input 
sequence exists; 

a generating mechanism configured to generate during 
simulation a first set of signal values affected by the 
target value for the control signal and a second set of 
signal values affected by the mutant value for the 
control signal. 


