PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GOG6F 9/46 A2

(11) International Publication Number:

(43) International Publication Date:

WO 99/44133

2 September 1999 (02.09.99)

(21) International Application Number: PCT/US99/04065

(22) International Filing Date: 25 February 1999 (25.02.99)

(30) Priority Data:
60/076,048
09/045,652

UsS
us

26 February 1998 (26.02.98)
20 March 1998 (20.03.98)

(71) Applicant: SUN MICROSYSTEMS, INC. [US/UST;, 901 San
Antonio Road, MS UPALQ1-521, Palo Alto, CA 94303
(US).

(72) Inventors: SCHEIFLER, Robert; 96 North Street, Somerville,
MA 02144 (US). WOLLRATH, Ann, M.; 9 Northwoods

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,
KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG,
SL, SK, SL, TJ, T™M, TR, TT, UA, UG, UZ, VN, YU, ZW,
ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG,
ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI,
FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TG).

Published
Without international search report and to be republished

Road, Groton, MA 01450 (US). JONES, Peter, C.; 85 Bacon upon receipt of that report.

Street, Winchester, MA 01890 (US).

(74) Agents: GARRETT, Arthur, S.; Finnegan, Henderson,
Farabow, Garrett & Dunner, L.L.P., 1300 I Street, N.-W.,
Washington, DC 20005-3315 (US) et al.

(54) Title: METHOD AND SYSTEM FOR DETERMINISTIC HASHES TO IDENTIFY REMOTE METHODS

(57) Abstract

A method and system is provided to uniquely identify a remote method to invoke on a server using a hash value computed from
the method signature sent from the client to the server with the call request. When a client wishes to invoke a remote method located
on a server, the client sends a hash value identifying the remote method to the server in the "remote method invocation” (RMI) call. In
one implementation, this hash value is created by applying a hash function to the method string name and the parameter type list and
possibly the return type. When the server receives the RMI call, the server identifies which method is being called using the received hash
value. The server maintains a mapping of hash values to their associated remote methods located on the server and references the correct
method using the hash value. Additionally, in one implementation, the server creates the mapping table dynamically when a remote object
is created. The server identifies the methods implemented by the object and creates hash values for each method. These hash values are
stored in a mapping table which is used to reference the remote methods.

AL
AM
AT
AU

BA
BB
BE
BF
BG

BR
BY
CA
CF
CG
CH
CI

CN
Cu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cbote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 99/44133 PCT/US99/04065

1

METHOD AND SYSTEM FOR DETERMINISTIC
HASHES TO IDENTIFY REMOTE METHODS

Related Applications

The following identified U.S. patent applications are relied upon and are incorporated
by reference in this application.

Provisional U.S. Patent Application No. 60/076,048, entitled "Distributed Computing
System," filed on February 26, 1998.

U.S. Patent Application No. 09/044,923, entitled "Method and System for Leasing
Storage," bearing attorney docket no. 06502.0011-01000, and filed on the same date herewith.

U.S. Patent Application No. 09/044,838, entitled "Method, Apparatus, and Product for
Leasing of Delegation Certificates in a Distributed System," bearing attorney docket no.
06502.0011-02000, and filed on the same date herewith.

U.S. Patent Application No. 09/044,834, entitled "Method, Apparatus and Product for
Leasing of Group Membership in a Distributed System," bearing attorney docket no.
06502.0011-03000, and filed on the same date herewith.

U.S. Patent Application No. 09/044,916, entitled "Leasing for Failure Detection," bearing
attorney docket no. 06502.0011-04000, and filed on the same date herewith.

U.S. Patent Application No. 09/044,933, entitled "Method for Transporting Behavior in
Event Based System," bearing attorney docket no. 06502.0054-00000, and filed on the same date
herewith.

U.S. Patent Application No. 09/044,919, entitled "Deferred Reconstruction of Objects
and Remote Loading for Event Notification in a Distributed System," bearing attorney docket
no. 06502.0062-01000, and filed on the same date herewith.

U.S. Patent Application No. 09/044,938, entitled "Methods and Apparatus for Remote
Method Invocation," bearing attorney docket no. 06502.0102-00000, and filed on the same date
herewith.

U.S. Patent Application No. 09/044,790, entitled "Method and Apparatus for
Determining Status of Remote Objects in a Distributed System," bearing attorney docket no. »

06502.0104-00000, and filed on the same date herewith.

10

15

20

25

WO 99/44133 PCT/US99/04065

2

U.S. Patent Application No. 09/044,930, entitled "Downloadable Smart Proxies for
Performing Processing Associated with a Remote Procedure Call in a Distributed System,"
bearing attorney docket no. 06502.0105-00000, and filed on the same date herewith.

U.S. Patent Application No. 09/044,917, entitled "Suspension and Continuation of
Remote Methods," bearing attorney docket no. 06502.0106-00000, and filed on the same date
herewith.

U.S. Patent Application No. 09/044,835, entitled "Method and System for Multi-Entry
and Multi-Template Matching in a Database," bearing attorney docket no. 06502.0107-00000,
and filed on the same date herewith.

U.S. Patent Application No. 09/044,839, entitled "Method and System for In-Place
Modifications in a Database," bearing attorney docket no. 06502.0108, and filed on the same
date herewith.

U.S. Patent Application No. 09/044,945, entitled "Method and System for Typesafe
Attribute Matching in a Database," bearing attorney docket no. 06502.0109-00000, and filed on
the same date herewith.

U.S. Patent Application No. 09/044,931, entitled "Dynamic Lookup Service in a
Distributed System," bearing attorney docket no. 06502.0110-00000, and filed on the same date
herewith.

U.S. Patent Application No. 09/044,939, entitled " Apparatus and Method for Providing
Downloadable Code for Use in Communicating with a Device in a Distributed System," bearing
attorney docket no. 06502.0112-00000, and filed on the same date herewith.

U.S. Patent Application No. 09/044,826, entitled "Method and System for Facilitating
Access to a Lookup Service," bearing attorney docket no. 06502.0113-00000, and filed on the
same date herewith.

U.S. Patent Application No. 09/044,932, entitied "Apparatus and Method for
Dynamically Verifying Information in a Distributed System,"” bearing attorney docket no.
06502.0114-00000, and filed on the same date herewith.

U.S. Patent Application No. 09/030,840, entitled "Method and Apparatus for Dynamic
Distributed Computing Over a Network," and filed on February 26, 1998.

10

15

20

25

30

WO 99/44133 PCT/US99/04065

3

U.S. Patent Application No. 09/044,936, entitled "An Interactive Design Tool for
Persistent Shared Memory Spaces," bearing attorney docket no. 06502.0116-00000, and filed
on the same date herewith.

U.S. Patent Application No0.09/044,934, entitled "Polymorphic Token-Based Control,"
bearing attorney docket no. 06502.0117-00000, and filed on the same date herewith.

U.S. Patent Application No. 09/044,915, entitled "Stack-Based Access Control," bearing
attorney docket no. 06502.0118-00000, and filed on the same date herewith.

U.S. Patent Application No. 09/044,944, entitled "Stack-Based Security Requirements,"
bearing attorney docket no. 06502.0119-00000, and filed on the same date herewith.

U.S. Patent Application No. 09/044,837, entitled "Per-Method Designation of Security
Requirements," bearing attorney docket no. 06502.0120-00000, and filed on the same date
herewith.

Background
A. Field of the invention

This invention relates to data processing systems, and more particularly to remote method
invocations on remote servers. Even more specifically, this invention relates to a method and

system for identifying remote methods on a server machine using hash values.

B. Related Art

Distributed systems typically comprise multiple machines, such as computers and related
peripheral devices, connected in a network, for example, a Local Area Networks (LAN), Wide
Area Network (WAN), or the Internet. Distributed systems generally require that computational
entities (e.g., applications, programs, applets, etc.) running in different address spaces,
potentially on different machines, be able to communicate.

For a basic communication mechanism, distributed object oriented systems utilize a
Remote Procedure Call (RPC) mechanism referred to as Remote Method Invocation (RMI).
RMI facilitates application-level communication between “objects” residing in different address
spaces. In object oriented systems, a “class” provides a template for the creation of “objects”
(which represent items or instances manipulated by the system) having characteristics of that

class. The term template denotes that the objects (i.e., data items) in each class, share certain

10

15

20

25

WO 99/44133 PCT/US99/04065

4

characteristics or attributes determined by the class such as its methods. Objects are typically
created dynamically during system operation. Methods associated with a class are generally
invoked (i.e., caused to operate) on the objects of the same class.

RMI is the action of invoking a method of a remote object. In response to the invocation
of a method of a remote object using RMI, a lower level communications process causes the
invoked method to be executed on the remote object.

The Java™ runtime system, which is designed to implement applications written in the
Java™ object oriented programming language, supports a specific Java™ RMI Application
Program Interface (API). This APl is explained in, for example, a document entitled “Remote
Method Invocation Specification,” Sun Microsystems, Inc. (1997), which is available via
universal resource locator (URL)
http://www.javasoft.com/products/jdk/1.1/docs/guide/rmi/spec/rmiTOC.doc.html, and is
incorporated herein by reference. The Java™ language is described in many texts, including one
that is entitled “The Java Language Specification” by James Gosling, Bill Joy, and Guy Steele,
Addison-Wesley, 1996. Java and all Java-based trademarks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

Java RMI assumes a homogeneous environment of the specialized Java runtime system,
and therefore Java RMI takes advantage of a specialized object model for the Java language
whenever possible. In the Java™ distributed object model, a remote object is one that has
methods that can be invoked from another runtime system, potentially on a different machine.
An object of this type is described by one or more remote interfaces code written in the Java
language that specify the methods of the remote object.

The Java runtime system keeps track of all remote objects referenced by computational
entities executing through a local virtual machine (VM). The Java™ VM (JVM) is an abstract
computing machine of the runtime system that receives instructions from programs in the form
of bytecodes and that interprets these bytecodes by dynamically converting them into a form for
execution, such as object code, and executing them. The JVM is described in detail in a text
entitled “The Java Virtual Machine Specification”, by Tim Lindholm and Frank Yellin, Addison
Wesley, 1996.

10

15

20

25

30

WO 99/44133 PCT/US99/04065

5

In Java RMI, a client, while processing a program, can remotely initiate processing by
a server computer of methods in connection with certain “parameter” information provided by
the client. After the server has processed the procedure, it will provide results of its processing
to the client, which the client may thereafter use in its processing operations. Typically in such
RMI calls, the client will make use of a local “stub” which, when called, transfers the request
to the server which implements the particular method, obtains the results and provides them back
to the client.

Conventionally, when a client calls a method on a remote object containing a list of
methods, the method is identified by a string name or a sequence number identifying the selected
method. However, identifying a method by its string name can create false identification of a
remote method because the remote object may have more than one method with the same string
name. Such methods are said to be “overloaded.” Although methods may have the same string
name, overloaded methods with duplicate same string names typically take different parameter
types. For instance, suppose a remote object, using the Java programming language, has the

following two methods:

public interface Directory {
PhoneNumber lookupPhone (String name);

PhoneNumber lookupPhone (Person person)

If a client seeks to invoke one of these two methods, the string name “lookupPhone” alone does
not enable the remote object to determine the correct method to be invoked because more than
one method with that name exist.

Another conventional approach for identifying a remote method is to put the methods in
alphabetical order and number them. Suppose a remote object implements the following two

methods:

public interface Directory {
PhoneNumber lookupPhone (String name);

void storePhone (String name, PhoneNumber phone);

10

15

20

25

30

WO 99/44133 PCT/US99/04065

6

The numbering of the methods may be represented as follows:

1. lookupPhone

2. storePhone
When a client wants to invoke a method, it simply sends the number corresponding to the
method in the method invocation instruction. If, however, new methods are added to the remote

object such that it appears as follows:

public interface Directory {
PhoneNumber lookupPhone (String name);
void storePhone(String name, PhoneNumber phone);
Address lookupAddress (String name);

void storeAddress (String name, Address addr);
}
the new numbering of the methods would be:

1. lookupAddress
2. lookupPhone
3. storeAddress
4. storePhone
Hence, the numbers corresponding to each method have changed. Thus, existing clients that
continue to use old stubs using the old numbering would invoke the wrong methods.
Accordingly, it is desirable to provide a system that uniquely identifies the methods of

remote objects for RMI.

Summary

The present invention satisfies this and other desires by providing a method and system
for identifying the methods of remote objects using hash values.

A method in a data processing system for invoking a remote methods comprises the steps
of providing a hash value uniquely identifying a remote method, sending the hash value in
response to an instruction to invoke the remote method, and invoking the remote method based
on the hash value. The method further includes the step of locating the remote method in a

mapping table using the hash value.

10

15

20

25

30

WO 99/44133 PCT/US99/04065

7

Apparatus and systems are also provided for carrying out methods consistent with the
present invention.

The advantages accruing to the present invention are numerous. For example, methods
and systems consistent with the present invention identify unique remote methods for invocation,
thus avoiding false identification of incorrect remote methods. Furthermore, this identification
can be performed even if two or more methods have the same string name, or the methods use
a changing numbering system.

Although a long string such as the method name combined with a parameter type list
could be used to more precisely identify a remote method, such an identifier would be
cumbersome. The use of hash values further creates greater efficiency by eliminating the need
for long strings to more precisely identify remote methods. Additionally, it allows the server to
perform more efficiently because the server can more efficiently manipulate and compute the
integer numbers than the strings.

It is, therefore, desirable to provide a method and apparatus to uniquely identify remote

methods using hash values.

Brief Description of the Drawings

The accompanying drawings, which are incorporated in and constitute a part of this
specification, illustrate an embodiment of the invention and, together with the description, serve
to explain the advantages and principles of the invention. In the drawings,

Figure 1 illustrates a network in which systems consistent with the present invention may
be implemented;

Figure 2 is block diagram of the system architecture for a computer system with which
the present invention may be implemented;

Figure 3 is a block diagram illustrating an RMI call using a hash value between a client
computer and a server computer consistent with the present invention;

Figure 4 is a block diagram of a hash value mapping table consistent with the present
invention;

Figure 5 is a flowchart illustrating the steps used to identify a unique remote method

consistent with the present invention; and

10

15

20

25

30

WO 99/44133 PCT/US99/04065

8

Figure 6 is a flowchart illustrating the steps used by a server machine to create a hash

value mapping table consistent with the present invention.

Detailed Description

Overview

Methods and systems consistent with the present invention identify a method of aremote
object using a hash value. When a client wishes to invoke a method of a remote object located
on a server, the client sends the hash value identifying the particular remote method to the server
over the RMI connection. In one implementation, this hash value is created by applying a hash
function to the method string name and the parameter type list. Known hash functions with low
collision rates can be used for this purpose.

When the server receives the method invocation, the server identifies the called method
using the received hash value. The server maintains a mapping of hash values to their associated
remote methods located on the server and references the correct method using the hash value.

The server creates the mapping table dynamically when a remote object is created. Upon
the creation of a remote object, hash values are determined for each method implemented by the
remote object. The server then adds these hash values and pointers to their corresponding
methods to the mapping table. When adding the hash value and method pointer, the server
checks the mapping table to verify that the pairing is unique, i.e., the server checks for a hash
value collision. This process allows remote methods to be identified uniquely and allows the
server to continually add methods over time, as the remote class evolves, without notifying all
clients with old stubs of the new methods. Additionally, it allows clients using old stubs to
correctly identify remote methods on the server. Even further, the use of hashes avoids the need
for long strings to identify remote methods.

The Distributed System

Methods and systems consistent with the present invention operate in a distributed
system ("the exemplary distributed system") with various components, including both hardware
and software. The exemplary distributed system (1) allows users of the system to share services
and resources over a network of many devices; (2) provides programmers with tools and

programming patterns that allow development of robust, secured distributed systems; and (3)

10

15

20

25

30

WO 99/44133 PCT/US99/04065

9

simplifies the task of administering the distributed system. To accomplish these goals, the
exemplary distributed system utilizes the Java™ programming environment to allow both code
and data to be moved from device to device in a seamless manner. Accordingly, the exemplary
distributed system is layered on top of the Java programming environment and exploits the
characteristics of this environment, including the security offered by it and the strong typing
provided by it. The Java programming environment is more clearly described in Jaworski, Java

1.1 Developer's Guide, Sams.net (1997), which is incorporated herein by reference.

In the exemplary distributed system, different computers and devices are federated into
what appears to the user to be a single system. By appearing as a single system, the exemplary
distributed system provides the simplicity of access and the power of sharing that can be
provided by a single system without giving up the flexibility and personalized response of a
personal computer or workstation. The exemplary distributed system may contain thousands of
devices operated by users who are geographically disperse, but who agree on basic notions of
trust, administration, and policy. Within the exemplary distributed system are various logical
groupings of services provided by one or more devices, and each such logical grouping is known
as a Djinn. A "service" refers to aresource, data, or functionality that can be accessed by a user,
program, device, or another service and that can be computational, storage related,
communication related, or related to providing access to another user. Examples of services
provided as part of a Djinn include devices, such as printers, displays, and disks; software, such
as applications or utilities; information, such as databases and files; and users of the system.

Both users and devices may join a Djinn. When joining a Djinn, the user or device adds
zero or more services to the Djinn and may access, subject to security constraints, any one of the
services it contains. Thus, devices and users federate into a Djinn to share access to its services.
The services of the Djinn appear programmatically as objects of the Java programming
environment, which may include other objects, software components written in different
programming languages, or hardware devices. A service has an interface defining the operations
that can be requested of that service, and the type of the service determines the interfaces that
make up that service.

Fig. 1 depicts the exemplary distributed system 100 containing a computer 102, a

computer 104, and a device 106 interconnected by a network 108. The device 106 may be any

10

15

20

25

30

WO 99/44133 PCT/US99/04065

10

of a number of devices, such as a printer, fax machine, storage device, computer, or other
devices. The network 108 may be a local area network, wide area network, or the Internet.
Although only two computers and one device are depicted as comprising the exemplary
distributed system 100, one skilled in the art will appreciate that the exemplary distributed
system 100 may include additional computers or devices.

Fig. 2 depicts the computer 102 in greater detail to show a number of the software
components of the exemplary distributed system 100. One skilled in the art will appreciate that
computer 104 or device 106 may be similarly configured. Computer 102 includes a memory
202, a secondary storage device 204, a central processing unit (CPU) 206, an input device 208,
and a video display 210. The memory 202 includes a lookup service 212, a discovery server
214, and a Java™ runtime system 216. The Java runtime system 216 includes the Java™ remote
method invocation system (RMI) 218 and a Java™ virtual machine 220. The secondary storage
device 204 includes a Java™ space 222.

As mentioned above, the exemplary distributed system 100 is based on the Java
programming environment and thus makes use of the Java runtime system 216. The Java
runtime system 216 includes the Java™ API, allowing programs running on top of the Java
runtime system to access, in a platform-independent manner, various system functions, including
windowing capabilities and networking capabilities of the host operating system. Since the Java
API provides a single common API across all operating systems to which the Java runtime
system 216 1s ported, the programs running on top of a Java runtime system run in a
platform-independent manner, regardless of the operating system or hardware configuration of
the host platform. The Java runtime system 216 is provided as part of the Java™ software
development kit available from Sun Microsystems of Mountain View, CA.

The Java virtual machine 220 also facilitates platform independence. The Java virtual
machine 220 acts like an abstract computing machine, receiving instructions from programs in
the form of byte codes and interpreting these byte codes by dynamically converting them into
a form for execution, such as object code, and executing them. RMI 218 facilitates remote
method invocation by allowing objects executing on one computer or device to invoke methods
of an object on another computer or device. Both RMI and the Java virtual machine are also

provided as part of the Java software development kit.

10

15

20

25

30

WO 99/44133 PCT/US99/04065

11

The lookup service 212 defines the services that are available for a particular Djinn. That
is, there may be more than one Djinn and, consequently, more than one lookup service within
the exemplary distributed system 100. The lookup service 212 contains one object for each
service within the Djinn, and each object contains various methods that facilitate access to the
corresponding service. The lookup service 212 and its access are described in greater detail in
co-pending U.S. Patent Application No. , entitled "Method and System for
Facilitating Access to a Lookup Service," which has previously been incorporated by reference.

The discovery server 214 detects when a new device is added to the exemplary
distributed system 100, during a process known as boot and join or discovery, and when such
anew device is detected, the discovery server passes a reference to the lookup service 212 to the
new device, so that the new device may register its services with the lookup service and become
amember of the Djinn. After registration, the new device becomes a member of the Djinn, and
as a result, it may access all the services contained in the lookup service 212. The process of
boot and join is described in greater detail in co-pending U.S. Patent Application No.

, entitled "Apparatus and Method for providing Downloadable Code for Use in
Communicating with a Device in a Distributed System," which has previously been incorporated
by reference.

The Java space 222 is an object repository used by programs within the exemplary
distributed system 100 to store objects. Programs use the Java space 222 to store objects
persistently as well as to make them accessible to other devices within the exemplary distributed
system. Java spaces are described in greater detail in co-pending U.S. Patent Application No.
08/971,529, entitled "Database System Employing Polymorphic Entry and Entry Matching,"
assigned to a common assignee, filed on November 17, 1997, which is incorporated herein by
reference. One skilled in the art will appreciate that the exemplary distributed system 100 may
contain many lookup services, discovery servers, and Java spaces.

Although systems and methods consistent with the present invention are described as
operating in the exemplary distributed system and the Java programming environment, one
skilled in the art will appreciate that the present invention can be practiced in other systems and
other programming environments. Additionally, although aspects of the present invention are

described as being stored in memory, one skilled in the art will appreciate that these aspects can

10

15

20

25

WO 99/44133 PCT/US99/04065

12

also be stored on or read from other types of computer-readable media, such as secondary
storage devices, like hard disks, floppy disks, or CD-ROM,; a carrier wave from the Internet; or
other forms of RAM or ROM. Sun, Sun Microsystems, the SunLogo, Java, and Java-based
trademarks are trademarks or registered trademarks of Sun Microsystems Inc. in the United

States and other countries.

Identifying Remote Methods Using Hashes

Figure 3 is a block diagram illustrating an RMI call using a hash value consistent with
the present invention. It also shows two computers, client 302 and server 312, which may
correspond to computers 102 and 104 shown in distributed system 100. The invocation of a
method on a remote object is implemented using Java RMI, although other RMI mechanisms
may be used. When client 302 wishes to access a method implemented by a remote object 314
on a server 312, client 302 uses a stub 304 referencing remote object 314. Stub 304 is typically
downloaded from server 312 but can also be local to the client 302 or downloaded from
somewhere else in network 100, including another server. The manner in which the client
obtains a stub is described in greater detail in copending U.S. Patent Application No.
08/636,706, entitled, “System and Method For Facilitating Dynamic Loading of ‘Stub’
Information to Enable a Program Operating in One Address Space to Invoke Processing of a
Remote Method or Procedure in Another Address Space”, herein incorporated by reference.
Additionally, a "stubless" implementation may be employed in a manner consistent with U.S.
Patent Application No. , entitled "Methods and Apparatus for Remote Method
Invocation", bearing attorney docket no. 06502.0102-00000, which was previously incorporated
by reference.

Stub 304, which references remote object 314, has a local method 306 for each remote
method, such as remote method 316, implemented by remote object 314. This local method 306
is implemented by the client to invoke the corresponding method 316. It performs functions,
such as initiating the communication link between the client and remote method 316 and sending
the hash value identifying the method. It should be noted, however, that remote object 314 may

have more than one method, although only one method 316 is shown in Figure 3. Similarly, stub

10

15

20

25

30

WO 99/44133 PCT/US99/04065

13

304 may have more than one local method to implement remote methods, but only one is shown
in Figure 3 for simplicity.

In one implemention consistent with the present invention, local method 306 is created
during the compiling of stub 304, which is created by server 312. When a user supplies a remote

object 316 (in the form of Java source code) as a Java class, a Java compiler (not shown) on
server 312 compiles the Java class, thus creating a binary class file. This binary class file is
compiled by a stub compiler (not shown) on server to create a stub class. Clients use instances
of this stub class (i.e., a stub) to invoke methods of the remote object 316.

In this implementation, local method 306 is compiled into stub 304 during the process
of compiling the stub. The stub compiler compiles hash value 308 into the local method. As
a result, local method 306 has a hash value that identifies the corresponding method in the

remote object referenced by the stub. For example, suppose a server has a remote method:

int insurancePremium (String state, int age)

Then the corresponding stub may have a local method implemented as follows:

int insurancePremium (String state, int age) {

Stream out = startNewCall ();
sendLong (out, 4056878021019060934...);
sendString {(out, state);
sendInt (out, age);
Stream in = finishCall (out);
String result = readString (in);
finishResults (in);
return result;

}

where the long integer of the sendLong method call is a hash value uniquely identifying a remote

method.
In one implementation, hash value 308 is a hash value resulting from applying a standard
hash function to the combination of the method name and parameter type list 318 of the remote

method 316, as follows:

10

15

20

25

30

WO 99/44133 PCT/US99/04065

14

Hash (Method Name, Parameter Type List)

This hash function returns a hash value that may be an integer. Both the method name and
parameter type list are used to avoid collisions overwise caused by using only the method name
alone. In another implementation, the hash function may be applied to the method name,
parameter type and return value type. In otherimplementations, however, the hash function may
be applied to the method name alone where collisions are less likely.

In another implementation consistent with the present invention, the hash function
applied to the method name and parameter type list is the hash function used by the “Secure
Hash Algorithm 1” (SHA-1) secure hash standard. This standard is described in detail in the

Federal Information Processing Standard Publication 180-1, “Secure Hash Standard”, and can

also be found at http://csrc.nist.gov/fips on the Internet. The SHA-1 protocol is a hash function
that produces a 160 bit hash value. In yet another implementation consistent with the present
invention, the hash value used is only the first 64 bits of the SHA-1 hash value. In this
implementation, the hash value 308 is represented by these 64 bits, a shorten version of the full
SHA-1 hash value.

Figure 3 also shows RMI call 310, which is used when client 302 sends a message to
invoke a remote method on a remote server such as server 312. RMI call 310 further includes
hash value 308. Upon receipt of RMI call 310, server 312 then uses the hash value 308 to
reference mapping table 320 and identify a selected remote method.

Figure 4 further depicts details of mapping table 320 on server 312 consistent with the
present invention. Generally, mapping table 320 represents the mapping of hash values to
individual remote methods of a remote object 314 on server 312. As such, mapping table 320
includes sets of pairings 402 of a hash value 404 and a pointer to a remote method 306. This
pointer to a method is a "handle" that identifies a method in such a way as to allow it to be
programmatically invoked through the handle. For example, in the Java programming language,
this would be an instance of java.lang.reflect.Method. In C-++, it would be a function pointer
(i.e., the actual machine address of the code). As a result, each hash value 304 references a

remote method 306.

10

15

20

25

30

WO 99/44133 PCT/US99/04065

15

(1) Identifying Remote Methods

Figure 5 illustrates the steps used in a method consistent with the present invention for
identifying a unique remote method on a server by using hash values. First, client 302 makes
an RMI call 310 to server 312 to remotely invoke a remote method 316 on server 312. In this
RMI call 310, client 302 sends a hash value identifying remote method 316 to be invoked
(step 500). In RMI call 310, the client 302 may also pass any parameter arguments to be used
by the remote method 316 to invoke the method.

Next, server 312 receives hash value 308 included in RMI call 310 (step 502). Server
312 then accesses mapping table 320 for the server class of remote object 314 to identify which
remote method is to be invoked (step 504). Upon accessing mapping table 320, server 312 uses
hash value 308 sent in RMI call 310 to identify the remote method to be invoked in the mapping
table.

At this point, server 312 invokes method 316 using the received parameter argument
values in RMI call 310 (step 506). Finally, server 312 returns the result of the method invocation
to client 302 (step 508).

For an example using these steps of a method consistent with the present invention,

suppose a remote object implemented the following exemplary set of methods:

public interface Directory {
PhoneNumber lookupPhone (String name);
PhoneNumber lookupPhone (Person person);
void storePhone (String name, PhoneNumber phone);
voild storePhone (Person person, PhoneNumber phone);
Address lookupAddress (String name);
Address lookupAddress (Person person);
void storeAddress (String name, Address addr);

void storeAddress (Person person, Address addr);

}
Because this list of remote methods includes methods with duplicate string names, accessing the

list by method name may result in invocation of the wrong method. If, for instance, a client
wished to invoke the first lookupPhone method listed in the example, the client would send an

RMI call including the hash of the method name and parameter type list:

10

15

20

25

30

WO 99/44133 PCT/US99/04065

16

Hash (lookupPhone, String)

This process ensures that the second method, lookupPhone with the parameter Person, would
not be invoked. In addition to this hash, the client also sends the argument for the parameter

String (i.e., “John” to lookup the phone number for a person with the string name John.)

(2) Building the Mapping Table

Figure 6 depicts the steps used in methods consistent with the present invention by server
312 for dynamically building the mapping table 320 at run time. Generally, when a remote
object is created, the Java runtime system on server 312 adds the hash values for each method
of the remote object to the mapping table 320. As a result, server 312 has a mapping table for
each remote class, since typically all remote objects of the same class have the same remote
methods.

First, in methods consistent with the present invention, an object on server 312 is created
as remote object, such as object 314 (step 600). Upon this creation, the Java runtime system on
server 312 locates all remote methods 316 supported by object 314 (step 602). The Java runtime
system calculates the hash value for each remote method 316 of the remote object 314. In one
implementation, it obtains the method name and parameter type list 318 (step 604) and computes
the hash of the method name and parameter type list (step 606). The Java runtime system on
server 312 adds the resulting hash value 404 and a pointer to the method 406 to mapping table
320 (step 608). When adding the hash value, the Java runtime system checks the mapping table
to ensure that the hash value does not already exist in the mapping table, i.e., no collisions have
occurred with respect to the hash values. Although hash functions virtually guarantee that a hash
value will uniquely identify a remote method, checking the table verifies that there are no
collisions of hash values.

To illustrate an example of the steps used in Figure 6, suppose a remote object is created

containing the following methods:

public interface Directory {

Address lookupAddress{String name) ;

10

15

20

25

WO 99/44133 PCT/US99/04065

17

Address lookupAddress (Person person)
}

The Java runtime system on server 312 creates a hash for each remote method. In this example,

it creates two hashes:

Hash (lookupAddress, String), and
Hash (lookupAddress, Person).

Each hash value is unique and will be used to uniquely identify the remote method. Each hash
value is added with a pointer to its corresponding method to mapping table 320, thus creating
amethod and hash value pairing 402 in mapping table 320. Server 312 can later access mapping
table 320 using hash value 308 from client 302 to identify remote method 316 to be invoked.

The process of using hashes to identify remote methods on a remote server
advantageously enables a client to uniquely identify the remote method without identifying an
incorrect method. Additionally, the use of hashes avoids the need for long strings to identify
remote methods, thereby allowing more efficient processing. The false identification of remote
methods on servers commonly results from remote methods having string names common to
more than one method, or the changing of numbering of methods without notifying clients using
an old stub of the number changes. Methods and systems consistent with the present invention
using hashes to identify remote methods on a remote server avoid these and related problems.

It will be appreciated by those skilled in this art that various modifications and variations
can be made to the remote method identification strategy consistent with the present invention
described herein without departing from the spirit and scope of the invention. Other
embodiments of the invention will be apparent to those skilled in this art from consideration of
the specification and practice of the invention disclosed herein. It is intended that the
specification and examples be considered exemplary only, with a true scope and spirit of the

invention being indicated by the following claims.

WO 99/44133 PCT/US99/04065

18
WHAT IS CLAIMED IS:
1. A method in a data processing system for invoking remote methods comprising
the steps of:

providing an identifier uniquely identifying a remote method,;
sending the identifier in response to an instruction to invoke the remote method; and

invoking the remote method based on the identifier.

2. The method of claim 1, wherein the invoking step includes the step of:
locating the remote method in a table indicating hash values and corresponding remote

methods.

3. The method of claim 1, further including the step of:

returning a result of the invocation of the remote method.

4. The method of claim 1, wherein the providing step includes:

applying a hash function to an identifier and set of parameters for the remote method.

5. The method of claim 4, wherein applying step includes the step of:
applying an SHA-1 hash function.

6. The method of claim 1, wherein the invoking step includes the step of:

accessing a hash table containing hash values and references to remote methods.

7. A method in a data processing system for invoking remote methods comprising
the steps of:

providing a hash value identifying a remote method;

sending the hash value in response to an instruction to invoke the remote method; and

invoking the remote method based on the hash value.

WO 99/44133 PCT/US99/04065

19

8. A method in a data processing system for identifying a remote method on a server
by using a hash value comprising the steps of:

providing a hash value uniquely identifying a remote method;

sending the hash value in response to an instruction to invoke the remote method; and

receiving a result of the invocation of the remote method.

9. The method of claim 8, wherein the providing step includes the step of:
applying a hash function to an identifier of the remote method and a corresponding

parameter list to create the hash value.

10. The method of claim 9, wherein the applying step further includes the step of:
using a SHA-1 hash function.

WO 99/44133 PCT/US99/04065

20

11. A method in a data processing system for uniquely identifying methods in a
distributed system comprised of a plurality of machines, the method comprising the steps,
performed by one of the machines, of:

receiving a hash value identifying a method to be invoked;

identifying the method based on the hash value; and

performing the identified method.

12. The method of claim 11, wherein the performing step includes the step of:
invoking the identified method; and

returning a result of the invocation of the identified method.

13. The method of claim 11, wherein the identifying step includes the step of:

locating the method in a table using the hash value.

WO 99/44133 PCT/US99/04065

21

14. A system for identifying a method using a hash value, and in response, invoking
the method, the system comprising:
a memory including:
a mapping table for mapping hash values to methods; and
5 a processor for:
receiving a request to invoke a selected method, the request including a hash
value identifying the selected method;
accessing the mapping table to identify the selected method based on the hash
value of the request; and

10 invoking the selected method.

WO 99/44133 PCT/US99/04065

22

15. A method for creating a mapping table for storing associations between hash

values and remote methods comprises the steps of:

value.

creating a remote object;
identifying a remote method implemented by the remote object;
computing a hash value representing the remote method; and

adding the hash value and the remote method to the mapping table.

16. The method of claim 15, wherein the identifying step includes the step of:

identifying all of the remote methods implemented by the remote object.

17. The method of claim 15, wherein the computing step includes the step of:

applying a hash function to the method name and parameter type list to compute the hash

WO 99/44133 PCT/US99/04065

23

18. A computer program product comprising a computer readable medium having

computer readable code embodied therein for invoking remote methods by:
providing an identifier uniquely identifying a remote method;
sending the identifier in response to an instruction to invoke the remote method; and

invoking the remote method based on the identifier.

19. The product of claim 18, wherein the invoking step includes the step of:

locating the remote method in a table indicating hash values and corresponding remote

methods.

20. The product of claim 18, further including the step of:

returning a result of the invocation of the remote method.

21. The product of claim 18, wherein the providing step includes:

applying a hash function to an identifier and set of parameters for the remote method.

22. A computer program product comprising a computer readable medium having

computer readable code embodied therein for invoking remote methods by:
providing a hash value uniquely identifying a remote method,

sending the hash value in response to an instruction to invoke the remote method; and

receiving a result of the invocation of the remote method.

23. A computer program product comprising a computer readable medium having
computer readable code embodied therein for invoking remote methods by:

receiving a hash value identifying a method to be invoked;

identifying the method based on the hash value; and

performing the identified method.

24. A computer program product comprising a computer readable medium having

computer readable code embodied therein for invoking remote methods by:

WO 99/44133 PCT/US99/04065

24

creating a remote object;
identifying a remote method implemented by the remote object;
computing a hash value representing the remote method; and

adding the hash value and the remote method to the mapping table.

WO 99/44133 PCT/US99/04065

25

25. An apparatus in a data processing system for invoking remote methods
comprising:

means for providing an identifier uniquely identifying a remote method;

means for sending the identifier in response to an instruction to invoke the remote
method; and

means for invoking the remote method based on the identifier.

PCT/US99/04065

WO 99/44133

1/6

"d31NdINOD

| "OId

340IA3d

C

v0l

AHOMLIAN

801

d31NdINOD

(

cOl

SUBSTITUTE SHEET (RULE 26)

PCT/US99/04065

WO 99/44133

2/6

00¢

80c~| 3I0IA3A LNdNI

¢ Old

022d ~

222
N JOVdS VAYF
30IA3d
JOVHOLS AHVANODIS
C
02

AVIdSIa o3din - |~ 0le
NA INH |_~8l¢c
INJLSAS
JNILNNY VAV |_~9l¢
d3AH3S AHINOOSIA| ~vie
J0IAH3S dNXOOT | ~2le
AHOWEIN
f
c0¢

SUBSTITUTE SHEET (RULE 26)

PCT/US99/04065

WO 99/44133

3/6

0zed T1GVLONIddVIN

S3dAL HILINVHVYd
ANV JNVN dOHLIN

wwmw
JOHL13W 310N3d

o1ed 103rgo 310W3Y
pred

<€

I E |

JANTVA HSYH
ONIANTONI

S

"d3AH3S

453

TIVO IINY

orm%

INIVA
HSVH
\
80€
QOHLIN VYOO
9og’® anls
G
b0g

c0¢

IN3INO

SUBSTITUTE SHEET (RULE 26)

WO 99/44133

402

METHOD/
HASH PAIR

4/6

s 404

PCT/US99/04065

MAPPING TABLE FOR A SERVER CLASS

f- 406

HASH VALUE POINTER TO METHOD
HASH VALUE POINTER TO METHOD
HASH VALUE POINTER TO METHOD
HASH VALUE POINTER TO METHOD

o o

L L

® o

1 320

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 99/44133 PCT/US99/04065
5/6

< START)

CLIENT SENDS A HASH IDENTIYING THE | 500
REMOTE METHOD TO BE

CALLED. PARAMETER ARGUMENTS
ARE ALSO SENT.

l 502

SERVER RECEIVES THE HASH ~

l

SERVER LOOKS UP THE HASH IN 504
THE MAPPING TABLE TO IDENTIFY |~
WHICH METHOD IS TO BE INVOKED

'

SERVER INVOKES THE REMOTE METHOD | 506
USING THE RECEIVED PARAMETER ~
ARGUMENTS

l 508

SERVER RETURNS THE RESULT OF THE |~
METHOD INVOCATION

'
Coo)

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 99/44133 PCT/US99/04065

6/6

(START)
l 600

REMOTE OBJECT IS CREATED /'J

602

SERVER FINDS ALL OF THE /_J
REMOTE METHODS SUPPORTED
BY THE REMOTE OBJECT

604

FOR EACH METHOD, THE SERVER /_J
GETS THE METHOD NAME AND
PARAMETER TYPE LIST

l 606

SERVER COMPUTES THE HASH USING THE /-J
METHOD NAME AND PARAMETER TYPE LIST

l

SERVER ADDS THE HASH AND | 608
METHOD POINTER TO THE
MAPPING TABLE

END

FIG. 6

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

